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Abstract—Describing mortality dynamics using average indicators without considering variability can yield
average results, impeding the analysis of survival-curve patterns during periods of significant mortality spikes,
especially at the oldest or youngest ages. Therefore, instead of the generally accepted Gompertz method,
other methods are increasingly used, which rely on comparisons of various demographic indicators. In
humans, chronic phenoptosis, in contrast to age-independent acute phenoptosis, manifests as a rectangular-
ization of the survival curve with a simultaneous increase in the life expectancy at birth due to the advance-
ment of social, scientific, and technological progress. Rectangularization is difficult to notice solely by exam-
ining the optimal coefficients in the Gompertz—Makeham equation, primarily because of the inevitable cal-
culation errors. This can be avoided by calculating demographic indicators based on the spread of the life
expectancy: Keyfitz entropy, Gini coefficient, and coefficient of variation of lifespan. We examine several
sub-Gompertzian models of mortality growth with age, which describe the aging of nematodes and insects.
Within the sub-Gompertzian model of aging, the increase in mortality with age in invertebrates is quantified
as a rectangularization of the survival function estimated by these demographic indicators. On the other hand,
the increasing rectangularization of the survival function with the development of scientific and technological
progress, demonstrated by a decrease in the Keyfitz entropy, along with a simultaneous increase in the life
expectancy in humans, also aligns well with the hypothesis of an age-dependent increase in mortality in
mammals overall. Calculations on aging models demonstrate the effectiveness of using Keyfitz entropy and
the Gini coefficient as important demographic indicators. The use of these indicators seems preferable, espe-
cially for nematodes, where the sub-Gompertzian model of aging is applicable, and for vertebrates, primarily
mammals, with certain restrictions, the Gompertz–Makeham law is applicable. Approaches that consider
dynamic age-related shifts in improved survival, such as studying imbalances in lifespan, enhance our under-
standing of the mechanisms of aging. This, in turn, will contribute to the development of more accurate
methods for assessing the effects of biologically active substances used in gerontology, such as anti-aging
drugs and geroprotectors.
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INTRODUCTION

Problems with assessing the aging process as an
increase in the probability of death (the number of
deaths in one age interval) have existed for a long time
[1–3]. If the probability of death of an organism
depended entirely on the degree of its wear and tear,
which increases with age, then the mortality rate of
multicellular organisms should increase with age,
regardless of the position of the species on the evolu-
tionary tree. However, large differences in mortality
patterns across species have been found (increasing,
constant, decreasing, convex, and concave mortality
trajectories in both long- and short-lived species) [4–
9]. Possible mechanisms for the emergence of such
diversity in evolution are actively discussed [10–12].

There are known critical assessments of quantitative
theories of aging and mortality, the main empirical
basis of which was the Gompertz law [12].

MATERIALS AND METHODS
In this work, different approaches were assessed by

comparing the statistical parameters of the distribu-
tion of lifespan according to the Max Planck Institute
for Demographic Research (Germany), given in the
work of Jones et al. [7]. The data obtained characterize
the quantitative distribution of individuals according
to lifespan, i.e., the percentage or proportion of indi-
viduals that died in each age interval (with 1 year usu-
ally considered as the base interval for vertebrates and
1 day for invertebrates). The level of variability in the
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lifespan distribution (lifespan variation coefficient and
Keyfitz entropy) was determined in 23 animal species,
including primates, including the species Homo sapi-
ens represented by Japanese people and Native Amer-
icans (Mongoloid race), as well as Swedish people
(Caucasian race). To compare the main patterns the
aging process in organisms representing different
branches of the evolutionary tree, we sorted the data
from the work of Jones et al. [7] into groups based on
the ratio of mortality in terminal to middle age. All
species considered were numbered in the same way as
in the original work (decreasing the above indicator)
and divided into four large groups, where group I
includes species with the smallest change in mortality
with age, and IV includes species with the largest, with
their subsequent consideration (depending on the rate
of aging) in one or another sub-Gompertzian model.
The calculation of the average life expectancy, Keyfitz
entropy, Gini coefficient, and coefficient of variation
of the life expectancy for the considered aging models
was carried out in the Maple program (https://maple-
soft.com/), which is convenient for performing sym-
bolic calculations. This program was previously used,
for example, in [13].

RESULTS AND DISCUSSION

Demographics

The Gompertz law is a probabilistic mortality
model that describes well the mortality of people aged
20 to 65 or up to 80 years. This law was proposed in the
pioneering work of B. Gompertz and was initially used
to assess risks in life insurance [1]. Despite the discus-
sion of amendments to the Gompertz law [3, 14–19],
its basic idea has remained unchanged for almost two
hundred years: the law determines the dependence of
the conditional probability density of death on age.

The probabilistic model assumes the possibility of
living unexpectedly long compared to the average
lifespan, although the probability of such an event may
be low. On the contrary, deterministic (essentially
non-Gompertzian) models, even with seemingly low
mortality, lead to inevitable death. Deterministic
models are fundamentally inapplicable to the study of
long-lived individuals; such an attempt leads to the
emergence of a singularity. The Gompertz law is an
example of a completely different approach to model-
ing, which allows for much more complete use of the
capabilities of mathematical analysis.

Let us consider an example of an essentially non-
Gompertzian model. A cohort of N f lies is given.
Every day one individual dies. Let us try to simulate
this deterministic model by means of a probabilistic
model. At the beginning, the conditional probability
density of dying for one surviving f ly seems very small.
But every day it grows as 1/(N – a), where through a
the age of the f ly is indicated. When there is only one
fly left, the conditional probability density 1/(N – a)
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begins to grow rapidly. The next day a pole is found in
this function, that is, direct calculation consists of
dividing by zero. Trying to calculate a demographic
indicator: be it the Keyfitz entropy or the Gini coeffi-
cient, using the usual formula containing an improper
integral leads to computational difficulty; therefore,
the numerical value of the demographic indicator can-
not be calculated without applying some changes to
the original formula. The trivial approach is to limit
the range of integration when only a finite period of
time is considered. But in fact, in the corresponding
probabilistic model, the last f ly is not obliged to die on
a predetermined day. It can live another day. There-
fore, this trivial approach can easily lead to systematic
error. However, the error can be large for indicators
sensitive to maximum lifespan. These include, for
example, Keyfitz entropy. There is another probability
model in which for early ages the conditional proba-
bility density of death is 1/(N – a), and for later ages is
small enough to make the Keyfitz entropy rather large.
Moreover, for early ages the expected behavior of the
model is close to that for a deterministic model.

Deterministic models are fundamentally inconve-
nient for studying long-lived individuals, since their
death is predetermined in the model and lifespan can-
not exceed a set threshold. The Gompertz law is an
example of a completely different approach to model-
ing, which allows you to more fully use the capabilities
of mathematical analysis. But this is not the only prob-
abilistic model. Some alternative models are consid-
ered in this work. On the one hand, in some species
the observed mortality rate deviates from the
Gompertz law. On the other hand, deviations from the
Gompertz law are possible at older ages, which is
especially interesting when taking into account those
that live a long time and in works to determine the
lifespan limit. The probability of mortality and life
expectancy are the main functions of the life cycle.
Although these parameters are useful for determining
exactly how to characterize the value of mortality, they
cannot be used to estimate the variability of mortality
over a lifetime [20]. Approaches that take into account
dynamic shifts by age in improving survival appear to
be better than others. Studying the “imbalance” of
lifespan inequality can also help improve our under-
standing of the dynamics of mortality, and, accord-
ingly, the mechanisms of aging, which, in turn, will
contribute to the development of more accurate meth-
ods for assessing the effect of anti-aging drugs and
geroprotectors.

In theoretical calculations, it is a generally accepted
technique to transition to a continuous change in age,
as if one year in a person’s life were only one moment.
In practice, for humans, the unit of time is usually one
year, less often, it is five years, and for species with a
short lifespan (nematodes, fruit f lies), it is one day.
Moving from annual to five-year intervals can signifi-
cantly distort the distribution. Therefore, annual
intervals are preferable to five-year intervals, and for
3
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species with short life spans, the intervals should be
even shorter. Empirically, we came to the assumption
that in any case, in order to avoid roughening the
results and erroneous conclusions, the size of the
interval should not exceed a tenth of the expected
average lifespan. Frolkis [21] suggests that a person
always has a constant number of intervals (ten), corre-
sponding to certain phases of aging, but in practice this
is very difficult to implement.

Let us denote by m(a) the conditional probability
density of death at age a, also called the force of mor-
tality. Let us denote by L(a) the monotonically nonin-
creasing survival function, equal to the probability of
surviving to the age a. The survival function is
uniquely determined by the function m(a) and the ini-
tial condition L(0) = 1 (that is, at time zero, everyone
is alive). This initial condition is due to the fact that
only births are taken into account. The survival func-
tion L(a) is equal to the exponent of the integral taken
with the opposite sign with a variable upper limit from
zero to age a on the conditional probability density of
death m(a). Let us denote by eexp the life expectancy at
birth, which is equal to the improper integral from zero
to infinity of the survival function.

Next we will look at demographic indicators (Key-
fitz entropy H, Gini coefficient G, and the coefficient
of variation of lifespan CVLS), each of which maps a
real number to the survival function. These indicators
do not depend on the time scale and vanish on the
rectangularized survival function, equal to one up to a
certain age and equal to zero at all higher ages. Infor-
mally, the graph of the rectangularized function is a
step leading down. The value of the indicator can be
considered as the numerical difference between the
survival function and the rectangularized one. Similar
indicators are considered in [22], but there the value of
the indicator on the rectangularized function is equal
to one. Rectangularization of the survival function is
observed in people as a result of the development of
society and scientific and technological progress. The
survival functions of chimpanzees, Paraguayan Aché
hunter gatherers and Swedes (in 1751, 1850, 1900,
1950, and 2010) indeed approach rectangularization as
civilization develops [23, 24]. At the same time, the
life expectancy still continues to increase over time
[17]. This is in good agreement with the phenoptosis
hypothesis [25–27]. Function m(a) can grow without
the influence of phenoptosis. However, the very pres-
ence of age-dependent phenoptosis as a phenomenon
presupposes obligatory and pronounced growth m(a),
starting at a certain age.

Let’s consider an example illustrating the importance
of approximating the survival function to the rectangular-
ized one. If representatives of a certain species die at
50% of the cohort per year, this species appears to be
ageless, although the life expectancy is short. On the
contrary, if in the first year 10% die, in the second 20%
of those who survived (alive at the beginning of the
AD
interval), and so on, then the species demonstrates
rapid aging with increasing age. In the second species,
the survival function is closer to rectangularized. Test-
ing possible geroprotectors in the first type is ineffec-
tive, since an increase in life expectancy can occur
even with a deterioration in the quality of life of long-
lived individuals (for example, when resources are
redistributed in the population to reduce mortality in
early and middle age). On the contrary, testing of the
second type makes it possible to evaluate the effect of
geroprotectors specifically on long-lived individuals.

The Keyfitz entropy H was introduced by demog-
rapher N. Keyfitz [28] and considered, for example, in
[29–31]. It is equal to the relative life disparity.
Namely, H = e†/eexp, where through e† the dispropor-
tionality of life is indicated, equal to the improper
integral from zero to infinity taken with the opposite
sign of the product of the survival function by the nat-
ural logarithm of it. For the rectangularized survival
function, the integrand in e† is identically equal to
zero, therefore, e† = 0 and H = 0.

The Gini coefficient G was proposed in 1912 by
demographer C. Gini, see review [32]. The Gini coef-
ficient was also used in demography in [33, 34]. Let us
denote by en the improper integral of the square of the
survival function. The Gini coefficient is G = (eexp –
en)/eexp. The rectangularized survival function satisfies
the equality eexp = en, hence, G = 0.

The coefficient of variation of life expectancy CVLS
was discussed in detail in the relevant works [22, 27,
35–37]. The difference between the coefficient of
variation (CV) and the Keyfitz entropy and the Gini
coefficient is that the formula for calculating it explic-
itly includes the first derivative of the survival func-
tion, equal to the product of the survival function and
the conditional probability density of death m(a). This
derivative is usually called the distribution of deaths.
The associated difficulties in calculating the coeffi-
cient of variation are described below.

The difference between the Keyfitz entropy and the
Gini coefficient is determined by the behavior of the
survival function near eexp and at late ages. However,
the difference in these demographic indicators
depends little on the properties of the survival function
at early ages. In particular, if we do not take into
account infant-mortality data, the resulting change in
the Keyfitz entropy and the Gini coefficient will be
approximately the same. Although in theoretical mod-
els the initial concept is the conditional probability
density of death m(a), calculating the Keyfitz entropy

∞

= −
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0

( )ln( ( )) .e t t dt, ,

∞

= 
2

0

( ) .ne t dt,
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H and Gini coefficient G uses only the survival func-
tion. Therefore, knowing the survival function L(a),
these demographic indicators can be calculated
directly.

In other cases, the function m(a) itself is used. The
value m(a) is equal to the ratio of the first derivative of
the survival function to the value of the survival func-
tion taken with the opposite sign –L'(a)/L(a). Calcu-
lating the first derivative from the graph of a function
known in practice for its approximate values at indi-
vidual points usually leads to additional errors [38].
Therefore, the Keyfitz entropy and the Gini coeffi-
cient are more convenient for practical use.

However, some demographics based on function
m(a) are interesting because their meanings can be
easily interpreted. The first and very rough demo-
graphic indicator considered in [22] is the ratio
m(0)/m(eexp). An obvious difficulty for its application
in demography is the high infant-mortality rate. In
addition, it is sensitive to errors at two ages that are not
compensated for by data at other ages. In addition, this
indicator does not allow one to distinguish the rectan-
gularized survival function from others, which funda-
mentally distinguishes it from the Keyfitz entropy, the
Gini coefficient, and the coefficient of variation of life
expectancy. The second indicator is the weighted aver-
age of the first derivative of the function m(a). This
indicator also does not allow us to distinguish the rect-
angularized survival function from others.

Demographic Indicators Calculated by Summation

In practice, integrals are replaced by finite sums
(since real lifespan is limited from above, and age is
measured discretely). With a sufficiently large sample,
the Gini coefficient is resistant to small errors: in par-
ticular, those associated with the inevitable difficulties
in determining age.

Refining the step w of a change in age leads to sharp
changes in the first derivative of the survival function,
which is included in the formula for calculating the
coefficient of variation of life expectancy CVLS. How-
ever, the Keyfitz entropy H and Gini coefficient G
depend only on the survival function itself. Therefore,
refining the step does not deteriorate, but only
improves the calculation of H and G. We will look at
calculating the Keyfitz entropy H and Gini coefficient
G for the conditional probability density of death
m(a) = exp(a), which corresponds to the Gompertz
law, for different step values w. For small step values,
the result differs little from the result based on integra-
tion. The exact values are H = 0.68 and G = 0.39.
Summation was carried out up to age 100 at the aver-
age life expectancy indicator eexp = 0.60. For an age
change step of 0.1, the values obtained are H = 0.62
and G = 0.36, which are close to correct. However, for
step 1 the values obtained are H = 0.27 and G = 0.13,
which are already very far from correct. As the step
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increases, the values of demographic indicators calcu-
lated by summation decrease. Such a decrease can be
confused with the survival function approaching a
rectangularized one, but this is only the result of a cal-
culation error.

Although calculation of the Keyfitz entropy is
resistant to age step lengths, the Keyfitz entropy is sen-
sitive to small perturbations, particularly those associ-
ated with small sample sizes. This is the life disparity
e†, which is in the numerator of the fraction equal to
the Keyfitz entropy. The reason is that the graph of the
function x ln(x) has a vertical tangent at x = 0. The first
derivative of this function (x ln(x))' = ln(x) + 1) tends
to negative infinity in the limit x → +0.

The reason for the difficulties encountered is
demonstrated more strictly in the work of Wrycza et al.
[22]. There are such sequences of monotonically non-
increasing functions Lk that the sequence Lk converges
to the limit function L, but the sequence of values of
the Keyfitz entropy H(Lk) does not at all converge to
the value H(L). Following [22], by the convergence of
a sequence of functions to the limit we mean pointwise
convergence when the function value L at a point is
equal to the limit of the function values Lk at this
point. This is not the only way to determine conver-
gence; however, pointwise convergence allows us to
characterize an important difference between the
Keyfitz entropy and the Gini coefficient: the Keyfitz
entropy is more sensitive to the appearance of long-
lived individuals.

Informally, such survival functions Lk correspond
to a situation where almost everyone dies early at the
same age, but it is very small and tends to zero with
growth of the index k the proportion of long-lived
individuals live for a very, very long time (unlimited,
for example, for fish with unlimited growth or corals).
By choosing the ratio between the proportion of long-
lived individuals and the maximum lifespan, it is pos-
sible to achieve an unlimited increase in the Keyfitz
entropy. Moreover, although the integration domain is
infinite, it is sufficient to consider such survival func-
tions Lk, each of which is different from zero only for a
finite interval, i.e., its own for each index k.

Let’s look at a specific example. Let for sufficiently
large indices k > ln(eexp) the survival function value Lk
equal one for ages up to eexp – 1, which is equal to the
number exp(–k) for ages from eexp – 1 up to M = eexp –
1 + exp(k), and vanish at ages higher than M. Then for
large indices k the life expectancy is equal to the (pre-
viously chosen) number eexp. The numerator of the
fraction equal to the Keyfitz entropy is equal to k up to
a sign change to the opposite one. Therefore, the Key-
fitz entropy H(Lk) is equal to the ratio k/eexp and tends
to infinity as k → infinity.

However, in the limit at k → infinity the survival-
function graph Lk approaches a rectangular step of
unit height at the point eexp – 1, that is, rectangulariza-
3
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tion of the survival curve. The limit survival function L
is equal to one for ages up to eexp – 1 and zero for
greater ages. Obviously, at every point except the point
eexp – 1 function L ln(L) tends to zero. Therefore, the
integral of it also vanishes (the value of the integral
does not change when changing the value of the inte-
grand at one point in the domain of definition).
Therefore, the Keyfitz entropy H(L) tends to zero.

In the example considered, when passing to the
limit, the average life expectancy changes in a jump of
one. However, by increasing the absolute value of the
average life expectancy, its relative change can be
made as small as desired.

In practice, this sensitivity of the Keyfitz entropy to
small changes in the survival function (also called per-
turbations) that only slightly affect the life expectancy
can lead to paradoxical results associated with taking
into account long-lived individuals. Moreover, the
considered example shows the unsatisfactory behavior
of the Keyfitz entropy for a survival function close to
the rectangularized function. On the other hand, the
Keyfitz entropy could serve as an indicator of the very
existence of long-lived individuals (for example, in prob-
lems of verifying demographic data on superlong-lived
individuals or selection for longevity in Drosophila).

For the same reason, another indicator, called
lifespan equality, turns out to be sensitive to small dis-
turbances, which according to the formula ln(1/H) =
–ln(H) is expressed through the Keyfitz entropy. As
the Keyfitz entropy decreases, this indicator grows
rapidly and becomes infinitely large for the rectangu-
larized survival function.

Makeham Term
Taking into account random death, the conditional

probability density of which does not depend on age,
leads to an additional term (the Makeham term). The
new conditional probability density of death is equal to
mu(a) = exp(–s)u + exp(ra – s). Such an amendment
to the Gompertz law was proposed by W.M. Makeham
[14]. Usually the value u is non-negative, but negative
values can also be considered u > –1, corresponding to
random death escape. This term corresponds to mul-
tiplication of the original survival function L(a) by the
factor exp(–exp(–s)ua).

For example, for the lion Panthera leo, European
roe deer Capreolus capreolus, red deer Cervus elaphus,
chamois Rupicapra rupicapra, sheep Ovis aries, yel-
low-bellied marmot Marmota flaviventris, Bali myna
Leucopsar rothschildi, and sparrowhawk Accipiter
nisus, the conditional probability density of death has
a nonzero minimum [7], which allows us to assume
that the term is non-zero u. We can conclude that such
mortality dynamics are typical for large mammals and
some birds, which either have virtually no predators in
nature (like the hawk) or are kept in zoos (like the Bali
myna). Paradoxically for hydra Hydra magnipapillata
AD
such a term is redundant, since the Gompertz law is
satisfied m = exp(–s) with zero coefficient value r = 0.

Since the demographic indicators, the Keyfitz
entropy and Gini coefficient, do not depend on time
scale [22], if the coefficient r in the Gompertz law is
different from zero, then when calculating indicators
in the model we can put r = 1. Further, for the conve-
nience of calculations, we put s = 0. This is how we
arrive at the function m(a) = u + exp(a), depending on
only one parameter u. The survival function is Lu(a) =
exp(1 – ua – exp(a)).

When increasing the parameter u the life expec-
tancy at birth eexp decreases because at each age the
conditional probability density of death increases.
Calculations show that with increasing parameter u
the life expectancy eexp decreases, and the Keyfitz
entropy H, Gini coefficient G and coefficient of varia-
tion CVLS increase, which corresponds to an increase
in the difference between the survival function and the
rectangularized one.

The value u = 0 corresponds to the Gompertz law
m(a) = exp(a). For large values of parameter u the
Keyfitz entropy, Gini coefficient, and coefficient of
variation tend to values corresponding to the age-
independent conditional death probability density
when H = 1, G = 0.5, and CVLS = 1 (Fig. 1).

Figure 1 shows that the rate of change for each indi-
cator (H, G, and CVLS) decreases quickly and mono-
tonically with increasing parameter u (Makeham
terms) and tends to zero.

Demographic indicators depend on the initial
value m(0) = exp(–s)u. And, lowering the initial value
m(0), that is, increasing s, these indicators can be
made as small as desired. It will be shown below that
reducing the initial value in the Gompertz formula
leads to almost the same effect as delaying aging.

Deviations from the Gompertz–Makeham Law
According to [7], for some animal species, devia-

tions from the Gompertz–Makeham law are observed
[1, 14], when the sub-Gompertzian model obviously
better describes the data. The most characteristic dif-
ferences are for the nematode Caenorhabditis elegans,
head louse Pediculus humanus, Mediterranean fruit f ly
Ceratitis capitata, and fruit f ly D. melanogaster.

Also, deviations from the Gompertz–Makeham
law are typical for plants, in particular for marbled
agave Agave marmorata, grey mangrove Avicennia
marina, cryptanth Cryptantha flava, geonoma
Geonoma orbignyana, pine Pinus sylvestris, oak Quer-
cus rugosa, rhododendron Rhododendron maximum,
and viburnum Viburnum furcatum. However, further
we will discuss only animals.

The Gompertz–Makeham law suggests that, start-
ing at a certain age close to the age of maturation, the
conditional probability density of death m(a) either
VANCES IN GERONTOLOGY  Vol. 13  No. 3  2023
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Fig. 1. Dependence of the life expectancy at birth eexp, the Keyfitz entropy H, the Gini coefficient G, and the coefficient of vari-
ation of lifespan CVLS from parameter u, which is associated with the Makeham term (i.e., the level of background mortality).

0

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

1.0

1 2 3 4 5 6 7 8 9 10 11

V
a

lu
e
 o

f 
th

e
 i

n
d

ic
a

to
r

CVLS

H

G

eexp

Background mortality u, arb. units
weakly depends on age (that is, determined by the
Makeham term), or increases monotonically with
increasing speed (the second derivative is positive).
Moreover, the second derivative of the function m(a)
is almost always positive at early ages, that is, this sign
does not depend on the difficulties of taking into
account infant mortality, which makes it more reason-
able.

No dependence of m(a) on age is observed, in par-
ticular, in hydra Hydra magnipapillata and red abalone
Haliotis rufescens, as well as hermit crab Pagurus longi-
carpus (raw data taken from Jones et al. [7]). We do not
classify these cases as deviations from the Gompertz–
Makeham law, although they correspond to a degener-
ate version of this law. For some species, including the
tundra vole Microtus oeconomus and great tit Parus
major, for whom a short lifespan is combined with a
high risk to life, the function m(a) is determined by the
Makeham term.

For the desert tortoise Gopherus agassizii, the sec-
ond derivative of the function m(a) is positive, which
is consistent with the Gompertz law, although the
value of the function decreases monotonically with
age. This may be due to the lack of data for older ages,
when one can expect an increase in values m(a). In
some species with slow growth m(a) the second deriv-
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ative is also positive, which suggests qualitative agree-
ment with the Gompertz law: specifically, the yellow
baboon Papio cynocephalus and chimpanzee Pan trog-
lodytes.

Good agreement with the Gompertz law is
observed in many species, including daphnia Daphnia
longispina, guppy Poecilia reticulata, lion Panthera leo,
roe deer Capreolus capreolus, red deer Cervus elaphus,
and humans Homo sapiens, for which the function
m(a) grows rapidly with age and its second derivative is
positive.

Let’s move on to discussing the most interesting
cases of deviation from the Gompertz–Makeham law.

For the nematode C. elegans we used data on a
cohort of 1000 individuals from [39], as well as data
from some other works. The dependence of the condi-
tional probability density of death on age is almost lin-
ear. Even if we limit ourselves to the data from [39],
this is a large sample. The dependence of the function
m(a) on age is very close to linear; the second deriva-
tive is close to zero (contrary to the Gompertz law),
but the first derivative is positive, which cannot be
explained by the influence of the Makeham term. On
the other hand, the presence of phenoptosis in the
3
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nematode [26, 27] makes it possible to qualitatively
explain the increase in the function m(a) with age.

For head lice Pediculus humanus only 400 individ-
uals were considered [40]. The small sample size may
have skewed the function m(a). The increase in value
m(a) with increasing age is close to linear, but experi-
ences f luctuations in which the second derivative of
the function m(a) changes sign. Here, refinement of
the data may lead to greater agreement with the
Gompertz law. However, it is interesting to compare
the louse with other insects discussed below.

For the Mediterranean fly Ceratitis capitata a
cohort of 970 females were examined up to their death.
In this case, with the exception of a small proportion
at early ages, the second derivative of the function
m(a) is negative, which clearly contradicts the
Gompertz–Makeham law. Here the function m(a) is
approximated by a logarithmic function of the form
s = ln(ar + 1).

An even greater sampling for the fruit fly D. melano-
gaster. In this case, as for the louse, the second deriva-
tive of the function m(a) changes sign. This also con-
tradicts the Gompertz–Makeham law.

Sub-Gompertzian Models
According to the Gompertz law, starting from a

certain age the function m(a) = exp(ra – s), where the
coefficients r and s no longer depend on age [1]. How-
ever, below we will consider models of asymptotically
slower aging than provided by the Gompertz law. We
called such aging models sub-Gompertzian.

For each model, data on the survival of various ani-
mal species from the work by Jones [7] are presented,
the aging of which can be approximately described by
the corresponding model. Of course, such correspon-
dence is very rough and does not at all mean that a
similar function can be obtained by appropriately
changing the coefficients in the Gompertz law. For
some species the dependence is significantly different
from others. For example, for the fruit f ly D. melano-
gaster the above pattern corresponds to a sharp slow-
down in aging, starting from a certain age. Just like the
Gompertz law, the models considered do not take into
account high early mortality. Therefore, one of the
reasons for the discrepancy between the model and the
data from the work [7] may be the lack of consider-
ation in the model for the decrease in mortality soon
after birth.

The simplest model corresponds to an age-inde-
pendent positive constant m(a) = m. This model of
aging is implemented, for example, in hydra Hydra
magnipapillata, red abalone Haliotis rufescens, and
hermit crab Pagurus longicarpus [7]. In this case L(a) =
exp(–ma). The life expectancy at birth eexp = 1/m. The

Keyfitz entropy is equal to H = 1; Gini coefficient is
G = 0.5; coefficient of variation of lifespan is CVLS = 1.

These demographic indicators do not change with
AD
time scales. Therefore, they do not depend on the
value of the constant m. In what follows, we will not
explicitly indicate the coefficient (assuming it equal to
one), which does not affect the values of the indica-
tors.

Another model of very slow aging is m(a) = ln(1 + a).
This model is approximately realized in the Mediter-
ranean fruit f ly Ceratitis capitata [7]. The survival
function in this case is expressed by the formula
L(a) = exp(–ln(1 + a) – ln(1 + a)a + a). The Keyfitz
entropy is H = 0.59; the Gini coefficient is G = 0.33;
the coefficient of variation is CVLS = 0.60. Compared

to Hydra, all three indicators decreased, which corre-
sponds to rectangularization of the survival function.

Linear aging model m(a) = a. It is approximately
implemented for the nematode C. elegans, and head
louse Pediculus humanus [7]. The survival function

L(a) = exp(–a2/2). The Keyfitz entropy is H = 0.5; the
Gini coefficient is G = 0.29; the coefficient of varia-
tion is CVLS = 0.53. Compared to the previous model,

both indicators decreased, which corresponds to fur-
ther rectangularization of the survival function.

Models of accelerated aging are considered below.

In general, for m(a) = ad the survival function is

L(a) = exp(–ad/d). The Keyfitz entropy is H = 1/(d +
1). It tends to zero as the degree d of function m(a)
increases. The value of the Gini coefficient at d = 2
equals G = 0.21; at d = 3, it equals G = 0.16; at d = 4,
it equals G = 0.13. The value of the coefficient of vari-
ation at d = 2 equals CVLS = 0.36; at d = 3, it equals

CVLS = 0.28; at d = 4, it equals CVLS = 0.23. For poly-

nomial aging models with m(a) = ad the acceleration
of aging with time leads to a decrease in the Keyfitz
entropy, the Gini coefficient, and the coefficient of
variation, which corresponds to rectangularization of
the survival function. However, only the asymptotic
behavior of the function m(a) does not allow us to
judge the approach to rectangularization.

Delayed mortality models. Next, we consider
models with the function m(a) equal to zero at an age
up to some value b, starting from which this function
grows. This model with delayed aging, called Teys-
sier’s formula [41], is implemented, for example, in
guppies Poecilia reticulata [7]. On the other hand, such
a model b = exp(–s) and m(a) = exp(ra) can serve as a
rough approximation to the Gompertz law; therefore,
it allows one to make estimates of demographic indi-
cators for a typical case using simplified calculation
methods. An example of such a function is shown in
Fig. 2, which shows the dependence of the values of
the studied indicators (H, G, CVLS) on the value M of

mortality up to an age equal to the life expectancy
(plotted on the X axis) and after reaching it (plotted in
parentheses on the X axis). The calculations are based
on an artificial sample and are not based on demo-
graphic data. The mortality values were selected so
that the life expectancy always remained constant.
VANCES IN GERONTOLOGY  Vol. 13  No. 3  2023
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Fig. 2. Influence of f luctuations in mortality and life expectancy on the studied “entropy-based” indicators. eexp indicates the life
expectancy at birth, J is the metric used in the work of Jones et al. [7], H is the Keyfitz entropy, G is the Gini coefficient, CVLS is
the coefficient of variation of lifespan, and E is the lifespan equality. We show the dependence of the values of the studied indi-
cators (H, G, CVLS) on the mortality rate M before an age equal to the life expectancy (shown on the X axis), and after reaching
it (shown on the X axis in parentheses). Calculations are based on an artificial sample and are not based on demographic data.
The mortality values were selected so that the life expectancy at birth (eexp) always remained constant.
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These values were found by bisection (or dividing a
segment in half), which usually requires a small num-
ber of iterations. This example allows you to demon-
strate the dependence of indicators on one parameter
M, and not from a combination of several parameters,
as when working with real data. For the same reason,
the values M are measured in conventional units, and
changing the numerical value of the unit of measure-
ment would only lead to stretching or compression of
the picture as a whole.

A curve containing a discontinuity ref lects the
hypersensitivity of the coefficient of variation of lifes-
pan (CVLS) to inequality in life expectancy. Equality of

mortality rates both before and after the point corre-
sponding to eexp (unit on the X axis), corresponds to

CVLS = 1 (i.e., 100%). Sharp inequality in life expec-

tancy (for example, a mortality rate of 4 conventional
units up to the point corresponding to eexp, and a death

rate close to zero after this point leads to ultra-rapid
growth CVLS up to 7000% (Fig. 2).

The survival function L(a) generates a family of
functions Lb(a), equal to one at a < b and equals L(a – b)

at a > b. Let us denote by eexp, H, and G the life expec-

tancy at birth, the Keyfitz entropy, and the Gini coef-
ficient for survival function L. Depending on the
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amount of the shift b, the life expectancy increases as
eexp(b) = b + eexp. The Keyfitz entropy decreases and is

equal to H(b) = Heexp/(b + eexp). Likewise, the Gini

coefficient decreases by the same factor G(b) =
Geexp/(b + eexp). Moreover, the values of the indicators

depend not only on b, but also on eexp.

Burger [24] notes that the observed plasticity of
age-related risk of death contradicts generally
accepted theories of aging, but this can be explained by
the “the theory of aging as part of the general program
of ontogenesis,” proposed by V.P. Skulachev [27].

So, based on the theory of phenoptosis, the authors
can suggest the following scheme, which we called the
“demographic snail” (Fig. 3), which allows us to
explain the relationship between the theory of aging as
a consequence of the interaction of a certain, but
clearly more than one, number of aging and anti-aging
programs (as a set of ontogenetic programs) [42–44].
Examples of such systems include DNA repair systems
[21], systems for inducing the antioxidant activity of
Nrf2 (Nuclear factor erythroid 2-related factor 2) or
suppressing the activity of Nrf2 [42, 43], etc. Thus, the
transcription factor Nrf2 appears to be a component of
the antiaging program [42]. Nrf2 is considered the
guardian of the healthspan and longevity [42].
3
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Fig. 3. Demographic meaning of phenoptosis (“demographic snail”). Light lines with an arrow indicate the effect of anti-aging
programs that increase life expectancy and survival, and dark lines indicate aging programs. The possible disabling (in whole or
in part) of some aging programs is indicated by a dotted line. An increase in the survival rate contributes to growth of the “snail”
upward, while an increase in the average and maximum species-specific lifespan contributes to movement to the right. Survival
data for Swedish people (1900 and 2010), Aché Native Americans, and chimpanzees are based on Burger et al. ([24], with mod-
ifications).
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Nrf2 induces the expression of genes encoding ~200

antioxidant and detoxifying enzymes, including the

most powerful natural antioxidants [43]. The signaling

activity of Nrf2 is positively correlated with the spe-

cies-specific lifespan [42]. The Nrf2 levels decrease in

aged mice [44–46]. The protein antagonists of Nrf2

(β-TrCP, KEAP1, Bach1, and c-Myc) [42, 47, 48] and

the generation of reactive oxygen species by mito-

chondria may be components of aging programs. The

first three proteins are inhibited by reactive oxygen

species, making the situation even more complex than

simple competition between the anti-aging and aging

programs. As indirect confirmation of the assumption

that in long-lived species, in contrast to closely related

short-lived ones, some aging programs can be turned

off (Fig. 3) is the fact that in the naked mole-rat, com-

pared to other species, the activity of systems that sup-

press Nrf2 activity is sharply reduced: β-TrCP,

KEAP1 [43], along with clearly slowed (compared to

other mammals) demographic aging [7, 44]. It should

be noted that, in general, the number of substances

and effects that slow down aging and increase life

expectancy is much greater, for example, for a nema-

tode than for humans [36]. Studying proteins located

at the crossroads of signaling and regulatory pathways

and comparing them using biochemical and bioinfor-

matics methods in short- and long-lived species makes

it possible to identify the molecular mechanisms
AD
underlying the processes and phenomena that deter-
mine longevity (including acute and chronic phenop-
tosis, neoteny, etc.) [27, 49–51].

When extinction proceeds exponentially, the prob-
ability of death does not increase with age, and we
conditionally say that there is no aging (or rather, there
is wear and tear, determined at least by the laws of
thermodynamics), but there are other age-indepen-
dent processes that have a greater influence on mortal-
ity (e.g., due to the pressure of predators) (Fig. 3).
Likewise, L. Gavrilov and N. Gavrilova [16], analyz-
ing historical trends in maximum lifespan in birth
cohorts and the shape of age-related mortality trajec-
tories after 110 years, found that the trend towards an
increase in the number of lifespan records in subse-
quent birth cohorts is accompanied by a slight increase
in the maximum recorded age of death for later
cohorts, born after 1879. Although these data suggest
possible temporal limits to human lifespan, the
authors believe that there is still no convincing evi-
dence of an inevitable, fixed biological limit to human
lifespan. We partly agree with the conclusions pre-
sented in the mentioned work by L. Gavrilov and
N. Gavrilova [16], assuming this barrier to be pushed
back by a demographic snail, the movement of which
will be determined by the ratio of the speeds of not
one, but two processes: “growth” of the snail, deter-
mined by the ability of a particular species to ensure a
VANCES IN GERONTOLOGY  Vol. 13  No. 3  2023
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decrease in background mortality, leading to a “phe-
noptotically limited” rectangularization of the curve,
and movement along the abscissa axis, increasing the
average and maximum lifespan and leading to the
appearance of long-lived individuals (Fig. 3).

An interesting observation is the relationship
between the life expectancy and the Keyfitz entropy.
An important result from the work of Colchero et al.
[52] can be brief ly formulated as follows: for people,
the rate of change in the value ln(1/H), called lifespan
equality, is constant, whereas for all primates the rate
of change is not constant.

An increase in the standard of living of the popula-

tion leads to a simultaneous decrease e† and increase
eexp, which leads to a decrease in the Keyfitz entropy.

At the same time, the increase eexp looks quite natural,

while the reduction e† is a priori less obvious, but con-
sistent with the phenoptosis hypothesis [27, 53]. If the
increase in the life expectancy is caused by an increas-
ing delay in the onset of aging during evolution or as a
result of changes in living conditions, a decrease in the
Keyfitz entropy will be simultaneously observed, and,
consequently, there will be an increase in the equality

of life expectancy ln(1/H) = –ln(H) = ln(eexp) – ln(e†).

Moreover, if the values b and eexp are approximately

equal to each other, then the growth ln(1/H) will
depend almost linearly on b. So that the dependence
ln(1/H) on the average life expectancy was linear over
a large range of values corresponding to different pop-
ulations, as observed in humans [27, 52], it is neces-
sary to assume a simultaneous increase over time in
both life expectancy and age b, starting from which the
conditional probability density of death begins to
increase rapidly. Obviously, a complete explanation
must take into account other changes, in particular a
decrease in the Makeham term associated with ran-
dom death.

In humans, chronic phenoptosis [26, 27, 36], in
contrast to age-independent acute phenoptosis, man-
ifests itself as rectangularization of the survival func-
tion with a simultaneous increase in the life expec-
tancy at birth as a result of the development of society
and scientific and technological progress [27, 52, 54,
55, 57]. Despite the simple geometric interpretation of
the rectangularization phenomenon, it is difficult to
notice, tracing only changes in the optimal coeffi-
cients in the Gompertz–Makeham law [1, 14]. More-
over, the difficulties are not associated with deviations
from this law, which are most noticeable for some
invertebrates [7], but with high computational com-
plexity, leading to an increase in calculation error.
Therefore, it is necessary to calculate demographic
indicators, of which the Keyfitz entropy H and the
Gini coefficient G turned out to be convenient [22,
54]. Calculation of the coefficient of variation of lifes-
pan is also used to assess rectangularization [37], but
less accurately, which is confirmed both theoretically,
due to the difficulty of calculating the derivative of the
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survival function [38], and using real demographic
data [54].

However, approximation of the survival function to
the rectangularized one is not the only thing that can
be learned by comparing demographic indicators. The
theoretical example we considered and the calcula-
tions of Németh [54] show that the Keyfitz entropy is
more sensitive to the presence (or appearance) of
long-lived individuals. Therefore, at small values H
and G a much more pronounced scatter of values than
with larger values of the same demographic indicators
is demonstrated. Consequently, if for two populations
(or two different animal species) with the same value
of the Gini coefficient, the values of the Keyfitz
entropy turned out to be different, then a larger value
of the Keyfitz entropy indicates a larger proportion of
long-lived individuals, considered relative to the aver-
age life expectancy. On the contrary, if for the same
value of the Keyfitz entropy the Gini coefficients dif-
fer, then a higher value of the Gini coefficient corre-
sponds to a relatively higher mortality rate at a young
age. This may serve as a reason to cut off data concern-
ing young ages.

It is easy to see that, for a fixed increase (that is, for
a fixed difference b–a) in the age limit for some people
from the value a to value b > a, the value of the Gini
coefficient will undergo a greater change, the lower the
age value a. On the contrary, with the same change in
the survival curve, the Keyfitz entropy will undergo a
greater change, the higher the age value a. In other
words, the Keyfitz entropy is more sensitive than the
Gini coefficient to an increase in the proportion of
those who survive to a rather old age. By comparing
both measures (the Gini coefficient and the Keyfitz
entropy) as well as similarly calculated intermediate
measures, it is possible to distinguish a survival curve
that is close to one step or rectangular from a survival
curve that is close to a step curve with two steps. Such
an analysis is important to distinguish the effect of a
certain geroprotector, which slows down the aging
process, from the influence of other factors that
increase life expectancy by reducing mortality at
young ages. In the case where the survival curve is
approximated by a step curve with two steps, a sharp
change in the survival curve (the first step) at early ages
is probably not associated with aging. Thus, a slight
increase in the Keyfitz entropy with a large change in
the Gini coefficient indicates changes that are in no
way related to aging. On the contrary, a noticeable
increase in the Keyfitz entropy with a relatively small
change in the Gini coefficient indicates an increase in
the proportion of those who lived for a very long
time, say, in the range from 90 to 95% of the maxi-
mum lifespan.

The reason for such a different influence of pertur-
bations of the survival function at different ages on the
Keyfitz entropy and the Gini coefficient is that the

integrands in the formulas for calculating e† and en
3
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change at different rates at different ages. At small
ages, when the value of the survival function is close to

unity, the integrand function in e† is close to zero, and
in en it is close to unity. On the contrary, at late ages,

when the survival function is close to zero, both inte-

grands in e† and in en are close to zero, but decrease at

different rates.

Actually in the work of Colchero et al. [52] it is not
the Keyfitz entropy H itself that is used, but the value
called the lifespan equality ln(1/H) = ‒ln(H), which
increases indefinitely with rectangularization of the
survival function. The use of such values, that is, the
transition to a logarithmic scale, allows us to show in
detail the change in the survival function near the rect-
angularized one. At the same time, the life expectancy
is growing slowly [16], and the Keyfitz entropy
approaches zero much faster.

One of the reasons for the decrease in the Keyfitz
entropy may be a decrease in background mortality,
numerically expressed by the Makeham term. Another
reason may be a decrease in mortality at young ages,
which corresponds to a decrease in another coefficient
in Gompertz law. It is probable that the observed
change in the Keyfitz entropy is explained by the joint
influence of both at the same time.

It was previously shown that the distribution of the
deviation of the actual lifespans from the life expec-
tancy at birth eexp is not normal [37]. However, when

averaging over a large sample set, the distribution of
the deviation of the averaging result from the true
value eexp will be close to normal. However, no single

sample size can be established. It significantly depends
on the dispersion of the source data and on the average
lifespan, since with a short lifespan the same absolute
error will lead to a larger relative error and, therefore,
will have a greater impact on the calculation of demo-
graphic indicators.

In the case where one sample set contains hun-
dreds and another contains hundreds of thousands,
there may be unexpected difficulties when the theoret-
ical limit for the mean as the sample size increases
indefinitely is infinite. However, when calculating the
average lifespan, the expected value is finite and,
therefore, increasing the sample should increase the
reliability of the results.

CONCLUSIONS

We have no reason to reject the application of the
Gompertz–Makeham law in vertebrate animals across
a wide range of ages, except during periods of high
infant mortality and at the oldest ages. Although for
some invertebrates and plants, the applicability of this
model does not seem justified (see also [18, 27, 37]).
We conclude that, despite the fundamental applicabil-
ity of the Gompertz–Makeham law under the speci-
fied restrictions, the use of the demographic indica-
tors discussed in the article makes it possible to
AD
observe new patterns and also provides extensive
opportunities for their visualization.

We examined several sub-Gompertzian models
describing aging in nematodes and insects. Within the
framework of the sub-Gompertzian model of aging,
age-dependent phenoptosis in the nematode C. ele-
gans [26] is quantified as rectangularization of the sur-
vival function compared to this function in hydra
Hydra magnipapillata, red abalone Haliotis rufescens,
and hermit crab Pagurus longicarpus. Rectangulariza-
tion is evaluated based on demographic indicators (H,
G, CVLS), each of which is significantly lower for the

nematode compared to the hydra, abalone, and her-
mit crab. On the other hand, rectangularization of the
survival function, which increases with the advance-
ment of scientific and technological progress, is evi-
denced by a decrease in the Keyfitz entropy [52]. This
is accompanied by a simultaneous increase in the life
expectancy in humans [55–57], which aligns well with
the hypothesis of age-dependent chronic phenoptosis
in mammals.

In general, calculations on aging models demon-
strate the effectiveness of using Keyfitz entropy and
the Gini coefficient as important demographic indica-
tors. The use of these indicators appears preferable,
especially for nematodes, where the sub-Gompertzian
model of aging is applicable, and for vertebrates, pri-
marily mammals, with certain restrictions where the
Gompertz–Makeham law is applicable.
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