
By Jacobson's theorem [7], either (~6' (-stan~)~m~#,st~n~, or~ ,~-stan~)~3,sym p ) , 

hence either /~(~)~/~(D~,stand) or K[~)~ ~(~s,symp) • Comparing dimensions, we see that 

~)--~ H(~,. syrup). NOW, by Lem~ma 4, 

CK G, - 

But ~, (K cfl) ~ G1(/~) hence G,(K): K and 0,(K)7 O, C o n t r a d i c t i o n .  The theorem is  proved.  

In conclusion, the author thanks E. I. Zel'manov for posing this problem and his interest 

in this research. 
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INTUITIONISTIC THEORY OF ALGEBRAIC SYSTEMS AND HEYTING-VALID ANALYSIS 

V. A. Lyubetskii UDC 510.67:512.57 

In this paper, given a ring ~ with a metric and a formula ~=~ ~ in the language of 

rings, we shall construct a translation ~+ ~ #  such that the (classical) truth of the in- 

ference !~ (~ ~) (i.e., the inference ~{~ ~# ) in the classical theory will imply, in a 

certain sense, the (intuitionistic) truth of the inference {~ (~%-----> ~+ P [i.e., the in- 

ference (~+~ ~ (~+)#] in intuitionistic set theory. Of course, the question of what one 

understands by "(intuitionistic) truth in intuitionistic set theory" is a difficult one and 

the answer is by no means unique. From the standpoint of the intuitionist it might be a 

Grayson's formal-axiomatic set theory ~P (see [i]). As far as the classicist, derivation in 

i.e., the mathematician oriented toward using intuitionistic logic to ultimately obtain re- 

sults pertaining to conventional mathematics, it might be Heyting validity. Let us recall the 

definition of the latter. 

A formula ~ in the language of~ , with parameters ~I,..,,~ in the class of all sets 

V , is said to be Heyting-valid [notation: C ~  ~ (XI,,,,~) ] if, for any complete Heyting 

Translated from Algebra i Logika, Vol. 30, No. 3, pp. 320-332, May-June, 1991. Original 
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algebra (~a) ~ , we have [~(~r,..o,~- {, where~ is the usual valuation in ~ with 

parameter set V ~ . The definitions and results referred to here and below may be found, 

e.g., in [2]. Essentially, the definition of Heyting validity appeared in [i]. Of course, 

(~Z ~ ~) ~---~ CHa~ ~, but the converse is false. [It is sometimes useful to specialize 

the predicate C ~  (,) , letting ~ range over only all topologies or only all zero-dimen- 

sional compacta, etc.] Even if one takes a single (non-Boolean) gH~ ~ it is not true 

that [~vl~ = f , where ~ is "almost any" formula. We are going to operate with the pre- 

dicate (semantics) CHg ~ (,) in such a way that, whenever we assert that C~a~ ~ , it will 

be true thatZ6~H (~a~) In this sense our metamathematics may be considered strictly 

intuitionistic. The semantics C~a~ (') also preserves some features of the theory Z~/ 

All this perhaps makes it possible to consider O~Q~ (,) as an intuitionistic semantics in set 

theory. In the sequel this view of Heyting validity as a variety of intuitionistic truth in 

set theory will not be absolutely necessary, so it may be considered simply a convenient 

means of operating with intuitionistic logic in applications of nonstandard analysis. 

If the algebra~ in the definition of the predicate C~ ~ ranges only over all com- 

plete Boolean algebras (abbreviation: ~ ), we obtain a new predicate, denoted by ~a ~ ~ . 

Of course, if ~F~ ~ then ~ ~ . 

Thus, in Theorem i we shall establish a result of the following type. If ~ ~ (~---7 

~), then 0~ ((~+~ (~+k) " In more detail: certain restrictions will be imposed on the 

ring 4 or, more precisely, on its description by a formula ~ in the language of ~, and 

Theorem i will then state: "If g ~  ~, where ~ ~(~(~) ~ ~,...,~aEl[~(~,..,~)-----> ~(~ .... , 

~) , then ~ ~+ , where ~+~ ~l(~(fJ=~V~t,,,,,~ 6f~+)~I~t,,..,~)=>(~÷~/~,00.~2 )." 

These restrictions on ~ will be contained in the concept of a " ~ -Dedekind formula," which 

will be substantially broader in this paper (see below) than in [2]. Thus Theorem i provides 

a tool which, when given any result of the form ~ (of course, such that ~b- £ ), will 

obtain 0~ ~ ~ , then g~ ~ #¢ , and hence[~.2 =! for the specific C~ ~ in which 

we are interested. 

In the sense just proposed, results of the type c~a~ ~ or, more precisely, ~ 

~ ~), constitute an intuitionistic theory of algebraic systems. 

Nonstandard analysis enables us to continue this chain of arguments (we have dwelled 

on the fact that [~+~ =~). We choose any i ~ V~-~ such that [~(fl)~= I, and obtain 

At this point yet another "dramatis personae" appears: 

And, since ~ is a ring]~ =/it follows, putting C~4~=S) ~-7 [~+~=S]~--- ! for any # 

S£~P and also for the operations -, • and constants O, i, that ~ is also a ring. Sup- 

pose that some condition holds on f~ ensuring that[(~+~]~ = I (often this is simply 

?~ ~+ ). Then we get~(~+)~ =/, and then f~ ~+ (the last step usually takes 

place when ~ is a Horn formula). Sometimes one gets not ~ ~ ~+ but f ~  (~+)r, where 
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(~)I is some transform of the formula ~ . Finally, in certain cases one can deduce from 

~ ¢+ that ~ ~ via arguments that have nothing to do with this technique. Thus, our 

goal is, given some f such that~(~)]~-~ = f, to establish, roughly speaking, that ~ 

For the case of a complete Boolean algebra ~ and an ordinary Boolean-valued universe 

V ~ (when translation and all other intuitionistic peculiarities are unnecessary), this pro- 

gram and some appropriate results were obtained by G. Takeuti, the author and E. I. Gordon 

in 1977-1980. Naturally, one bottleneck for this program is the question: just what is the 

ring <~ ? It turns out that precisely in the case of non-Boolean complete Heyting algebra 

(and therefore also the specifically intuitionistic situations) many important mathematical 

objects may be represented by a suitable #62 For example, this is the case for the ring 

of all continuous functions £(~,~) , in which case ~ must be the ~(~) -topology of the space 

~. In that case ~ is chosen from ~ as the field of reals, understood as the completion 

of the field ~ by Dedekind cuts or Cauchy filters. Of course, various interesting objects 

are expressible as ~^~2 for a Boolean algebra ~-2 as well. We proceed now to a systematic ex- 

position. 

Throughout, Y will denote a uniformly locally compact space, ~ its topology and ~ a 

base of symmetric open entourages. Let ~ denote the set of all CH~2-morphisms of C~/~- 

into C#/~ Let ~f denote the set of all~ -morphisms of the same form; for ~E~ 

~{~lT~I~} we define ~(p)~[Y) (see [2]). Since ~-¥~ V~ (taking into consideration the 

identification of ~ in F with =Cv), it follows that ~e V ~. It was shown there that (F) ~2 

~F and [~ is the set of all bases of Cauchy filters in ~ for the space <~ ~v v> = ,', 

i.e., Y is the completion of ~ in V • It was shown in [2] that is isomorphic to 

~f( X~ y), where ~ is the Stone space of ~; denote this isomorphism by ~ and the correspond- 

ing image of an equivalence class ff~J by ~ , where p/#=c) ~ ~.f (~ , ~E~ (see [2]). The 

following predicates are defined in ~ : 

where ~ denotes disjunctivity. We call them, respectively, ~-equality (the analog of ~- 

equality) and separability. Clearly, /P~ ~ ~ -~ ~S which is ~-dense in X (Y~S (~(~), 

~(~)~)), and ~S , which is ~ -dense in X (~$ (~f(~),~(~)>£6))~~. In particular, 

~(/~ ~)<=~[~ = ~ , i.e., 6-equality has the usual sense of E -equality. Clearly, 

/O~ =/#~ ~ ~ which is ~ -dense in X(V~6~(p(,~),=~(,~))). In particular, p~/O#'f , 

i.e., intuitionistic separability is stronger than inequality. 

It is known that any C~a ~ canonical determines a C~ ~ in which ~ can be C~ - 

embedded. We thus obtain an embedding ~'~_cV~ This embedding is such that 
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and ~; is embedded in ~f , including operations, for any 67E~ . All this follows at 

once from the fact that~ is embeddable in ~ . It is important that 

(this is false for the valuation [']~ ). Here and below • and ~ also denote the formulas 

in the language of ZF indicated within the valuations. Of course, if p=~ andp~ ~ , we 

have a contradiction, so that intuitionistically p~ implies p+~ . Let ~O~=i, i.e., 

~=~ =0, where/O,~ #- The above-mentioned isomorphism gives a representation for 

elements ~ and ~ by functions p and ~ of the type ~ ,~ : ~-~, ~ an open dense subset of 

X~), where X~) is the Stone space of ~; we then have ~O ° (see [2]). 

Therefore ~{XlfC~)'~IXg} is nowhere dense, as is ?, and (~)f]~ is an open and dense 

subset of ~(~) on which P~&~ . This set is also ~ -dense, whence it follows that ~ ~ =  

i. 

The idea of the next definition is that O -equality and separability in some abstract ! 

may be defined as ~II~ or ll~'-~ ~ 0, and similarly ~ ~ or ~-~ * 0, where ~.,~Ep 
A 

and we have a "metric" ~'II:P--" Y , where Y is the completion of Y by Cauchy filters. 

Another "metric" ~'~#--~ ~, where ~ are the Dedekind reals, was considered in [2]. In 

= " and "~ " are played by the predicates ~z< ~ and > hz that case the roles of " 6 >0, where 

A ring with metric is defined as a structure <i, Y,+,-,°, 0, 7, II" U >, where <p, ÷ - 

• , 0 , i> is the ring structure, ~,~:p--+ Y, and is the completion of the uniform space 

Yby Cauchy filters. A formula ~F is called a Dedekind formula if, for any fixed Y , 

el-k  7 P , + , - , .  o, ,N.Ur Cp, Y ÷ - . _ . o,, '  I I , I I >  i s a  i I ' I  ~ ' l  ~1 II ,I ~1 

ring with metric); 
V V 

where f is an extensional function in k/s~ , ~(f) a set which is closed under all the opera- 

tions and 0 a fixed element of Y ; 
V 

where ... means the same conditions for the operations -, ,, 0, I. For example, if Y is a 

topological ring and P ~ Y, we can define llp~ ~-~p, ~/~£P. An example of a Dedekind formula 

is: " p is a set of bases in ~ of Cauchy filters which is closed under the operations 
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+, -, ' , O, / in ~ ." This will still be a Dedekind formula if one adds, say, conditions such 

as to be a field, to be an algebraically closed or real closed field, etc. 

Now let ~ , ~ be formulas in the language of rings with narrow negations, i.e., ~ , 

are without implications and with negations only on atomic formulas; in addition, ~ is an 

AE -formula. Define "translation in the premise" ~+ by replacing each k~ with ~-~i~O 

and "translation in the conclusion" ~@ by replacing each ~#~ as in the premise and each 
V w 

~=~ by ~-~ ~ 0 , the variable @ being bound in the form ~@~. in the universal quan- 

tifier block of ~ . Thus, given ~9 =~ ~ we form ~'~4 . 

THEOREM i. Let ~ be a Dedekind formula and ~', ~+ formed as before on the basis of 

3 Y , ~, and ~ - If ~ ~ ~ , then 6~l ~ ~+ 

Proof. Choose any V~ ~ , where Y is a uniform space with bases ~ andZ , and also 

any extensional f6 V~2with the appropriate domain of definition and any ~,.,o ~ m(1) such 
i J  _ _  _ _  _ 

that 

whence the truth of the theorem will follow. It is easily verified by induction on the length 

of ~ that 

By assumption, we obtain ZL~ ~, so that [Z ~. It is easily verified by induction 

on the length of ~ (up to a V quantifier) that 

Remark. In order to prove that [~$2 = ;,  we need the condition [~]~=[ only for one 

specific algebra B , which is canonically determined by the algebra ~. This also enables us 

to pass from a class of Boolean algebras to the corresponding class of Heyting algebras. 

Theorem i will remain valid if we additionally permit quantifiers over standard sets, e.g., 

over ~/ ,~ and so on; and also permit multibasis algebraic systems with supports ~,o..,~ . 

Let Y be a locally compact field. It is clear that [Y is a ring ]~ =/both in V ~p and 

in V B . we shall denote the object ~ in ~'~ by ~61~ and in V ~ by Y~ . The field is defined 

by the condition ~£ep{~0 ==# ~ep(I,~-/)) . It is easy to verify that [p~q is a 

field]=/ both in V~and in V ~. Indeed, if ~E~ r" and ~f---~ ~)A~0]~ , there exists 

an P-dense $~ ~ on which P (corresponding to~ ) differs from 0. Define the function f-! 

on $ , which gives g£~- This ~ is the desired inverse element. 

Note that ~ a p  is a field ]~I?~Y~AI is a field~, since 

and 

In addition, [% is a subfield of %]~ = /, since ~7:" is contained in ~ . Therefore 

Z(~'p ~ _ ~Af is a field" is a Dedekind formula which determines the family of all subfields 
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of Y~ in V ~2 and a certain family of subfields of in V B Hence properties of subfields 

~.~ V a of ~ or, more precisely, the properties of subfields of in , transfer to subfields 

of ~ inV ~. we now consider Hilbert's Nullstellensatz in accordance with a somewhat dif- 

ferent scheme: without the participation of ~ and ~ . 
y= 

Let Y be a locally compact field and any algebraically closed locally compact field 

containing Y . Then [ is a subfield of and is a subfield of Y~ ]~={ and [~ 

is an algebraically closed field]2=f. We may therefore use V ~ as the extension in the 

Nullstellensatz in Y~ . In that case 

4tx,Y)  tY ) , 
since 

p 
Hence 

~a 

4(x,Y) 4lxB,y ), 
where X~ is the Stone space of ~ . For polynomials ~1 ..... ~,,g over 4(X,Y) the premise V ~ 

of the Nullstellensatz means 

4 o] B >, 
0 

where [~=~]j=/[~E.XBI/(~)=~Z)J, andi6a~ is the interior of the closure of ~ ( i . e . ,  the 

computation of [~I[~):0~ and so on may be carried out with participation of the valuation 

in V ~ ). If polynomials ~I, "°~,~ over ~ (~,~) satisfy this condition we shall say that 

they are compatible. 

For purely illustrative purposes, we present the following analog of the Hilbert Null- 

stellensatz. y° 
Example i. Let Y be a locally compact field and an algebraically closed locally 

compact field containing Y Let Sf~ .... ~ be any compatible polynomials over ~(%~Y) and 

a Heyting algebra for the Stone space X . If ~ is compact zero-dimensional, then for 

any ~6~y there exist polynomials ~1'""~z over ~(X,Y), such that ~P--- 7 ~t'~t+"'+~'~ • 

Equality of polynomials is understood here in the algebraic sense and ~ and the degrees of 

the polynomials ~po.,,~ are determined by the degres of ~$,o.,,~Z, ~ ; only the coefficients 

of the polynomials ~"'°,~z depend on 6 . The proof follows at once from the foregoing re- 

marks and Theorem i. 

The simplest example of such a compact zero-dimensional algebra ~ is ~TC~#, where 

~-(~) is the topology of a topological space ~ and ~ a totally disconnected compact space. 

In that case V f2 has the accessibility property: for any formula ~ , if [B~($~ = {, then 

~ = I  for some ~EV ~l~ . In Example i d~ is required to satisfy this accessibility 

property only for an atomic formula ~. In the same example we may replace the ring ~ I~, Y) 

by E(~,Y) for any totally disconnected compact space ~ ; for example, for Y~. This 

follows at once from the fact that the rings ~(~,~) and EI~,~) (and even the corresponding 

sheaves of functions) are isomorphic; see corollary, below. 
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THEOREM 2. Let ~ be an arbitrary complete Heyting algebra. Let R d denote the ring of 

Dedekind cuts in ~. Then the ring (~2~#A~ is isomorphic to ~/(X,R) by the map ~:V]~ -~ 

,n "f~ 
<~ ,~ ,>  , where ~(~) ~--r j~ CZoo) and ~IS)~ i ~ ' t i - ~  ,$~,'~,$E~. 

Let  ~ be any t o p o l o g i c a l  space  and z ~ 7 ~  ) . I t  i s  we l l  known t h a t  in  t h a t  case  t h e  
(,~i) A.~ -! ¢ 

ring is isomorphic to C(~,~) by the map ~-" <~L,}L/> , where %1~)---~ (7,~) and ~b,[~)-~ 
_/6 

~-=~,S)" The inverse map has the form<~,~>H*~, where ~(Z)~S~p{ZE~IZ6~(~)), the set 

in braces, taken for any Z , being the lower class of a cut in ~ and }L,~L I may always be con- 

sidered to be defined on ~ . Let 9~ denote the cut corresponding to ~ EGIz,~). Hence we 

obtain 

COROLLARY. The rings ~IX,~) and C~R) (and the corresponding sheaves of functions) 

are isomorphic. The rings ~7 and are isomorphic in for any ~. If ~ is a regular 

Baire space (and Z its absolute), this isomorphism has the form ~-- (~o~') I , where ~EOIZ, 

~ and ~!~:~--'~ is the canonical map, while (o)# denotes the uniquely determined extension 
w 

of ~Oa" to a continuous function ~ on an open neighborhood $~ of the absolute Z> which is 

~-dense in ~, and also the equivalence class $] of this function ~ in ~(%~) . 

Proof of Theorem 2. Instead of ~(~J) we write ~/" A Dedekind real (cut in ~ ) is 

defined as a pair of subsets of ~ which satisfies four conditions: I)_~,SIZ6~ASE ~) ; 

2) 2u and }51 are disjoint; 3) ~E~b 4=~ ~ (eel) and 5£~LI~---'>-~<5 (ZE~I) ; 4) ~<S~ 

ZE%V SE~L 7. A direct computation of valuations shows that [<~,~ is a section in ~Ig2={. 

, S; S 9 " If q is a new representative of the equivalence class ~ , i.e. ~=q on [l , then[{- [~[, 

o~)~] = (~- ~Z,~))f] ~{ and ~(~J)'~([~3) . Thus ~ is well defined. This ~ is injective: 

if/~ , i.e., ~(~)+~I~) for ~fDS~ , then there exists a neighborhood 7/ of ~ (where 

" i.e., ~-= n ) such that ~(f/)>i~ and~(~)<~ . HencetL c _ (Z,~) andUOq 

[~{'~;~'/ . The proof that ¢ is surjective is more complicated. 
v 

Let [~ ~---<~%~> is a cut in ~]~= {. We may assume that 7L~gv~ are defined on ~ Regard- 
V 

ing 2~ as given, construct the function p(oC) ~ [~,S£~(ZE~ABE~A(~,9)_Co6~. Then [~ is a 

base of a Cauchy filter in t]~2=~ and /D~C)=~E~J~_,c~(~)~#(S), and moreover/TE~ y 

~-~ we . Using and considering ~ given, form ~641~,~), i.e., ~(~)=/({'f(~)) Hence /P~I~,~) = 

d{~ {Z,~)) i.e.,p6{~o~) = (Z). 7Z£~. On the other hand, [(m,~)6p~---->~£ , i.e., 

~Z) Thus [~=~]~=/ , i.e., ~)=<~,%~. The fact that ~ is a homomorphism follows 
-¢e  / ~ .~ 

from the  o b v i o u s  f o r m u l a s  (f÷f) = #" CS, ) and s i m i l a r l y  f o r  We 
~<z+s 

moreover observe that J[gv/~ = ~/~_]}~=~e.~ t~(Z)=/~l[Z)}~ [~p-~!,_]iQ=i[ ~ ~Xl~(~)'~ (~)]o, where 

corresponds to P, and [~=/~'~. = [P~=p~]z~ '  

Proof of the Corollary. We first add a few comments to complete Theorem 2. Let ~ ~-~ ~p 

be a cut obtained from ~ £~(X,~) . Let $~-~7(~). Set $~IZ)A~($) - this is an open 
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~S 
3~-dense set, and 001~)~ $Up}L'~E~I,zE~.,I~).},.Z6~, It is clear that the set ~[P£~I£E~(P)} 
is nonempty, bounded above and transitive downward; in particular, ~ is defined on S~ and 

we have S~- m S#.~ and ~'~ on ~{ . Indeed, if XES# , then~Ei~ (p,~)= ~[p) and similarly 

XE2ut(S) for some P and 5 , i.e., XE$~. Let ~r~$~. If f(~)~P, then xE~b(r) . Hence 

~(X) ~>f(~) • If ~62~(p), then ;C-T)) p (this implies equality), because otherwise/(~)<P, in 
• - l  6 , -/~" 

which case XE~f (-co, r), ~Q2f (-o'°,F~)Ai~-¢6(P, tx~) =J~ - contradiction. 
We do not claim that ~ is necessarily continuous on $~ . But if ~ is a topology, 

then ~ c- $~ and ~ is continuous on ~ Indeed, $~ contains the absolute Z, because ~ 

"in~ " coincides with the whole of Z The set ~ has the property re~ ~>~S~f, 5E~ , 

F/~E~ since the valid property [~E%~>TS>F(S£%)~I~ =# implies that ~(/~= L ] ~S). Hence 
smr 

we have~[X) >s~) ~6(~(S)NS~ ~ , i.e., ~ (S,oo) is open in ~; similarly for i'i(-oo~P) . 
Thus ? is continuous on $~ 

We recall that Z consists of all ultrafilters in £(Z) that converge to points of Z . 

From now on we shall assume that the points of the Stone space X of ~(Z) are coprime fil- 

ters and not prime ideals; then Z ~ X . Both Z and ~ will be considered with the Zariski 

topology, in which case ~ is a dense subspace of ~ . We define ~E: ~ -- Z , ~(2) ~-~ ~cE - 

this is an irreducible perfect map; Z is an extremally disconnected regular space. We have 

thus proved that in any equivalence class ~3 there are elements ~ such that ~ ~ Z. Once 

again, let ~ ~{ be the cut constructed from ~ , wheref~ , ~ being as described above. 

Form ~iE ~(Z,~) and~°~:Z--~AU It turns out that f is not only an extension of / 

from 2~ to ~ , but also an extension of ~ 0 69 from ~ to $~ , i.e., ~# ~=~ o~ Indeed, 

let 2EZ and '~= Z • Then /~;~6~(~)=~L[Z)~$ZI/P{~IZ62L(Z)J,and ~12)-~ ~{?#I:2£~u~Z)). We shall 

find a dense subset of Z , say2 , on which ~%~ coincides with ~ ; hence ~2~ ~ will coin- 

cide with ~ on all of Z . Denote ~-~ U~(}b(~))c__Z, where ~Z~ °) is the boundary of the set. 

The set 5 is metager (i.e., a countable union of nowhere dense sets). Denote its comple- 

ment by ~z9 • Since by assumption ~ is a Baire space, it follows that ~ is dense in Z 

Let /7 ~ ~-'(;,) . If2#i, then £(2) is closed in Z and~C*~),,~)=~ , contrary to 

the irreducibility of ~ . If /:~/7, then ~(2u~Z) ~->~£~bIZ), ~e~ Hence, if f corresponds 

to ~ (in the sense that ~Z=~.E ), then [~=~i]~2 "f, where ~6C (~) and ~IZ,~) • 

Example 2. Let ~ be an arbitrary ring. Given its Pierce sheaf ~[') , we define an ob- 

ject~*EV ;2 , where ~ is the topology of the Stone space of the Boolean algebra of all cen- 

tral idempotents in K, such that {/~,)A~@ ~=/~ The sheaf ~') extends to ~ , which is 

canonically determined by ~. This extension defines an object ~*~EV ~ and [~*~I~=/. 
X' 

By Theorem I, the properties of /~' in ~ carry over to in , and then all of them (not 

only the Horn properties) carry over to ~ as well (in the form ~-~ ~, see [2]). In other 

X' V words, we consider in and form Z~-~ (/(') A79 . This ~ is an orthogonally complete ring 

and has the properties of an "orthogonally complete closure" of ~. The properties of /(~ in 

V ~2 and ~ in V ~ are closely linked by the above translation. 
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Added in Proof (November 1990). Essentially, what we have proved in this paper is the 

following proposition. Let ~, ~ be formulas in the language of rings; in the premise of any 

implication in ~ there is no quantifier V and the quantifier ~ does not occur in the scope 

of ~-----~ ; let ~ be the theory of such formulas ~, and ~ an AE-formula, ~=~(~)->~[~)) 

and ~G~(f~)=~q~) ; let ~ be a special variable which runs over all rings with countable 

support (which are normal in the conclusion). In the following statements the premise ~r is 

understood as ZF~ U, and the conclusion V is understood as ZFf~b--V (if ~- Ef in the 

premise, then Z~fe-- V in the conclusion). Thus, i) if VK(~} K , then VK (indecomposable 

----~) and ~K(~I}~ ; 2) if ~(~t~} K , then ~K(~==>4~r) x , where f~f t are the pairs of properties 

in [2] (it is always true that ft,=> indecomposable); 3) if (intuitionistically) ~ [in- 

decomposable AF)~ ~ then ~K [ T ~ ~ ~t]K ; finally, one can replace F by the set- 

theoretical condition ~(K} , where ~ is an absolute formula. 

ON THE LOWENHEIM ~MBERS FOR THE SKELETONS OF VARIETIES OF 

BOOLEAN ALGEBRAS 

A. G. Pinus UDC 519.48 

The concepts of skeletons of varieties of algebras have been introduced by the author in 

[i, 2] and, afterwards, in a series of subsequent investigations one has studied in a suffi- 

ciently detailed manner the skeletons of congruence-distributive varieties. In particular, 

in [3, 4] one has proved the undecidability of the elementary theories of epimorphism skele- 

tons and of the elementary theories of Cartesian skeletons for nontrivial congruence-distri- 

butive varieties, while in [5] one has proved the undecidability of the elementary theory of 

the imbeddability skeleton of an arbitrary variety, containing a non-one-element quasiminimal 

algebra. In [6] one has introduced the concept of the L~wenheim numbers for skeletons of 

varieties and one has proved the equality between the LSwenheim number of the Cartesian skele- 

ton of any nontrivial, finitely based, congruence-distributive variety and the LSwenheim 

number of the full second-order logic. In [7] it is proved that the L6wenheim number of 

the full second-order logic coincides with the LSwenheim number of the so-called multiplica- 

tire epimorphism skeleton of Boolean algebras. This paper is devoted to the proof of an 

analogous result, with the replacement of epimorphism by imbeddabilityo 

If ~ is an arbitrary class of algebras, then by ~ we denote the collection of all 

isomorphism types of X-algebras. On the collection ~ we introduce the quasiorder relations 

<<, 5 and the operations, possibly partial, of products ×,~ : for ~, ~ ,C~ff~ a~ , a~6 if 

and only if an algebra of type ~ is the homomorphic image of an algebra of type ~ (an 
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