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Abstract: The problem of the existence of analytically definable well-orderings at a given level of the
projective hierarchy is considered. This problem is important as a part of the general problem of the
study of the projective hierarchy in the ongoing development of descriptive set theory. We make use
of a finite support product of the Jensen-type forcing notions to define a model of set theory ZFC
in which, for a given n > 2, there exists a good ∆1

n well-ordering of the reals but there are no such
well-orderings in the class ∆1

n−1 . Therefore the existence of a well-ordering of the reals at a certain
level n > 2 of the projective hierarchy does not imply the existence of such a well-ordering at the
previous level n− 1. This is a new result in such a generality (with n > 2 arbitrary), and it may lead
to further progress in studies of the projective hierarchy.

Keywords: well-orderings; projective hierarchy; forcing; finite support product; generic models;
definability
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1. Introduction

The problem of the well-orderability of the continuum of real numbers R has been
known in set theory since the time of Cantor and Hilbert. Zermelo’s axiom of choice AC
directly postulates the existence of a well-ordering of R (and of any other set of course),
but this is far from an effective construction of a concrete, “nameable” well-ordering of
R. We refer to the famous “Sinq Lettres” [1] in matters of the discussion on these issues in
early set theory.

Somewhat later, using the methods of the descriptive set theory that just emerged, it
was established that no well-ordering 4 of R belong to the first-level projective classes Σ1

1 ,
Π1

1 —and then to ∆1
1 since x 4 y iff x = y or y 64 x . This is an easy consequence of Luzin’s

theorem [2] that sets in Σ1
1 ∪Π1

1 are Lebesgue measurable; see, for example, Sierpinski [3].
(We use the modern notation Σ1

n , Π1
n , ∆1

n for projective classes and Σ1
n , Π1

n , ∆1
n for their

effective subclasses, sometimes also called “lightface”; see, for example, monographs [4,5].)
The next key result was obtained by Gödel [6]: it is true that in the Gödel constructible

universe L , there exists a ∆1
2 well-ordering 6L of the reals, or saying it differently, the

existence of a ∆1
2 well-ordering of the reals is a consequence of the axiom of constructibility

V = L . It follows that the existence of a ∆1
2 well-ordering of the reals is consistent with

the axioms of the Zermelo–Fraenkel set theory ZFC (containing the axiom of choice AC)
because the axiom of constructibility V = L itself is consistent by [6].

Addison [7] singled out an important additional property of the Gödel well-ordering 6L .
Namely, let a ∆1

n -good well-ordering is any ∆1
n well-ordering 4 such that for every binary

∆1
n relation P(x, y) on the reals, the relations

Q(x, y) := ∃ x′ 4 x P(x′, y) and R(x, y) := ∀ x′ 4 x P(x′, y)
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belong to ∆1
n as well, so that the class ∆1

n is closed under 4-bounded quantification (see
Moschovakis [5]). In these terms, the Gödel–Addison result says that 6L is a ∆1

2 -good
well-ordering of the reals in L , and hence the existence of such a well-ordering follows
from V = L and is consistent with ZFC. The property of ∆1

n -goodness of 6L is behind
many key results on projective sets in Gödel’s universe L , see Section 5A in [5].

In the opposite direction, it was established in the early years of modern set theory
(see, for example, Levy [8] and Solovay [9]) that the statement of the non-existence of a
well-ordering of the reals of any projective class is consistent as well.

Recent studies on projective well-orderings explore various topics concentrated around
the general problem formulated by Moschovakis [5] (Introduction) as follows:

[T]he central problem of descriptive set theory and definability theory in general
[is] to find and study the characteristic properties of definable objects.

For instance, it is established in [10] that the bounded proper forcing axiom BPFA
combined with ω1 = ωL

1 implies the existence of a ∆1
3 well-ordering of the reals. Studies

in [11–13] presented different constructions of countable support-iterated generic models
which, first, admit controlled cardinal characteristics of the continuum, and second, admit
a ∆1

3 well-ordering of the reals. A model of ZFC in which the nonstationary ideal on
ω1 is ℵ1 -saturated and whose reals admit a ∆1

4 well-ordering, is defined in [14] under a
large-cardinal hypothesis. A finite support product of clones of Jensen’s minimal singleton
forcing [15] is used in [16] to define a model in which any non-empty analytically definable
set of reals contains an analytically definable real (the full basis theorem), but there is no
analytically definable well-ordering of the reals of any class ∆1

n .
However one of principal questions related to projective well-orderings remained un-

solved by those studies. We let WO(∆1
n), respectively, WO(∆1

n) be the following statement:

there is a well-ordering of the reals which, as a set of pairs, belongs to, respectively, ∆1
n , ∆1

n ,

for the sake of brevity. As the strict inclusions

∆1
n−1 $ ∆1

n and ∆1
n−1 $ ∆1

n (1)

hold for all n ≥ 2, we have accordingly

WO(∆1
n−1) =⇒ WO(∆1

n) and WO(∆1
n−1) =⇒ WO(∆1

n), (2)

and the ensuing principal problem is as follows.

Problem 1. Are implications (2) irreversible in ZFC, similar to inclusions (1)?
In other words, for a given n ≥ 3, are there models of ZFC in which WO(∆1

n) holds but
WO(∆1

n−1) fails, as well as those in which WO(∆1
n) holds but WO(∆1

n−1) fails?

This problem is a version of a well-known problem posed by S. D. Friedman, one
of the leading experts in set theory, in [17] (Problem 11 on page 209) and [18] (Problem
9 in Section 9). Friedman’s problem asks for a model for WO(∆1

n) plus the Lebesgue
measurability and the Baire property of all Σ1

n−1 sets of reals, which is somewhat stronger
than the related requirements of the failure of WO(∆1

n−1) and WO(∆1
n−1) in Problem 1.

The following theorem (our main result here) contributes to the studies of these
problems. It gives a partial positive solution of the “lightface” part of Problem 1 that
uniformly works for all values of the index. No such result has ever been obtained before.

Theorem 1. Let n ≥ 3. There exists a generic extension of L , in which it is true that

(i) there is a ∆1
n -good well-ordering of the reals, of length ω1 ;

(ii) there are no ∆1
n−1 -good well-orderings of the reals.
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2. Outline of the Proof

Given n ≥ 3, our plan is to make use of a generic extension of L defined in [19] in
order to get a model where the separation principle fails for both classes Σ1

n and Π1
n . This

extension utilizes a sequence of forcing notions P(ξ), ξ < ω1 , defined in L so that the
finite-support product P = ∏ξ P(ξ) satisfies CCC and adjoins a sequence of generic reals
xξ ∈ 2ω , satisfying the following crucial definability property: the binary relation “x ∈ 2ω

is a real Pξ -generic over L” (with arguments x, ξ ) is Π1
n−1 in L[G] = L[〈xξ〉ξ<ω1 ] . This

will suffice to define a well-ordering satisfying Theorem 1(i).
On the other hand, Claim (ii) of Theorem 1 involves another crucial property: the P-

forcing relation of Σ1
n formulas is equivalent to an auxiliary forcing relation forc invariant

w.r. t. permutations of indices ξ < ω1 .
Each factor forcing P(ξ) consists of perfect trees in 2<ω and is a clone of Jensen’s

minimal forcing defined in [15]; see also [20] (28A) on this forcing. The technique of finite-
support products of Jensen’s forcing, which we owe to Enayat [21], was exploited recently
to obtain generic models with counterexamples to the separation theorem for both Σ1

3 and
Π1

3 [22], and some counterexamples to the axiom of choice [23], to name a few applications.
Section 3 introduces perfect trees in 2<ω, arboreal forcing notions, multitrees (finite

products of trees), multiforcings (countable products of arboreal forcing notions).
Section 4 defines the refinement relation and presents the principal properties of

refinements. We define the set
#    ”
MF of all countable sequences #”π of small multiforcings,

increasing in the sense of the refinement relation.
Then, following our earlier paper [19], we introduce the key forcing notion PPP = PPPn

for Theorem 1 with a fixed n ≥ 3, and study the main properties of PPP-generic models in
Section 5. Theorem 2 in Section 6 shows that condition (i) of Theorem 1 holds in PPP-generic
extensions of L .

Sections 7 and 8 introduce an auxiliary forcing relation forc, which approximates
the truth in PPP-generic extensions for Σ1

n−1 -formulas and below, so that the relation forc

restricted to any class Σ1
m or Π1

m , m ≥ 2, is Σ1
m , respectively, Π1

m itself. The tail invariance
and permutation invariance of the relation forc is established in Section 9. (We may note
in brackets that the product forcing notion PPP itself is not permutation invariant.)

Using these results, we finally prove that condition (ii) of Theorem 1 holds in PPP-generic
extensions of L in Section 10. This completes the proof of Theorem 1.

This paper is a sequel of [19] in many technical details, and hence some intermediate
results involved in the proof of Theorem 1 are taken from [19] without proof.

3. Arboreal Forcing Notations and Multiforcings

Let 2<ω be the set of all tuples (finite sequences) of numbers 0, 1. If s, t ∈ 2<ω , then
s ⊆ t means that t extends s , while s ⊂ t means proper extension. If t ∈ 2<ω then lh(t) is
the length of t , and 2n = {t ∈ 2<ω : lh(t) = n} (tuples of length n).

PT is the set of all perfect trees ∅ 6= T ⊆ 2<ω . Thus a tree ∅ 6= T ⊆ 2<ω belongs to
PT if it has no endpoints and no isolated branches. In this case,

[T] = {a ∈ 2ω : ∀ n (a�n ∈ T)} ⊆ 2ω.

is a perfect set. If s ∈ T ∈ PT then put T� s = {t ∈ T : s ⊆ t ∨ t ⊆ s} ; then T� s ∈ PT.
Let an arboreal forcing be any set P ⊆ PT such that if u ∈ T ∈ P then T� u ∈ P. Let AF

be the set of all arboreal forcings P.
A forcing P ∈ AF is special, if there is a finite or countable antichain A ⊆ P such that

P = {T� s : s ∈ T ∈ A}—the antichain A is unique and P is countable in this case.
Let a multiforcing be any map π : |π| → AF, where |π| = domπ ⊆ ω1 . Let MF

be the collection of all multiforcings. Every π ∈MF can be presented as an indexed set
π = 〈Pξ〉ξ∈|π| , where Pξ ∈ AF for all ξ ∈ |π| , so that each component Pξ = Pπ

ξ = π(ξ),
ξ ∈ |π| , is an arboreal forcing.
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Accordingly, let a multitree be any function p : |p| → PT, with a finite support
|p| = dom p ; MT will be the collection of all multitrees. Every p ∈ MT can be seen as
an indexed set p = 〈Tp

ξ 〉ξ∈|p| , where Tp
ξ = p(ξ) ∈ PT for all ξ ∈ |p| . We order MT

componentwise: q 6 p (q is stronger than p) if |p| ⊆ |q| and Tq
ξ ⊆ Tp

ξ for all ξ ∈ |p| .
Assume that π = 〈Pξ〉ξ∈|π| is a multiforcing. Let a π-multitree be any multitree

p ∈MT such that |p| ⊆ |π| , and if ξ ∈ |p| , then the tree p(ξ) = Tp
ξ belongs to Pξ . The set

MT(π) of all π-multitrees can be identified with the finite support product ∏ξ∈|π| Pξ of
the arboreal forcings Pξ involved.

Any arboreal forcing P ∈ AF is considered a forcing notion (if T ⊆ T′ , then T is a
stronger condition); such a forcing P adjoins a real in 2ω .

Accordingly, any forcing notion of the form MT(π), where π = 〈Pξ〉ξ∈|π| ∈ MF,
adds a generic sequence 〈xξ〉ξ∈|π| , where each xξ = xξ [G] ∈ 2ω is a Pξ- generic real. Reals
of the form xξ [G] are called principal generic reals in V[G] .

4. Refinements and Increasing Sequences of Multiforcings

Here we present an important notion of refinement << and a construction of <<-
increasing sequences of multiforcings.

Recall that if P ⊆ R ⊆ PT then the set P is dense in R if ∀ T ∈ R ∃ S ∈ P (S ⊆ T) .
The following definition introduces a relation of refinement between arboreal forcings.

Let P,Q ∈ AF be arboreal forcings. Say that Q is a refinement of P (symbolically P < Q) if

(1) the set Q is dense in P∪Q, so that if T ∈ P then ∃Q ∈ Q (Q ⊆ T) ;

(2) if Q ∈ Q then there is a finite set D ⊆ P such that T ⊆ ⋃
D , or equivalently

[T] ⊆ ⋃S∈D[S] ;

(3) if Q ∈ Q and T ∈ P then [Q] ∩ [T] is clopen in [Q] and T 6⊆ Q .

Let π, ϙϙ be multiforcings. Say that ϙϙ is a refinement of π , symbolically π << ϙϙ , if
|π| ⊆ |ϙϙ| and π(ξ) < ϙϙ(ξ) in AF for all ξ ∈ |π| .

Remark 1. The relations < and << are strict partial orders on sets, respectively, AF, MF; see
Lemma 5.2 and Corollary 6.1 in [19]. We can also note that if π, ϙϙ are multiforcings and |π| ⊆ |ϙϙ| ,
then π << ϙϙ is equivalent to π << (ϙϙ� |π|) .

Recall that MF is the collection of all multiforcings. By [19], a multiforcing π is small,
if both |π| and each component forcing Pπ

ξ = π(ξ) , ξ ∈ |π| , are countable. A multiforcing
π is special if each component π(ξ) is special in the sense defined in Section 3. Let

spMF = {π ∈MF : π is a special and small multiforcing}.

Thus a multiforcing π ∈MF belongs to spMF if |π| ⊆ ω1 is (at most) countable and
if ξ ∈ |π| then π(ξ) is an special, hence countable forcing in AF.

If κ ≤ ω1 then let
#    ”
MFκ be the set of all <<-increasing sequences #”π = 〈πα〉α<κ of

multiforcings πα ∈ spMF, of length dom( #”π) = κ , domain-continuous in the sense that if
λ < κ is a limit ordinal then |πλ| =

⋃
α<λ |πα| .

If #”π = 〈πα〉α<λ ∈
#    ”
MFκ then define the component-wise union π =

⋃cw #”π =
⋃cw

α<λ πα ∈
MF so that |π| = ⋃

α<λ |πα| and π(ξ) =
⋃

α<λ, ξ∈|πα | πα(ξ) for all indices ξ ∈ |π| , and
define MT( #”π) = MT(π) (the set of all π-multitrees).

We put
#    ”
MF =

⋃
κ<ω1

#    ”
MFκ (<<-increasing sequences of countable length).

The set
#    ”
MF∪ #    ”

MFω1 is ordered by the relations ⊆ , ⊂ of extension of sequences.

Lemma 1 (Lemma 14.4(ii) in [19]). If κ < λ ≤ ω1 and #”π ∈ #    ”
MFκ then there exists a sequence

#”
ϙϙ ∈ #    ”

MFλ satisfying #”π ⊂ #”
ϙϙ .
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5. The Key Sequence, Key Forcing Notation, and Key Model

In this section, we introduce the forcing notion to prove Theorem 1, defined in our
earlier paper [19]. It has the form MT(�), for a certain multiforcing � with |�| = ω1 .
The multiforcing � is equal to the componentwise union of terms of a certain sequence
#”
� ∈ #    ”

MFω1 which we present in Definition 1. Yet we need to recall one more concept.
Let HC be the set of all hereditarily countable sets. Thus X ∈ HC if the transitive closure

TC (X) is at most countable.
We use standard notation ΣHC

n , ΠHC
n , ∆HC

n (slanted Σ, Π , ∆ ) for classes of lightface
definability over HC (no parameters allowed), and Σn(HC) , Πn(HC) , ∆n(HC) for boldface
definability over HC (parameters in HC allowed). The following useful result connects
projective hierarchy with the definability classes over HC.

Lemma 2 (Lemma 25.25 in [20]). If n ≥ 1 and X ⊆ 2ω then

X ∈ ΣHC
n ⇐⇒ X ∈ Σ1

n+1 , and X ∈ Σn(HC) ⇐⇒ X ∈ Σ1
n+1 ,

and the same for Π , Π , ∆ , ∆ .

Definition 1 (in L). From now on, we fix a number n ≥ 3 as in Theorem 1. We also fix a
sequence #”

� = 〈�α〉α<ω1 ∈
#    ”
MFω1 satisfying Theorem 15.3 in [19] for this n. This includes

the equality
⋃

α |�α| = ω1 and the following conditions (in L):

(A) the sequence #”
� belongs to the definability class ∆HC

n−2 ;

(B) if n ≥ 4 and W ⊆ #    ”
MF is a boldface Σn−3(HC) set, then there is an ordinal γ < ω1

such that the sequence #”
� �γ blocks W, in the sense that either #”

� �γ ∈W , or there is
no sequence ϙϙ ∈W extending #”

� �γ .

We call this fixed #”
� ∈ L the key sequence. The construction of #”

� in [19] is rather long
and too technical, so we do not reproduce it here. It employs some ideas related to diamond-
style constructions, as well as to some sort of definable generic inductive constructions. This
method is realized by a special transfinite construction of the sequence #”

� in L from
countable subsequences. The construction can be viewed as a maximal branch in a certain
mega-tree, say P , whose nodes are such countable subsequences. A suitable character of
extension in the mega-tree allows to define a maximal branch in P that blocks all sets in
P as in (B) of Definition 1, and still satisfies (A).

The following definition introduces some derived notions.

Definition 2. Using the key sequence #”
� = 〈�α〉α<ω1 as in Definition 1, we define the multiforcing

� =
⋃cw

α<ω1
�α ∈MF, and the forcing notion PPP = MT(�) = MT( #”

� ) .
If ξ < ω1 then let α(ξ) < ω1 be the least ordinal α satisfying ξ ∈ |�α| .

If α(ξ) ≤ α < ω1 then a special forcing notion �α(ξ) ∈ AF is defined by construction
and 〈�α(ξ)〉α(ξ)≤α<ω1

is a <<-increasing sequence; hence �(ξ) =
⋃

α(ξ)≤α<ω1
�α(ξ) ∈ AF.

In the remainder, � is referred to as the key multiforcing, whereas the set PPP = MT(�)
is our key forcing notion. As established by 16.2 in [19], � is a regular multiforcing and
|�| = ω1 , thus PPP = ∏ξ<ω1

�(ξ) (with finite support).

Lemma 3 ([19], 16.7). The forcing notion PPP satisfies the countable chain condition, CCC, in L .
Therefore, PPP-generic extensions of L preserve cardinals.

Our final goal is to prove Theorem 1 by means of PPP-generic extensions of L . We call
these extensions key models.

From now on, we will typically argue in L and in ωL
1 -, preserving generic extensions

of L , in particular, in PPP-generic extensions (see above). Thus it will always be the case that
ωL

1 = ω1 . This allows us to think that |�| = ω1 (rather than ωL
1 ).
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Definition 3. Let a set G ⊆ PPP be generic over the constructable universe L . If ξ < ω1 then
following the remark in the end of Section 3, we define

G(ξ) = {Tp
ξ : p ∈ G ∧ ξ ∈ |p|} ⊆ �(ξ),

and let xξ [G] ∈ 2ω be the only real in
⋂

T∈G(ξ)[T] . Then we put

X[G] = 〈xξ [G]〉ξ<ω1 = {〈ξ, xξ [G]〉 : ξ < ω1}.

Thus the forcing notion PPP adjoins an array X[G] of reals xξ [G] to L , where each
xξ [G] ∈ 2ω ∩ L[G] is a �(ξ)-generic real over L , and L[G] = L[X[G]]. The following
important claim is essentially a corollary of condition (A) of Definition 1.

Lemma 4 (Corollary 18.2 in [19]). Assume that G ⊆ PPP is PPP-generic over L . Then it is true in
L[G] that X[G] is a set of definability class ΠHC

n−2 , hence, of class Π1
n−1 by Lemma 2 above.

6. ∆1
n -Good Well-Ordering in the Key Model

The next theorem proves that the key model L[G] satisfies condition (i) of Theorem 1.
The reals are treated here as points of the Cantor space 2ω.

Theorem 2. If G ⊆ PPP is PPP-generic over L then it holds in L[G] that there is a ∆1
n -good well-

ordering of 2ω of length ω1 , hence (i) of Theorem 1 holds.

Proof. We argue in L[G] . Lemma 4 will be the principal ingredient of the proof.
Let X = X[G] . If γ < ω1 then let X�γ = 〈xξ [G]〉ξ<γ . The map γ 7→ X�γ is ΠHC

n−2
(in L[G]) by Lemma 4, because

Y = X�γ ⇐⇒ Y is a function on γ ∧ ∀ ξ < γ (〈ξ, Y(ξ)〉 ∈ X) .

Now if x ∈ 2ω (in L[G]) then x ∈ L[X�γ] for some γ < ω1 by Lemma 4, hence we
let γ(x) be the least γ < ω1 such that x ∈ L[X�γ] , and ν(x) < ω1 be the index of x in the
canonical ∆HC

1 ({X�γ}) well-ordering ≤X � γ of 2ω in L[X�γ] by Gödel. We claim that the
maps x 7→ γ(x) and x 7→ ν(x) are ∆HC

n−1 . Indeed,

γ = γ(x) ⇐⇒ ∃Y
(
Y = X�γ ∧ x ∈ L[Y] ∧ ∀ γ′ < γ (x /∈ L[Y�γ′])

)
⇐⇒ ∀Y

(
Y = X�γ =⇒ x ∈ L[Y] ∧ ∀ γ′ < γ (x /∈ L[Y�γ′]

)
.

This easily yields the result for the map x 7→ γ(x). The result for the other map
follows by a similar rather routine estimation.

Now let 4 be the well-ordering of the set 2ω ∩ L[G] , according to the lexicographical
well-ordering of the triples 〈max{γ(x), ν(x)}, γ(x), ν(x)〉 . It easily follows from the results
for maps x 7→ γ(x) and x 7→ ν(x) that 4 is ∆HC

n−1 , and hence ∆1
n by Lemma 2 of Section 5.

Finally to check the ∆1
n -goodness, by definition it remains to prove that, given a ∆1

n
set P ⊆ 2ω × 2ω , the set Q = {〈z, x〉 : ∀ y 4 x¬ P(z, y)} is ∆1

n as well. The class Π1
n is

obvious, as 4 is already shown to be ∆1
n . Thus we have to verify the definability class

Σ1
n , or equivalently, class ΣHC

n−1 , for Q . However, this is true, as Q(z, x) is equivalent to
the following:

for all γ′, ν′ ≤ max{γ(x), ν(x)} , if the triple 〈max{γ′, ν′}, γ′, ν′〉 non-strictly pre-
cedes 〈max{γ(x), ν(x)}, γ(x), ν(x)〉 lexicographically, then there is a real y ∈ 2ω

such that γ′ = γ(y) , ν′ = ν(y) , and ¬ P(z, y) .

It remains to note that the quoted formula is essentially ΣHC
n−1 since the bounded

quantifiers ∀ γ′, ν′ ≤ max{γ(x), ν(x)} do not destroy Σ -classes over HC.
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Our final step is to prove that the key model also satisfies condition (ii) of Theorem 1.
However, this will involve much more work and will be carried out under the
following assumption.

Assumption 1. We shall assume that n ≥ 4 henceforth.

This leaves aside the case n = 3 in (ii) of Theorem 1 which thus needs a separate
consideration to justify the assumption. Thus suppose for a moment that n = 3. We claim
that (ii) of Theorem 1 holds in the key model L[G] , where G is PPP-generic over L . Suppose
to the contrary that (ii) of Theorem 1 fails, so that there is a ∆1

2 well-ordering of the reals
(even not necessarily good). Then by Theorem 25.39 in [20], we have 2ω ⊆ L[x] in L[G]
for some x ∈ 2ω in L[G]. However, this is definitely not the case for the key model L[G]
we consider.

Indeed, arguing in L[G] , suppose to the contrary that x ∈ 2ω ∩ L[G] = L[〈xξ [G]〉ξ<ω1 ]
satisfies 2ω ∩ L[GsqL[x] . It follows by Lemma 3 that there is an ordinal λ < ω1 = ωL

1 such
that x ∈ L[〈xξ [G]〉ξ<λ] . However the real y = xλ[G] does not belong to L[〈xξ [G]〉ξ<λ] by
the product forcing theory. Therefore y /∈ L[x] , contrary to the choice of x .

7. Real Names

We begin with a technical concept. The goal of the following definitions is to give a
suitable notation for names of reals in 2ω in the context of forcings of the form MT(π) .

Let a real name be any set c ⊆MT× (ω× 2) such that the sets

Kc
ni = {p ∈MT : 〈p, n, i〉 ∈ c}

satisfy the following: if n < ω and p ∈ Kc
n0 , q ∈ Kc

n1 , then p, q are somewhere almost disjoint,
in the sense that there is an index ξ ∈ |p| ∩ |q| such that Tp

ξ ∩ Tp
ξ is finite (or equivalently,

[Tp
ξ ] ∩ [Tp

ξ ] = ∅) — and then p, q are obviously incompatible in MT.
Let Kc

n = Kc
n0 ∪ Kc

n1 ; then Kc
n ⊆MT.

A real name c is small if each Kc
n is at most countable—then the set |c| = ⋃

n
⋃

p∈Kc
n
|p| ,

and c itself as a set are countable, too.
Now let π be a multiforcing. A real name c is π-complete if the set

Kc
n ↑π = {p ∈MT(π) : ∃ q ∈ Kc

n (p 6 q)} (3)

is dense in MT(π) for each n . In this case, if a set (a filter) G ⊆MT(π) is MT(π)-generic
over the family of all sets Kc

n ↑π , n < ω , then we define a real c[G] ∈ 2ω so that c[G](n) = i
if G ∩ (Kc

ni ↑π) 6= ∅, where Kc
ni ↑π is defined from Kc

ni similarly to (3).
We do not require here that c ⊆ PPP× (ω× 2) , or equivalently, Kc

n ⊆ PPP for all n .
Finally, if #”π is a sequence in

#    ”
MF∪ #    ”

MFω1 , then a #”π-complete real name will mean a π-
complete real name, where π =

⋃cw #”π (the componentwise union).
As an elementary example, we let ξ < ω1 and define a real name .xξ such that each set

K
.x ξ

ni consists of a single multitree pξ
ni , defined as follows. We let |pξ

ni| = {ξ} (the domain),
and let pξ

ni(ξ) = Tni , where Tni = {s ∈ 2<ω : lh(s) ≤ n ∨ s(n) = i} .
We leave it as a routine exercise to prove that .xξ is a small real name, π-complete for

any multiforcing π , and if a set G ⊆MT(π) is MT(π)-generic over L , then the real .xξ [G]

is identical to xξ [G] defined by Definition 3. Thus, .xξ is a canonical name for the real xξ [G] .

8. An Auxiliary Forcing Relation

We begin a lengthy proof of the non-existence of ∆1
n−1 -good well-orderings of the

reals in the generic models considered. The proof involves an auxiliary forcing relation,
not explicitly connected with any particular forcing notion, in particular, not explicitly
connected with the key forcing PPP.



Axioms 2022, 11, 354 8 of 12

We argue in L. Consider the 2nd order arithmetic language, with variables k, l, m, n, . . .
of type 0 over ω and variables a, b, x, y, . . . of type 1 over 2ω , whose atomic formulas are
those of the form x(k) = n . Let L be the extension of this language, which allows to
substitute variables of type 0 with natural numbers and variables of type 1 with small real
names (see Section 7) c ∈ L .

We consider natural classes LΣ1
n , LΠ1

n (n ≥ 1) of L -formulas. Let L(ΣΠ)1
1 be the

closure of LΣ1
1 ∪LΠ1

1 under ¬,∧,∨ and quantifiers over ω .
A relation p forc #”π ϕ between multitrees p , sequences #”π ∈ #    ”

MF, and closed L -
formulas ϕ in L(ΣΠ)1

1 or LΣ1
n ∪LΠ1

n , n ≥ 2, was defined in [19] (§ 22) by induction on
the complexity of ϕ . We skip here the initial step of the definition (the case of L(ΣΠ)1

1
formulas, 1◦ in [19] (§ 22)), as it involves technical issues not considered in this paper. The
following inductive steps 2◦ and 3◦ in [19] (§ 22) demonstrate obvious similarities with
various conventional forcing notions.

2◦. If ϕ(x) is a LΠ1
n formula, n ≥ 1, then p forc #”π ∃ x ϕ(x) if there is a small real name

c such that p forc #”π ϕ(c) .
3◦. If ϕ is a closed LΠ1

n formula, n ≥ 2, then p forc #”π ϕ if there is no sequence #”τ ∈ #    ”
MF

and multitree p′ ∈MT( #”τ ) such that #”π ⊆ #”τ , p′ 6 p , and p′ forc #”τ ϕ− , where ϕ− is
the result of the canonical transformation of ¬ ϕ to LΣ1

n form.

The principal properties of the relation forc are presented in Propositions 1–5 below,
with references to according claims in [19].

Proposition 1 (Lemma 22.3 in [19]). Assume that sequences #”π ⊆ #”
ϙϙ belong to

#    ”
MF, q, p ∈MT,

q 6 p , ϕ is a formula in one of the classes L(ΣΠ)1
1 or LΣ1

n , LΠ1
n (n ≥ 2), and p forc #”π ϕ .

Then q forc #”
ϙϙ

ϕ .

If K is one of the classes L(ΣΠ)1
1 , LΣ1

n , LΠ1
n (n ≥ 2), then let FORC[K] consist of

all triples 〈 #”π, p, ϕ〉 such that #”π ∈ #    ”
MF, p ∈MT, ϕ is a formula in K , and p forc #”π ϕ . Note

that FORC[K] is a subset of HC, the set of all hereditarily countable sets.

Proposition 2 (Lemma 22.5 in [19]). It is true in L that FORC[L(ΣΠ)1
1] ∈ ∆HC

1 , whereas if
n ≥ 2 then FORC[LΣ1

n] belongs to ΣHC
n−1 and FORC[LΠ1

n] belongs to ΠHC
n−1 .

Proposition 3 just below demonstrates that the forcing relation forc #”π , considered with
countable initial segments #”π = #”

� �α of the key sequence #”
� (introduced by Definition 1),

coincides with the true PPP-forcing relation (see Definition 2) up to the level n− 1.
Recall that n ≥ 4 by Assumption 1.
We write p forcα ϕ instead of p forc #”

� � α
ϕ , for the sake of brevity. Let p forc ϕ

mean: p forcα ϕ for some α < ω1 . The next result makes use of (B) of Definition 1.

Proposition 3 ([19], 25.3). If ϕ is a closed L -formula in L(ΣΠ)1
1 or LΠ1

k ∪ LΣ1
k+1 ,

1 ≤ k ≤ n− 2, and p ∈ PPP, then p PPP-forces ϕ[G] over L in the usual sense, if and only if
p forc ϕ .

9. Invariance

Invariance theorems are very typical for all kinds of forcing. We present here two
major invariance theorems on the auxiliary forcing forc , established in [19]. The first one
shows tail invariance, while the other one explores the permutational invariance.

If #”π = 〈πα〉α<λ ∈
#    ”
MF and γ < λ = dom #”π , then let the γ-tail #”π�≥γ be the re-

striction #”π� [γ, λ) to the ordinal semiinterval [γ, λ) = {α : γ ≤ α < λ} . Then the set
MT( #”π�≥γ) =

⋃cw
γ≤α<λ

#”π(α) is dense in MT( #”π). Therefore it can be expected that if #”
ϙϙ is

another sequence of the same length λ = dom
#”
ϙϙ , and #”

ϙϙ �≥γ = #”π�≥γ , then the relation
forc #”π coincides with forc #”

ϙϙ
. Indeed this turns out to be the case.



Axioms 2022, 11, 354 9 of 12

Proposition 4 (Theorem 23.1 in [19]). Assume that #”π, #”
ϙϙ are sequences in

#    ”
MF,

γ < λ = dom #”π = dom
#”
ϙϙ , #”
ϙϙ �≥γ = #”π�≥γ , p ∈ MT, n ≥ 2, and ϕ is a formula in

LΠ1
n ∪LΣ1

n+1 . Then p forc #”π ϕ iff p forc #”
ϙϙ

ϕ .

The other invariance result treats permutations of indices. Arguing in L , let PERM
be the set of all bijections h : ω1

onto−→ ω1 such that h = h−1 and the non-identity domain
NID(h) = {ξ : h(ξ) 6= ξ} is at most countable. Elements of PERM are called permutations.

Let h ∈ PERM. The action of h is extended as follows. (See [19], Section 24.)

1. If p is a multitree then hp is a multitree defined so that |hp| = h ”|p| = {h(ξ) :
ξ ∈ |p|} , and (hp)(h(ξ)) = p(ξ) whenever ξ ∈ |p| .

2. If π ∈MT is a multiforcing then h ·π = π ◦ (h−1) is a multiforcing defined so that
|h ·π| = h ”π and (h ·π)(h(ξ)) = π(ξ) whenever ξ ∈ |π| .

3. If c ⊆ MT× (ω × ω) is a real name, then put hc = {〈hp, n, i〉 : 〈p, n, i〉 ∈ c} , thus
easily hc is a real name as well.

4. If #”π = 〈πα〉α<κ ∈
#    ”
MF, then put h #”π = 〈h ·πα〉α<κ , this is still a sequence in

#    ”
MF.

5. If ϕ := ϕ(c1, . . . , cn) is a L -formula (with all names explicitly indicated), then let hϕ
be accordingly the formula ϕ(hc1, . . . , hcn) .

Many notions and relations defined above are clearly PERM-invariant, e.g.,
p ∈ MT(π) if hp ∈ MT(h ·π), π << ϙϙ if h ·π << h · ϙϙ , et cetera. The invariance also
takes place with respect to the relation forc .

Proposition 5 (Theorem 24.1 in [19]). Assume that #”π ∈ #    ”
MF, p ∈ MT( #”π), h ∈ PERM,

n ≥ 2, and ϕ belongs to LΠ1
n ∪LΣ1

n+1 . Then p forc #”π ϕ iff (hp) forch #”π (hϕ) .

10. No ∆1
n−1 -Good Well-Orderings in the Key Model

In this section, we accomplish the proof of Theorem 1 by verifying that the key model
L[G] of Section 5 satisfies (ii) of Theorem 1. That the key model satisfies (i) of Theorem 1
was already established by Theorem 2. The following lemma is the principal step.

Lemma 5. If G ⊆ PPP is PPP-generic over L then it holds in L[G] that every Σ1
n−1 set S ⊆ ω

is constructable.

Proof. There is a parameter-free Σ1
n−1 formula ϕ(j) , such that S = { j < ω : ϕ(j)} in L[G] .

We claim that

(A) if j < ω then j ∈ X if and only if it is true in L that there exists a sequence #”σ ∈ #    ”
MF

and a multitree s ∈MT( #”σ ) such that s forc #”σ ϕ(j) .

In the easy direction, assume that j ∈ X . There is a condition s ∈ PPP which PPP-forces ϕ(j)
over L . Then s forc ϕ(j) by Proposition 3, that is, s forc #”

� � α
ϕ for some α < ω1 . We can

increase α if necessary to guarantee that s ∈MT( #”
� �α) . It remains to take #”σ = #”

� �α .
In the difficult direction, suppose that s forc #”σ ϕ(j), where #”σ ∈ #    ”

MF and s ∈MT( #”σ );
we have to prove that j ∈ X . Suppose toward the contrary that j /∈ X . Then there is a
multitree p0 ∈ G such that

(B) p0 PPP-forces ¬ ϕ(j) over L .

We argue in L . Let U be the set of all sequences #”π ∈ #    ”
MF, such that

(C) there exist (1) a sequence #”
ϙϙ ∈ #    ”

MF with #”σ ⊂ #”
ϙϙ and with double-successor length

dom(
#”
ϙϙ) = ν + 2 < λ = dom( #”π), and (2) a permutation h ∈ PERM such that

ϙϙ
′ ⊆ #”π(ν + 1) and |ϙϙ′| ∩ |ϙϙ| = ∅, where ϙϙ′ = h · ϙϙ and ϙϙ =

#”
ϙϙ(ν + 1), the last

term.

Note that the inclusion ϙϙ′ ⊆ π between multiforcings ϙϙ′ = h · ϙϙ and π = #”π(ν + 1)
as in (C)(2) means simply that |ϙϙ′| ⊆ |π| and ϙϙ′ = π� |ϙϙ| , that is, ϙϙ′(ξ) = π(ξ) for all
ξ ∈ |ϙϙ′| .
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By routine estimation, U is a Σ1(HC) set (with δ, σ as the only parameters of a
Σ1 definition in HC), hence a Σn−3(HC) set as n ≥ 4 by Assumption 1. Therefore by
Definition 1(B) there is an ordinal λ < ω1 such that #”

� �λ blocks U .

Case 1 : #”π = #”
� �λ ∈ U . Let this be witnessed by #”

ϙϙ , ν , λ , ϙϙ , h , ϙϙ′ as in (C)(1,2). In
addition, fix a multitree q ∈ MT(ϙϙ), q 6 s , put #”σ ′ = h #”σ , s′ = hs , q′ = hq , #”

ϙϙ
′ = h #”

ϙϙ .
Then clearly

s′ ∈MT( #”σ ′) , ϙϙ
′ =

#”
ϙϙ
′(ν + 1) , q′ ∈MT(ϙϙ′) ⊆MT(π) , q′ 6 s′ .

Our next goal will be to prove that q′ forc #”π ϕ(j) .
First of all, we have s′ forc #”σ ′ ϕ(j) by Proposition 5 since hϕ(j) coincides with ϕ(j)

for any parameter-free ϕ .
Now consider a sequence #”

ϙϙ
′′ with dom(

#”
ϙϙ
′′) = dom(

#”
ϙϙ
′) = ν + 2, defined so that

#”
ϙϙ
′′� ν + 1 =

#”
ϙϙ
′� ν + 1, in particular, still #”σ ′ ⊂ #”

ϙϙ
′′ , but #”

ϙϙ
′′(ν + 1) = π (instead of the

value ϙϙ′ = #”
ϙϙ
′(ν + 1)). To see that #”

ϙϙ
′′ is still <<-increasing, recall that ϙϙ′ ⊆ π and apply

Remark 1. As s′ forc #”σ ′ ϕ(j) (see above), we have q′ forc #”
ϙϙ ′′ ϕ(j) by Proposition 1.

Consider a sequence #”π ′′ with dom( #”π ′′) = dom( #”π) = λ > ν + 2, defined so that
#”
ϙϙ
′′ ⊂ #”π ′′ and #”π ′′(α) = #”π(α) whenever ν + 2 ≤ α < λ . Then we have q′ forc #”π ′′ ϕ(j) still

by Proposition 1.
Note that #”π ′′�≥ν+1 = #”π�≥ν+1 by construction. In particular, #”π ′′(ν + 1) =

#”
ϙϙ
′′(ν +

1) = π = #”π(ν + 1). We conclude by Proposition 4 that q′ forc #”π ϕ(j) as well. Then q′

PPP-forces ϕ(j) over L by Proposition 3. Now to get a contradiction with (B), it suffices to
check that p0 and q′ are compatible in PPP. However, this is easy: |p0| ⊆ |ϙϙ| and |q′| ⊆ |ϙϙ′|
by construction, whereas |ϙϙ′| ∩ |ϙϙ| = ∅ by (C), and hence the ordinary union r = p0 ∪ q′

witnesses the compatibility.
The contradiction obtained closes Case 1.

Case 2: no sequence in U extends #”
� �λ . Let ν = max{dom( #”σ ), λ} . By Lemma 1, there

is a sequence #”
ϙϙ ∈ #    ”

MF satisfying dom(
#”
ϙϙ) = ν + 2 and #”σ ⊂ #”

ϙϙ . Let ϙϙ = #”
ϙϙ(ν + 1) (the last

term). Let #”τ ∈ #    ”
MF be any extension of #”

� �λ of length dom( #”τ ) = ν + 2 = dom(
#”
ϙϙ) .

There is a permutation h ∈ PERM such that the derived multiforcing ϙϙ′ = h · ϙϙ
satisfies |ϙϙ′| ∩ (|ϙϙ| ∪ | #”τ |) = ∅.

Consider a sequence # ”τ1 still with dom( # ”τ1) = dom( #”τ ) = ν + 2, defined so that
# ”τ1� (ν + 1) = #”τ � (ν + 1), in particular, still #”

� �λ ⊂ # ”τ1 , but # ”τ1(ν + 1) = #”τ (ν + 1) ∪ ϙϙ′ .
(Note that the union #”τ (ν + 1)∪ ϙϙ′ of multiforcings #”τ (ν + 1) and ϙϙ′ with disjoint domains
is a multiforcing as well.) To see that # ”τ1 is <<-increasing, we note that #”τ (ν + 1) ⊆ # ”τ1(ν + 1)
by construction, and refer to Remark 1.

Finally, let #  ”π1 ∈
#    ”
MF be any extension of # ”τ1 of length λ′ = dom( #  ”π1) = ν+ 3 > dom(

#”
ϙϙ) .

We assert that #  ”π1 ∈ U , and this is witnessed by #”
ϙϙ and h .

Indeed we have #”σ ⊂ #”
ϙϙ , dom( #”

ϙϙ) = ν + 2 < λ′ = dom( #  ”π1), and ϙϙ′ ⊆ #  ”π1(ν + 1) =
# ”τ1(ν + 1) = #”τ (ν + 1) ∪ ϙϙ′ by construction. Thus #”π ′ ∈ U .

On the other hand, #”
� �λ ⊂ #  ”π1 . However, this contradicts the Case 2 assumption.

To conclude, either case leads to a contradiction. This ends the proof of (A).
To accomplish the proof of Lemma 5, it remains to make use of (A) in view of the fact

that the relation forc is defined inside L .

Theorem 3. If a set G ⊆ PPP is PPP-generic over L then it is true in L[G] that there is no ∆1
n−1-good

well-ordering of the reals, so that (ii) of Theorem 1 holds.

Proof. We argue in L[G] . Suppose to the contrary that there exists a ∆1
n−1-good well-

ordering of 2ω. It follows that any non-empty Σ1
n−1 set X ⊆ 2ω contains a ∆1

n−1 element.
(The basis theorem, see Section 5A in [5].) Recall that n− 1 > 2 by Assumption 1, and hence
Π1

2 ⊆ Σ1
n−1 . It follows that the Π1

2 set X = 2ω r L of all nonconstructable reals contains a
(nonconstructable) ∆1

n−1 real x ∈ 2ω in L[G] . We conclude that S = { j : x(j) = 0} ⊆ ω is
a nonconstructable Σ1

n−1 set in L[G] , which contradicts Lemma 5.
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Combining Theorem 3 with the result of Theorem 2, we conclude that L[G] is a model
for Theorem 1.

11. Conclusions and Problems

In this study, the method of finite-support products of Jensen’s forcing was employed
to the problem of obtaining a model of ZFC in which, for a given n ≥ 3, good well-
orderings of the reals exist in the class ∆1

n but do not exist in ∆1
n−1 . This result (Theorem 1

of this paper) continues our series of recent research, such as a model defined in [24] for
a given n , in which there is a Π1

n Vitali equivalence class containing no ordinal-definable
elements, whereas every countable Σ1

n- set of reals contains only ordinal-definable reals,
or a model defined in [25] in which there is a Π1

n real singleton {a} such that a codes a
cofinal map f : ω → ωL

1 , whereas every Σ1
n set X ⊆ ω is constructible and hence cannot

code a cofinal map ω → ωL
1 , or a very recent model defined in [26] in which the separation

principle holds for a given class Σ1
n for sets of integers. Theorem 1 may also be a step

towards the solution of the all-important problem by S. D. Friedman mentioned in the
introduction above (Section 1).

From our study, it is concluded that the technique of definable generic inductive con-
structions of forcing notions in L , developed for Jensen-type product forcing in our earlier
papers [16,19], leads to a new result (Theorem 1), which is a significant advance toward
solving an important set theoretic problem formulated in the introduction as Problem 1.

From the result of Theorem 1, we immediately come to the following problems.

Problem 2. Prove that it is true in the key model L[G] of Section 5 that there is no “boldface”
∆1
n−1 well-ordering of the reals of any kind (that is, not necessarily ∆1

n−1 -good).

Such a strengthening of Theorem 1 would solve Problem 1 of Section 1 completely.

Problem 3. Prove a version of Theorem 1 with the additional requirement that the negation
2ℵ0 > ℵ1 of the continuum hypothesis holds in the generic extension considered.

To comment upon Problem 3, note that the model for Theorem 1 introduced in Section 5
(the key model) definitely satisfies the continuum hypothesis 2ℵ0 = ℵ1 . The problem of
obtaining models of ZFC in which 2ℵ0 > ℵ1 and there is a projective well-ordering of
the continuum, has been known since the early years of modern set theory. See, for
example, problem 3214 in an early survey [27] by Mathias. Harrington [28] solved this
problem by a generic model in which 2ℵ0 > ℵ1 and there is a ∆1

3 well-ordering of the
continuum, by a combination of methods based on different forcing notions, such as the
almost-disjoint forcing [29] and the forcing notion by Jensen and Johnsbråten [30]. See [13]
for further remarkable progress in forcing constructions of models with long projective
well-orderings of low projective classes. Solving Problem 3 would be a further significant
step in this direction.
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