

1

lossgainRSL v6.31 User’s Manual

Contents
1 General information .. 2

2 How to install and test ... 2

2.1 Windows version ... 2

2.2 linux version .. 3

3 Command line syntax .. 4

4 Input data ... 6

4.1 Table of genes .. 7

4.2 Table of orthologs .. 8

4.3 Table of paralogs ... 9

4.4 Protein similarity matrix .. 9

4.5 Table of orthologous groups .. 10

4.6 Table of protein clusters .. 11

5 Configuration file .. 11

5.1 Program operation modes: [mode]... 12

5.2 Input data location: [data] .. 14

5.3 Relevant field names: [fields] .. 16

5.4 Species and group names: [species] ... 17

5.5 Gene selection predicate: [predicate] ... 17

5.5.1 Operator SET and its variants ... 18

5.5.2 Operators IN and INBK .. 21

5.5.3 Labels and operator GOTO .. 23

5.5.4 Operator ADD .. 24

5.5.5 Verification of 2-species conditions and operators BOR/EOR/EOS, BAND/EAND .. 25

5.5.6 Operators OVER/IN2/NEXT and verification of 3-species conditions 28

5.5.7 Predicate debugging ... 30

6 Output data .. 31

6.1 lossgainRSL operation log ... 31

6.2 Output file .. 36

7 Using other input data sources .. 37

7.1 Addition of genomes not included in the Ensembl .. 37

7.1.1 Manual preparation of a new table of genes ... 37

7.1.2 Importing the table of genes from RefSeq.. 39

7.1.3 Augmenting the ortholog and paralog tables by addspecies utility 39

7.2 Using alternative information on gene homology ... 41

7.3 Using input data from only NCBI database ... 42

2

1 General information
The lossgainRSL program is aimed at the prediction of gene losses and gains between several

groups of species. It allows the user, for a given reference species, to identify its genes that are

present in and/or absent from several sets of species in accordance with a given logical function

(predicate). The elementary condition “gene X is present in the set of species S”, and the predicate is

a Boolean function composed of arbitrary number of such conditions using logical connectives

AND, OR, NOT and the parentheses. A set of species does not need to be a taxonomic group; it can

be composed on the basis of arbitrary traits. In particular, a species may belong to multiple sets and

S may consist of a single species. For a gene X to present in the set S, it is required that X is present

in at least p species from S (p is a parameter of the condition). The presence of gene X of the

reference species in some other species is understood as not only presence of gene X' that is an

ortholog or close homolog of X in the genome of other species, but also the synteny: there must be

several distinct genes (“witnesses”) in the vicinity of X, which have respective homologous

witnesses in the vicinity of X'. The sets of species, predicate, required number of witnesses and other

synteny details, vicinity sizes and the extent of homology – all are the program parameters, which

allows its application to the wide range of studies.

The current version of lossgainRSL is primarily orientated to species and genomic data included in

the Ensembl database (http://www.ensembl.org/), but this user’s manual also describes other

possibilities such as using GenBank (https://www.ncbi.nlm.nih.gov/genbank/), RefSeq

(https://www.ncbi.nlm.nih.gov/refseq/), and OrthoDB (https://www.orthodb.org/) data. The program

has been written in C++ as a command line utility for Windows/linux. Both 32- and 64-bit OS

versions are supported; the latter is highly recommended for studies with many species because of

memory requirements. The program supports parallel multiprocessing in the MPI environment of

version 2.1 or above.

The lossgainRSL program was developed in the Laboratory of Mathematic Methods and Models in

Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute) of the

Russian Academy of Sciences (http://lab6.iitp.ru) by Lev Rubanov, Alexandr Seliverstov and

Vassily Lyubetsky. The current versions of lossgainRSL binaries for Windows and the source code

for linux (subject to the GNU GPL license) are available at http://lab6.iitp.ru/en/lossgainrsl/ together

with the test example and this manual.

Minimum program requirements: Windows or linux OS 32/64 bit (64-bit is recommended), single

CPU with the frequency of 1 GHz (3-4 GHz is recommended), 2 GB RAM (8 GB is recommended

for multi-species studies).

2 How to install and test

2.1 Windows version

No installer is provided for Windows; the user should download zipped archive(s) with chosen

executable and unpack it into a working directory. There are three variants of the executable:

– lossgainrsl.exe – intended for 32-bit Windows;

– lossgainrsl64nompi.exe – single-CPU version for 64-bit Windows;

– lossgainrsl64.exe – parallel version for 64-bit Windows with MS-MPI installed.

http://www.ensembl.org/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.orthodb.org/
http://lab6.iitp.ru/
http://lab6.iitp.ru/en/lossgainrsl/

3

The third option requires the Microsoft MPI v10.0 redistributable package

(https://www.microsoft.com/en-us/download/details.aspx?id=57467) to be installed in Windows

system. Different MPI brands or versions are not supported.

In addition, for the binary executables to operate under Windows, Microsoft Visual С++ for Visual

Studio 2013 redistributable package(s) may be required, which are available from:

http://download.microsoft.com/download/c/c/2/cc2df5f8-4454-44b4-802d-

5ea68d086676/vcredist_x86.exe and http://download.microsoft.com/download/c/c/2/cc2df5f8-

4454-44b4-802d-5ea68d086676/vcredist_x64.exe.

The operability testing in Windows is accomplished by the test example with six species that is

available at http://lab6.iitp.ru/en/lossgainrsl/example.zip, as follows:

1. Download the archive, example.zip, and unpack it to the working directory, where the

example folder will be created.

2. Copy chosen executable(s) to the example folder.

3. Start the Command Prompt and switch to the folder.

4. Depending on the selected variant of the program, run one of the commands:

run for checking the 32-bit version,

run64 for checking the 64-bit version without MPI,

run64mpi for checking the 64-bit version with MPI (on two CPUs).

5. After few minutes, the two first options will display the message:
Test completed OK.

It confirms that respective executable is operable.

6. If the MPI-enabled variant is being checked, the message will read:
Xs: Completed OK.

The user should compare a contents of the created file, result.txt, with that of

result4.ref from the same folder. It can be done easier by import to Excel. The created

file has to contains the same four-line groups, possibly in different order. Discrepancies in

the very last column should be ignored.

2.2 linux version

The lossgainRSL program is installed through the building from the source code available for

download at the program webpage. In order to use MPI parallelization, an MPI 2.1 compliant

version of libraries must be installed in the system. The current version of Open MPI package

(https://www.open-mpi.org/) is recommended for various linux versions. Though, many high-

performance clusters use MVAPICH or other implementations of the MPI which also will do. To

install and test the program, the following steps to be performed:

1. Download the program distribution tarball, usually named lossgainrsl-x.yy.tar.gz,

where x.yy is a version number, to a working directory.

2. Unpack the file with a command:
tar –xf filename

3. Switch to the directory created:
cd lossgainrsl-x.yy

4. In the simplest case, where C++ compiler is named g++ in the system, and parallel

computing is not planned, the make command without parameters can be enough.

5. Otherwise, the Makefile in the current directory should be edited prior to run make. It is

recommended to preserve the source file and edit a copy of it. The user should specify:

CXX= , a command to run the C++ compiler for building mpi-enabled programs; and

https://www.microsoft.com/en-us/download/details.aspx?id=57467
http://download.microsoft.com/download/c/c/2/cc2df5f8-4454-44b4-802d-5ea68d086676/vcredist_x86.exe
http://download.microsoft.com/download/c/c/2/cc2df5f8-4454-44b4-802d-5ea68d086676/vcredist_x86.exe
http://download.microsoft.com/download/c/c/2/cc2df5f8-4454-44b4-802d-5ea68d086676/vcredist_x64.exe
http://download.microsoft.com/download/c/c/2/cc2df5f8-4454-44b4-802d-5ea68d086676/vcredist_x64.exe
http://lab6.iitp.ru/en/lossgainrsl/example.zip
https://www.open-mpi.org/

4

CXXFLAGS= , required parameters for the compiler. Some typical variants are provided in

commented out form in the beginning of the Makefile.

6. Once the makefile has been edited, run make or make filename (if the new file has been

saved with a name filename).

7. After the successful compilation, a new executable file, lossgainRSL, will be created in

the ./bin directory. Error messages or warnings should be analyzed and eliminated e.g. by

editing the Makefile again. Prior to re-run make, the command make clean should be

executed to clear previous results.

8. When the program has been built successfully, run make test.

9. After few minutes, the message Example completed OK is displayed, which confirms

that the program is operable.

10. To test the mpi-enabled version of the program on two CPUs, run the command

make mpitest. In this case, the result should be checked as described in the last section,

item 6.

3 Command line syntax
In a single-CPU operating mode, lossgainRSL should be run by the following command line:

lossgainRSL [options] [%name=value...] [config] [outfile]

Here, the program name is shown for linux; in Windows use lossgainrsl (32-bit version) or

lossgainrsl64nompi (64-bit version without MPI) or lossgainrsl64 (64-bit version with

Microsoft MPI support). The command line is case-insensitive except for file names in linux. All

command line arguments are optional. Short help on the command line syntax and options will be

displayed if the program is run with any of the arguments ? -? –h. The program options are

specified by a dash (-) or double dash (--) followed by a letter and value if necessary (parameters

of the gene selection predicate are specified in a different form, see below). The following options

are supported by the current version of lossgainRSL, in alphabetical order:

-b If this option is specified, all operators xIN of any sort that are present in the predicate

will be performed as xINBK operators, i.e., including backward check (see 5.5.2 for

detail). And vice versa, --b option make the program to perform each xINBK operator

of the predicate as xIN operator, i.e., without backward check.

-сN Normally, when this option is omitted or specified with N=0, for each gene or the

reference species, the program looks only for first homolog of that gene and proceeds to

the next gene of the reference species if the homolog is found. If –с1 is specified, once a

homolog is found, the program continue looking for next homolog in the same species

and so on, until all homologs of the candidate gene are found in each species. The

program performs much slowly in this mode and generates bigger output, so it is not

recommended to use the option for complex multispecies search.

-gN Controls the frequency of output during the search of candidate genes. The value of N is

a step of displaying serial numbers of genes in each genomic sequence under analysis

(chromosome, scaffold, contig, etc.). Zero value cancels this output completely. The step

of 10 is used by default.

5

-iN The option matters only if protein similarity matrices are used at input. It informs the

program on optional fields presence in the matrices (see 4.4). If -i1 is specified, the

program assumes each matrix entry to contain fields 5 and 6 with integer values of the

rank and back rank (Table 2). If –i2 is specified, these fields should contain floating

numbers from [0, 1] interval. If the option is omitted or N=0 is specified, the matrices

are processed as if no optional field is present. This option speeds up the program, if the

predicate specifies nonzero values of ORTH/BBH parameter (5.5.1).

-l If this option is specified, all operators IN (or INBK) of the predicate are treated as LIN

(LINBK). It means that in non-reference species, the program looks for witness genes

only in the left semi-neighborhood including the homolog itself. See also 5.5.2.

-ll The same as -l, but all operators IN/INBK are treated as LLIN/LLINBK, i.e., the

witnesses are searched in the left semi-neighborhood excluding the homolog itself.

-n Prevent the program from using MPI e.g. in case of incompatible version of MPI

libraries installed in the OS. If lossgainRSL fails due to the lack of MPI, first it is

recommended to try this option. If the error persists, use the program version compiled

without MPI support.

-qN This option allows shortening the program log output to console. Default N=0 is a

maximum detailed log. If –q1 is specified, the program suppresses the gene table error

reporting such as a reoccurrence of the protein. If –q2 is specified, the program does not

output a list of species and predicate specified in the configuration file as well as error

messages regarding the table of homologs (orthologs or paralogs). If –q3 is specified,

the program in addition does not output details of reading input files and searching

genes, and output only final result thus producing the shortest log.

-r If this option is specified, all operators IN (or INBK) of the predicate are treated as RIN

(RINBK). It means that in non-reference species, the program looks for witness genes

only in the right semi-neighborhood including the homolog itself. See also 5.5.2.

-rr The same as -r, but all operators IN/INBK are treated as RRIN/RRINBK, i.e., the

witnesses are searched in the right semi-neighborhood excluding the homolog itself.

-x Outputs only sought-for genes of the reference species along with their homologs in

other species even if entire synteny blocks (i.e., including witnesses) were requested in

the configuration file. And vice versa, --x option instruct the program to output genes

of any species together with witnesses in that species irrespective of the configuration

setting.

%name=value The program allows the user to specify numerical parameters in the configuration file

(in the form of %name, where name is an identifier); the effective values of the

parameters to be specified in the command line by this argument(s). Separate argument

is required for each named parameter; the order is arbitrary. Numerical values may be of

integer or float types, written in fixed or scientific form. String values should not contain

6

blanks. To use the command in Windows command scripts, the percent character should

be doubled.

Above options may appear in any order at any place of the command line. The first positional

argument that is neither option nor parameter is used as the name of configuration file (config), the

second – as the name of output file (outfile).

config The name of configuration file including optional path. Default is file config.ini in

the current directory. The configuration file is described in section 5.

outfile The name of output file including optional path. Default is file result.txt in the

current directory. The output file is described in section 6.2 of this manual.

The lossgainRSL program outputs its log (6.1) to the standard stream stdout (the console by default)

which can be redirected to a file, if desired, by appending the command line with the argument

>logfile. Debug information, if requested in the configuration file, will output to the standard stream

stderr (the console by default) and can be redirected to a separate file by adding the argument,

2>debugfile, to the command line.

The lossgainRSL program (64-bit version only) supports parallelization in the MPI environment.

The following command line should be used for multiprocessing:

mpirun –np P lossgainRSL [...]

where P is the number of logical CPUs the program will run on. Here, the program names in linux

are shown; Windows users should specify mpiexec and lossgainrsl64 instead. Other arguments

of the command line were described above.

4 Input data
Preferred use of the lossgainRSL program relies on input data from the Ensembl database

(www.ensembl.org). Doing so, the set of species in a study is naturally limited to those included in

the database (as of April 2021, version 106 of the database includes 310 vertebrate genomes). The

program ability of working with species that are absent from Ensembl is discussed in chapter 7.

When using input data from Ensembl, the program requires two or three types of input files

depending on the configuration file. These files are described in below sections 4.1–4.3. The user

can choose from the two ways for obtaining these files:

1) The user submits a proper SQL query to a public Ensembl MySQL server (see

http://www.ensembl.org/info/data/mysql.html for details) through a client application. We do

not describe this option in detail as it is intended for skilled users who know SQL and have

learned the Ensembl database schemes. In addition, a complex SQL query can take much

time to process so the public server will forcedly terminate it. In such cases users are

recommended to set up a mirror database at their premises, which can be rather difficult.

2) The user enters the BioMart data-mining tool interface at the Ensembl web site

(http://www.ensembl.org/biomart/martview/), in order to obtain necessary data interactively.

It does not require deep skills but can be tedious. In some cases the files have to be merged

http://www.ensembl.org/
http://www.ensembl.org/info/data/mysql.html
http://www.ensembl.org/biomart/martview/

7

from parts using some ancillary facilities such as OS shell or text editor. It is precisely this

method that we describe below in sections 4.1–4.3 for each data type.

As is described in chapter 7, the lossgainRSL program allows using, instead of Ensembl, some other

sources such as GenBank and OrthoDB, but the user must compose the necessary files manually or

with assistance of their own software. Yet three alternative types of input data supported by the

current program version are described in sections 4.4–4.6.

4.1 Table of genes

This table is required for each species involved in the study. It contains IDs of all proteins and genes

of this species as well as gene coordinates, names and annotations. The table is a TSV (tab-separated

values) formatted text file containing field names in the first line. Each subsequent line describes a

protein (for protein-encoding genes) or RNA (transfer, ribosomal etc.). These lines appear in

arbitrary order. The name of the table must coincide with a species name in the configuration file;

all such tables must be in the same directory and have the same extension(s) of the file name.

The set and order of fields in the tables of genes may differ, but each table must include at least the

fields listed in Table 1.

Table 1. Obligatory fields of the table of genes.

Name in Ensembl v106 Description

Protein stable ID Identifier of the protein in the Ensembl database

Gene stable ID Identifier of the gene in the Ensembl database

Chromosome/scaffold name Identifier of the top-level genomic sequence (chromosome, scaffold,

contig...)

Gene start (bp) Starting position of the gene in the sequence

Gene end (bp) Ending position of the gene in the sequence

Strand Indication of the strand: 1 is positive (forward), –1 is negative

Gene name* Symbolic name of the gene (the gene symbol)

Gene description* Description or annotation of the gene

Note: The fields labeled with *, strictly speaking, are not required by the program, but highly

recommended for inclusion in the table of genes.

Field names in the table corresponds to Ensembl version 106. The lossgainRSL program does not

assume these names unchangeable, but all tables must use the same name of each field. Moreover,

the field names at output may differ from those shown in Table 1; the mapping can be set in the

configuration file and does not require modifying the program.

Examples of the table of genes are provided in genes directory within the test example

(http://lab6.iitp.ru/en/lossgainrsl/example.zip). Let us give the sequence of actions resulting in e.g.

Human.tsv file in that directory:

1. Enter the BioMart interface (http://www.ensembl.org/biomart/martview/)

2. In the CHOOSE DATABASE list box, select Ensemble Genes 106 (or later).

http://lab6.iitp.ru/en/lossgainrsl/example.zip
http://www.ensembl.org/biomart/martview/

8

3. In the CHOOSE DATASET list box, select Human genes (...).

4. Click Filters in the left, then expand REGION in the right.

5. Check Chromosome/scaffold box and select Y chromosome from the list.

6. Click Attributes in the left and select Features in the right, then expand GENE below.

7. Uncheck all fields, then check the fields listed in Table 1. Those fields will appear in each line of

the file in the order they were checked.

8. Press Results button in the top left. In the right, select Export all results to File, TSV and check

Unique results only, then press Go button.

9. A file named mart_export.txt will be downloaded to the user’s directory for downloads. Rename

this file to Human.tsv and move it to the directory containing all tables of genes.

4.2 Table of orthologs

This table is required for the reference species as well as for each substitute species participated in a

3-species condition (see 5.5.6 for details). The table is a TSV-formatted text file; heading line is not

needed and ignored if appears. Each line of the table contains two fields with Ensembl IDs of two

orthologous genes: the first one of the species the table is pertinent to (i.e., the reference or

substitute species), and the second gene of some other species.

Notice that the table of orthologs for the reference or substitute species must contain orthologs of

each gene of this species in all other species, therefore it can be voluminous. No order of lines is

assumed but can be helpful. The name of the table must coincide with the species name in the

configuration file; all such tables must be in the same directory and have the same extension(s) of

the file name.

Example of the table of orthologs is provided in orthologs directory within the test example

(http://lab6.iitp.ru/en/lossgainrsl/example.zip). Let us give the sequence of actions resulting in

Mouse.tsv file in that directory:

1. Enter the BioMart interface (http://www.ensembl.org/biomart/martview/)

2. In the CHOOSE DATABASE list box, select Ensemble Genes 106 (or later).

3. In the CHOOSE DATASET list box, select Mouse genes (...).

4. Click Filters in the left, then expand REGION in the right.

5. Check Chromosome/scaffold box and select Y chromosome from the list, then shrink REGION

panel.

6. Click Attributes in the left and select Homologues in the right, then expand GENE below.

7. Leave checked only Gene stable ID field, then shrink GENE panel.

8. Expand ORTOLOGUES [...] panel below and scroll it to a species to look for orthologs in, e.g.

Human. (Among several panels, the user should expand one containing a letter the species

common name begins with, here [F-J].) Check Human gene stable ID box.

9. Click Filters in the left, then shrink REGION and expand MULTI SPECIES COMPARISONS.

Check Homologue filters box, choose Only, then select Orthologous Human Genes from the list

box.

10. Press Results button in the top left. In the right, select Export all results to File, TSV and check

Unique results only, then press Go button.

11. A file named mart_export.txt will be downloaded to the user’s directory for downloads. Rename

this file to Mouse_Human.txt.

12. Click Attributes in the left and uncheck the box previously checked in item 8. Then repeat items

8-12 with another species until all “second” species are examined for given “first” one.

http://lab6.iitp.ru/en/lossgainrsl/example.zip
http://www.ensembl.org/biomart/martview/

9

13. Merge all files obtained in item 11. For example, the following Windows command will do:
copy /a Mouse_*.txt /b Mouse.tsv

14. Move the result file, Mouse.tsv, to the directory containing all tables of orthologs.

4.3 Table of paralogs

This table is needed if orthologous genes should be selected from not only orthologs but also

paralogs of them as specified in the configuration file. Another case is when the number of paralogs

has to be output for selected genes (the field named #, see 5.3). The table is required for each species

whose paralogs should be considered. It is a TSV-formatted text file; heading line is not needed and

ignored if appears. Each line of the table contains two fields with Ensembl IDs of two paralogous

genes of the same species this table is pertinent to. The table must contain all ordered (i.e. including

transpositions) pairs of paralogous genes of given species; the order of pairs does not matter. The

name of the file must coincide with a species name in the configuration file; all such tables must be

in the same directory and have the same extension(s) of the file name.

Example of the table of paralogs is provided in paralogs directory within the test example

(http://lab6.iitp.ru/en/lossgainrsl/example.zip). Let us give the sequence of actions resulting in

Mouse.tsv file in that directory:

1. Enter the BioMart interface (http://www.ensembl.org/biomart/martview/)

2. In the CHOOSE DATABASE list box, select Ensemble Genes 106 (or later).

3. In the CHOOSE DATASET list box, select Mouse genes (...).

4. Click Filters in the left, then expand REGION in the right.

5. Check Chromosome/scaffold box and select Y chromosome from the list.

6. Shrink REGION in the right, then expand MULTI SPECIES COMPARISONS. Check

Homologue filters box, choose Only, then select Paralogous Mouse Genes from the list box.

7. Click Attributes in the left and select Homologues in the right, then expand GENE below.

8. Leave checked only Gene stable ID field, then shrink GENE panel.

9. Ensure that below Attributes in the left the only field is Gene stable ID, otherwise uncheck extra

fields under GENE or ORTHOLOGUES in the right. Then expand PARALOGUES in the right

and check Mouse paralogue gene stable ID box.

10. Press Results button in the top left. In the right, select Export all results to File, TSV and check

Unique results only, then press Go button.

11. A file named mart_export.txt will be downloaded to the user’s directory for downloads. Rename

this file to Mouse.tsv and move it to the directory containing all tables of paralogs.

4.4 Protein similarity matrix

This data type is an alternative for the tables of orthologs and paralogs from Ensembl (4.2, 4.3).

Notice that the table of genes (4.1) is still required for each species involved in the study though in

this case such table may contain protein and gene IDs not from Ensembl.

The protein similarity matrix is required for each species. It is a TSV-formatted text file without

heading line, which is ignored if appears. Each data line of the matrix file should contain obligatory

fields 1–4 and optional fields 5–6 listed in Table 2. The name of the file must coincide with the

species name in the configuration file; all matrices must be in the same directory and have the same

extension(s) of the file name.

http://lab6.iitp.ru/en/lossgainrsl/example.zip
http://www.ensembl.org/biomart/martview/

10

The matrix lines can appear in an arbitrary order, but the values of fields 3 and 4 must be consistent

over all matrices. Thus, if the matrices are formed using BLASTP, the same parameters have to be

used everywhere, including the amino acid substitution table such as BLOSUM62. The entries may

be non-unique: multiple occurrence of the same protein pair is allowed, and lossgainRSL will use

one corresponding to the maximum raw score and minimum E-value.

Table 2. Fields of the protein similarity matrix entry.

No. Description

1 A protein identifier of the species corresponding to the matrix name. If all tables of genes

comply with section 4.1, the Ensembl protein ID has to be used as the identifier. If a table of

genes has compatible format but relies on other protein identifiers, those ID have to be used

in the protein similarity matrix. If a line of the matrix contains unknown protein ID, such

line will be skipped with a warning. Note: The program will aggregate these data to form

the matrix of genes by choosing, for each pair of genes, a pair of their proteins with

maximum similarity. Therefore, this field may (and should) directly contain gene ID.

2 A protein identifier of the same or other species. Similar to field 1 notes apply.

3 The raw score amount for optimal local alignment of the two amino acid sequences for the

proteins specified in the fields 1 and 2, or standardized weight calculated from the score.

4 The expectation (E-value) for such alignment.

5 (Optional) The rank of the entry, which is a serial number of this hit of given “first” species

protein against the “second” species in descending order of the protein alignment quality. In

other words, having the “second” species and a protein of the “first” species fixed, this field

contains 1 for best hit, 2 for one next to best, and so on.

6 (Optional) The back rank of the entry, which is a serial number of this hit of given “second”

species protein against the “first” species in descending order of the protein alignment

quality. In other words, having the “first” species and a protein of the “second” species

fixed, this field contains 1 for best backward hit, 2 for one next to best, and so on.

Particularly, if the proteins are BBH, both fields 5 and 6 contain 1. This field may present

only in presence of field 5. If there is no backward hit, the field may be omitted or contain

the special number of 999.

Note. Described contents of the fields 5 and 6 assume the program running with -i1

option. When using –i2 mode, both fields should contain real numbers between 0 (best hit)

and 1 (absent hit).

An opening portion of the protein similarity matrix imported to Excel is exemplified in the

‘Xenopus_scores’ sheet of the file http://lab6.iitp.ru/en/lossgainrsl/dataformat.xlsx. Such matrix can

be formed with BLASTP, provided that amino acid sequences for all species and protein IDs have

been prefetched from the Ensembl or another source. Another example of the matrix is provided in

the ‘Zebrafish_weights’ sheet of the same file. Here, the fields 1 and 2 contain NCBI gene IDs, field

3 is the hit weight, normally between 0 and 1, and field 5 is present, which is a rank of the hit.

4.5 Table of orthologous groups

This data type is concentrated in a single table, which substitutes for all data normally obtained from

Ensembl as described in 4.1–4.3. The table is a TSV-formatted text file generated by the user’s

software from the available data, in particular, OrthoDB (https://www.orthodb.org/). The table may

http://lab6.iitp.ru/en/lossgainrsl/dataformat.xlsx
https://www.orthodb.org/

11

be physically split into several files as listed in the configuration, which shall be logically merged by

the lossgainRSL program.

First line of the table must contain the field names for all subsequent lines excepting empty ones,

which separates the groups. The heading line allows any order and set of fields, but they must

include at least the fields listed in Table 1 with the only exception: instead of the ‘Protein stable ID’

field (which contains the protein identifier), the ‘Species’ field is required that contains the identifier

of a species from the configuration file. The names and order of fields may differ from those shown

in Table 1; actual names have to be respectively specified in the configuration file. Here, gene and

sequence IDs are taken from the source used to build the table of orthogroups.

Let us stress that here one table contains the information on genes of all species participating in the

study. The arrangement of lines in the table is an important part. Each line describes a gene of some

species, and such lines are grouped in orthogroups composed of pairwise orthologous genes from

same or different species. The orthogroups are separated from one another with empty line. The

order of lines within an orthogroup does not matter. The genes that have no orthologs are omitted

from the table.

A portion of the table of orthogroups imported to Excel is exemplified in the ‘Orthogroups’ sheet of

the file http://lab6.iitp.ru/en/lossgainrsl/dataformat.xlsx.

4.6 Table of protein clusters

This data type is concentrated in a single table, which substitutes for orthology/paralogy data

normally obtained from Ensembl (sections 4.2, 4.3). However, the table of genes (4.1) is still

required for each species involved in the study. The table is a TSV-formatted text file generated with

use of previously developed program for protein clustering (http://lab6.iitp.ru/en/pr_protclust/). The

table may be physically split into several files as listed in the configuration, which shall be logically

merged by the lossgainRSL program.

First line of the table must contain the field names for all subsequent lines excepting empty ones,

which separates the clusters. The heading line allows any order and set of fields, but they must

include the field with gene or protein identifier from those listed in Table 1.

Let us stress that here one table contains the information on proteins or genes of all species

participating in the study. The order of lines in the table is an important part. Each line describes a

protein or gene of some species, and these lines are grouped in clusters. The cluster is composed of

pairwise orthologous genes/proteins of the same or different species. The clusters are separated by

empty line; the order of lines within a cluster does not matter. The orthology of genes is determined

by the splice variant that result in proteins of greater likeness. Thus, each gene occurs in the table

only once or never, since clusters composed of one gene (singletons) are omitted from the table.

A portion of the table of protein clusters imported to Excel is exemplified in the ‘Gene_clusters’

sheet of the file http://lab6.iitp.ru/en/lossgainrsl/dataformat.xlsx.

5 Configuration file
The configuration file is used to define a task in hand and to control the lossgainRSL operation. The

file is crucial as in most cases the program operation fails due to erroneous configuration. The

http://lab6.iitp.ru/en/lossgainrsl/dataformat.xlsx
http://lab6.iitp.ru/en/pr_protclust/
http://lab6.iitp.ru/en/lossgainrsl/dataformat.xlsx

12

configuration file is required to run the program; a name of this file must be specified in the

command line or coincide with the default name (ref. to 3).

The file should be created in usual text format, but line breaks are not allowed. If a line of the file

contain several fields, they should be separated by at least one tabulation character. A dot, comma

and blank characters are not delimiters; they can occur inside the fields as desired. The configuration

file may include comments, which are ignored. The entire line of comments should begin with

semicolon (;) or double slash (//). Also ignored is the line part that starts with double slash.

For the lossgainRSL program use, the configuration file must include the five sections which are

described below in the order they should appear in the file. Extra sections may present but will be

ignored. Each section begins with a heading line containing the section name in brackets. The

section data lines follow until a new section heading or end of file is met. Several configuration file

variants are provided in the test example (http://lab6.iitp.ru/en/lossgainrsl/example.zip).

5.1 Program operation modes: [mode]

In most cases this section consists of a single data line containing one field. The field should contain

in arbitrary order some of uppercase letters explained in Table 3. Not all letters may co-occur; each

group of mutually exclusive letters is shown between horizontal rules. Characters that are absent

from the table, such as blank, comma, tabulation, etc. will be ignored; one can use them for

legibility.

Table 3. lossgainRSL mode characters.

Letter Description

 Variant of input data – one option must be chosen

H Principal mode of the program. Input data from Ensembl are used: the tables of genes

(4.1), orthologs (4.2) and paralogs (4.3) as needed.

A, W The tables of genes (4.1) and protein similarity matrices (4.4) are used as input data. In A

mode, each matrix is forcedly symmetrized: in each pair of symmetric elements of the

matrix, better hit substitutes worse one. In W mode, the matrix is used “as is”, whether

symmetric or not. First option is much slower, so we recommend to symmetrize the

matrices externally at the point of creation, rather than widely use mode A.

Q The only input data is the table of orthogroups (4.5).

C The tables of genes (4.1) and united table of protein clusters (4.6) are used as input data.

 Variant of the distance between genes in a neighborhood (Fig. 1)

E Specified radius of neighborhood will be compared to the distance between most distant

ends of the genes (default mode).

B The radius of neighborhood will be compared to the distance between the gene middles.

S The radius of neighborhood will be compared to the intergenic distance, i.e. the distance

between proximate ends of the genes (negative if the genes overlap).

 Synteny extra options* – any combination thereof (Fig. 2)

O Mutually orthologous genes of two synteny blocks must occur in the same order ignoring

their orientation.

http://lab6.iitp.ru/en/lossgainrsl/example.zip

13

Letter Description

D Mutually orthologous genes of two synteny blocks must have the same direction, but

their order does not matter.

M Synteny conditions also include the mirror pattern, where both orientation and order of

all genes are inverted.

 Presentation of output data

X In this mode, for each synteny block only sought-for gene of the reference species and its

homologs in other species will appear in the output file as single line. No witness data

are printed. Otherwise, the entire synteny block will be output as several lines; but first

line always contain the data as in X mode. Witness data are printed in following lines.

This setting can be changed in the command line, see chapter 3.

I In X mode, this option is ignored. If X was not specified, synteny blocks will be

separated by empty line in the output file.

J In X mode, this option is ignored. If X was not specified, two fields are appended to each

line of the output file, including empty line due to I option. First field contains ID of the

sought-for gene pertinent to this synteny block, second field is for a line number in the

block. Thus, if a synteny block in the reference species consists of gene Id and two

witnesses, such block will be presented as four lines in the output file: for Id, first

witness, second witness, and empty line. These line contain the following data pairs in

the two appended fields: (Id, 0), (Id, 1), (Id, 2) and (Id, 3) respectively. This allow

sorting the output file by genes found e.g. in the Id ascending order.

 Debug mode – ignored in MPI parallel environment

G Declares that additional lines of the [mode] section contain IDs of one or more genes of

the reference species, and those genes processing must be detailed in the debug log. Such

log will be output to the standard stream, stderr (ref. to chapter 3).

P The same, but additional lines contain protein IDs of the reference species. The

processing of genes encoding such proteins will be detailed in the debug log.

T The same, but additional lines contain names of sequences (chromosomes, contigs, etc.)

in the reference species genome. The debug log will detail the processing of each gene of

a sequence.

N The same, but additional lines contain serial numbers of sequences in the reference

genome with optional number of a gene (separated by underscore). All numbers are zero

based. For instance, 493_5 means sixth gene in the 494th sequence of the reference

genome.

V This option can be used together with any other from this group; it enables the verbose

debug output. However, it can result in a log of huge size. It is not recommend to specify

more than one gene in this mode.

Note:

* This group options are not mutually exclusive; they may appear in any combination or absent at

all. The latter means that the only condition of synteny is the presence of witnesses in the

specified neighborhood irrespective of the order and orientation of these genes.

After the line of mode letters, one or more data lines can follow. These lines specify objects to

obtain debug information for. Such objects may be IDs or serial numbers of proteins, genes or

14

genomic sequences. Each data line contain one or more objects separated by tab characters. These

data are processed in accordance with specified debug mode from Table 3; invalid IDs or numbers

are ignored. If no debug mode was specified, all debug lines are ignored. More information on

debugging is provided in section 5.5.7.

The following figures illustrate variants of the distance between genes and synteny extra options

currently implemented in the lossgainRSL program.

Fig. 1. Variants of distance for the proximity checking.

Fig. 2. Synteny extra options for two loci.

O: same order of genes, D: same orientation of genes, M: allow mirror arrangement.

5.2 Input data location: [data]

This section of the configuration file is to specify directories, where each type of input data is stored

as well as corresponding file names and extensions. In most cases, a file name (or variable part of it)

coincides with a species name from those listed in the [species] section, see 5.4. Thus, the wildcard

(*) is normally used for file names in this section.

E B S

O

locus 1

locus 2

D

locus 1

locus 2

M

locus 1

locus 2

15

This section consists of several lines in the same format. They can appear in arbitrary order. Each

line describes one of input data types and contains two fields separated by at least one tab character.

First field of the line contains an uppercase letter as per data type, respective second field is

described in Table 4. The program uses only appropriate data types for the mode selected and ignore

extra lines. Therefore, this section of the configuration file can follow a generic pattern, e.g. in

Windows:

[data]

I genes*.tsv

O orthologs*.tsv

P paralogs*.tsv

H homologs*.tsv

A scores*.tsv

Q orthogroups\odb10.tsv

C protein-clusters.tsv

Table 4. Input data types.

Type Description of the second field

I An absolute or relative path to the directory containing the tables of genes (ref. to 4.1). The

wildcard * should be specified as a file name followed by the extension(s) if any. Thus, all

tables of genes must localize in this directory and have the same extension(s).

O An absolute or relative path to the directory containing the tables of orthologs (ref. to 4.2).

The wildcard * should be specified as a file name followed by the extension(s) if any. Thus,

all tables of orthologs must localize in this directory and have the same extension(s).

P An absolute or relative path to the directory containing the tables of paralogs (ref. to 4.3).

The wildcard * should be specified as a file name followed by the extension(s) if any. Thus,

all tables of paralogs must localize in this directory and have the same extension(s).

H An absolute or relative path to the directory containing joint tables of orthologs and

paralogs for all or some species. In fact, such table is a union of the two tables described in

sections 4.2 and 4.3. The wildcard * should be specified as a file name followed by the

extension(s) if any. Thus, all tables of homologs must localize in this directory and have the

same extension(s).

A An absolute or relative path to the directory containing the protein similarity matrices (ref.

to 4.4). The wildcard * should be specified as a file name followed by the extension(s) if

any. Thus, all protein similarity matrices must localize in this directory and have the same

extension(s).

Q An absolute or relative path and name of the file containing the table of orthogroups (ref. to

4.5). If the table was split into several parts, multiple lines with different file names should

be specified in this section. These parts will be merged in the order specified. The head line

with field names is required only in the first part, but may also be present in other parts.

C An absolute or relative path and name of the file containing the table of protein clusters (ref.

to 4.6). If the table was split into several parts, multiple lines with different file names

should be specified in this section. These parts will be merged in the order specified. The

head line with field names is required only in the first part, but may also be present in other

parts.

16

5.3 Relevant field names: [fields]

The table of genes (4.1), orthogroups (4.5), and protein clusters (4.6) can contain many fields in

each entry and have rather free format: both list and order of fields are unrestricted, which simplify

the preparation of input data. However, there are several fields analyzed by the algorithm or

transferred to output data. So we require that these files always contain the names of all fields in the

head (first) line, and this section of the configuration file has to specify what field name corresponds

to a certain data type. In addition, it is possible to specify optional alias of a field for convenience.

This section consists of six or more lines. Each line contains one or two tab-separated fields. First

field is the name of a data field in the head line, and second field defines optional alias. These six

lines must appear in the following strict order:

1) Protein/Species. If the gene tables (4.1) with or without protein clusters (4.6) is used, it is a

name of the input field that contains a protein identifier in the Ensembl or other source.

Otherwise, if the table of orthogroups (4.5) is used, it is a species identifier (see 5.4).

2) Gene. This is a name of the input field that contains a gene identifier in the Ensembl or other

source.

3) Contig. This is a name of the input field that contains the identifier of a top level sequence

(chromosome, scaffold, contig, etc.) in the Ensembl or other source.

4) Start. This is a name of the input field that contains first position of a gene in the respective

DNA sequence. (The first position is always less than the last one irrespective of strand.)

5) End. This is a name of the input field that contains last position of a gene in the respective

DNA sequence. (The last position is always greater than the first one.)

6) Strand. This is a name of the field that contains 1 if the gene occurs in a positive (forward)

strand, and –1 for negative (complement) strand. Otherwise, the characters ‘+’ and ‘–’ can be

used.

These six fields are required for the lossgainRSL program to operate. Additional lines may follow to

describe other necessary fields such as gene name, annotation and so on. For input data field to

appear in output file, such field must be described in this configuration section. Specifically, if the

gene tables are obtained from Ensembl v106, this section can look as follows:

[fields]

Protein stable ID Protein

Gene stable ID Gene

Chromosome/scaffold name Contig

Gene start (bp) Start

Gene end (bp) End

Strand +|-

Gene name Name

Gene description Description

In addition, there is a special field with dedicated name, #, which can also be specified. This field

does not exist in input files, but can be virtually created by the program and appear at output. The

field contains the number of paralogs of the gene, for which it is printed. The field # must be

specified the very last, both in this section and at output in the [predicate] section, ref. to 5.5.4.

17

5.4 Species and group names: [species]

This section of the configuration file is intended to list names of all species involved and to define

groups uniting some of these species as appropriate. Any unique identifier may be used as a species

name, if it satisfies OS requirements for a file name. We recommend to use only alphanumeric

characters in the names, substituting underscores for blanks. The use of uppercase/lowercase

characters must be consistent throughout the configuration file even if the file system does not

distinguish them. Each species must occupy the separate line of this section. The first species is

always considered as the reference one, subsequent species may appear in arbitrary order.

Sometimes conditions for the selection of sought-for genes can be formulated more concisely using

a notion of species group which unite several species to be tested identically. Such group can be

established on the basis of any trait, not only a taxonomic one. The syntax of this section does not

allow a species to belong to several groups; as a workaround the user can repeatedly include such

species name in the list.

The name of a group always begins with asterisk (*) to distinguish it from species names. To define

a group, its name should be specified in a separate line among the names of species. The group will

be composed of the species listed from the next line on, until the name of another group or end of

the section. Examples of this section can be found in the configuration files of the test example

(http://lab6.iitp.ru/en/lossgainrsl/example.zip).

5.5 Gene selection predicate: [predicate]

This section of the configuration file is the most both complex and important one, because it is the

predicate what determines selected genes and output data. The section uses a special procedural

language which is similar to a programming language having some peculiarities and a limited set of

functions. The user should keep in mind that he/she is fully responsible for the predicate correctness,

while lossgainRSL performs only superficial checking. From our experience, in most cases the

program failure and misoperation result from mistaken predicate.

The predicate definition language allows user to specify rather complex conditions for gene

selection and easily adjust those conditions with no change of the program. However, the language

does not pretend to applicability in all situations and does not allow formulating arbitrary complex

conditions either. This language just offers a number of typical elements to be checked, and methods

of combining such elements in a complex test. The user should decide on suitability of these

facilities for the task in hand and draw a suitable predicate himself. Sometimes the solution can be

obtained by running the program several times with different predicates and then building the

sought-for set of genes as a union or intersection of the sets resulted from certain runs.

The program lossgainRSL uses the predicate as follows. With each next gene of the reference

species, the predicate is interpreted from the very beginning with no regard to previous gene

processing history. The first operator, SET, sets the parameter values which will be used for the

current gene of the reference species as well as for other species unless otherwise specified. For

those non-reference species, the parameters can be changed by another SET operator(s) or a variant

thereof, but such change is in effect only until a new change or end of current gene processing.

The initial SET of the predicate is followed by a series of testing user-specified conditions. Each

condition is related to genes of either the reference species and another species (2-species condition)

or the reference species, so-called substitute species and another species (3-species condition). The

http://lab6.iitp.ru/en/lossgainrsl/example.zip

18

conditions are tested as they appear in the predicate, but this order of execution can be modified

using unconditional and conditional (depending on result of the last test) branches. To this end,

labels are used including two predefined labels, YES and NO, which mean that the current gene of

the reference species satisfies the predicate (the gene is selected) or does not satisfy the predicate

(the gene is skipped), respectively. The ADD operator allows the user to specify, for a gene selected

in any species, its data field to be copied to output file.

The sequential interpretation of the predicate normally yields one of the two results: (1) the program

reaches the YES label or the predicate end (implicitly followed by YES label), therefore the current

gene of the reference species is selected and present in the output file; or (2) the program reaches the

NO label, therefore the current gene is skipped and absent from the output file. In either case the

program proceeds to the predicate evaluation with the next gene of the reference species. After all

genes of the reference species have been tried, lossgainRSL finishes.

The following subsections formally describe all means and capabilities of the predicate definition

language. Examples of complete predicates can be found in the test example configuration files

(http://lab6.iitp.ru/en/lossgainrsl/example.zip).

5.5.1 Operator SET and its variants

This operator is intended for setting or changing parameters of the sought-for gene selection. Like

other operators, it must be entirely written in a single line of the configuration file. The operator

contains from 1 to 11 fields separated by the tab character(s). The syntax is:

SET[,w,r,b,k,s,e,l,h1,h2] [WIT[NESS]=w] [RANGE=r] [{ORTH|BBH}=b] [RANK=k]

[SCORE=s] [EVAL=e] [LAMBDA=l] [HOLD1=h1] [HOLD2=h2] [HEAD[ING]=CS-list]

There are nine numerical parameters which can be set in two ways. First, comma-separated values

of the parameters can be specified in the first field in fixed order just follow the operator code.

Unchanged parameters may be skipped still preserving commas if other values follow. Second, the

parameters can be set in any number and order in the subsequent fields of the operator; each

parameter is recognized by the keyword assigned to it. The parameter description, allowable and

default values as well as the keyword are given in Table 5. Also included is optional text parameter

of the program which cannot be set in the first field of the operator, but only in a separate field (or

operator) with the keyword HEAD or HEADING. This parameter defines the head line of the

program output file.

The value of a numerical parameter can be specified as an integer/real number or a reference in the

form %name, where name is an identifier different from other keywords. In the latter case, the

parameter value will be specified in the command line as described in chapter 3. Similar way may

be used to define string-type parameters for the operator HEAD, but such strings should not contain

blanks.

Table 5. The parameters changeable by SET operator.

Symbol Keyword(s) Values Default Description
w WIT

WITNESS

0, 1, 2 2 Number of witness genes in a synteny block besides

the current gene X.

http://lab6.iitp.ru/en/lossgainrsl/example.zip

19

Symbol Keyword(s) Values Default Description
r RANGE > 0 2000000 The half-size of a neighborhood, where witnesses of

the current gene are looked for (see also Fig. 1). The

value of r is rounded to the nearest integer; it may

include the suffix K|k or M|m for values in kilobases

or megabases, respectively. Thus, a neighborhood

with the half-size of 200 kbp can be specified as

200000, 200K or 0.2M.
b ORTH

BBH

0...511 0 1) For input data from Ensembl, values 0...7 (i.e.,

three bits) are allowed, where each bit controls the

way an orthologous gene is defined: 1 means the

ortholog, and 0 – the ortholog or any of its paralogs.

Bit 0 (least significant bit, LSB) corresponds to the

current gene X, bit 1 – to first witness Y, bit 2 – to

second witness Z. For instance, b=1 means that only

orthologs are selected for X, and orthologs or their

paralogs for Y and Z; b=7 means that only orthologs

of X, Y, and Z are considered.

2) If the protein similarity matrices are used at input

(see 4.4), this parameter specifies requirements for

homologs in terms of the raw score magnitude. The

meanings of individual bits are as follows:

1 – BBH (bidirectional best hit) is taken for gene Х,

2 – BBH is taken for gene Y,

4 – BBH is taken for gene Z,

8 – BHF (best hit forward) is taken for gene Х,

16 – BHF is taken for gene Y,

32 – BHF is taken for gene Z,

64 – BHB (best hit backward) is taken for gene Х,

128 – BHB is taken for gene Y,

256 – BHB is taken for gene Z.

Notice that if both BHF and BHB are specified for a

gene, respective BBH bit is set automatically.
k RANK > 0 10 This parameter is actual only if input data include the

protein similarity matrices (4.4). The specified value

is a cut-off: only first k hits in descending order are

considered as homologous proteins when the

program is running with option –i1. If option –i2 is

used, k should be a real number and all hits with less

values of the rank from [0, 1] are considered (see 3).
s SCORE ≥ 0 0.001 This parameter is actual only if input data include the

protein similarity matrices (4.4). The specified value

is a cut-off: two proteins are considered homologous

if local alignment of them yields raw score or weight

that is greater or equal to such cut-off.

20

Symbol Keyword(s) Values Default Description
e EVAL ≥ 0 1e-5 This parameter is actual only if input data include the

protein similarity matrices (4.4). The specified value

is a cut-off: two proteins are considered homologous

if local alignment of them yields E-value that is less

or equal to such cut-off.
l LAMBDA

LAMB

0–1 0 This parameter is actual only if input data include the

protein similarity matrices (4.4). The specified value

will be used for  in a backward check condition

(see 5.5.2).
h1 HOLD1 0...7 1 The purpose of a 3-bit value of this parameter is to

instruct the program, for the current gene of the

reference species, which genes vary during the

predicate evaluation and which ones are invariable.

The meanings of individual bits are as follows:

1 – the test must be done with the same gene X,

2 – the test must be done with the same witness Y

(otherwise the predicate is not satisfied),

4 – the test must be done with the same witness Z.

For example, if the value of 7 is specified and the

predicate includes two elementary conditions, both

must be satisfied with the same triplet of genes.
h2 HOLD2 0...7 1 This parameter affects only 3-species conditions

(5.5.6); it is similar to h1, but controls the

relationship between two elementary conditions

behind the 3-species condition. The value of 1

should be specified in case of input data from the

Ensembl.
– HEAD

HEADING

The value of this parameter is a text string that specifies comma-separated

headings of the fields in the output file, left to right. Thus, comma should

not be used in a heading text. If the parameter is omitted, field headings in

the output file equal to those at input or their aliases as specified in the

[fields] section of the configuration file (ref. to 5.3). String-type parameters

in the form %name may be used to form the string provided that their values

were specified in the command line.

SET must be the first operator and can also appear later in the predicate in order to modify some

parameter(s). Doing so, one should take account of: (а) modified parameter values will be in effect

until the next alternation or end of predicate; (b) the size of neighborhood in the reference species

cannot be modified dynamically; the value specified in the initial SET operator is always used, and

modified r will apply only to non-reference species.

If not all but only few parameters of the lossgainRSL are to be modified, it can be more convenient

to specify new values not following the operator code, but in subsequent field(s) with use of a

corresponding keyword from the Table 5, for example:
SET RANGE=1M WITNESS=1

21

There are also variants of the SET operator, where the keyword is used as the operator code (first

field) and the value is specified in second field, e.g.:
RANGE 500K

WITNESS 1

Besides the SET operator and its variants, for brevity parameters can be set directly in operators that

verify conditions (such as IN, OVER, IN2), similar to the first field of SET. Such local modification

is applied only to the operator, where it is specified.

5.5.2 Operators IN and INBK

This operator verifies the presence of current gene X of the reference species R in other species A or

a group thereof. This check is successful if the two sub-conditions are simultaneously satisfied: (1)

the species A includes gene X' that is a homolog of X in the sense of active parameter settings, e.g.

an ortholog of X; and (2) there exist specified number of distinct witness genes in the r-sized

neighborhood of X, e.g. Y and Z, which respective homologs, Y' and Z', co-localize in the r'-sized

neighborhood of X' in A (Fig. 3). The size of a neighborhood is treated as per chosen variant of the

distance between genes (ref. to Table 3 in 5.1), in Fig. 3 it is the ‘E’ variant. Such condition involves

two species, therefore it is referred to as 2-species condition. As the arrows show, homology is

verified in the direction from R to A, which is referred to as forward check. Homology requirements

for gene X and for its witnesses may differ: for example, a witness can require more stringent

homology conditions than the gene under check, which is depicted by solid and dashed arrows,

respectively.

Fig. 3. The forward check of 2-species condition for a certain variant of synteny.

If protein similarity matrices (4.4) are used at input, the 2-species condition may include a backward

check with use of INBK form of the operator IN (Fig. 4). The backward check is applied to homolog

X' resulting from the forward check; it verifies that there is no alternative U for X in R such that U is

substantially better, than X, homolog of X'. With this purpose the program checks the sub-condition

(3): there is no gene U in R such that X' is a homolog of U with the same witness requirements as for

X and the following inequality is satisfied:

(,) / (,) if () is a raw score

(,) (,) if () is a weight,

W X U W X X W

W X U W X X W





 
   

Genomic sequence of

the other species A

Genomic sequence of

the reference species R

Y X Z

Y' X' Z' ≤ r'
≤ r'

≤ r
≤ r

homology

22

where ()W is the value of field 3 of the protein similarity matrix (Table 2), and  is the parameter

l in the operator SET (5.5.1).

Fig. 4. The 2-species condition with forward and backward checks.

The syntax of IN/INBK operator includes up to three fields:

IN[BK][,w,r,b,k,s,e,l,h1,h2] species [yes-label|-no-label]

Here, the first field of the operator allows modifying current parameter values just the same as in the

first field of the SET operator, in order to use new values only in this check, not later. The value of r

is interpreted in a special way: if specified, it determines the size of neighborhood only in non-

reference species A, i.e. it is r' in Fig. 3, while for the neighborhood size r in the reference species R

the program always uses a value specified in the initial SET operator or set by default.

In the second field of the operator, instead of species the name of non-reference species A or a

species group should be specified, i.e., one of the names listed in the [species] section of the

configuration file (5.4). Recall that the name of a species group always starts with asterisk (*). If a

group has been specified, all species from it are tried in turn until the condition is satisfied; in such

case the condition for entire group is satisfied and remaining species are not tried. Otherwise the

condition for the species group is unsatisfied.

Optional third field of the IN/INBK operator is a label to go to if the condition is (un)satisfied.

Specifically, if a minus sign does not precede the label (yes-label) then the program proceeds to this

label when the condition is satisfied, otherwise it proceeds to the next operator. Conversely, if the

minus sign does precede the label (-no-label) then the program proceeds to the next operator when

the condition is satisfied, and proceeds to the label otherwise. If this field is omitted, the program

proceeds to the next operator in both cases. Further information on labels is provided in the next

section.

In fact, the IN operator defines a multiply nested loop to verify the condition first over species from

the group, then over genomic sequences of each species, then over genes on the sequence, then over

homologs of the gene in the other species, then over putative witnesses and their homologs, etc. The

A

R

Y X Z

Y' X' Z'

P U Q

Q' P'

W(X',U) W(X, X')

23

depth of nesting is even greater for INBK version of the operator due to checking of putative genes

U and witnesses thereof. The verification continues until a homolog X' and witnesses are found that

satisfy the condition or all variants were tried. In the former case the check was successful and the

program proceeds to the yes-label (if specified), in the latter – unsuccessful and the program

proceeds to the no-label (if specified). Notice that the loop does not contain any inner operators and

consists of a single IN/INBK. Any subsequent actions are performed only after completion or

termination of the loop.

There are also variants of the IN operator that allow searching of witnesses in not full neighborhood

of the homolog X' in A, but only in the left or right semi-neighborhood including or excluding the

span of X' itself. The syntax of these operators is similar to that of the IN operator but the keyword is

prefixed as follows:

LIN – the condition (2) is satisfied for the left (at lesser positions) semi-neighborhood of gene X' in

A including the span of X';

LLIN – the condition (2) is satisfied for the left semi-neighborhood of gene X' in A excluding the

span of X';

RIN – the condition (2) is satisfied for the right (at greater positions) semi-neighborhood of gene X'

in A including the span of X';

RRIN – the condition (2) is satisfied for the right semi-neighborhood of gene X' in A excluding the

span of X'.

These variants differ from the IN operator only in the domain of genome A where witnesses are

looked for. The operators also allow the backward checking by addition the suffix ‘BK’, e.g.

LLINBK. However, the witness search in a semi-neighborhood is limited to the forward check only,

and the backward check is accomplished for full neighborhoods of the genes X' and U, because the

backward check is aimed at prevention of wrong homolog X' of current gene X.

5.5.3 Labels and operator GOTO

Labels within the predicate serve to change the normal sequence of operators execution. Any unique

identifier can be used as a label provided that it does not coincide with a species name, field name or

operator code. The labels are case sensitive. Two labels, YES and NO, are defined implicitly (ref. to

section 5.5). An explicitly defined label should follow a colon in the separate line, for example:
:RareСase

The branch to the RareСase label means that the next executed operator will be one specified in the

line following the label.

The conditional operator IN (5.5.2) is a typical operator that uses a label. Other conditional branch

operators are described below which also use labels.

To define predicates having a complex branched structure, the unconditional branch GOTO

operator is provided. It is specified in a separate line with the following syntax:

GOTO label

where one of existing labels appears in the second field, for example:
GOTO RareCase

GOTO YES

24

5.5.4 Operator ADD

This operator helps to form the output file of the desired structure and contents. It allows the user to

copy necessary fields from a certain line of the table of genes, for the given species, to the current

line of the output file. The syntax of ADD operator is as follows:

ADD species [[-]field1[,field2...]]

Second field of the operator should contain a species or group name from those specified in the

[species] section of the configuration file (5.4). Optional third field contains the comma-separated

list of field names from those specified in the [fields] section of the configuration file (5.3); these

fields of the gene table for given species will be copied to the output file in the order specified. If

this field is omitted, all fields will be copied to the output file in the order they are stored in the table

of genes. If the list follows a minus sign, all fields except the listed ones will be copied to the output

file in the order they are stored in the table of genes. Field names may be specified with use of

command line parameters in the form %name (chapter 3).

Let us define more exactly what species and gene are selected for copying the data from the table of

genes:

– If the reference species R appears in ADD operator, the program selects currently tested gene X

of the species R.

– If other species A is specified, for which any of IN operators was successfully verified earlier in

the predicate, the program selects the gene that satisfied a condition of the IN operator, i.e.,

homolog X' in this species of the current gene X in the reference species. If no IN operator was

satisfied for the reference species, a runtime error occurs.

– If other species A is specified, for which IN operator was executed and its condition was not

satisfied (no homolog or witnesses exist in this species), the program will copy to the output file

the equal number of empty fields.

– If the name of a species group appears in the second field of ADD operator, the program selects

data for the species and gene that first satisfied the condition of previous IN operator or,

otherwise, copies empty fields.

Above definitions are for the operation mode of lossgainRSL that requires one line of the output file

per selected gene of the reference species. Such line contain data of the selected gene X and,

possibly, its homologs X' in one or more other species (Fig. 3). The alternative mode is output of

several additional lines for each witness such as Y, Z in the reference species R and their respective

homologs in other species if any. If the latter mode is specified in the [mode] section of the

configuration file (5.1), the ADD operator controls the output to all these line similarly. The order of

lines in such synteny block is fixed: X, Y, Z (or X, Y or X). Thus, the sought-for gene of the reference

species is always in the first line of the block.

Final recording of data prepared with the current gene X to the output file is performed only if the

whole predicate is satisfied for the gene, i.e. YES label or the end of predicate is reached. Otherwise,

the results of all ADD operators for the current gene are lost and no data is copied to the output file.

25

5.5.5 Verification of 2-species conditions and operators BOR/EOR/EOS,

BAND/EAND

Let us describe the verification of 2-species conditions in different flavors by an example. Assume

that a frog of the Xenopus genus is the reference species, and two more groups of species are

considered, fishes and mammals, consisting of two species each. Ensembl data are assumed, so we

do not use backward checking. We also choose 2 megabases as the neighborhood half-size in all

species, and need to find each frog gene that is present in fish as an ortholog supported by two

witnesses, but is absent from mammals even as a paralog of the ortholog and with at least one

witness. In this example, the [species] section of the configuration file (5.4) can be as follows:
[species]

Xenopus

*Fish

Danio

Fugu

*Mammal

Mouse

Human

(A) The elementary variant of the predicate:
[predicate]

SET,2,2000K,7

IN *Fish -NO

ADD Xenopus -Protein

ADD *Fish Gene,Name

IN,1,,2 *Mammal NO

Here, the first SET operator sets the standard values of parameters: two witnesses, neighborhood

half-size of 2 megabases, orthologs to be considered as homologs. The next operator, IN, verifies for

the current frog’s gene X whether any fish has an ortholog X' of this gene, supported by two

orthologous witnesses Y', Z' in the specified neighborhood of X'. If neither fish has such X', the

current frog’s gene X is skipped and the program proceeds to the next X; nothing is written to the

output file. Otherwise, the ADD operator copies to the output file all but protein ID fields of the

table of genes for current frog’s gene X. One more ADD operator appends to the current line of the

output file two fields with ID and name of X' gene found. (We assume that the program operates in

X mode from 5.1, and field names are as per 5.3). Then the second IN operator checks if the gene X

is present in mammals. Doing so, the operator modifies the standard parameter values: only one

witness is sufficient and X' can be not only an ortholog of the gene X, but also a paralog of ortholog

if any. If such gene and witness exists in either mammal, the program branches to the NO label (X is

skipped, nothing is written to the output file, the program proceeds to the next X). Otherwise, the

predicate end is reached, i.e. it is satisfied, and the program writes the composed line to the output

file. The line contains all requested fields for the selected frog’s gene and its homolog in a fish.

A disadvantage of the above predicate is that the output file does not clarify which fishes have the

selected gene. Each line contains only one homolog of X, which was found earlier in a fish not

saying about other fishes. The precedence of fishes is not fixed, but depends on order of records in

the tables of orthologs and paralogs. Such limitation is even more obstructive, when groups of

species under consideration include much more species than two ones like in our example.

(B) To improve the mentioned disadvantage, the more complex predicate with a fork can be used:

26

[predicate]

SET,2,2000K,7

HEADING Xenopus,Contig,Start,End,Name,Description,Danio,Name,Fugu,Name

IN Danio -NotDanio

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

IN Fugu

ADD Fugu Gene,Name

GOTO Final

:NotDanio

IN Fugu -NO

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

ADD Fugu Gene,Name

:Final

IN,1,,2 *Mammal NO

In this case, each field of the output line either contains or does not contain the data of the certain

species, which allow assigning individual heading to each column of the file with use of HEADING

operator (a variant of the SET operator). Recall that each operator must be entirely written in one

line despite some lines may be lengthy such as this one.

Here, first IN operator reveals if the current gene X is present in zebrafish (Danio rerio), then the

check forks: if the gene is not present in zebrafish, the program branches to NotDanio label.

Otherwise, the following ADD operator copies necessary fields of the gene X of the reference

species to output line in the order corresponding to above headings. Then one more ADD operator is

executed, which adds two fields of X' ortholog in zebrafish to the same output line. The second IN

operator checks whether the gene X is present in fugu. If so, two fields for its ortholog X' in fugu

will be added to output line, otherwise ADD operator adds two empty fields. In both cases testing

proceeds to Final label.

In another branch, starting from NotDanio label, the IN operator checks whether the gene X is

present in fugu. If that is not the case, the program proceeds to NO label and nothing is written to

the output file. Otherwise, first ADD operator copies necessary fields of the current frog’s gene to

output line. The second ADD operator adds two empty fields to that line because previous IN

operator for zebrafish was unsatisfied. The last ADD operator adds two fields of X' ortholog in fugu

to that output line. Thus, an output line with planned structure is composed in this branch too.

Starting from the Final label, the two branches merge again and the final check is performed like

in the predicate (A). Depending on its result, the composed line is either written to output or lost if

the gene X is rejected.

One can conclude that such method is rather inconvenient and results in excessive complication of

the predicate, especially if the group consists of much more than two species. In addition, it is

difficult to control how many species of the group must have the gene X. This is why the predicate

definition language includes a pair of bracket operators, BOR/EOR (or BOR/EOS), that envelop

several independent checks which success is determined by a quantitative threshold.

(C) The equivalent of the predicate (B) with use of these operators can be as follows:
[predicate]

27

SET,2,2000K,7

HEADING Xenopus,Contig,Start,End,Name,Description,Danio,Name,Fugu,Name

BOR

IN Danio

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

IN Fugu

ADD Fugu Gene,Name

EOR,1 -NO

IN,1,,2 *Mammal NO

The BOR operator has no arguments and should be specified in a line preceding the first alternative

condition to be verified. In fact, the alternatives themselves are verified unconditionally: since IN

operators lack labels, they are followed by next ADD operator(s) irrespective of the verification

result. However, if the check was unsuccessful, added fields are empty. The aggregate condition is

tested by the EOR operator, which follows the last alternative and has the following syntax:

EOR[,n] [yes-label|-no-label]

Here n is a permissible minimum number of satisfied alternatives for the aggregate condition to be

satisfied. If n is omitted, the default zero value means that the aggregate condition is always satisfied

as well as if the label were not specified. Otherwise, the label is treated similar to the IN operator

(5.5.2). The capability to change a single value of n, the more so as through a symbolic parameter

directly in the command line, facilitates experimenting with various conditions for genes selection.

There is also a variant of this operator with similar syntax, but slightly different semantics:

EOS[,n] [yes-label|-no-label]

Here, the difference is that the aggregate condition is satisfied if more than n alternative tests are

satisfied unlike the EOR operator, which uses a weak inequality. The pair of BOR/EOR (or

BOR/EOS) operators can be used more than once in a predicate provided that such pairs do not nest.

Another pair of bracket operators, BAND/EAND, is somewhat dual. Unlike the EOR operator that

counts the number of satisfied alternative conditions and compares it with a threshold, the EAND

operator counts the number of unsatisfied alternatives:

EAND[,m] [yes-label|-no-label]

where m is a permissible minimum number of unsatisfied alternatives for the aggregate condition to

be satisfied. In other respects, this pair of operators is similar to the first one; however, the user

should also keep in mind the difference: unsatisfied condition results in blank fields in the output

line. Therefore, in the extreme case of BOR/EOR, when all alternatives are satisfied, the output line

will contain all nonempty fields. On the contrary, in the extreme case of BAND/EAND, when all

alternatives are unsatisfied, the output line will be empty. Nevertheless, this pair of operators can be

more suitable for some predicates. The example in question unlikely illustrates this point, but let us

provide without comment the same predicate using these operators:

(D) The equivalent of the predicate (C) with use of the BAND/EAND operators:
[predicate]

28

SET,2,2000K,7

HEADING Xenopus,Contig,Start,End,Name,Description,Danio,Name,Fugu,Name

BAND

IN Danio

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

IN Fugu

ADD Fugu Gene,Name

EAND,2 NO

IN,1,,2 *Mammal NO

5.5.6 Operators OVER/IN2/NEXT and verification of 3-species conditions

Besides the above described 2-species condition, the lossgainRSL program is capable to verify more

complicated condition which involve two species, apart from the reference one, R. The first of these

two species must have a homolog of the current gene X in the reference species supported by the

required number of witnesses; such species S (and homolog) is referred to as substitute. The second

species, A, either includes or lacks a homolog of the substitute gene (Fig. 5). This condition is

referred to as 3-species one; it is unsatisfied if either no substitute exist or another species does not

have a homolog of any substitute.

Fig. 5. Satisfied 3-species condition for a certain variant of synteny.

If the homology relation in use makes up a transitive closure, the 3-species condition can be useful

only in the situation, where the neighborhood of the X gene lacks homologs of the U" and V" genes,

and the neighborhood of the X" gene lacks homologs of the Y и Z, otherwise a 2-species condition

were satisfied. The existence of a substitute species with the X' gene whose neighborhood includes

Genomic sequence of the

substitute species S

Genomic sequence of the

reference species R

Y X Z

Y' X' Z' ≤ r'
≤ r'

≤ r
≤ r

homology

Genomic sequence of the

other species A

U' V'

U" V" X"
≤ r"

≤ r"

29

both pairs of homologs can be considered as an evidence of the conclusion that the X gene has the

homolog, X", in another species with the synteny conserved.

As in the 2-species condition, here the homology either means an orthology or also accounts for

paralogy or relies on protein similarity etc.; and the certain number of witnesses and neighborhood

size is specified for each species. These settings can be made in preceding SET operators (5.5.1) or

directly in the conditional operators OVER and IN2 described below.

When verifying the 3-species condition, the HOLD1 parameter is normally used to control the

permanence of X, Y, and Z genes during the evaluation of the entire predicate with current X. The

usual value of 1 means that the same X shall be used in all tests within the predicate, whereas the

witnesses Y and Z can be selected independently in each elementary condition.

The value of HOLD2 parameter allows the user to specify which genes are held in transition from

the upper test to the lower one, see Fig. 5. This is a 3-bit value with the following meaning of

individual bits:

1 – the same homolog of the X gene shall be used (designated as X' in Fig. 5),

2 – the same homolog of the first witness shall be used, i.e., U' = Y',

4 – the same homolog of the second witness shall be used, i.e., V' = Z'.

As explained above, if the homology relation is transitive, which is true for OrthoDB orthogroups

and protein clusters, but sometimes is broken in the Ensembl orthology and protein similarity

matrices, the value of 1 should be specified for HOLD2.

Recall that the 2-species condition consists of the single IN operator which establishes the nested

loop for selection of genes in the specified non-reference species A or species group (ref. to 5.5.2 for

detail). In order to define the 3-species condition, three operators are used: OVER, IN2, and NEXT.

The OVER and IN2 operators define two nested loops (outer and inner ones, respectively) for the

selection of genes in the two non-reference species, and the NEXT operator points out the end of

outer loop body. The order and syntax of these operators are as follows:

OVER[,w,r,b,k,s,e,l,h1,h2] species1 [yes-label|-no-label]

IN2[,w,r,b,k,s,e,l,h1,h2] species2 [yes-label|-no-label]
...

NEXT

The outer loop is defined by the OVER operator, where species1 is the name of a substitute species

S (or a group of such species). The substitute gene, X', in this species has to be a homolog of the

current gene X in the reference species R, and the neighborhood of X' has to include the witness

genes, Y' and Z', that are respective homologs of Y and Z genes in the neighborhood of X. The half-

size r' of the neighborhood in the substitute species genome, number of witnesses, and homology

variant, if differ from those initially set for the whole predicate, can be specified in preceding SET

operator or just in the first field of the OVER operator.

The operator execution depends on the label specified. If the label is specified without preceding

minus sign, the program jumps to this label, when first substitute gene is found irrespective of the

inner loop conditions, otherwise the program proceeds to the next operator. Such variant of the

condition seems to be senseless and is described here only for completeness. In typical situations,

the label follows minus sign, i.e., -no-label is specified in the OVER operator. If this is the case, the

30

program jumps to the label after all genes of the species (or species group) were tried, and none of

them satisfies the conditions of both loops. If the label is omitted, it is interpreted as if a -no-label

were specified pointing at the line following the NEXT operator.

The inner loop is defined by the IN2 operator, which is similar to the IN operator (5.5.2) with the

only difference that instead of the X gene whose homologs to be selected in species A (or species

group, argument species2), the current X' gene selected in the outer loop is used. The parameter

values and labels in this operator are processed the same as in the IN operator. For instance, if a yes-

label is specified (without preceding minus sign), and lossgainRSL finds a homolog of the X' gene

along with witnesses in the species2 genome, the program jumps to that label which can be inside or

outside (such as NO) the outer loop. Otherwise, if species2 lacks such homolog, X", the program

proceeds to subsequent operator of the outer loop body (behind ellipsis). In particular, it can be

another IN2 operator that checks the current X' against other species, and so on.

The outer loop body ends with parameterless NEXT operator. It gives a signal for the interpreter to

proceed back to the OVER operator with the next substitute gene X'.

The user should be careful with inclusion of side-effect operators (such as ADD) in the loop body,

because of possible output of lines with unlimited length or at least variable format. The following

rule of thumb is recommended to obey: once any data is written to the output file, the outer loop

should be broken by jumping to a label outside the loop body.

Starting from version 6.31, the program lossgainRSL supports a backward check in the 3-species

condition. The backward check is optionally carried out during the search of homologs

independently in genomes S and A, that is achieved by variants of the above operators, OVERBK

and IN2BK, respectively. Such backward check is performed similar to the INBK operator (5.5.2),

and obeys the command line options -b and --b as well (see 3).

Note. Unlike the IN operator (5.5.2), operators OVER and IN2 in the current version of the

lossgainRSL does not support the prefixes that enable the witness search in a semi-neighborhood of

putative homolog. These features are to be implemented in future.

5.5.7 Predicate debugging

In fact, the predicate in the configuration file is a program which the lossgainRSL program

interprets for each gene X. Like any program, the predicate can include errors leading to wrong

results and failures in the lossgainRSL operation, e.g. crashes or looping. Some errors such as

invalid syntax of operators, incorrect names or labels etc. will be found during the parsing of the

configuration file, but other errors become evident only at runtime or even in the analysis of output

results. Not attempting to suggest any universal method for debug, let us confine ourselves to

describing the debug capabilities provided by the lossgainRSL and several typical ways.

During the program operation, it outputs to the console; the log can be redirected to a file by

conventional means of the operating system. The program log is described in section 6.1. In case of

any errors, the user should first verify in this log the following information:

– the command line used to run lossgainRSL e.g. options, parameters, and file names;

– the program version number;

– the program mode(s) as defined in 5.1;

– the list of species and species groups as well as the list of species in each group;

31

– the results of the predicate parsing. Ensure that after substituting the operator numbers for

labels all jumps are correct as well as the species name and parameter values in each

operator;

– the information on each data file read including its quantitative characteristics.

If the program crashes or gets in an endless loop, the console log informs about the last contig and

gene of the reference species being processed, see the last line with the cKKK xLLL format. Since

gene X numbers are printed with the default step of 10, it is a good idea to repeat the run with

the -g1 option (ref. to chapter 3).

The reported values of KKK and LLL can be used to request more detailed debug log. To this end, in

the [mode] section of the configuration file the program debug mode N should be added in the first

line, and one more line should be added containing KKK_LLL (see section 5.1 and Table 3 for

detail). The debug log is directed to the standard stream stderr which is recommended to redirect to

a file.

6 Output data

6.1 lossgainRSL operation log

The program log is mostly self-explanatory. Provided below is a sample of real log which is split

into several blue-shaded fragments for explanation convenience.

Synteny and homology analysis utility (v6.31)

 arguments: for_manual.ini result.txt

Taxa: 6 Species: 41 Mode: H E X

In the first line, the program version number is shown. The next line shows arguments specified in

the command line. Below is the number of species groups defined in the configuration file (6) and

the total number of species (41) as well as active modes of the program (ref. to 5.1). When running

in MPI environment, the number of parallel branches is also displayed.

*[1]: mus_musculus

*Human[1]: homo_sapiens

*Apes[5]: gorilla_gorilla nomascus_leucogenys pan_paniscus pan_troglodytes pongo_abelii

*Cercopithecidae[12]: cercocebus_atys chlorocebus_sabaeus colobus_angolensis_palliatus

macaca_fascicularis macaca_mulatta macaca_nemestrina mandrillus_leucophaeus papio_anubis

piliocolobus_tephrosceles rhinopithecus_bieti rhinopithecus_roxellana

theropithecus_gelada

*Other_mammals[13]: bos_taurus canis_lupus_familiaris delphinapterus_leucas

equus_caballus heterocephalus_glaber_female loxodonta_africana lynx_canadensis

monodelphis_domestica myotis_lucifugus panthera_leo physeter_catodon

rhinolophus_ferrumequinum ursus_maritimus

*Other_primates[9]: aotus_nancymaae callithrix_jacchus carlito_syrichta cebus_capucinus

microcebus_murinus otolemur_garnettii prolemur_simus propithecus_coquereli

saimiri_boliviensis_boliviensis

Then these groups are listed together the species they contain. Each group starts on a new line. Here,

the groups are: the nameless * group that includes only mouse genome; the *Human group

consisting of only human genome; the *Apes group consisting of five ape genomes (gorilla, gibbon,

bonobo. chimpanzee, orangutan); the *Cercopithecidae group consisting of listed 12 Old World

32

monkey genomes; the *Other_mammals and *Other_primates groups consisting of 13 and 9

genomes, respectively. This fragment is omitted if the command line includes –q2 or –q3 options.

Then the predicate parsing results are shown (also omitted if –q2 or –q3 options was specified).

The predicate (scenario) consists of 87 terms:

 0 SET 1 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 1 SET 2 2 5000000 7 10.000 0.001 1.0e-005 0.400 1 1

 2 IN *Human NO 3 1 5000000 7 10.000 0.001 1.0e-005 0.400 1 1

 3 SET 4 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

First line informs of the total number of operators recognized in the predicate definition (87). Thus,

subsequent 97 lines of the log begin with the operator number. These numbers start from 0 and it is

the SET operator (5.5.1). Each operator is reported in the log as several fields; some fields can be

empty or have a special value depending on the specific operator. As for this SET operator, the line

contains the operator number (0), its code, the number of the operator to execute next (1), and the

parameter values: the required number of witness genes, WITNESS (2), the half-size of the

neighborhood, RANGE (2 Mbp), ORTH (7), RANK (10), SCORE (0.001), EVAL (10
-5

), LAMBDA

(0.4), HOLD1 (1), and HOLD2 (1). These parameter values are used by default or can be

temporarily changed by other SET operators such as one numbered 1. One could see from the log

that the neighborhood half-size has been set to 5 megabases for a while. Then the IN operator (#1)

checks whether the current mouse gene is present in human with one witness gene only for this

operator. If yes, the program jumps to the NO label (the current gene is skipped). Otherwise, the

program transits to the next operator, #3. That SET operator recovers the RANGE value of 2

megabases.

 4 ADD mus_musculus 5 Fields: Gene ID,Region,Start,End,Strand,Label,Description

 5 BOR 6

 6 IN gorilla_gorilla 7 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 7 ADD gorilla_gorilla 8 Fields: Gene ID

First ADD operator in the above fragment copies listed table fields of the current mouse gene to

output line being formed. Shown here are the field names listed in the section [fields] of the

configuration file (5.3), although their aliases could be requested for output. The next BOR operator

informs that a series of checks starts from operator #6. At least a certain (yet unknown) number of

these checks must be satisfied for the gene to be selected. The first check together with

accompanying actions is included in this fragment of the log. The IN operator verifies whether the

current mouse gene is present in the gorilla genome together with two witness genes. Independently

of the verification result, the program proceeds to the operator #7, because there was no label in the

IN operator. If a label were specified, two operator numbers stand here; one of them is always the

next operator, and another number is somewhat else. As agreed, the program proceeds to the first

number at satisfied check, and to the second one otherwise. If the operator does not fork like in this

case, only one number of the next operator stands here. The effective parameter values follow in this

line just the same as in the SET operator. They are equal to the initial ones. Second ADD operator

(#7) in turn appends to the same line one more field (gene id) of the gorilla gene that first satisfies

the check. If the check was unsuccessful (no gene identified), the empty field is appended. Of

course, the user themselves chooses the field(s) to output.

 8 IN nomascus_leucogenys 9 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 9 ADD nomascus_leucogenys 10 Fields: Gene ID

 10 IN pan_paniscus 11 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 11 ADD pan_paniscus 12 Fields: Gene ID

33

 12 IN pan_troglodytes 13 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 13 ADD pan_troglodytes 14 Fields: Gene ID

 14 IN pongo_abelii 15 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 15 ADD pongo_abelii 16 Fields: Gene ID

 16 EOR 17 NO 4

The above fragment contains four more checks similar to the previous one but against different

genomes. Each test is followed by the addition of the gene id from a genome under test, or empty

field if no such gene is found. The last line in the above fragment contains the EOR operator, #16,

(5.5.5) that ends this series of checks. The operator contains two labels, 17 and NO (the latter is

virtual one which is not converted into number), and the parameter value n=4 which means that the

predicate term is satisfied if at least 4 of those checks were successful (i.e., all but maybe one). In

such case this term of the predicate is satisfied and the program proceeds to the next predicate term.

Otherwise the whole predicate is unsatisfied and the program verifies the next mouse gene.

 17 BOR 18

 18 IN cercocebus_atys 19 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 19 ADD cercocebus_atys 20 Fields: Gene ID

 20 IN chlorocebus_sabaeus 21 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 21 ADD chlorocebus_sabaeus 22 Fields: Gene ID

 22 IN colobus_angolensis_palliatus 23 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 23 ADD colobus_angolensis_palliatus 24 Fields: Gene ID

 24 IN macaca_fascicularis 25 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 25 ADD macaca_fascicularis 26 Fields: Gene ID

 26 IN macaca_mulatta 27 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 27 ADD macaca_mulatta 28 Fields: Gene ID

 28 IN macaca_nemestrina 29 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 29 ADD macaca_nemestrina 30 Fields: Gene ID

 30 IN mandrillus_leucophaeus 31 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 31 ADD mandrillus_leucophaeus 32 Fields: Gene ID

 32 IN papio_anubis 33 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 33 ADD papio_anubis 34 Fields: Gene ID

 34 IN piliocolobus_tephrosceles 35 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 35 ADD piliocolobus_tephrosceles 36 Fields: Gene ID

 36 IN rhinopithecus_bieti 37 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 37 ADD rhinopithecus_bieti 38 Fields: Gene ID

 38 IN rhinopithecus_roxellana 39 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 39 ADD rhinopithecus_roxellana 40 Fields: Gene ID

 40 IN theropithecus_gelada 41 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 41 ADD theropithecus_gelada 42 Fields: Gene ID

 42 EOR 43 NO 2

This predicate term is quite similar, but it checks the gene against other set of 12 Old World monkey

genomes and uses other parameter value of n=2.

 43 IN bos_taurus 44 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 44 ADD bos_taurus 45 Fields: Gene ID

 45 IN canis_lupus_familiaris 46 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 46 ADD canis_lupus_familiaris 47 Fields: Gene ID

 47 IN delphinapterus_leucas 48 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 48 ADD delphinapterus_leucas 49 Fields: Gene ID

 49 IN equus_caballus 50 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 50 ADD equus_caballus 51 Fields: Gene ID

 51 IN heterocephalus_glaber_female 52 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 52 ADD heterocephalus_glaber_female 53 Fields: Gene ID

 53 IN loxodonta_africana 54 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 54 ADD loxodonta_africana 55 Fields: Gene ID

 55 IN lynx_canadensis 56 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 56 ADD lynx_canadensis 57 Fields: Gene ID

 57 IN monodelphis_domestica 58 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 58 ADD monodelphis_domestica 59 Fields: Gene ID

 59 IN myotis_lucifugus 60 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 60 ADD myotis_lucifugus 61 Fields: Gene ID

 61 IN panthera_leo 62 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 62 ADD panthera_leo 63 Fields: Gene ID

 63 IN physeter_catodon 64 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

34

 64 ADD physeter_catodon 65 Fields: Gene ID

 65 IN rhinolophus_ferrumequinum 66 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 66 ADD rhinolophus_ferrumequinum 67 Fields: Gene ID

 67 IN ursus_maritimus 68 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 68 ADD ursus_maritimus 69 Fields: Gene ID

 69 IN aotus_nancymaae 70 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 70 ADD aotus_nancymaae 71 Fields: Gene ID

 71 IN callithrix_jacchus 72 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 72 ADD callithrix_jacchus 73 Fields: Gene ID

 73 IN carlito_syrichta 74 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 74 ADD carlito_syrichta 75 Fields: Gene ID

 75 IN cebus_capucinus 76 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 76 ADD cebus_capucinus 77 Fields: Gene ID

 77 IN microcebus_murinus 78 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 78 ADD microcebus_murinus 79 Fields: Gene ID

 79 IN otolemur_garnettii 80 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 80 ADD otolemur_garnettii 81 Fields: Gene ID

 81 IN prolemur_simus 82 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 82 ADD prolemur_simus 83 Fields: Gene ID

 83 IN propithecus_coquereli 84 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 84 ADD propithecus_coquereli 85 Fields: Gene ID

 85 IN saimiri_boliviensis_boliviensis 86 2 2000000 7 10.000 0.001 1.0e-005 0.400 1 1

 86 ADD saimiri_boliviensis_boliviensis YES Fields: Gene ID

The above series of the predicate operators does not include any conditional branches and

consequently does not affect the selection of mouse genes. It serves to output the information on the

current mouse gene’s presence or absence in other species under consideration. In particular, it

allows the user to evaluate alternative conditions of mouse gene selection involving other species

without recalculation. If the predicate verification reaches this fragment, the predicate is satisfied. Its

last operator ADD is followed by transition to the YES label, and the output line(s) prepared is

written to the output file. Otherwise, if the NO label was reached somewhere earlier, the predicate is

unsatisfied and the line(s) is discarded. In both cases the program proceeds to the next gene X of the

reference species starting with the operator #0.

In the following fragment the species are listed, whose genes will be shown in the output line, left to

right. If the predicate generates output lines in a variable format, the variant with the greatest

number of genes is displayed. This fragment is omitted if the command line includes –q2 or –q3

options.

Maximum 40 gene(s) per line: mus_musculus gorilla_gorilla nomascus_leucogenys

pan_paniscus pan_troglodytes pongo_abelii cercocebus_atys chlorocebus_sabaeus

colobus_angolensis_palliatus macaca_fascicularis macaca_mulatta macaca_nemestrina

mandrillus_leucophaeus papio_anubis piliocolobus_tephrosceles rhinopithecus_bieti

rhinopithecus_roxellana theropithecus_gelada bos_taurus canis_lupus_familiaris

delphinapterus_leucas equus_caballus heterocephalus_glaber_female loxodonta_africana

lynx_canadensis monodelphis_domestica myotis_lucifugus panthera_leo physeter_catodon

rhinolophus_ferrumequinum ursus_maritimus aotus_nancymaae callithrix_jacchus

carlito_syrichta cebus_capucinus microcebus_murinus otolemur_garnettii prolemur_simus

propithecus_coquereli saimiri_boliviensis_boliviensis

The following two lines provide the information on the table of genes that was read for the reference

species unless the command line includes –q3 option. The first line shows the input file name and

path, and the second one displays its characteristics: total number of lines, number of unique genes,

number of proteins (recall that lossgainRSL considers only protein-encoding genes), and the number

of top level sequences (contigs for short) in the genome (35). Further c1 is the number of contigs

that include only one gene (3), and с2 – that include exactly two genes (2).

Reading gene info file genes\mus_musculus.tsv ...

Lines read: 112608 genes: 22468 proteins: 67158 contigs: 35 c1: 3 c2: 2

35

As other tables of genes are read, similar data of other species are shown:

Reading gene info file genes\homo_sapiens.tsv ...

Lines read: 176163 genes: 24337 proteins: 117680 contigs: 1220 c1: 936 c2: 69

Reading gene info file genes\gorilla_gorilla.tsv ...

Lines read: 53486 genes: 21794 proteins: 45194 contigs: 327 c1: 271 c2: 25

Reading gene info file genes\nomascus_leucogenys.tsv ...

Lines read: 47561 genes: 20794 proteins: 40527 contigs: 336 c1: 225 c2: 49

Reading gene info file genes\pan_paniscus.tsv ...

Lines read: 52282 genes: 21210 proteins: 43232 contigs: 243 c1: 167 c2: 22

Reading gene info file genes\pan_troglodytes.tsv ...

Lines read: 60146 genes: 23534 proteins: 49949 contigs: 625 c1: 364 c2: 97

Reading gene info file genes\pongo_abelii.tsv ...

Lines read: 29435 genes: 20424 proteins: 21414 contigs: 53 c1: 0 c2: 2

Reading gene info file genes\cercocebus_atys.tsv ...

Lines read: 53602 genes: 20926 proteins: 46067 contigs: 549 c1: 129 c2: 26

Reading gene info file genes\chlorocebus_sabaeus.tsv ...

Lines read: 28077 genes: 19165 proteins: 19255 contigs: 119 c1: 65 c2: 9

Reading gene info file genes\colobus_angolensis_palliatus.tsv ...

Lines read: 47036 genes: 20617 proteins: 40399 contigs: 730 c1: 113 c2: 41

Reading gene info file genes\macaca_fascicularis.tsv ...

Lines read: 65967 genes: 22504 proteins: 49919 contigs: 147 c1: 58 c2: 27

Reading gene info file genes\macaca_mulatta.tsv ...

Lines read: 62443 genes: 21761 proteins: 48770 contigs: 175 c1: 108 c2: 27

Reading gene info file genes\macaca_nemestrina.tsv ...

Lines read: 54045 genes: 21060 proteins: 46238 contigs: 449 c1: 105 c2: 19

Reading gene info file genes\mandrillus_leucophaeus.tsv ...

Lines read: 47767 genes: 20841 proteins: 40903 contigs: 1538 c1: 313 c2: 153

Reading gene info file genes\papio_anubis.tsv ...

Lines read: 53012 genes: 21647 proteins: 45181 contigs: 418 c1: 275 c2: 70

Reading gene info file genes\piliocolobus_tephrosceles.tsv ...

Lines read: 54302 genes: 24588 proteins: 41245 contigs: 3537 c1: 2848 c2: 190

Reading gene info file genes\rhinopithecus_bieti.tsv ...

Lines read: 52671 genes: 20966 proteins: 43730 contigs: 2510 c1: 1007 c2: 248

Reading gene info file genes\rhinopithecus_roxellana.tsv ...

Lines read: 53493 genes: 21289 proteins: 45897 contigs: 2777 c1: 1001 c2: 343

Reading gene info file genes\theropithecus_gelada.tsv ...

Lines read: 43834 genes: 22515 proteins: 36976 contigs: 414 c1: 337 c2: 39

Reading gene info file genes\bos_taurus.tsv ...

Lines read: 43267 genes: 21880 proteins: 37538 contigs: 128 c1: 66 c2: 13

Reading gene info file genes\canis_lupus_familiaris.tsv ...

Lines read: 55790 genes: 20257 proteins: 45094 contigs: 221 c1: 134 c2: 33

Reading gene info file genes\delphinapterus_leucas.tsv ...

Lines read: 33898 genes: 19091 proteins: 30992 contigs: 262 c1: 124 c2: 11

Reading gene info file genes\equus_caballus.tsv ...

Lines read: 54352 genes: 20955 proteins: 44934 contigs: 299 c1: 178 c2: 48

Reading gene info file genes\heterocephalus_glaber_female.tsv ...

Lines read: 40018 genes: 20774 proteins: 28984 contigs: 366 c1: 92 c2: 17

Reading gene info file genes\loxodonta_africana.tsv ...

Lines read: 28849 genes: 20033 proteins: 25635 contigs: 583 c1: 228 c2: 81

Reading gene info file genes\lynx_canadensis.tsv ...

Lines read: 38883 genes: 19131 proteins: 35180 contigs: 36 c1: 5 c2: 5

Reading gene info file genes\monodelphis_domestica.tsv ...

Lines read: 50160 genes: 21384 proteins: 36557 contigs: 425 c1: 258 c2: 59

Reading gene info file genes\myotis_lucifugus.tsv ...

Lines read: 26842 genes: 19728 proteins: 20719 contigs: 2418 c1: 1169 c2: 305

Reading gene info file genes\panthera_leo.tsv ...

Lines read: 34373 genes: 19550 proteins: 31178 contigs: 459 c1: 262 c2: 58

Reading gene info file genes\physeter_catodon.tsv ...

Lines read: 35311 genes: 19717 proteins: 32206 contigs: 1279 c1: 676 c2: 243

Reading gene info file genes\rhinolophus_ferrumequinum.tsv ...

Lines read: 36358 genes: 19533 proteins: 33717 contigs: 60 c1: 13 c2: 6

Reading gene info file genes\ursus_maritimus.tsv ...

36

Lines read: 39675 genes: 18724 proteins: 34052 contigs: 463 c1: 124 c2: 24

Reading gene info file genes\aotus_nancymaae.tsv ...

Lines read: 51062 genes: 20412 proteins: 42510 contigs: 898 c1: 268 c2: 66

Reading gene info file genes\callithrix_jacchus.tsv ...

Lines read: 61545 genes: 22615 proteins: 43000 contigs: 545 c1: 483 c2: 13

Reading gene info file genes\carlito_syrichta.tsv ...

Lines read: 38316 genes: 18398 proteins: 31791 contigs: 5933 c1: 2658 c2: 1086

Reading gene info file genes\cebus_capucinus.tsv ...

Lines read: 48350 genes: 20317 proteins: 40677 contigs: 1037 c1: 199 c2: 86

Reading gene info file genes\microcebus_murinus.tsv ...

Lines read: 45983 genes: 18895 proteins: 38078 contigs: 76 c1: 32 c2: 2

Reading gene info file genes\otolemur_garnettii.tsv ...

Lines read: 28567 genes: 19506 proteins: 19986 contigs: 525 c1: 151 c2: 38

Reading gene info file genes\prolemur_simus.tsv ...

Lines read: 43803 genes: 20354 proteins: 38056 contigs: 2231 c1: 888 c2: 205

Reading gene info file genes\propithecus_coquereli.tsv ...

Lines read: 37914 genes: 17925 proteins: 32202 contigs: 810 c1: 185 c2: 52

Reading gene info file genes\saimiri_boliviensis_boliviensis.tsv ...

Lines read: 48819 genes: 19380 proteins: 40695 contigs: 320 c1: 45 c2: 16

This information is omitted if the command line includes –q3 option (but is still preserved

with -q0...-q2 options). The same apply to subsequent lines which inform of reading the table of

orthologs for the reference species and the tables of paralogs if needed. In this example, the only

table of mouse orthologs is needed. In the end of each line, the total number of ordered pairs of

orthologous (or paralogous) genes is shown. This display is for the selected mode H (input data from

Ensembl). In other program modes, different input files are read.

Reading orthologs from orthologs\mus_musculus.tsv ... 747042

Then the two following lines are displayed. The first one reminds the reference species and the

number of top level sequences (“contigs” for short) in its genome (35) as well as the number of

genes (22468). The second line shows how many contigs and genes will be actually tried in this

task. Since two witness are required, contigs with only one or two genes are skipped.

mus_musculus in total: 35 contigs, 22468 genes.

With several genes: 32 contigs, 22465 genes.

After that, the search of genes is initiated, during which the lossgainRSL program outputs to console

the messages like this:
c5 x130

where first number (5) is the serial number of contig under test in the reference species, and second

number (130) is the serial number of X gene in this contig. These numbers start from 0 and depend

on the table of genes. The gene numbers are displayed with a step specified in the command line by

–g option. This information can be helpful for debugging (ref. to 5.5.7). After completion, the

number of identified genes and timing are provided:

mus_musculus candidate genes selected: 230

54s: Completed OK.

6.2 Output file

The results of the lossgainRSL operation are written to the output file with a name and path

specified in the command line (see chapter 3) or set by default – result.txt in the working directory.

The existing file will be overwritten.

37

The file is written in the tab-separated value (TSV) format; the first line contains the field (column)

names. It is assumed that the number and meaning of the fields are the same for all output lines,

although the user can specify a predicate that writes the lines in a variable format. The priority

names are those specified by the HEAD (or HEADING) keyword in the predicate (5.5.1), in which

case the user is responsible for proper correspondence of the names and columns. If the names are

not specified in the predicate, the aliases (if any) or field names from the [fields] section (5.3) of the

configuration file are used.

If the program mode X (5.1) was specified, each identified gene of the reference species is presented

by one output line consisting of the fields added by a series of ADD operators during the verification

of that gene. If the X mode was not specified, the program additionally writes one line per witness

that contains similar data for witnesses and their homologs in other species. Moreover, an empty line

is written after each synteny block if I is present in the program mode. In this case two more fields

can be added, by specifying the mode J, in the end of each line to facilitate sorting of the synteny

blocks as a whole (see 5.1 for detail). In addition, if the lossgainRSL operates in MPI environment,

each output line is automatically appended with a field named ‘rank’ where parallel branch number

is provided for debug purpose.

The output file samples are provided in the test, http://lab6.iitp.ru/en/lossgainrsl/example.zip. The

output file allows for import to the Excel spreadsheet for convenient post-processing and analysis.

An example of the output file imported to the Excel is provided in the ‘Result’ sheet of the file

http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx.

7 Using other input data sources

7.1 Addition of genomes not included in the Ensembl

The Ensembl database already includes the complete genomes of above 300 species, and further

increases. Nevertheless a task can appear, where few (implying one-two) species have to be added

that are not included in the Ensembl yet. In principle, it is possible, but involves a laborious work to

draw up new tables and augment existing ones, manually or by ad hoc scripts or programs.

Below we outline a work for addition of a new genome to existing input data (see chapter 4). In

order to add several new genomes, this should be done by turns for each of them. Let us accentuate

that a new reference species cannot be added in this way and should be taken from the Ensembl, at

least in the current program version. If the Ensembl database lacks the reference species, all

information on gene orthology should be obtained from other sources (7.2).

GenBank is virtually the most important source of new complete genomes. In general, it contains all

necessary data, but sometimes in insufficiently unified and disembodied form, which makes the

drawing up tables 4.1–4.3 a challenge. The genome in the GBFF flat file format seems to be most

convenient for manual work described below; the lossgainRSL user also can develop himself a

program or script to use some other source.

7.1.1 Manual preparation of a new table of genes

First of all, the user should prepare the table of genes for the new species. Such table must have the

format described in 4.1 including the field headings. It is required that all tables of genes use

consistent field names. Manual preparation of the table could be easier to make in Excel using the

existing table of genes as a template. Let us point out the data sources for the fields listed in Table 1.

http://lab6.iitp.ru/en/lossgainrsl/example.zip
http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx

38

Chromosome/scaffold name

In the LOCUS line, which initiates each section of the genome in GBFF format, the accession code

of the sequence is provided. This code does not include a version number, and can be safely used as

a name of the top level genomic sequence. However, for the results to be more informative we

recommend to examine also the next line (DEFINITION). For example, if it reads “Drosophila

melanogaster chromosome 2R”, more suitable name would be 2R. The name assigned to the

sequence should be used in the table entries for all proteins/genes annotated in this section of the

GBFF-formatted file. The section lines from FEATURES to ORIGIN are subject to further analysis.

Gene stable ID, Gene name

Only protein-coding genes should be inserted in the table. Such genes are represented by entries

gene, mRNA, and CDS in the file. The gene id appears with the /gene tag in each of these entries;

we recommend to use it for the Gene name field, and assign the unique gene identifier by any formal

method like Gene IDs in Ensembl.

When entering a gene in the table, its size and structure should be considered. If the gene consists of

several exons separated by long introns or spacers, sometimes it may be better split into several

separate “genes” with individual names. If the gene is accompanied with multiple amino acid

sequences in several CDS entries according to the splicing variants, they should be entered to the

table as separate rows with same Gene ID but different Protein IDs.

Gene start (bp), Gene end (bp), Strand

The gene start and end positions in the nucleotide sequence are provided in gene, mRNA, and CDS

entries. If the coordinates follow the keyword “complement”, the Strand field should contain -1,

otherwise 1.

Gene description

For this column, one can use data fields in the gene, mRNA, and CDS entries under the /note and

/product tags. The formal procedure unlikely can be proposed, which usually presents no difficulty

at manual compiling this column.

Protein stable ID

The protein identifier should be assigned to each amino acid sequence that is represented in the CDS

entry under the /translation tag; a formal procedure should be established for this purpose. As

mentioned above, the table of genes for the new species can include multiple lines with the same

Gene ID, but different Protein IDs corresponding to the alternative splicing variants.

When drawing up the table of genes, it is very important to collect the file of proteins for the new

species. The file should be prepared in the FASTA format, where the sequence is taken from the

/translation tag, and the name is a previously assigned protein id. The user also can download the

existing FASTA-formatted file with all protein sequences of the new species, and then substitute the

assigned protein names for the sequence headings. Or, vice versa, use the first field of the heading as

the protein id in the table of genes.

The recommendations of this section are preliminary ones to be refined from the future experience

of new species addition.

39

7.1.2 Importing the table of genes from RefSeq

The procedure described in this section is applicable to the cases where the complete genome of the

new species is present among the NCBI reference sequence (RefSeq), which takes place for many

GenBank species, see ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/. A reference assembly usually

includes the file “feature_table”, from which the required table of genes can be easily obtained. For

example, the file for Pacific walrus Odobenus rosmarus divergence is available at URL

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/9708/101/GCF_000321225.1_Oros_1.0/

GCF_000321225.1_Oros_1.0_feature_table.txt.gz, and the table of genes in accordance with 4.1 can

be obtained by the python script MakeGeneTable.py authored by Oleg Zverkov. The script is

included in gbinput package downloadable from the lossgainRSL program webpage,

http://lab6.iitp.ru/en/lossgainrsl/. The script should be started from a folder where abovementioned

feature table has been downloaded; the gene table will be formed in the same folder. For different

folders and species lines 4, 5 of the script should be edited respectively.

7.1.3 Augmenting the ortholog and paralog tables by addspecies utility

If the predicate (5.5) does not include 3-species conditions, the table of orthologs (4.2) is required

only for the reference species, otherwise also for each putative substitute species. If a new non-

Ensemble species is added, this table must be augmented by the records for all pairs of orthologous

genes from the reference and new species. In addition, if the predicate accounts for paralogous

genes, the table of paralogs (4.3) may be required for the new species. To this end, the ancillary

utility addspecies is available within gbinput package at the lossgainRSL main page

(http://lab6.iitp.ru/en/lossgainrsl/).

As a prerequisite to the utility, the user should apply BLASTP to obtain the scores for the local

alignment of all pairs of proteins from the reference and new species as well as from the reference

and new species apart. The ordered pairs (i.e. with transpositions) should be considered, because in

general case the score can depend on which of the two species acts as a target. Prior to using

BLASTP, all protein sequences for both species in FASTA format must be obtained. For Ensembl

genomes, these files are available at their ftp server in the pep subdirectory for each species, for

example, at ftp://ftp.ensembl.org/pub/current_fasta/mus_musculus/pep/ for mouse. For RefSeq and

GenBank genomes, similar files are available in the assembly-related directory e.g.

GCF_000321225.1_Oros_1.0_protein.faa.gz for walrus (complete path to the directory see in 7.1.2).

Using of BLASTP is not discussed here; the expected results are the four protein similarity matrices

similar to those described in section 4.4. These matrices should be named spec1-spec2.*, spec2-

spec1.*, spec1-spec1.*, and spec2-spec2.*, where spec1,2 are the names of the reference and new

species listed in the [species] section of the configuration file (0). Let us stress that protein

identifiers in these protein similarity matrices must be exactly the same as those used in the table of

genes for the reference and new species. It is essential as existing FASTA files can contain the

protein names including a version number, while IDs in the table of genes normally lack version

numbers.

The program “addspecies” was written in C++ and is a command line utility for Windows/linux

(32/64 bit). The utility uses the following command line syntax:

addspecies [options] source target [config]

The utility name in Windows 64-bit environment is addspecies64. The required arguments are as

follows: source is the name of a new species to be added, target is the name of an existing species

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/9708/101/GCF_000321225.1_Oros_1.0/GCF_000321225.1_Oros_1.0_feature_table.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/9708/101/GCF_000321225.1_Oros_1.0/GCF_000321225.1_Oros_1.0_feature_table.txt.gz
http://lab6.iitp.ru/en/lossgainrsl/
http://lab6.iitp.ru/en/lossgainrsl/
ftp://ftp.ensembl.org/pub/current_fasta/mus_musculus/pep/

40

(the reference or substitute one). All species names must be listed in the [species] section of the

configuration file that can be one used for the lossgainRSL program (chapter 5) with the addition of

[add] section before or after any other section. The [add] section should be as follows (examples of

the numerical values are shown):

[add]

EVALUE 1e-10

ORTHOLOG 0.35

PARALOG 0.35

The name of the configuration file including optional path can be specified by the config argument

in the command line; default is config.ini in working directory. Note that lossgainRSL ignores

the [add] section, and “addspecies” ignores unnecessary sections from those described in chapter 5.

Thus, in practice both programs can share the same configuration file.

The parameters in the [add] section have the following meaning:

EVALUE – the E-value cut-off for the alignment of two proteins; the pairs with greater E-value are

skipped.

ORTHOLOG – the minimum acceptable weight for the similarity of two proteins from source and

target species, calculated by the formula 2 / ()st ss ttw S S S  , where Sst is the raw score for the

alignment of the two proteins (one from source, another from target), and Sss, Stt are the raw scores

for the alignment of each protein with itself. If the weight exceeds the threshold specified, respective

genes are considered as orthologs.

PARALOG – the minimum acceptable weight for the similarity of two proteins from the new

(source) species to consider them as paralogs. The weight is calculated by the above formula, but for

the two proteins from the same species.

The addspecies utility supports the following case-insensitive options:

-En Sets the value of n as E-value cut-off. If this option is specified, the parameter EVALUE

in the [add] section of the configuration file is ignored. Default cut-off value equals

1E-10 (i.e. 10
-10

).

-Gn The step for displaying gene numbers in each contig. Default is 10, zero value cancels

displaying of gene numbers.

-M If this option is specified, the program computes and stores the four matrices of E-values

and raw scores between the genes of source and target species. These matrices are

similar to above protein similarity matrices, except for using gene IDs instead of protein

IDs. Each entry contains the minimum E-value and maximum raw score over all pairs of

proteins encoded by given genes. Each matrix is sorted in the ascending order of first

gene id and in the descending order of raw score. The directory to write the matrices

should be specified in the [data] section of the configuration file (5.2) with a special data

type M (in addition to those listed in Table 4) e.g. as the line:
M matrix*-*.tsv

In such case, the matrix files will be named as species1-species2.tsv, where source and

target will be substituted in all four combinations for species1 and species2.

-U The same as -M option, but the matrices are not ordered.

41

-Qn This option is intended for the program termination at intermediate points. If the value of

0 is specified, the addspecies utility writes the gene similarity matrices (if specified -M

or -U) and finishes. If the value of 1 is specified, in addition the program augments the

table of orthologs for the target species. If the value of 2 or greater is specified, in

addition the program creates the table of paralogs for the source species (default mode).

-On Sets a new threshold for the weight of orthologs. If this option is specified, the parameter

ORTHOLOG in the [add] section of the configuration file is ignored. By default, the

threshold of 0.5 is used.

-Pn Sets a new threshold for the weight of paralogs. If this option is specified, the parameter

PARALOG in the [add] section of the configuration file is ignored. By default, the

threshold of 0.5 is used.

-Wfile If this option is specified, the program writes identified pairs of orthologous genes from

the source and target species to the separate file with the name specified. By default, the

new orthologous pairs are appended to the existing table of orthologs for the target

species. In both cases it uses the directory specified for O data type in the [data] section

of the configuration file (5.2).

As for the table of paralogs for the new (source) species, the program uses the directory specified

for P data type in the [data] section of the configuration file (5.2), and the file is named as other

tables of paralogs.

In order to use the addspecies utility, first the user should make necessary modification of the

configuration file (in particular, specify the new species name). Then, the four protein similarity

matrices (4.4) should be obtained using BLASTP. These matrices should be properly named and

placed in the directory specified for A data type in the [data] section of the configuration file (5.2).

The optimum cut-off values for the weights and E-value are selected empirically. The algorithm that

has been implemented in the program is rather experimental and preliminary one.

7.2 Using alternative information on gene homology

The best method for the ortholog inference is unknown; different methods yield different results.

The information on orthologs and paralogs provided in the Ensembl database also gives rise to

complaints in some cases. The lossgainRSL program allows the user to take advantage of other

orthology inference methods, but this should be always done as a whole, i.e. for all species and

genes under study. For example, one may use the protein similarity matrices (4.4) or the table of

clusters (4.5) instead of the ortholog/paralog tables from the Ensembl, still using the tables of genes

(4.1) from the Ensembl.

The user can decide against using Ensembl entirely and input from the table of orthologous groups

(4.5) composed from the OrthoDB data. Or the user can compile the gene tables (4.1) and protein

similarity matrices (4.4) wholly from NCBI data as described in.

Generally, when running the program with different sources of orthology, different lists of genes

will be obtained which provides the users with new opportunities. Let us discuss two of them. If the

minimum overprediction is a priority, and the user aims at as short as possible lists of more reliable

42

genes having the desired properties e.g. for wet experiment, it can be achieved by intersecting of the

lists obtained for different orthology inference methods. And vice versa, one can decrease the

underprediction by joining independent lists of genes.

Besides such rigid set-theoretic operations as the intersection and union, one can apply more slack

procedures such as voting if three or more sources of orthology are used. New study is ahead to

integrate existing and future conceptions of gene orthology, especially in distant species.

7.3 Using input data from only NCBI database

Gene orthology data available in NCBI database do not pretend to be complete and often just

redirect to the OrthoDB for information on orthologs. Therefore, the most suitable input data for the

lossgainRSL program are the gene tables (4.1) and protein similarity matrices (4.4). To identify true

homologs more reliably, the matrix should include, for each gene X of species R, as many its best

homologs X' in every species A as possible. For instance, up to 10-15 homologs that are good

enough, e.g. satisfy the E-value cut-off of 0.001 or less. This enables future choosing a proper value

of the parameter k, greatest rank of a hit (Table 5) and also using of the backward check to identify

true homologs (5.5.2). Below is a typical action sequence for the preparation of input data.

Create folders and files

Create working directory (e.g. work) and copy a needed version of lossgainRSL to that directory as

well as ancillary utilities and scripts from gbinput package downloadable from the program main

page, http://lab6.iitp.ru/en/lossgainrsl/. In this directory, create the future configuration file,

config.ini (see chapter 5), and one more text file species.txt described below. The first line

of the file must contain the field heads, “filename”, “protein” and “feature”, separated by tab

character. Then create several subdirectories of the work directory by the following commands:
 mkdir blastdb

 mkdir dup

 mkdir feature

 mkdir fasta

 mkdir gene

 mkdir hits

 mkdir homolog

 mkdir protein

Choose species and get data files from NCBI

The set of species depends on the study, but well-assembled genomes from RefSeq are favored.

First, an unique id not containing blanks has to be assigned to each species, such as scientific

binomial name e.g. pan_troglodytes. Then the accession of the chosen genome should be

mentioned, GCF_002880755.1 in the case, which allows accessing to respective directory of the

NCBI FTP site:

 ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/880/755/

The directory usually contains only a symbolic link the genome data folder, where the two gzipped

files are to be downloaded from. These files are: (1) amino acid sequences of all known proteins,

i.e., the proteome, and (2) the genome feature table, which in this case are named

 GCF_002880755.1_Clint_PTRv2_protein.faa.gz

 GCF_002880755.1_Clint_PTRv2_feature_table.txt.gz

For each species, the first file should be unpacked to the folder protein, and the second file to the

folder feature. The current line of the species.txt file should contain three tab separated

http://lab6.iitp.ru/en/lossgainrsl/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/880/755/

43

fields: the species id, the name of the unpacked proteome file, and the name of the unpacked feature

table. Example of the species.txt file imported to the Excel is provided in the ‘Species_list’

spreadsheet of the file http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx. Apart from this, the current

species id should be added to the [species] section of the config.ini file (5.4).

Build the tables of genes

From the work directory, run python script gb2en.py, that is similar the script from 7.1.2 enhanced

for serial processing of the feature tables of all genomes listed in species.txt rather than one

specified genome. For this, a python interpreter version 3.10 or above must be installed in the

computer. As a result of running the script, the directory gene will contain TSV formatted files

species.tsv, where species is a species id. Each file conforms to the specification in 4.1.

Preprocess the proteome files

The preprocessing is aimed at indexing of proteins and elimination of copies of the same amino acid

sequence with different name. From the work directory, run the command:

fastaprep -r 0 -u 0 -w 1 species.txt species.txt

As a result, the directory fasta will contain files in FASTA format named species.fas and

directory dup – working tables named species.tsv, where species is a species id. Each FASTA file

is normally smaller than corresponding proteome in folder protein, because it lacks some proteins

and unused data in sequence headers.

Find protein hits

There are two variants of possible actions:

Option 1

Using ‘makeblastdb’ program from the package BLAST v2.12.0+ or above, build a standalone

database for each species. For example, the database for the above species is built by the command:
makeblastdb -in fasta/pan_troglodytes.fas -dbtype prot -out blastdb/pan_troglodytes

For other species use similar commands with the –in и -out arguments changed respectively.

Then for each pair of species, species1 and species2, without respect of order and including the case

of equal identifiers, run the command:

blastp -outfmt "6 qseqid sseqid score evalue" -evalue 0.1 -max_target_seqs 1000

-max_hsps 1 -use_sw_tback -query fasta/species1.fas -db blastdb/species2 -out

hits/species1-species2.tsv

This option is practical if less than 25-30 species are considered so up to several hundred commands

are to be composed and run.

Notes:

1. Execution of the above command can take dozens of hours, so a supercomputer is recommended

for parallel running of many such commands for different pairs of species. If a multicore CPU is

used, the execution can be speed up by addition an argument num_threads n to the command,

where n is integer number greater than 1.

2. If more than 10-12 species are considered, it is recommended to split the folder hits into

subdirectories named by each species id and specify the last argument of the command line in

the form hits/species1/species1-species2.tsv, for the filesystem not to slow down due to

great number of files in single directory hits.

http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx

44

3. As a faster alternative for BLAST+, the package DIAMOND may be applied. It should be run

with the parameters that provide in the hits directory the files of the same format and contents

as blastp provides.

Option 2

Merge all FASTA formatted files using the OS command:

copy /a fasta/*.faa /b fasta/common.fasta (Windows)

cat fasta/*.faa >fasta/common.fasta (linux)

Build common database for all species under consideration:

makeblastdb -in fasta/common.fasta -dbtype prot -out blastdb/common

Then for each species species in turn run the command:

blastp -outfmt "6 qseqid sseqid score evalue" -evalue 0.1 -max_target_seqs 10000

-max_hsps 1 -use_sw_tback -query fasta/species.fas -db blastdb/common -out

hits/species.tsv

This option better suits for numerous species, when number of their pairs becomes too big. Here, the

number of commands to run equals the number of species, but each command will take more time

than with the first option, proportionally to the total number of species. In addition, if more than 30-

50 species are considered, it is recommended to increase the value of -max_target_seqs

parameter up to e.g. 30000-50000.

Irrespective of option chosen, the finding of protein hits with blastp is recommended to perform

on a supercomputer. If the diamond program is used, a powerful PC or a server will do.

Build gene similarity matrices

These matrices are the special case of the protein similarity matrices (4.4) for faster processing. One

can build them with use of the posthit command line utility for 64-bit Windows or linux written

in C++ with support of MPI-based multiprocessing if available. In single CPU mode run the

command:

posthit -b 1 -c 0 -i hits/*.tsv -n 10 -r 2 -w 0 list.txt

As a result, the matrix for each species will be built in the directory homolog. Each entry of the

matrix contains all six fields listed in Table 2 and field #3 is the raw score value. To get the matrix

of weights in this field, one should specify -w 1 in the above command.

