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INTRODUCTION 
 

The nature of the selection factors underlying the 

evolution of aging remains controversial [1-3]. Many 

specialists in evolutionary gerontology support a set of 

ideas called the “evolutionary theory of aging” [1, 2]. 

This theory is based on the idea that the selection 

efficiency decreases with age. It is also assumed that 

vitality and fertility are high in youth at the cost of 

reduced fitness at later ages [4, 5]. An alternative view is  

that programmed aging and death may be favored by 

some kind of selection [3, 6–16]. 

 

A subsequent theoretical experiment called the “Fable 

about Fox and Hares” was suggested by one of the 

authors of this paper (VPS) [17]. Two young hares 

differing “intellectually” have equal chances to escape 

from a fox since both of hares are running faster than a 
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ABSTRACT 
 

Homo sapiens and naked mole rats (Heterocephalus glaber) are vivid examples of social mammals that differ 
from their relatives in particular by an increased lifespan and a large number of neotenic features. An 
important fact for biogerontology is that the mortality rate of H. glaber (a maximal lifespan of more than 32 
years, which is very large for such a small rodent) negligibly grows with age. The same is true for modern 
people in developed countries below the age of 60. It is important that the juvenilization of traits that separate 
humans from chimpanzees evolved over thousands of generations and millions of years. Rapid advances in 
technology resulted in a sharp increase in the life expectancy of human beings during the past 100 years. 
Currently, the human life expectancy has exceeded 80 years in developed countries. It cannot be excluded that 
the potential for increasing life expectancy by an improvement in living conditions will be exhausted after a 
certain period of time. New types of geroprotectors should be developed that protect not only from chronic 
phenoptosis gradual poisoning of the body with reactive oxygen species (ROS) but also from acute phenoptosis, 
where strong increase in the level of ROS immediately kills an already aged individual. Geroprotectors might be 
another anti-aging strategy along with neoteny (a natural physiological phenomenon) and technical progress. 
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fox. However, with age, the clever hare acquires some 

advantage, which becomes of crucial importance when 

the running speed of hares lowers to that of a fox. 

Now, the clever hare has a better chance to escape  

and, hence, to produce clever leverets than the stupid 

hare. Such an effect becomes possible due to  

age-dependent lowering of the running speed as a 

result of the operation of an aging program. This will 

facilitate the selection for cleverness. Recently, 

attempts have been made to analyze the fable by 

computer modeling [18, 19]. 
 

The retardation of the operation of chronic aging 

programs in humans [13, 20–23] and in naked mole rats 

[13, 24–26] and the acute senile phenoptosis1 in the 

nematode Caenorhabditis elegans [12, 14, 15, 27–29] 

strongly supports the idea that programmed aging plays 

at present an important role in the abovementioned three 

animal species. 
 

It is clear that the longevity in highly social mammals, 

such as H. glaber and humans, is partly due to neoteny, 

i.e. prolongation of youth and retardation of aging. The 

aging in both species cannot at present promote 

evolvability: in H. glaber – due to its hierarchy where 

only the “queen” and her “husbands” participate in 

breeding, and in humans – due to the rapid technological 

progress that in fact replaces the very much slower 

biological evolution [13]. As to C. elegans, the operation 

of the aging programs is clearly needed for the 

production of yolk [29] rather than for the stimulation of 

natural selection. 
 

This paper is devoted to a comparative analysis of the 

survival curves of humans and related primates and the 

possible role of neoteny and other mammalian anti-

aging programs in lifespan (LS) prolongation. 
 

Possible mechanisms of changes in the survival 

curves  
 

Various characteristics of LS have been used for 

survival curve analysis. One important factor is the 

heterogeneity of mortality causes, which can be divided 

into internal factors (intrinsic mortality) and external 

influences (extrinsic mortality) [30–33]. 
 

Terminal-to-average mortality ratio 
 

Jones et al. [33] compared the mortality of Ache Indians, 

Swedish females (born in 1881), Japanese females (died 

in 2009), two species of nonhuman primates and 40 

other species of animals and plants. The authors 

analyzed  the  interval  between  (i)  the onset of sexual  
 

1Phenoptosis – programmed death of an organism [3]. 

maturation and (ii) “terminal” age corresponding to the 

95% mortality of the original sexually mature cohort 

(LS95). Their criterion (mortality at “terminal” age 

versus the average mortality rate for the entire study 

period) led to several obviously erroneous conclusions. 

For instance, the great tit Parus major was assigned to 

the non-aging species and placed next to hydra. 

However, P. major just does not have time to grow old 

owing to a high age-independent mortality. LS95 for the 

pine Pinus silvestris was as short as 30 years due to the 

high mortality of the young trees. Tortoise was declared 

as the most non-aging animal, while crocodile was in the 

middle of the list. Moreover, long-lived humans 

(Japanese and Swedes) and animals (southern fulmar) 

were classified as the species with the most pronounced 

aging, despite having a long period of a negligibly low 

mortality rate. 

 

Coefficient of variation of lifespan (CVLS) 

 

It is assumed that we can expect a high variance in LS 

(i.e., high CVLS values) in the studied population when 

the degree of genetic regulation of aging is low (i.e., 

poorly controlled LS) and the rate of background 

“extrinsic” mortality is high. On the other hand, the LS 

variability in the population should be low when LS is 

stringently regulated by the genotype. In this case, it can 

be assumed that the “true” value of the species LS will 

be the value in the case of a smaller relative variation of 

LS. Upon great variation, it can be assumed that the 

external causes (predators, hunger, etc.) have a higher 

impact on mortality, while the genome-encoded mecha-

nisms of longevity assurance play a secondary role. 

 

N. Gavrilova, L. Gavrilova, F. Severin and V. 

Skulachev [34] compared the coefficient of variation 

(CV) of the parameter determined by the female H. 

sapiens development program (puberty age) and the 

aging-related parameters (menopause and death age). 

The data from the National Survey of the Midlife 

Development in the U.S. (MIDUS) were used. It has 

been found that the CV = 8–13% for the age of the 

onset of puberty, CV = 7-11% for the age of the onset 

of menopause, and CV = 16–21% for the age of death. 

Two results of these calculations are noteworthy. (A) 

The CV values for puberty and menopause coincide, 

which is predicted by the programmed aging concept 

since both events should be controlled by an 

ontogenetic clock. The alternative concept considering 

aging as a result of stochastic accumulation of damage 

cannot explain the above coincidences of CVs for 

puberty and menopause. (B) Variability of the age of 

death was two times higher than for puberty and 

menopause. Such relationships are not surprising since, 

in addition to programmed aging, there are external 

death factors that increase the variability of death.  
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Thus, the programmed aging has been demonstrated 

with a statistical method. 

 

CVLS estimates based on the Jones et al. [33] data from 

people >10 years old were 16.2% ± 0.1% for the 

Japanese females, 37.1% ± 0.3% for the Swedish 

females, and 54.5% ± 0.3% for the Ache Indians. For 

comparison, CVLS was 59.2% ± 0.2% in >7-year-old 

chimpanzees [puberty age] and 53.9% ± 0.1% in baboon 

females in 4 years old [35]. At the same time, the LS95 

was 24 years for the baboon females, 49 years for the 

chimpanzee females, 81 years for the Ache Indians, 89 

years for the Swedish females and 102 years for the 

Japanese females [33]. It is important that Ache hunter-

gatherers have, as a rule, minimal (near zero) 

dependence on modern medicine and do not use any 

commercial products in their diets [36]. 

 

These data are consistent with the idea that the 

observed variation in human LS in less developed 

societies is determined to a larger extent by 

unpredictable extrinsic factors, while the genetic 

component of variation becomes more prominent in 

more developed societies. 

 

The human LS steadily grows in a series of generations. 

For instance, Oeppen and Vaupel [37] showed that the 

human life expectancy at birth (e0) was growing almost 

linearly from 1840 to 2000 in developed countries, with 

an increase of approximately 3 months per year. This 

growth is due to a rapid steady decline in mortality at all 

ages [38], with the exception of the mortality of 

centenarians [39]. 

 

The analysis of the following characteristics of the 

human mortality profile is an important task in the study 

of the evolution of aging. Among these characteristics 

are the mortality curve shape; the variability of 

mortality profile across generations; the presence of the 

postreproductive life period; and the modal age of death 

(i.e., the age when mortality is maximal).  

 

Technical progress as a factor that modifies the 

survival curves 

 

The hunter-gatherers have a longer juvenile period of 

elevated mortality, and a longer adult LS as compared 

to chimpanzees (Figure 1A). 

 

The mortality rates vary among different human 

populations and between different time periods, 

especially regarding the risk of sudden death. However, 

these differences are small from a comparative cross-

species perspective. The mortality profile similarity 

among different preindustrial populations living in 

different conditions is evident (Figure 1B). 

Dental and renal diseases and cerebrovascular 

pathologies, as well as uterine leiomyomas, are 

common age-related pathologies of humans and apes. It 

was previously believed that brain volume reduction, 

breast and prostate cancer, lung cancer and colorectal 

cancer, gout and Alzheimer’s disease are characteristic 

only of aging humans, not of apes [40]. However, the 

presence of the two classic damaging signs of 

Alzheimer’s disease (the accumulation of amyloid β and 

phosphorylation tau proteins with age) were 

demonstrated in old chimpanzees in 2017, indicating 

that this pathology is not specific to humans [41]. These 

signs had been previously described in Oncorhynchus 

during the spawning period [42]. 

 

Life expectancy for humans, wild chimpanzees and 

captive chimpanzees 

 

Captivity significantly increases the survival of 

chimpanzee infants and adolescents. The percentage of 

those who live to 15 years grows from 37% in the wild 

to 64% in captivity [43]. However, although the 

proportion of animals surviving to the age of 45 

increases sevenfold (from 3% in the wild to 20% in 

captivity), it is still half as high as that for humans 

living in primitive conditions [44]. The difference 

between the chimpanzees and humans over 45 years old 

is even greater; the additional life expectancy (e45) for 

the captive chimpanzees is only 7 years, which is about 

one-third that of the e45 for humans. Thus, chimpanzees 

age much faster than humans and die earlier, even under 

external protection [44]. 

 

Forty-seven percent of the 15-year-old captive 

chimpanzees lived to the age of 47 years old, the 

maximal observed age for wild chimpanzees [44]. Thus, 

the aging (i.e., an increase in death probability with age) 

of a chimpanzee under wild conditions is largely 

determined by external causes and to a much lesser 

extent by internal causes. H. sapiens are generally 

characterized by a sharp decline in mortality from 

infancy to adolescence; mortality then remains very low 

up to the age of 40 years, after which it steadily 

increases (Figure 1A). 

 

All the survival curves of Native American populations 

of H. sapiens proved to be at a considerable distance 

from the survival curve of wild chimpanzees. 

Additionally, despite all the differences (lifestyle, food, 

etc.), all human survival curves are extremely similar, 

intersecting at 80 years, that is, at the point 

corresponding to LS95 (Figure 1B). 

 

This again demonstrates that LS95 is well suited for use 

in the analysis of the survival curves of aging 

populations (where the probability of the death of an 
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individual increases with age): mice, rats, fruit flies, and 

nematodes [45]. However, LS95 is less convenient for the 

analysis of non-aging populations (by this criterion), for 

example, for H. glaber or higher plant populations [46]. 

The life expectancies at birth (e0) among different 

aboriginal tribes are quite similar even across the 

continents. The values of e0, in ascending order, are as 

follows: Hiwi (Venezuela) - 32 years, Hadza (Tanzania) 

– 33 years, !Kung (the Kalahari desert between 

Botswana and Namibia) and the XVIII century Swedish 

individuals – 35 years, Ache (Paraguay) – 38 years, 

Agta (Philippines) and Yanomamo (Venezuela) – 41 

years, and Tsimane (Bolivia) – 42 years [47]. 

 

The probability of living to the age of 15 is also 

similar in all preagricultural tribes (from 55% in 

Hadza to 71% in Ache). The average value of this 

probability for all hunter-gatherers is 60%, while the 

average value for various groups of captive 

chimpanzees is 35% [36]. The 15-year-old hunter-

gatherers will live, on average, 39 years more, whereas 

15-year-old chimpanzees will live only 15 years more. 
 

 
 

Figure 1. (A) from [44], with minor modifications. Yearly mortality of captive and wild chimpanzees [data from 43] and Ache Indians of 

Paraguay [32]). (B) from [47]. Survival of chimpanzees in the wild and the survival of various wild tribes of South America, Africa and Asia, and 
Swedes in 1751-1759. 
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Fifteen percent of all hunter-gatherers will live to 70 

years and 5% to 80 years (i.e., up to the LS95 age) [36]. 

The maximal human LS is 122.5 years [48], almost 

twice the value for the chimpanzees (62 years in captivity 

[43]), which may partially be due to very different 

sample sizes for humans (many millions of individuals) 

and chimpanzees (thousands of individuals). 
 

The shape of the distribution of lifespans can be 

assessed in other ways, including the coefficient of 

variation of lifespan and Keyfitz’s entropy [49]. In 

2012-2017 [34, 35], we suggested that the coefficient of 

variation can serve as an additional characteristic of the 

stability of mortality dynamics [35]. Similarly, [49], an 

equality indicator, based on the measuring of Keyfitz’s 

entropy, was proposed by Colchero et al. In 2016 [49]. 

Keyfitz’s entropy is given by the ratio e†/e0, where e† 

measures life expectancy lost due to the death: е† 

=0∫
∞exd(x)dх. Keyfitz’s entropy is an indicator of 

lifespan inequality; the inverse of Keyfitz’s entropy is 

an indicator of lifespan equality (the log of the inverse 

is calculated [49]). A strong positive correlation of this 

value with life expectancy was shown both for different 

human populations living in different conditions 

(including Ache) and non-human primates [49] 

(according to [43, 44, 47]) (Figure 2). Low values of the 

indicator may result from high mortality in a particular 

historical period (for example, famine in Ukraine in the 

thirties of the 20th century). 

 
Mortality rate doubling time (MRDT) 

 
The rate at which the mortality rate doubles is the aging 

rate measure. It was reported that the mortality rate 

doubled every 7-8 years for a number of human 

populations with a very wide range of total mortality 

[47]. MRDT for the studied preagricultural populations 

is also mainly within the range of 6-10 years (for 

example, 6 years for Hadza, 7 years for Ache and 9 

years for !Kung) [47]. 

 

Dependence on the initial mortality rate is an obvious 

disadvantage of this parameter. For instance, if the 

initial mortality rate is 0.01% per year, then it will soon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The lifespan equality and life expectancy in humans (black and green) and non-human primates (blue) (from [49], 
with minor modifications). The y axis shows lifespan equality, the log of the inverse of the Keyfitz’s entropy; corresponding values of the 

Keyftiz’s entropy are given in parentheses on the y axis. 
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double, while the mortality rate of up to 20% per year 

may not double throughout the lifetime of the cohort. 

 

Therefore, it is hardly surprising that the MRDTs of 

various preagricultural tribes are so different (only 2.8 

years for Hiwi and 12–18 years for Agta) [47]. 

 

The age-dependent dynamics of the probability of death 

are surprisingly similar among different aboriginal 

tribes [47]. The mortality rate slows down to 1% per 

year at the age of 10 years, and then the mortality 

remains low to approximately 40 years old despite the 

obvious mortality rate acceleration with age [47]. The 

results obtained in the groups of hunter-gatherers 

(Figure 1B and 3A) are similar to the results from 

Sweden in 1751 (the post-Charles XII period). For 

example, the life expectancy at birth (e0) was 34 years, 

and e45 promised an additional 20 years. It turned out 

that at least one-fourth of the population would live for 

15–20 years more after 45 years (without access to 

modern medical care, public sanitation, immunization, 

and a predictable food supply) [47]. 

 

Currently, Swedish and Japanese individuals practically 

show negligible mortality until 50-60 years old. Not 

more than 10% die over 55 years of life, and not more 

than 70% of the original population dies within 55-80 

years of life. Over the last century, life expectancy at 

birth (e0) has increased in most countries and has 

exceeded 80 years in several countries [50]. Therefore, 

it is obvious that mortality in humans in developed 

countries has decreased so greatly at present that the 

difference between the hunter-gatherer mortality rate 

and the current mortality rate in developed countries 

today is much greater than the difference between 

hunter-gatherers and wild chimpanzees (Figure 3A). 

 

Moreover, the reduction in human mortality is at the 

same level or exceeds that in other species, even in 

animals in captivity or subjected to life-extending 

mutations as well as laboratory selection for longer life. 

O. Burger notes that the observed plasticity of the age-

related death risk contradicts the generally accepted 

theories of aging [50, 51], but it can be explained by the 

“theory of aging as part of a general program of 

ontogenesis” (see below). 

 

The main part of the pronounced decline in mortality 

occurred in developed countries from 1900 to 2010 

(approximately 4 human generations). Figure 3B shows 

the structure of mortality in the United States and its 

change over the aforementioned period from 1900 to 

2010. Both earlier and now, diseases of the 

cardiovascular system contribute to the structure of 

mortality, taking first place in the number of deaths 

caused (32.2% in 2010 vs 12.5% in 1900) [52]. In 

addition, the role of neurodegenerative diseases 

deserves special attention. These pathologies are 

important, although they do not have an equally strong 

influence on the structure of mortality. For example, 

Alzheimer’s disease takes now sixth place on the list, 

i.e. 4.5% in 2010. However, neurodegenerative diseases 

have a very negative effect on the quality of life, 

socialization and self-sustainment ability of a human 

being. In fact, they greatly reduce the health span. 
 

The change in survival curves of humans compared to 

chimpanzees occurs for two reasons: neoteny and very 

rapid technical progress. An analysis of time scales and 

survival curves allows us to separate these two causes. 

Thus, the evolution of neoteny requiring much more 

time may be responsible for the difference in the 

mortality curves of chimpanzees and hunter-gatherers, 

while technical progress is responsible for the great 

differences in the mortality curves of hunter-gatherers 

and Swedish individuals in the 20th century. 
 

Aging subprograms as a part of ontogenetic 

program  
 

The aging of an organism is manifested in an increase in 

the frequency of age-related diseases and, consequently, 

in an increasing probability of death [34]. The evolution 

of the aging phenomenon in Metazoa proceeded from 

potentially immortal forms. Potential immortality is an 

ancestral feature gradually lost in the course of 

evolution. At the same time, aging and death resulting 

from aging are facultative (rather than obligatory) 

features of Metazoa. The main principle of the 

evolution of aging is as follows: it is the substitution of 

external factors of death of non-aging Metazoa with 

internal ones programmed in the genome [17, 53]. If the 

probability of the death of an organism depended 

entirely on the degree of its age-related “wear”, then the 

mortality rate of multicellular organisms would increase 

with age regardless of the species position in the 

evolutionary tree. This has not been confirmed since the 

discovery of large differences in the mortality dynamics 

in different species (ascending, constant, descending, 

convex and concave mortality trajectories, both in the 

long-living and short-living species) [32, 33]. M.V. 

Skulachev and V.P. Skulachev [54, 55] pointed to this 

contradiction by proposing the acute phenoptosis 

concept. According to this concept, chronic phenoptosis 

(slow aging) can be finally substituted by a fast 

programmed death. 
 

This concept originates from the assumption that septic 

shock is an example of pathology with signs of acute 

phenoptosis. Quick death (due to the massive release of 

special regulators to the blood) is apparently caused by 

the infected organism itself, presumably to remove the 
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sick individual from the population in order to prevent 

an epidemic advance [17, 54, 60, 61]. Now it is 

suggested that aging (slow phenoptosis) results in such 

a crucial damage of physiological function that 

reproduction become impossible and the old organism 

is quickly killed by his own mechanism of acute 

phenoptosis to eliminate individual that cannot be 

involved in natural selection [54, 55]2. 

 

Anti-aging programs. Transcription factor Nrf2 

 

A transcription factor called “Nuclear factor erythroid 

2-related factor 2 (Nrf2)” seems to be a component of 

an anti-aging program [62], as well as the repair 

enzymes [63]. Nrf2 is thought to be a guardian of the 

health span and a gatekeeper of species longevity [62]. 

It induces the expression of genes encoding ~200 

repairing and detoxifying enzymes, including the most 

powerful natural antioxidants [64]. Nrf2 signaling 

activity is positively correlated with LS [62]. The level 

of Nrf2 decreases in old mice [65–68]. 

 

Protein antagonists of Nrf2 (β-TrCP, KEAP1, Bach1 

and c-Myc) [64, 69, 70] and mitochondrial ROS 

generation can be components of aging programs. The 

first three proteins are inhibited by ROS, which makes 

the situation even more complicated than the simple 

competition of anti-aging and aging programs. 
 

Keratin and heavy chain of myosin 16 
 

The degradation of certain genes is one of the most 

important and “radical” evolutionary changes in the 

genome [71]. The human-specific loss of the heavy 

chain of myosin 16 (MYH16) gene occurred pres-

umably due to a change in diet, which, in turn, reduced 

the dependence on powerful masticatory skeletal 

muscles. The loss (~2.4 million years ago) of MYH16 

was probably a favorable adaptive change that released 

constraints on the increase in cranial volume and brain 

 

 
2It is often assumed that the traits appearing in the 

postreproductive period are not subject to natural selection 

[1, 4, 56]. However, in certain cases the skills useful for 

the population and acquired in the postreproductive period 

by some animals (especially social ones) are transferred, 

via social learning, to the individuals still capable of 

reproduction, thus increasing their fitness and, in general, 

increasing the resilience of the population and hence 

adaptations to changes of the external environment [57-

59]. If longevity is favored by selection, the special 

protective and repair systems might evolve that slow down 

chronic phenoptosis. Since LS is a stable species-specific 

characteristic, similar to body size or fecundity, the life 

duration should somehow be programmed in the genome 

[3, 8, 42]. 

size [72]. In addition, the disappearance of the myosin 

heavy chain weakened the skeletal muscles of the limbs 

and reduced the overall weight of the body, although it 

also weakened the physical strength. 

 

The transformation of a gene from a cluster of type I 

keratin genes (responsible for hair emergence during 

ontogenesis) into a nonfunctional pseudogene φhHaA 

(KRTHAP1) in humans was another relatively recent 

evolutionary event. Orthologs of this gene are 

functional in gorillas and chimpanzees [73]. 

 

Neoteny in some invertebrates 

 

Neoteny has been described in many invertebrates, such 

as insects (termites [74], mayflies, cicadas [75, 76], 

beetles [77–79]) and isopod crustaceans [80]. The 

Turritopsis jellyfish, one of the representatives of the 

cnidarians, has a unique opportunity to revert, in 

response to mechanical damage or other adverse 

changes in external conditions, to an earlier state 

(polyp) from the stage of jellyfish that reproduce 

sexually [81]. As a result, the rejuvenation of this 

organism occurs. 

 

The issue of the presence of neoteny in ants 

(Hymenoptera, Formicidae) is disputable. A comparison 

of queens and gamergates3 may help in the search for 

ant neoteny [82]. Neoteny is formally absent in the 

worker ants in the majority of species since they never 

reach sexual maturity. At the same time, it is possible 

that the very appearance of the gamergates and 

intercastes in ants in the course of evolution proceeded 

along a neoteny path [83–85]. The intercastes include 

the individuals that morphologically differ from the 

typical winged members of their sex and resemble 

workers in some respects (the so-called ergatoid 

females and males). In particular, their wing muscles 

are not developed. The intercaste females are 

heterogeneous in their reproductive function: some are 

involved in egg laying, and others perform the 

functions of workers [86]. The ergatoid males breed 

but are not capable of flying. Such males mate in the 

nest [87]. 

 

The gamergates are found in different subfamilies of 

Formicidae and are especially common in the most 

ancient Ponerinae subfamily [88–91]. The gamergates 

have no distinctive external features compared to 

workers and reproductive females. The gamergates 

develop from the same young individuals as the 

workers, and their ability to lay eggs is determined by 

interactions with other individuals [92, 93]. 

 

 
3Gamergates – worker ants able to reproduce sexually. 
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It is also possible that the caste of workers has  

been formed not through the development of neoteny  

but as a separate ontogenetic trajectory since many 

morphophysiological differences between the individuals 

in the families of ants are caused by phenotypic plasticity 

rather than by hereditary variation. In this regard, it is 

interesting that the size of the brain in the egg-laying 

gamergates can be reduced compared to the working 

females. In Harpegnathos saltator, the brain volume of 

gamergates is only 74% that of workers [94]. It is 

noteworthy that the Harpegnathos workers who stand out 

among the ants with very large eyes have extremely   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

developed optical brain lobes, whereas just this part of 

the brain undergoes a strong reduction in gamergates that 

spend their whole life in the nest. The authors suggest 

that the nutrient-rich brain material is expended for egg 

production. A similar process caused by the lysis of the 

wing muscles in the fertilized ant females was described 

by Janet [95]. 

 

Neoteny in vertebrates 

 

Among vertebrates, the Mexican salamander 

(Ambystoma mexicanum) is a classic example of neoteny;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. (A) Age-dependent survival of Swedish individuals (in 1751, 1850, 1900, 1950, and 2010) and of Ache Indians and chimpanzees 

(according to [50, 51] with modifications). (B) Mortality structure in the USA (10 main causes of death in 1900 and 2010) [52]. 
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this animal can reproduce at the larval stage (axolotl). Its 

LS is more than 32 years. The transformation of an 

axolotl into an adult Ambystoma can be achieved by the 

addition of the hormone thyroxin. Moreover, A. tigrinum 

can transformed to adult Ambystoma even spontaneously 

under conditions which can be suspected to cause general 

disturbance in the central nervous system, e.g., when 

animals are caught and taken into the laboratory, or 

during periods of high temperature [96]. Among the 

caudate amphibians, there are species, for example, the 

European proteus (Proteus anguinus), whose adult form 

has not been described (obligate neoteny). Their maximal 

reported lifespan (in captivity) is 69 years [97], while the 

LS estimated value reaches 103 years [98]. A salamander 

resembling the axolotl but having no adult state 

(Necturus maculosus) lives for more than 29 years and 

survives only in water [99]. Neoteny has also been found 

in ray-finned fish [100, 101], lobe-finned lungfish 

(closely related to the Tetrapoda) [102] and some 

Passeriformes [103]. 

 

Neoteny in mammals, in addition to humans and H. 

glaber, was hypothesized for baleen whales [104] and 

toothed whales (dolphins) [105] as well as for dogs 

(“behavioral neoteny”) [106]. 

 

Naked mole rat neoteny 

 

The H. glaber, a rodent species with an LS unusually 

high for its weight, has pronounced neotenic traits (for 

reviews, see [13, 26]). Senescence-related traits, such as 

muscular and fatty weight reduction, lipofuscin 

deposition in tissues, and cataracts, start to develop only 

by approximately 30 years of age in H. glaber [107, 108]. 

 

The neoteny of the lungs in H. glaber does not manifest 

itself as decisively as the neoteny of the hair: the  

hair completely disappears, and the lungs remain 

underdeveloped. 

 

The DNA fingerprinting method demonstrated that H. 

glaber individuals within colonies were genetically 

almost monomorphic (coefficients of band sharing 

estimated from DNA fingerprints range from 0.93 to 

0.99) [109]. H. glaber has a low level of heterozygosity 

(1.87 million heterozygous single-nucleotide poly-

morphisms per diploid genome or ~0.7 heterozygous 

sites per thousand nucleotides). Similarly, humans have 

significantly lower heterozygosity than mice and rats 

[110]. The morphological differences between indi-

viduals are probably formed mostly by epigenetic 

mechanisms. Other peculiar features of the H. glaber 

genome have also been demonstrated. For example, at 

least one of the two mammalian characteristic genes, 

Mtnr1a and Mtnr1b, is nonfunctional [110]. Mtnr1a and 

Mtnr1b are receptors of melatonin – a hormone 

responsible for biorhythm [110, 111]. Despite the 

presence of a corresponding gene, the expression of the 

last enzyme of the melatonin synthesis pathway (N-

acetyl serotonin-O-methyltransferase) is suppressed in 

naked mole rats, at least in the brain, liver and kidneys 

[110, 112]. 

 

Moreover, the epiphysis has not been found in H. 

glaber ([113], single-animal study, confirmed by V. 

Manskikh in our group). H. glaber does not respond 

significantly to the increased Fos gene expression level 

in the suprachiasmatic nucleus of the hypothalamus in 

response to increased illumination, which is different 

from the response of other visually impaired fossorial 

species, such as the common mole rat Cryptomys 

hottentotus [114, 115]. 

 

L. Bolk’s hypothesis: pro and contra 

 

As noted above, two factors may account for the LS 

increase: 1) improved living conditions and 2) the 

retardation of switching on an aging program, e.g., the 

disappearance with age of mitochondrial mild 

depolarization [116]. Humans are traditionally compared 

to chimpanzees, although these two species have 

undergone separate evolution under different conditions 

for a long time. As a result, the modern structure of the 

human body is a mosaic with many characteristics that 

develop more slowly in humans than in chimpanzees, 

while other features, on the contrary, develop faster 

[117]. For example, the high growth rate of the brain 

during ontogenesis in human embryos persists until 

birth, while in chimpanzees, the growth rate of the brain 

begins to decline at the prenatal stage of ontogenesis 

[118, 119]. The brain of H. sapiens grows for 

approximately 15 years after birth, reaches 95% of the 

adult size between 7 and 11 years, and only then 

completes the final 5% of growth [120]. The chimpanzee 

brain volume reaches that of an adult by the age of 5 

years [121]. Similarly, the postnatal brain maturation of 

H. glaber takes four times longer than that of a mouse, 

despite a more mature brain at birth [122]. 

 

In 1871, Darwin pointed to the similarity of the embryos 

of monkeys and humans, while their adults are much less 

similar [123]. In the 1920s, L. Bolk was the first to 

develop in detail the idea of the presence of numerous 

neotenic (pedomorphic) features in adult humans. He 

compiled a detailed list of the neotenic traits of humans, 

which was subsequently supplemented by other authors. 

In addition to a long period of infantile dependence and 

growth, greater LS and larger brain weight, there are 

other numerous neotenic differences between adult 

humans and other primates. Among them are the 

features of the skull [brachycephaly, orthognathia (the 

absence of a protruding muzzle)]; the absence of skull 
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crests; skull bone thinness; a small amount of change in 

the skull structure from birth to old age; the absence of 

superciliary arches; certain variations in the structure of 

the teeth and cranial sutures; the position of the eye 

sockets below the cranial cavity; the central position of 

the occipital foramen (migrates backwards during 

ontogenesis in most primates); small teeth; later 

teething; some other infantile features of the skeleton 

(e.g., pelvis shape, longer legs compared to the arms, 

short limbs compared to the body size, inability for full 

thumb rotation, the absence of the baculum); the shape 

of the outer ear, epicanthic fold (skin fold at the upper 

eyelid), and labia; and a ventrally directed position of the 

genital canal in women.  

 

Some traits almost disappeared in humans (e.g., body 

hair and skin pigmentation loss in some populations) 

[20, 21, 124–128]. The same is true for some skull 

structures [129]. Humans have sacrificed part of their 

physical strength in exchange for complex of brain 

activity (for example, a gorilla is 15 times stronger than 

a human being; [117]). Such unique human features as 

bipedality and the reduction in the size of canine teeth 

appeared before the big brain and stone tool making, 

presumably due to the transition to monogamy and the 

increasing contribution of fathers to the care of their 

offspring [130–132]. 

 

S. Gould [124] and, later, J. Verhulst [127] revised 

Bolk’s theory without refuting it. Verhulst indicated 

that, in addition to neotenic traits, a number of human 

morphological features, which are usually considered 

specializations caused by natural selection, are 

examples of hypermorphosis (i.e., changes in body 

proportions caused by the simple prolongation of 

ontogenesis [124, 127]). As the examples of this, the 

author mentioned the flattened chest of a human being 

and some other proportions of his or her physique. As 

an example of a particularly important hypermorphosis, 

Verhulst mentioned the structure of the larynx being 

different in adult humans from the larynx structure of 

other primates and infants [127]. This hypermorphosis 

is assumed to have been very important for the 

formation and socialization of a human being [132]. 

 

Strictly speaking, hypermorphosis can be attributed to a 

special case of neoteny. The situation is rather 

complicated due to the differences in neoteny levels of 

different traits and mosaic ontogenesis. In this case, one 

can rely on the number of characters, the development 

of which requires significantly more time in the 

neotenic species than in related non-neotenic species. If 

this number is much greater than the number of traits 

that develop faster than usual, then this is neoteny. 

However, a more attractive criterion of neoteny might 

be a functional analysis of each trait. For example, a 

strong argument in favor of neoteny can be a situation 

where a trait is directly involved to higher life span. For 

example, in our group, it was recently discovered that 

mild mitochondrial depolarization, which prevents the 

formation of mitochondrial ROS, in mice disappears by 

the age of 2.5 years, and in naked mole rats, 

depolarization persists for decades [116]. Strong 

retardation of depolarization and ROS production in 

naked mole rat prevents age-related protein carbonyla-

tion in these animals and, hence, increases their LS. 
 

The study of the transcriptome in the prefrontal cortex 

of humans, chimpanzees and rhesus monkeys has 

revealed that it undergoes heavy reconstruction in the 

postnatal period, which proceeds slower in humans than 

in apes. In particular, the maximal expression of the 

genes responsible for synapse formation in the prefrontal 

cortex in chimpanzees and macaques has been observed 

at the age of one year and at the age of five years in 

humans [36]. The period of pregnancy in humans takes 

more time [22, 133], and the weight gain rate during the 

first five years after birth is also higher (2.6 kg/year vs 

1.6 kg/year for chimpanzees), although this parameter 

turns almost the opposite over the next 5 years [36]. 
 

In general, the difficulty in the interpretation of the role 

of LS-affecting genes is because the ratio of the 

contribution of genes and nongenetic components to the 

variability of the characteristics of each species is not a 

constant value but rather depends on circumstances. It is 

obvious that the same allele can reduce the LS of animals 

in adverse conditions but may not affect the LS in good 

conditions. The LS-affecting genes in the hunter-

gatherers may have no effect on the LS of the urban 

Japanese population. For example, a gene that affects the 

joints or any other important organs involved in heavy 

physical work will not affect the observed aging rate in a 

society carrying out a small amount of such work. 
 

CONCLUSION 
 

There is still no agreement among gerontologists as to 

the main aging-related issue: whether it is an accidental 

accumulation of damage in the organism or a result of 

the operation of a specially evolved program. In other 

words, it is still not clear whether aging is an inevitable 

phenomenon that is uncontrollable by organisms or 

whether it is a facultative adaptation that enhances the 

adaptive ability of species, i.e., their evolvability. 
 

The undoubted neoteny of H. glaber has been described 

in the last three years: up to now, 58 neotenic traits were 

found in this species [13, 24–26, 134]. The slowing 

down of such a large number of developmental 

processes clearly shows that the longevity of H. glaber 

is a result of a general slowdown of late ontogenesis. 
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In 2017-18, the increase in acute phenoptosis was 

directly demonstrated in the nematode C. elegans. 

Phenoptosis starts as early as the first day of adult life 

due to the initiation of two special programs. The first 

program prevents the organism from being protected 

against oxidative, thermal, toxic and other stress types, 

and the second is a program of the autolysis of the 

intestine. Compounds and energy saved by these two 

programs are used for the biosynthesis of the yolk of 

eggs laid by the worm. The first program is activated by 

blocking specific histone demethylation [12, 27, 28], 

and the second is activated through insulin stimulation 

of autophagosomes that attack intestinal cells [29]. 

 

The evolutionary changes in humans compared to other 

primates have the following distinguishing charac-

teristics: large brain, exceptionally large LS, high 

paternal investment in offspring, and the role of older 

individuals as helpers in upbringing the children [47]. 

The large brain is associated with a change in 

psychological characteristics: enhanced learning and 

cognition. Even human sleep is shorter, deeper, and has 

more rapid eye movement phases than that in other 

primates. Supposedly, the selection pressure in the 

direction of the reduction in sleep duration and its 

“quality” improvement were activated in the early 

stages of human evolution due to the change in the 

ecological niche and the development of overnight stays 

on the ground and not in the tree branches [135]. 

 

The evolution of these life history characteristics and 

extremely high intelligence was probably related to 

some degree to the dietary transition to high-quality, 

solid and hard-to-get food resources. Improvements in 

living conditions were due to technical progress 

(improved quality of food, medical services, industrial 

goods, etc.) and other evolutionary adaptations: 

cephalization index, sociality, and postreproductive LS 

have important effects on the survival curves in 

humans. A similar effect with respect to the 

reproductive individuals of H. glaber is caused by the 

fact that a single breeding female and one or two 

breeding males can be protected by hundreds of 

subordinates. Apparently, such protection also enhanced 

the selection against harmful mutations with late effects, 

which leads to a slowdown in aging, that is, to the 

activation of anti-aging programs [63, 116, 136].  

 

In humans, technical progress leads to a sharp decrease 

in infant mortality and an increase in life expectancy, 

especially in comparison to wild chimpanzees [51]. 

Despite the huge variation in the LS of various human 

populations, starting with preagricultural tribes and 

ending with the urban population in the developed 

countries, the differences between their survival curves 

are still smaller than those between the preagricultural 

human populations and the chimpanzees living in the 

wild. This relationship can be explained by the fact that 

neoteny prolongs LS and health span. 
 

The improvement in living conditions by new 

medicinal products, such as mitochondria-targeted 

antioxidants, could be effective in prolonging the 

average lifespan so that they can be considered not just 

as age-related disease treatment drugs but also as “true” 

anti-aging drugs. Such products may suppress chronic 

and acute phenoptosis processes. The example of such 

medicine is a mitochondria-addressed antioxidant SkQ 

developed at the Belozersky Institute, Moscow State 

University [55, 137–145]. Rapamycin, which seems to 

cause aging retardation and an increase in LS, appears 

to act in the same direction [146–149] due to the 

suppression of chronic phenoptosis. Metformin also 

causes a significant increase in LS and the retardation 

of aging, not only due to its properties as an 

antidiabetic drug [150–152] but also as an inhibitor of 

the aging program. It is essential that both SkQ and 

metformin specifically inhibit ROS generation in 

mitochondria at the beginning of the respiratory chain, 

where SkQ is effective at a thousand times lower 

concentration than metformin. 
 

The retardation of the aging process in the human 

body with special drugs is a promising approach to 

extend the health span. Such an approach appears 

probable because aging retardation in some mammals 

is already achieved through neoteny, a natural 

physiological phenomenon. 
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