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Abstract—We propose an efficiently verifiable lower bound on the rank of a sparse fully indecomposable
square matrix that contains two non-zero entries in each row and each column. The rank of this matrix is
equal to its order or differs from it by one. Bases of a special type are constructed in the spaces of quadratic
forms in a fixed number of variables. The existence of these bases allows us to substantiate a heuristic algo-
rithm for recognizing whether a given affine subspace passes through a vertex of a multidimensional unit
cube. In the worst case, the algorithm may output a computation denial warning; however, for the general
subspace of sufficiently small dimension, it correctly rejects the input. The algorithm is implemented in
Python. The running time of its implementation is estimated in the process of testing.
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1. INTRODUCTION
Python is a modern general-purpose programming

language that has come out on top in recent years in
various ratings and is especially popular in scientific
applications. The advantages of Python are the ease of
entry-level mastering, the high speed of the develop-
ment process, as well as the compactness and readabil-
ity of program texts. Its main disadvantage is the rela-
tively low performance of programs, which is mainly
due to the interpreted nature of the language and
dynamic typing. This, however, is largely compen-
sated for by a wide variety of available libraries that
provide Python developers with access to efficient
implementations of various algorithms and the possi-
bility to connect original extension modules written in
compiled languages [1]. In the context of our study,
the main feature of Python is the built-in support of
integers of unlimited bit length and rational numbers.

The rank of an n × n matrix over a field can be cal-
culated using a polynomial number of processors with
only  operations over this field for each of
them [2, 3]. Efficient parallelization is feasible not
only for the calculation of the rank but also for the
computation of an inverse matrix, LDU-decomposi-
tion of a square matrix, and Cholesky decomposition
of a symmetric positive definite matrix [4, 5]. On the
other hand, the complexity of calculating the rank [6]
and characteristic polynomial [7–9] is close to that of
matrix multiplication. Easily verifiable non-degener-
acy conditions are known for circulants [10]. The

problem of checking the linear independence of a system
of polynomials in several variables is of theoretical inter-
est. These polynomials can sometimes be given by short
expressions or arithmetic schemes, even though their
coefficient matrices are large. Therefore, easily verifiable
estimates of the matrix rank are important. Generally,
the calculations are carried out over the field of rational
numbers; however, symbolic calculations can also be
performed over fields of algebraic numbers [11, 12].

Points of a determinantal variety correspond (up to
multiplication by a non-zero number) to fixed-size
matrices the rank of which is bounded from above.
A determinantal variety can have a very large degree
[13, 14]. Hence, over an algebraically closed field, it is
impossible to check the rank of a matrix by using a
small non-branching program. On the other hand,
these varieties contain linear subspaces, which can
sometimes be used to estimate the rank [15].

Using rank estimates, we consider a heuristic algo-
rithm for checking the incidence of a given subspace to
some vertex of a unit cube. This check is equivalent to
finding a (0, 1)-solution to the system of equations

where  denotes linear forms [16].
Even though heuristic algorithms for solving this

problem under additional constraints [17–19] are
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available, this problem is considered computationally
hard in the worst case. Thus, it is important to design
new algorithms whose computational complexity is on
average limited by a polynomial in the length of the
input under different constraints.

As for the recognition problem, we assume three
variants of response: the input is not only accepted or
rejected, but an explicit warning of computation denial
is also possible. In this case, the response must be
received in finite time and without errors; if the easily
verifiable condition is met, then the computation
denial warning can be issued only on a small portion of
inputs among all inputs of a given length [20, 21].
When estimating algebraic complexity, it is sufficient
to require that the computation denial warning be gen-
erated on a set of inputs for which some polynomial
other than an identically zero one vanishes [16, 22].

The paper is organized as follows. Section 2 pres-
ents theoretical results. Section 3 describes the imple-
mentation of the algorithm in Python. Section 4 con-
tains brief conclusions.

2. THEORETICAL RESULTS
The entries of an (0, 1)-matrix are only zeros and

ones. A submatrix is a matrix obtained by deleting
some rows and columns. An  matrix is said to be
fully indecomposable if it does not contain a zero sub-
matrix of size  for any s.

Let us consider square matrices with two non-zero
entries in each row and each column. If a (0, 1)-matrix
of this type is fully indecomposable, then its perma-
nent is two [23]. In this case, its determinant belongs
to set . Obviously, any such (0, 1)-matrix over
a field of characteristic two is degenerate. An example
of a degenerate matrix over an arbitrary field is a 2 × 2
matrix of rank one each entry of which is equal to one.
Another example is the (0, 1)-circulant

This matrix is also degenerate, but its rank is three.
The characteristic polynomial of this matrix is x4 –

. We provide the lower bound for the
rank of these matrices.

Theorem 1. Suppose that we have fully indecompos-
able n × n matrix A where each row and each column has
exactly two non-zero entries. Then, the rank of matrix A
has a lower bound: .

Proof. The condition of full indecomposability is
not violated when permuting rows or columns. There-
fore, without loss of generality, we assume that all
entries on the main diagonal of matrix  are not zero.
Then, matrix A is a sum of two non-degenerate matri-
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ces , where matrices  and  are both
diagonal and non-degenerate, while  is a permuta-
tion matrix with zeros on the main diagonal. With
matrix A being fully indecomposable, permutation 
consists of one cycle of length .

For any permutation matrix , matrix  is
obtained from matrix  by consistent permutation of rows
and columns. In this case, the entries on its main diagonal
remain on the main diagonal. Therefore, for some per-
mutation matrix , matrix  has non-zero entries
on the main diagonal, directly above the main diagonal,
and one more entry in the first column and last row. Such
matrix  has the following form (for ):

where symbol  denotes non-zero entries. Since the
permutation of rows or columns does not affect the
rank of a matrix, the rank of matrix  coincides
with the rank of matrix . To complete the proof of the
theorem, it is sufficient to find a non-degenerate

 submatrix  in matrix . Sub-
matrix  is obtained by deleting the first row and first
column of matrix . This matrix is upper triangular.
Each entry on the main diagonal of matrix  is not
zero, which is why  is not degenerate.

In Theorem 1, the condition of complete indecom-
posability is important. For instance, with even , a
block-diagonal  matrix the diagonal of which
contains 2 × 2 blocks with four ones in each block has
a rank of .

Hereinafter, we consider fields of characteristic
zero. Let us consider the problem of incidence of a
given affine subspace to some vertex of an n-dimen-
sional cube. The method consists in constructing a
low-degree algebraic hypersurface that passes through
each vertex of the cube but does not intersect the
affine subspace. The computational complexity of this
method depends on the degree of the hypersurface.
On the other hand, this method is efficient only if the
dimension of the affine subspace is sufficiently low.
Suppose that this subspace is defined by a system of 
linear equations. The dimension of the linear space of
forms of degree d in variables , …,  is equal to

binomial coefficient . Therefore, on average,

this method is efficient when the number of equations
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satisfies inequality , where d is
the degree of the hypersurface. We confine ourselves to the
case of d = 2, where the hypersurface is a quadric [16].

Suppose that the n-dimensional cube is in a projec-
tive space and the homogeneous coordinates of its ver-
tices belong to set ; however, none of the cube
vertices lies on infinitely distant hyperplane .
It is well known [24] that the quadric passing through
each vertex of this cube is determined by a quadratic
form of the type

If the subspace is given by the system of equations
, where , then the

existence of the quadric that passes through each ver-
tex of the cube and intersects this subspace only at
infinity is equivalent to the resolvability of the equa-
tion

with respect to variables , …, . In turn, this prob-
lem is equivalent to the resolvability of a system of lin-
ear equations. According to the Kronecker–Capelli
theorem, this check is reduced to comparing the ranks
of two matrices. Algorithm 1 does not provide polyno-
mial computational complexity in the worst case.
However, it is sometimes significantly more efficient
than the exhaustive search through the cube vertices.

In Algorithm 1, the first  columns of matrix 
always contain two non-zero entries 1 and –1. In the
column with number , the entries are equal
to second-degree polynomials in the coefficients of
linear form .

Algorithm 1. Checking the existence of a cube vertex
incident to a given subspace.

Input: integers  and linear form
, where .

1. The entries of matrix  are coefficients of the form

where the rows of matrix  correspond to second-
degree monomials in variables , …, , while its
columns correspond to variables , …, .
2. Augmented matrix  is obtained from matrix  by
adding a column in which one is in the row corre-
sponding to monomial  with the other entries of this
column being zero.
3. if , then the input is rejected.
4. else the computation denial warning is generated.
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Let us consider an example corresponding to a
straight line on a plane. Suppose that , ,
and  is a linear form. Then, we have the
equation

Here, there are three monomials in variables  and :
, , and . The corresponding matrix  has two

columns and three rows:

The augmented matrix is

Here,  and . Therefore, the
desired variables  and  do not exist. Algorithm 1
outputs the computation denial warning.

Let us consider another example corresponding to a
straight line in a space. Suppose that , , and

 and  are linear forms. Then, we
have equation  + 

. Here, there are again three
monomials in variables  and : , , and .
However, matrix  has three columns and three rows:

The augmented matrix is

Matrix  is non-degenerate, and the ranks of matrices
 and  coincide. Algorithm 1 rejects the input.

The following theorem provides a sufficient condi-
tion of type  under which Algo-
rithm 1 rejects a large portion of inputs for fixed  and

. Its proof is based on constructing a basis of a spe-
cial type in the space of quadratic forms.

Theorem 2. Suppose that we have positive integers 
and  for which inequality (n –
m + 2) holds. For almost every set of  linear forms

, where , there are values
of coefficients , …,  for which the following equality
of quadratic forms holds:
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If, for some , the coefficients of linear forms  are
independently and uniformly distributed over a set of

 numbers, then the probability of absence of the
desired values of , …,  does not exceed .

Proof. Let us consider matrix  from Algorithm 1.
By the condition of the theorem, the number of rows

 in matrix  does not
exceed the number of columns . In this case, a suffi-
cient condition for the existence of desired , …,  is
equality . Each entry of matrix  is either
a constant or a second-degree polynomial in the coef-
ficients of linear forms . Therefore, the rth-order
minor of matrix  is equal to a polynomial in the coef-
ficients of linear forms  the degree of which does not
exceed .

According to the Schwartz–Zippel lemma [25], if
this polynomial is not identically zero, then the van-
ishing probability does not exceed .

It remains to show that, for some set of forms ,
the r-order corner minor of matrix  is not zero. For
this purpose, it is sufficient to consider a set of forms
whose coefficients do not necessarily belong to the set
specified in the condition. Suppose that  +
xk for . By , we denote the number
of a pair of subscripts , which takes
values from 1 to . Suppose that

 for . For , we
assume that .

For subscripts , monomial 
corresponds to a row where only the entry in column

 is not zero. This entry is equal
to two. On the other hand, the columns with numbers

 have two non-zero entries: –1 in the
row corresponding to monomial  and  in the row

corresponding to monomial . Let us rearrange the
rows in matrix A in accordance with the following
order of monomials: , …, , , , …, ,
monomials  for , and the last one

. The corner submatrix of order  takes the form

where  is the identity matrix of order ,  is the
identity matrix of order , and 0 is
the zero matrix. This submatrix is non-degenerate
because elementary transformations of its rows yield a
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triangular matrix with non-zero entries on the main
diagonal:

Therefore, .
It should be noted that the proof of Theorem 2 uses

sparse matrices. Hence, the sparseness of matrix 
does not prevent the successful application of the algo-
rithm under consideration. Moreover, for sparse
matrices, the complexity of rank calculation is less,
which makes it possible to process high-dimensional
matrices. In the proof of Theorem 2, we have consid-
ered a special case where matrix  has a full rank.
Therefore, the procedure of calculating its rank can be
replaced with checking the non-degeneracy of matrix

. However, this would be an unreasonable constraint
on the applicability of Algorithm 1.

3. IMPLEMENTATION
Suppose that  is a matrix composed of coefficients

of linear forms  in Algorithm 1 and Theorem 2. The
first row of matrix  corresponds to form , while
its last row corresponds to form . For instance, for two
linear forms  and , this matrix is

Matching matrix  and matrix  takes less time than
calculating the ranks of  and . This transformation
is implemented by function , which
takes matrix  as the input and returns matrix , with
both the matrices being represented as NumPy arrays.
The order of rows in  corresponds to the lexico-
graphic monomial order, while its first row corre-
sponds to monomial . Matrix  is easy to obtain by
deleting the last column of matrix . Function com-
pose_b() is implemented in Python using the
NumPy library.

When using integers of fixed bit length, NumPy
significantly improves the efficiency of processing
matrices (both in terms of speed and memory alloca-
tion) as compared to data types built in Python, e.g.,
lists of numbers [26]. When working with other data
types, including integers of unlimited length and ratio-
nal numbers, these advantages mostly vanish. How-
ever, NumPy enables concise representation of stan-
dard operations on matrices and their parts, e.g., in
our case, submatrix extraction, entry-wise addition,
and multiplication of rows, etc.

By , we denote the dimension of a sub-
space for which the incidence to the vertex of the n-
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Table 1. Time (in seconds) it takes to compute matrix B at
different values of s and n for two integer types: 64-bit and
unlimited bit length

Parameters Integer type

s n 64-bit unlimited

20 231 0.01 0.02
30 496 0.03 0.08
40 861 0.07 0.20
50 1326 0.14 0.50
60 1891 0.25 1.00
70 2556 0.43 1.90
80 3321 0.68 3.20
90 4186 1.10 5.00

100 5151 1.50 8.20
110 6216 2.20 12
120 7381 3.00 16
130 8646 4.20 24
140 10011 5.40 36
150 11476 7.50 51
160 13041 9.50 66
170 14706 13 89
180 16471 15
190 18336 20
200 20301 23
210 22366 29
220 24531 34
230 26796 43
240 29161 50
250 31626 62
260 34191 83
270 36856 89
280 39621 100
290 42486 130
300 45451 170
dimensional cube is checked, while  denotes
the number of second-degree monomials in variables

, …, , which is equal to .
To estimate the running time of function com-

pose_b() for , an 
matrix  was generated the entries of which are ran-
dom integers in interval [–109, 109]. The time it takes
to calculate matrix  is shown in Table 1. The third
column of Table 1 contains results for 64-bit integers,
while its last column contains results for integers of
unlimited bit length, the computations over which
were implemented in Python. We used Python 3.10.4
and NumPy 1.22.4. The calculations were carried out
on a personal computer with Intel® Core i5-3570 and
16 GB RAM. The calculations with numbers of
unlimited bit length for large matrices were not carried
out because of RAM overflow, although the calcula-
tions for 64-bit numbers were continued up to

.
The simultaneous calculation of the ranks of matri-

ces  and  based on input matrix  is also imple-
mented in Python. For the calculations with rational
numbers, the Fraction class from the Python standard
library is used.

The rank calculation is based on reducing the
matrix to the echelon form. With matrix  being a sub-
matrix of , for both matrices  and , this transfor-
mation can be carried out simultaneously. This makes
it possible to nearly halve the running time as com-
pared to independent calculation of their ranks.

To estimate the time it takes to evaluate function
 for , an 

matrix  was generated the entries of which are ran-
dom integers in interval . The evaluation time
for different boundary values  is
shown in Table 2. The larger the matrix, the faster the
increase in the running time with an increase in the
average bit length of matrix entries.

It should be noted that the rank calculation method
implemented using the NumPy library, which is based
on the singular value decomposition, is not suitable in
this case because of possible errors associated with the
use of f loating point numbers. For instance, when cal-
culating the rank with NumPy 1.22.4 in such an inac-
curate way, at , the rank of a diagonal 2 × 2
matrix with entries 1 and 10k on the main diagonal
proves equal to one. That is why, to calculate the
matrix rank, we used a new implementation of the
well-known Gaussian algorithm for reducing the
matrix to the echelon form, which allowed us to work
with numbers of unlimited bit length.

Thus, the final implementation of Algorithm 1 is func-
tion , which receives
matrix  as the input. The value is True when Algo-
rithm 1 would output the computation denial warning.

height
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The False value means that Algorithm 1 rejects the
input. The input can be a matrix with rational entries.

The listings of the functions discussed above with
the corresponding examples are available at
http://lab6.iitp.ru/-/qualg.

4. CONCLUSIONS

In this paper, we have described a heuristic polyno-
mial-time algorithm implemented in Python for rec-
ognizing subspaces of sufficiently low dimension that
are incident to any of the vertices of a multidimen-
sional unit cube; in the worst case, this problem is
considered computationally hard. The algorithm
49  No. 5  2023
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Table 2. Time (in seconds) it takes to calculate the rank of
matrix  for different values of parameters , , and 

Parameters

n 103 106 109

5 21 0.02 0.02 0.02
6 28 0.04 0.05 0.07
7 36 0.09 0.10 0.19
8 45 0.21 0.34 0.50
9 55 0.45 0.77 1.20

10 66 0.91 1.70 2.70
11 78 1.80 3.50 5.70
12 91 3.30 6.90 12
13 105 6 13 23
14 120 11 24 42
15 136 18 42 76
16 153 30 73 130
17 171 50 120 230
18 190 79 200 380
19 210 120 330 610
20 231 190 510 960

B s n N

N

s

either correctly rejects the input or reports that there is
no obvious obstacle to the incidence. In particular, the
derived bounds on the complexity of this problem can
be useful for estimating the reliability of cryptographic
protocols based on the search for -solutions to
systems of equations [19, 27].

The algorithm uses matrix rank calculation. The
estimates for the rank of an indecomposable sparse
matrix obtained in Theorem 1 make it possible to test
the calculation of high-order matrix ranks.
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