
TRANSFER FROM DEDUCIBILITY IN THE CLASSICAL SET THEORY 

TO DEDUCIBILITY IN INTUITIONISTIC SET THEORY FOR THE 

LANGUAGE OF RINGS 

Vo A. Lyubetskii UDC 510.67:512.55 

This article is a direct continuation of our previous publication [6] and is essential- 

ly a detailed study of one aspect of Theorem i cited in [6]. We show that for a large class 

of properties in the language of ring theory their deducibility in the classical Zermelo- 

Frankel set theory Z/~ implies their deducibility in intuitionistic set theories .$FZ and 

Z,~ ~' defined by Grayson in [i]. Furthermore, the derivation of the latter deducibility from 

the former one is done finitely (by means of a primitively recursive function), i.e., com- 

pletely explicitly, and in such a way that the increase in the length of the second conclu- 

sion depends linearly on the length of the first conclusion. 

Theories ~F- r and (to a lesser degree) Z,~_/t have properties of disjunction and exis- 

tence. Recall that the first of these properties means that if J-~_7>/~i) , then a therm 

~=~I~(~)~ is defined explicitly in the language ZF and satisfies Z/~ ~ ~(~) and 

Z~-T~3/~(~=~). In the theory Z~ r' this property means the same, but for certain restric- 

tions on the form of the formula ~. Therefore, we can envision the following "programming" 

scheme: If ~,-~3~(X) then Z "r-_ ~3~t(~) and therefore _$-~Z~-~'(~) where ~ is the cor- 

responding therm. Here ~i= ~ and ~' is close in meaning to ~. If the formula -vv~(X) 

is replaced by a formula ~_~I~(o~,~) then a similar scheme holds, where the therm $ now 

depends on a parameter ~o This scheme combines the expressive power of the language and 

theory Z, -~ with a certain effectiveness (the possibility of constructing a program). Be- 

sides, apart from this circumstance, the topic of transferring from the classical logic to 

an intuitionistic one under which a formula ~ does not acquire "meaningless" insertions (for 

example, connectives 7~ and relativizations to the class of stable sets) has long been ac- 

tively studied, beginning with [2]. In the latter publication, Novikov proved a theorem 

corresponding to this scheme and stated a conjecture that his theorem is "true for very 

broad conditions." We think that this conjecture in particular is shown to be true in this 

paper. 

We also note a connection between our paper and Markov's principle. The theorem by 

Novikov mentioned above and other theorems on this topic can be considered to be special 

cases of a general semantic Markov principle. 

Unless otherwise stated, throughout this paper the metamathematics used is deducibility 

in the theory Z/f-; the other two possibilities are deducibility in the theory Z/7_fland 
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strictly finite metamathematicso Grayson made a similar assumption in [i]. 

In the sequel ~ is a fixed complete Hefting algebra. Grayson in his fundamental [i] 

defined a class V ~ (all of whose functions are defined everywhere) and a valuation [']J2 

for the language ZP with a family of parameters V- f2. For more details on definitions and 

properties cited below (up to Proposition i) see [i, 3]. 

The mentioned valuation satisfies the following properties: 

Let bEll be the scheme of axioms of the law of the excluded middle. This valuation has 

the following values on logical axioms of intuitionistic computation of predicates and on 

special axioms of the theory Z~. For axioms of capacity, pairing, union, power-set, infin- 

ity, separation, and S-induction (which is equivalent to foundedness if the ~E~ axiom 

holds) it is equal to the unit i (in-G). The same is true for the axiom of substitution 

and even the axiom of collection, but then the theory ZF_/-/ has to be chosen as the metamathe- 

matics. 

Let 0P~($) be an ordinary formula stating " ~ is an ordinal." We define the rank of a 

set as ~k(1)~U~pk(~)+l~j~ and ~ U IL'9~Y~)I~Ccc]~ , , V~ULV ~ lOp~(o6)j , where ~(~)is the power 

set of the set I. We obtain 

Here 0~ and ~ take values in 01, on the class of all ordinals. 

We define a mapping (,)vl V-~V f2 by letting Z'V£I/~'2 ~(?)-~ U~,~-~=~-~ I ~6.2} where rK(~) 
/E \,'~ (3) 

< r k  (~)  ' 

In the sequel we omit the index in the notation of this and subsequent valuations where the 

meaning is clear. 

The following properties hold: 

i) [~=g~A[~(f)]~ [~(~)], where ~ is any formula with parameters; 

is any formula with parameters. 

Definition I. A function /6 V m is called extensional with respect to valuation ['~2 

if 

VS,~/Em(?) (f(,.~)n [~=y]~ f(~)). (4) 

Proposition i. If ~ is an extensional function then V~E=Z)()~) ([~6~=~(F)), 
The proof is obvious. 
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Definition 2. Let ~ be an associative ring with a unit. Let ~(K) be a Boolean alge- 

bra of all central idempotents of the ring ~, and ~(K) a complete Heyting algebra of all 

simple ideals of ~(K) • The class V ~[~) is called a Heyting-valued universe corresponding 

to the ring K. 

Let A(K) be a zero-dimensional complete Heyting algebra of all J-operators on the 

algebra ~(~) and ~(~) a sublattice of A(~) of all stable elements of A('K). (An element 

in M is called stable if qn~=~ where ] is computed in A .) This lattice ~(~) is a com- 

plete Boolean algebra. All of this has been studied in greater detail in [4, 3]. The class 

V 9(£) is called a Boolean-valued universe corresponding to the ring ~. In the above and 

subsequent notations we shall frequently omit the index ~. 

Recall that ~ canonically imbeds into ~ so therefore 

We define an auxiliary valuation: 

.7" 9 
V c_V 

This estimate, like any other valuation, canonically extends to the set of all sentences of 

the corresponding language, in this case the set of all sentences in the language of rings 

with a parameter set ~ . One such extension of this valuation is obtained for values in 

~(K) (which we denote by [,~ ), and another valuation is obtained for values in ~$,'K)(which 

denote by [,~). Clearly, ~=~]~ =~=~]~,~ For more details see [3]. we 

We note that 

7 r 

The same holds for V ~(2() 

i) We define a function %7 by 

" ~pie ( K J  

Clearly, 0 ~ 1 ~  ] C ~k(K) We define a function ///": ~ 

where 16 k(K) + =V~nk(K ) u ,k(K)" Clearly. /<'£~,2(K)+. 

2) We similarly define a function ~ , replacing in the definition of ~ the algebra 

with algebra 

3) A ring A z is called a S--ring if V~ ~£~ C[kv=~ & [~=~$/, and it is called a ~- 

ring if V~,~6K i[~v{v~ ~[~=~]~ - It is easy to see a ~-ring is a S-ring. 

I 
4) We define a function +': V~ --~ as +i({)~[~=<~2 ~, ~s>]~. ip,8£~ ~ where 06 is 

such that <P ~,~>6< for all ~n,~,~ in Vp~(K ) • We similarly define +' ,-' , ' 

and ~ ~ ~ , i'~ ~ • All the dashes denote an index ~, since they are related to value- 
R I • tion [;If. Replacing this valuation with [']~ we obtain definitions of functions +~ - 
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I l ! :~ "~i ~ /~ As before, we shall omit indices £ and Y~ if there is no danger of ambiguity. 

Proposition 2. a) The functions ~ (for all kE~ ) are extensional with respect to 

valuations ['If and [']~. 

b) A Y-ring ~' satisfies ~=~]5~=[~=/j~ V~£/(• A ~-ring X satisfies ~=~j~ 

= [4---f_], VZ-, K. 

c) The following relations hold• 

2) S,¢,~.'Z~s, ,'ZPr.~$>E "t-"~I:/ ,VP, SE/(: The same is true for valuation [ '~ r~  
. , 

3) A S -ring ~ satisfies the following: ~ ,~, ,, '~>6 # R ~ d~,~=~_]]¢.., 
V'P,S,f,~EZ. The same holds for a '~-ring ,~ with respect to valuation ~ J ~ .  

4) A ~-ring ,~ satisfies [+I:/~f~RF,' /__~Ay_] 7 ,~f  =,,7 The same holds for a .~-ring ,~ with re- 

spect to valuation [j~q. 

• /9 ,, Proof a) We compute ~(/)n~:~=~qJ'5=U[[~=~] 7 n,FA=Y~n~.~=~l~AJ.<dU[9=yjsn~k=d~ly~ 
A"J=~I~) The valuation ~'7i~ is computed exactly the same way. 

b) The existence property and Proposition 1 imply that the left-hand side can be com- 
- Y 

puted as n[6c/~(/>Jt'~V,:~} We first check the inequality going one way: [~=~(] 

We now check the inequality the other way: ~ = . I - ~ .  ~niC(¢}-~[hlf] (letting ~ equal 

to K, we continue) ~(/<)-~(~)=[OC~:~]~][~=~I~6~])--(OL[~=~J ~ ~[~=~ i~EKJ) (reducing 

the premise, leaving only the K -term, we continue) ~[k=~]~ n [k=~ =/) -~ (.,,)]= u[[~=~jF ~Q 

[~={Jlz£~] (and using the assumption we obtain) eU~=~]~[~=~]l J6K]~[~=~]. 

The valuation [. ~ is computed the same way. 

c) I) If 8 belongs to the left-hand side then £~=SP , 8~z=£~eso therefore 8(~+~z)= 

8(P~8~ ; i•e., 8 belongs to the right-hand side of the desired inclusion, 

2) Clearly, we have I=+P(<~ ~ ~+$>)~r,~ / 

3) The left-hand side (of this inequality) is computed as ~< kJ LJ [i=<$,£~ 4/ ~/+$/b 

r2, ~2 

,ZTp/+5 / =.~-.~ n ~ =?~]f using statement b) we continue] ~ L~ ~P/=f'ZO.f/ ~2nn/+sT=/n 

~;+5~=~] (using relation 1 of this section we continue) ~ b ~t~/4"'~/=P~+S2~ the_P/+8~= 
r,/, ~/, ,"2, s~ 

/~+8~:~]~ U[~'f] and once again using statement b) we obtain] =[~=~]~ 

4) We have to show that [~fE+ ~ (where f is a triple of elements in ,<~j~ =/ and 

. - p / ~  t 077 ~ p~ p~ ~ , [y=c,~lEX':7fe+'(Plf;=zn~/~;=y)]y,~=EV~,~( (r)=pci; (f)= (1)~ ~(/P)=P(~?)~,,~=I, where 

)P~ is the l - th  term of the f~-tuple. This is shown direct ly. 
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Definition 3. We define an interpretation of a formula ~ of the language of rings in 

the language of a set theory ~}v by induction on the construction of ~, The obtained inter- 

pretation will be denoted by (~)K • A formula (~)K in the language ZP, for every free vari- 

able Z in ~, contains a free variable P2 in addition to variables K.+,-,' ~ 0~/- Thus, 

an interpretation of a formula ? ~<~=~) is a formula (~)f~ ( = ) Note that the sym- 

bol = has different meanings on the left- and right-hand sides of the above equation; on the 

left it means identity, whereas on the right it means equicapacity. If ~(~i+~; = ~) , then 

(~)K~--~/~[~I=~)KI'~(~Z =$') N(~gF~>£+~ • Here (~I=ZZ)K means that the formula (4=ZZ) 

in the language of rings is interpreted in the language Z~, the set-theoretical variable 

corresponding to the ring variable ~ is replaced by a set-theoretical variable Z~, and 

<,, ,, °> denotes a triple. We similarly define interpretation of therms containing other 

operations. Propositional connectives are then transferred, and "J~i..~2~(2)) is interpreted 

X as _72~ (~)K " The case ~ (~2~) is defined similarly. 

Proposition 3 .  Fix a ring K ,  and let K=</</,,.., > 6 X  and ~ < ' ~ / ~ . . .  n >,  

a) Let ~ be therm with free variables ~, ~ a variable in the language of rings, and 

~(~}=~ a formula in the language of rings. Let [(~)=d be the corresponding sentence 

(where 7 ~ K  ). Then we have [(~(~)=~{)K~]~ = ~(~)=~ if ,~' is a ~-ring, and 

~ ( ~ ) = , ~ ) f , ] ~  = E ~ ( ~ ) : ~ ]  i f  /< i s  a ~-ring. 

b) Let ?(~) be a formula with free variables 2 in the language of rings and ~$~) the 

corresponding sentence <~£~ . Then ~(,~))K~] = [~(~)~5 ~ if ~ is a S-ring, and 

]~(~x))K~]~ = [~ if I< is a '~-ring. 

c) Under the same assumptions as in b) we have )F<£~,+ ~ ' ' ~ '> _ ,- ,', 0 , / is a ring ~£= 
[<~,+, , , , 

, ,- , ' ,0, /z> is a ring ]~= I. 

Proof. a) This is proven by induction on the length of the therm. The first step is 

contained in Proposition 2b). 

We study the case appearing in Definition 3. We have 

r t  ~ 

[using Proposition 2 c )  we continue] ~< U [~7=,~]q [,--- '~ N~Fi=~)K,]f]~,=gp)f,] q [P{=C+p] (~,g~; 

S, Pc,i'j (here $+n is computed externally in the ring /(, as is the case for valuations 

nE/r(L--s]nE/2( >p]n [?=;÷p] I [again using Proposi- 

tion 2c), we obtain]--" U[[~=4].~c] [~'=,~]~n~1(f)+~;(7)=~l~,~$,r ] _~[(y;+~2)(f)=£ ] 
"J -- , 0 0 .~'0 

We now show the opposite inequality [44)=~] (where t = ~ / + ~  ) = It, ÷t- ---~] (where ~ -~ 
' ";- 0 -- Z7 -- ~ - 
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The case of the valuation [.~ is treated in exactly the same way. 

b) This is proven by induction on the length of the formula ~. For atomic formulas 

this has already been proven in a). For propositional connectives this equality is obvious. 

The case of quantifiers is dealt with as follows: [(_-7~)K,~ = U[~/(~)~o(jc,,~))~,~I~£~(K~)J= 

~Z=,~],j.l,~J)ifl[~O(~,k)]~,l~}-~,g~9(~,~).]f- • The quantifier ~ is treated similarly: [(V£W)K,]ffU[~'(£)~ 

] lt,,]l /;J n [_fd, S]14 J tzJ 
=[t~¢(4;)]. To prove the converse inequality, it suffices to show that nL[¢IEf)]If  Jn Iz _  
Ui[~=f7#] ~ [~(~,7~]I#£~3. The latter follows from an inequality [I=/9]~ [~(p,f)~ 

right-hand side. 

The case of the valuation [.]~ is treated similarly. 

Definition 4. i) A normal ~-ring is called a (*)-ring. A formula "a ~ -normal ~- 

ring" in the language Z,~ is denoted by *(K). A ring ~ is called normal if (~)Kc, where 

c~ is a formula in the language of rings that naturally expresses the following fact: 

~E~£~(K) ~B6~(~) ('Z'~=O ~-~9 8~e0) The "usual" rings are normal. 

2. A ring ,i" is called strictly decidable (~-decidable) if its carrier A / is strictly 

decidable (respectively, the set 3(~') is decidable). A set A" is called strictly decidable 

if, for all ,%?C7<" the heredity ~,rj+ of a set {k,~l (where ~ ~tl!I÷lI£Xj ~'i~) satisfies 

the following property: ~.~.~i+(~=~U~) where gZ~ zf((fd~ ~ I~f) U(~i~Tn££~) I. An 

arbitrary set X is called decidable if ~", ~dX, (2= ~ u ~T~ ~); for the set I(,~) this is 

equivalent to a condition ~C£~(~) (~=0 UE~) • Clearly, in the classical sense , every 

ring is strictly decidable and ~-decidable. On the other hand, in intuitionistic sense a 

ring with a countable carrier is strictly decidable, and every irreducible ring is ~-decid- 

able. A ring /< is called irreducible if (~)K where c~j~ ~(~z~f~V#(/<~=~/~) ~/<=Ou/<=/), 

Proposition 4. a) If a ring K is ~-decidable then it is a F-ring. 

b) If a ring 7< is strictly decidable (for example, has a countable carrier) then it 

is a ~-ring. 

Proof. In both cases we have to show that [~=~]-~ [~=~] , where the left-hand side con- 

tains a valuation in either ~ or ~. To prove statement a) we have to show that [~=~j c_ 

~=~y Let ee[K=~ , then e = O U e - ~ O  . If E=O then P is contained in the right-hand 

side. Suppose that £40 By £-induction on the first argument of the valuation we show 

that (g£[/~=~]~)~> k=f (which immediately implies the desired inclusion). Suppose that 

~6~ • ThenSE(k(~)-~ ~6~j~=[/e~, since X6~(k). Therefore, ZEU~(~)n[~=~]]~E~(~)J 
! 

=U{[~=~]n[~=~]~; ~£~j~< U{[~=~TI ~£~J~ C = £/+,..~er~ , where g{£[~C=~, ~6~. 

Induction on /g shows that e~4 0 for one of them. Therefore, ~#~&'£[~=~3 and by the 

induction assumption we have Z=~£~. If ~6~, then we similarly obtain $E~£~, ~=E/+.,.4 
~f6 where yCeie[~=zi],z&k Descending in the first argument, we obtain ~g'=~, f6A 
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Remark. a)If e [k= 1r- e =ei VeeI( ), W, eK then 75 is a I-ring. 

b) First, g-induction on the variable ~ shows that {7¢ ~ ~£~=0 and LZT~{~[LZ=~]@=O~ 
VS,~E~,~J + where ~, ~6K. If ~ ~ then ~E~=~{~(#)N~2=i~It£17(~)]=D[[p=~]f][~Z=/_~Ipj 
~£~]~-U~=i~ l~6~j where /Z~#~,~6~ . By the induction ass=ption the latter sum is equal 

to 0 and [a£~=O . If zZ~/ then let, say, ~X(~E~ZF] ~ )  . We obtain ~=~(dg/~g')--~ 
~ff~)=[~ ~ 0~[~=~] [ ~6~} , where ~ ~£f. By the induction assumption the latter 

sum is equal to 0. 

Finally, either ~=~ or ~. In the first case [~=~=/ . In the second case 

=o. 

Proposition 5. Let K be any ~-ring. Define ~: V 7 --~ ~ where V 7 contains all pairs 

of elements of V ~ <nk(lO. ~ as /z({J#D[[f=<k~>]~I~6K]. Then 

a) [~:~ --~ K' is an onto homomorphism ]f~= / ; 

f - ! / 

~ = / . Furthermore, IV, f ,  ~ s ~  (Pt(,2,):i'17i(~i)~t.7~.~)=iZF~l))~=/, since E#:{.]~ ~l~_~=~]~= ~ : ~ ] w ~  ' 
Finally, we show that the value of the following formula is equal to f : 

'_],, W:d,#>] 
n >] n [{-- >7 n + 

n 1~) {7)=,.~'l"l~i<)--,~]( where ki/lZ:.p'L,fd'~. ) SI~.K).,< [{<')~o S.t/l~S ~ -t- 10/7'Z'=r' f ' l /Z.:r) ]  <-- 

b) This statement is proven similarly. 

c) This follows directly from previous results. 

Definition 5. Let ~(,) be a formula in the language ~ (describing a family of sets 

K <K~+,-,',O,/>) . The formula ~(')is called absolute if ~(2£(W)--b/~ is a ring f]~(~/ 

Proposition 6. A usual formula in the language ~ describing the ring ~ (or ~ etc.) 

is an absolute formula. 

Definition 6. An expression "~-theory" T or "~-formula" ~ means that all formulas 

in T (respectively, formula ~ ) depend only on the free variables occurring in 5, where 

I=~s',,.,~jW~>~ r~>~O . For simplicity of formulations we assume that the theory Tis re- 

cursively enumerable (even though this is not essential). Thus, a notation /~ rTl(~) is 
understood as Vg£~K~ (c/~(/~)(~)), where rT is the code of a theory 7"(~=f~/,...,>,n>6/(,rI~/), 
Since V~ (m~ c~1(k)~-~[~))K' we can write (7"(~)) K Another formulation of this question, 

using infinite disjunctions and conjunctions, is also possible. In this case we obtain 
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[7-(~)] = f~[~(~)] I~£TJ" etc. Interestingly, this second path has already been noted in 

Definition 7. A formula ~ in the language of rings is called a phi-formula if the 

premise of every implication appearing in ~ satisfies the following two conditions: i) it 

does not contain the quantifier ~ ; ii) it does not contain the quantifier ~ in the domain 

of action of any implication. A theory consisting of phi-formulas is called a phi-theory. 

Given any theory T we can use certain natural methods to define a theory T ~ that consists 

of formulas composing ~ rewritten as phi-formulas. For example, an interesting case is At@ 

where ~n is either Peano or complete arithmetic. 

Definition 8. i) A formula in the language of rings is called almost positive if it 

can be obtained from "blocks," i.e., formulas of the form ~('~(~) => ~(~)), where ~ is any 

Horn formula and ~ is any positive or an almost positive formula that has already been con- 

structed, by imposing connectives J,~JJ,-f~. 

2) A sentence Q(k) is called decidable with respect to a given ring K, where ~6~ if 

(~9(~))~=>,l?~(k)], where the operator P[oO is defined by induction on the length of Q(f) as fol- 

lows. If ~ is a positive formula then JT[Q] =~. If this formula is a block then the value 

of P by definition is equal to _~-~([~(~)]=/ N ~fE~((Q(~)K~Iw~j)] ), furthermore, lp~J ~ 

N (~/'!~. ,~, A theory Tj) is called decidable with respect to a given ring K if all its senten- 

ces are decidable with respect to this ring %/. 

Definition 9. Let ~i~ be any sentence in the language of rings ,~A'). Define a trans- 
f, -- 

lation ~(~-* ~I~,0) (where 9~is also a formula in the language of rings and ~ is a 

special variable which assumes all values in Z(A') ] by induction on the length of ~. Let 
~l ! -- l / f ¢ 

E/~=Y)'~-'g'E=~'~)~ IQnC')'~'ng', (zTZ~)=~rf,(~-~Y'~@ and the most important cases (90~#)~ 

~G((E~'(EO))~¢(~O). ) (here EO, E/, and ~? are special variables just like e), ~'~tJ~/~ 

rzi[r-e/), ' I - . ,-. , , ~ 2"91h 7 /I i i~'-f2,=~/-~?)~ C', El) ~ J ( .... ~'Let ~'i~) ~- ,~A, If V is a theory then 
c d/ t 

Proposition 7. Let \" be any ring. 

a) Condition ~'iE.C)) K is equivalent to a condition Z6[¢~'(I)~(4. ) for any formulas 
' v . 

in the language of rings, parameters f~/< and ~6~(JO, In particular, i~'~')!. ~-~ i[991~)]9_(K ) 
=/). 

b) If ~(~) is such that the premises of its implications contain positive formulas 

then -~I12 ' ~) is a Horn formula. 

Proof. a) This is proven by induction on the construction of the formula ~ . For an 

atomic formula $ this is satisfied by the definition of the variation [°~f(K)' Cases ~q~ 

-~: (with the property of attainability of ~'I ~,) taken into account) and ~¢ are 

clear. A condition ,~u~)'~,, is equivalent to J21.~2 - ~r-2,A,''' ~!uC.2=~qEl~[~q~2~)4=~ 
A 

E£{~U~]. A condition ({,~)~)"K is equivalent to a condition VBO621,&/i ('CO-<E---> (~06[~ 
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b) We use induction on the construction of the formula ~ to show that if ~ is positive 

then @r is also positive, and then prove the validity of the desired statement. 

Proposition 8. Let A" be a ring. 

a) If I~).~, then Ice, If(K)= /, 

b ) We have [,aO~y(K ) = 1. 

c) If (i)E then [~'~$.(f)=/ and (c~f) K where pairs of symbols z' . {' ( { can take values 

2, 3, 4, 5) denote the following pairs of properties in the language of rings: strictly 

biriccart --- prime C{=2) biregular ~ = quasisimple (~'=J) strictly regular -~ , skew field 

({=4') strictly riccart ......... has no zero divisors ~i=57 (for detailed definitions of these 

properties see [5, p. 389]). 

Proof. a) Suppose that (~)£ is true. It suffices to show that [VS[~=e N ~(g#=~g)r] 
~=O]~=>[e2e~(~=~c)Ae~eO]]~_(K) =i for every fixed ~ and gO that corresponds to this ~ by 

the definition of normality. This valuation can be computed in both directions only for e 

such that the corresponding premise has value i. In this case, if [82--eN~(E~=~E)ng~=$]=1, 

then g£1(/(), e~=O and therefore 8-~EO - Conversely, if [~=Z f~ ~(g~=~E)N £,<E$]=/ then 

8E~_~(K), C-< £0, and therefore ~k=O. 

b) We have to show that ~2__~] N[~(~=~)~ ~=0] U [~=]~ for all ~£~ . Suppose that 

g6([~=~{[~=~l~E/<J, Then (e~)2=6~ and ~.~=~,~6/<, i.e., e~6.ff(~). We obtain 

g~£[~=/] , since £~=(e~)z=e~ . on the other hand, E{{-EK} £[~=0~ since e(/-g~),/~L~- 
gz,~z--£~-(e/¢)zO. Therefore, $KU£(/-g~)E[~=O U~=/~ Here e/<.g(/-E~)=C//-gf),~=e~-gzfgi=O. 
Therefore, ~kmeft-~,~)=e2+n{l-el<)=o, i.e., 8£[~:O]U[~{]. 

c) The proof of this statement has been given in [5, pp. 388-393]. 

Proposition 9. Let K be any ring. 

a) If ~ is a positive sentence in the language of rings, then (~)~ implies [~]E(K)=]. 

b) If W is a Horn sentence in the language of rings then [~]~{K]:/ implies (@)K' 

c) Suppose that a theory T(/() in the language of rings is decidable for a ring K (~(K]. 

If (T(~)) K , then [T(~(K)=/, 

Proof. a) For atomic formulas this statement follows from the definition of the valua- 

tion. The rest of the proof proceeds using induction on the construction of the formula ~. 

b) This is proven by induction on the length of the formula ~. The cases of atomic 

formulas and connectives N~ V are obvious, and the case of the connective -@ follows from 

the property of attainability of the valuation. The case ~ --9 ~ is studied as follows. 

Let (@)K " Then from a) we obtain [~-~=I and therefore [~ ={, so by the induction hy- 

pothesis ( ¢//)K ' 

c) We define the rank of an almost positive formula ~ in the language of rings. An 

almost positive formula such that all conclusions in its blocks contain positive formulas 
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is defined to have rank O. An almost positive formula such that all conclusions in its 

blocks contain almost positive formulas of rank up to and including r& is defined to have 

rank (/Z +/). 

Now using induction on the rank of an almost positive formula ~ we obtain ((~)KC) P~gJ)----~ 

(~g.~r(K) = /) The desired assertion follows directly from this. 

Suppose that £ has rank 0. Let us consider induction on the construction of a sen- 

tence ~. Let a~ be a block. Assume that I~) K n/i~[~] Taking into account P[Z] we obtain 

[£]=~[~(~)I~[~(¢)=~ which is equal to I, since every factor is equal to i. Indeed, 

[~(~)~ =/ implies I~(~?)~ and therefore (~(~))X ~ ~(~)~= /' since ~ is a positive formula. 

I f  X = ~ n ~ ,  then(~.'~. 'q(~') K and , ~ [ ~ ] ~ , P ~ j  . I f  ~ = ~ U ~ ,  t h e n  ( ( ~ ) g f ] P [ ~ ] ) U ( ( @ )  K f ]~7[~ j ) ,  

I f  ~ = , ~ X f ,  t h e n  _f,!eK(9(/~nP[~(k~). If  z=kz~, t h e n  ~ ' i eK i~p(k)K) , gke/((,f2fg~(k~]),  

Suppose  t h a t  £ has  rank  rZ+/ . L e t  us once  a g a i n  u se  i n d u c t i o n  w i t h  r e s p e c t  t o  t h e  con-  

s t r u c t i o n  o f  t h e  s e n t e n c e  ~ .  I f  ~ i s  a b l o c k  and ( s e )  . , ~ C ~ ,  t h e n  p r o c e e d i n g  e x a c t l y  as  
• I 1 b e f o r e  we see  t h a t  g'lJ,~, and u s i n g  t h e  s econd  p r o p e r t y  in  ~?[~e] we o b t a i n  17~(~)] As be-  

fore, we then apply the induction assumption on either the rank ,2 or the construction of ~£. 

Proposition i0. Let ,~' be a normal ring. 

a) Every phi-sentence ¢°(7 where 7£/£, satisfies [~(f)~_(K)~ ~(~)-J~(KT' 
b) Every AE-sentence ¢'i~-~ where E£A, is such that if ~'(-~)~(K)>~0, then ~ ,T,r. ~ l^ ,j J I r  

• v , .  

P r o o f .  a)  F i r s t ,  s uppose  t h a t  t h e  f o r m u l a  9# does  n o t  c o n t a i n  t h e  q u a n t i f i e r  }~ and 

does  no t  c o n t a i n  t h e  q u a n t i f i e r  3 in  t h e  domain o f  a c t i o n  o f  a c o n n e c t i v e  =9. Using  i n d u c -  

t i o n  on t he  l e n g t h  o f  9 ~ we s h a l l  show t h a t  i f  ~ does  no t  c o n t a i n  c v , t h e n  [ ~ ] 2  = [~].3 

and i f  @ c o n t a i n s  3 ,  t h e n  [ ~ ] ~ =  [ ~  . An a t o m i c  f o r m u l a  < s a t i s f i e s  t h e  f i r s t  a s s e r t i o n  

( b e c a u s e  o f  t h e  n o r m a l i t y  o f  t h e  r i n g  K) .  In  t h e  c a s e  ~ = ( ~  ~ ~ ) ,  we s e e  t h a t  f , ,  ~ do 

no t  c o n t a i n  (by a s s u m p t i o n ) ,  f rom which we o b t a i n  t h e  f i r s t  a s s e r t i o n .  The c a s e  where  

~=  6~.q ~ or  ~ U ~ ,  o r  ~ X f ,  i s  o b v i o u s .  

Now suppose  t h a t  ~ i s  a p h i - f o r m u l a .  Using i n d u c t i o n  we p r o v e  t h e  d e s i r e d  i n e q u a l i t y .  

I f  f = ~  n ~ o r  ~ 0 ~ ,  o r  - ~ X ~ ,  o r  ~@f,  t h e n  t h e  i n d u c t i o n  s t e p  i s  o b v i o u s .  I f  ~=(~ => 

~ )  t h e n  f i s  t h e  same as  in  t h e  l a s t  p a r a g r a p h .  T h e r e f o r e ,  i t  s a t i s f i e s  [ ~ ] £ = [ ~ ] ~  and 

[6]r ~ [f~]~ simultaneously. From this we obtain the desired inequality. 

b) We first note that for every normal ring /( and every quantifier-free sentence ~(k) 

we have the following 

~_~o(/~] ~.(~) = [ ~ ( k  )] ~(K ) ~ ,~,¢), ( l l )  

We prove this using induction on the length of ~. For an atomic formula this follows from 

the definition of valuation. Propositional operations on elements of _~(K)computed in ~[/() 

belong to Z~(~/) and coincide with the values of propositional operations in ~-and ~. 
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In case of ~-valuations sup is preserved in comparison to the T-valuation. 

we have 

[9If = [~]~ for every E-formula ~, 

Thus, if ~f~)~G, then [~9~(~)~(K)~, ~k; ~(~))~' [~X~K)' 

The following three theorems are purely finite. 

Therefore, 

(12) 

In their statements T is any ~-theory in the language of rings, ¢ is a phi-theory, 

is a £ -formula in the language of rings, and __ ~ is a ~E Z-formula. A notation of the 

form ~)-----5 ~(~K denotes ~£~ ~T(~ -~(k~K' 

THEOREM i. a) Suppose that ZPZI~ V~[~(~),~,G~3@~K. Then ~/~ ~K (~ is a ~-- 

ring ~[T~)~ ~ K  )" The formula ~ can be omitted simultaneously from the premise and 

the conclusion. 

b) Suppose that IF~-~/<[~(~) => ~I~)]/<, Then i) ~,~2"J- ~,~(,~')@[~J~)~/(~.}~K (recall that 
if ~' is Horn then ~/-->~) ; and 2) Z~_F t ~V/<(,(K)--5 ~T~(~), q~ 3 =>~(e)]f), 

c) Suppose that Z~" k VK [~($~)~(~)]K " Then i) Z/~_/~ VK(~(/<) ~ [T~ (1)=> (~/@~K " and 

d) We can simultaneously add ~ the premise of formula {' in a) and ~ to its conclusion, 

where ~' = 2, 3, 4, 5. We can simultaneously add ~' to the premise of T~ in b) and c), and i 

to its conclusion, where $ = 3, 4, 5. 

e) In all previous statements the length of the deduction in the conclusion depends 

linearly on the length of the deduction in the premise. 

THEOREM 2. Suppose that ? . T ~, ~ satisfy the conditions of Theorem 2. Then con- 
r 

clusions of Theorem 2 remain true if we replace both T in its premises and T'in its conclu- 

sions by T , adding to the conclusions the condition of decidability ~,~) for the ring A 

(or alternatively making a metamathematical assumption that T£~) is a positive theory). 

Proof of Theorems i and 2 a) Let A be a J-ring and iT~"~),~1 'K where ~A" and c2 

could be omitted. Proposition 7a) implies that [T(~)]£=/ • If /<~, then by Proposition 

8a) we obtain [q97]f=Y and by Proposition b) we always have [~F = / - By Proposition 3b) 

we obtain ~ ~, ,j, 3)K~]~ = /. A predicate [°~f= 7 is closed under Z c/"'-deducibility, 

so therefore ~(~9(P~))A~>=/. Thus, [~(,7~)~j=/ and (~I(~})K, 

In the case ({)K of statement d), using Proposition 8c)we obtain II {'Ilf and the proceed 

as before. 

T satisfies the conditions of Theorem 2 then by Proposition 9 we obtain [T(~ F =/ If 

and then proceed as before. 

We note that one could write a number of logical laws (for example, ones related to the 

second infinite law of distributivity) for which the value of a valuation [,]~ is equal to 

i; all of such laws can be eliminated in a way similar to ~. 
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b) Let ~ be a (*)-ring and ~}{~)K Proceeding as in the proof of statement a), we obtain 

~(~)~=I- By Proposition lOs) we have [~7)~ = i-By Proposition 3b) we have ~T(~.)~]~=/._ ,. 
= ~,"-deducibility, so therefore ~ l ~ k ? ) K ~ ]  5 A predicate ~.~$ / is closed with respect to ~ = ~. 

d 

This in turn implies that ~(~)]3=/, , and by Proposition lOb) we have [~;~=/,i.e., 

i ~ i ~ ) ) ~  ' In the second part we additionally have (~),< ' We now prove that 

-- ,~ 

for all sentences d,<) of the language of rings, and from this the desired result directly 

follows. 

We prove it by induction on the construction of ~. For atomic formulas (6) follows 

from the definition of valuation. For conjunction it is obvious. We prove the case of 

disjunction as follows. Let ~[~=f, then either f=~Iue2~ ~/d[~ C2~ [~] , CD=O or 

~[= /. Let us consider the case £I=0 and E2=O We obtain a contradiction. The case of 

implication is proven as follows. Let ~--5~ Since either [~ =0 or [~] =/ we have 

[~] ~ [9~ " The case of the existence quantifier is treated as follows. Let [~=/ Then 

the property of attainability implies that [~{~ = d, for some K~A' and hence t3~j.~: ~ . The 

case of the quantifier of universality is obvious. 

Concerning d), if (~)K then by Proposition 8c) we have [~i~ = i and ~ is a phi-formu- 

-~ and then we proceed as before. la. Therefore, [Z']~-, 

c) Here we supplement the proof of b) by the fact that the classical proof uses a sen- 

tence ~ as an axiom. This is not related to any special role of the sentence ~ itself 

(for example, om, 3 could be replaced with ~ ), but it illustrates the possibility of using 

something like ~ which is not a phi-formula. Exactly as in b) we obtain [~ ~]~= I . 

Let r ~ i ~ i ~ = $ ~  ~ ~k=O U~=~). Classically, ~ is equivalent to ~, so therefore, 

[~3~9 ~[~]~- However, '3 is a phi-formula, so therefore ~ z]~[~J~ [using Propositions 

lOa) and b)]. Intuitionistically, we have ~7---> r7~I- (' ,~ where ) is the usual Godel negative 

translation. Using the normality of the ring ~ we obtain [~-] = [~3]f~7,3Jf & [77~]~ , 

i.e., 77[~ =F. By Proposition 7 the latter is equivalent to 177~)~) K, whereas it is also 

equivalent to the following condition: 

Recall that a letter £ (perhaps with some indices) denotes an element in ~(K) 

In the framework of classical metamathematics condition (7) is equivalent to a condi- 

The above equivalence is easy to prove. Suppose that (7) holds. Then [,,~ ~£= ~' 

Therefore, <2>~Fh~3j--~E=O,I where Lld~?~(i6~---~=$~, since the left-hand side is equiva- 

lent to [..j. Thus, 77[~j~--{<e>I<Z>~_}=O. 77~y=~ Suppose that 77~£=1 and the premise 

in (7) is true. Then <e>~,, Therefore, <£~7[~~,</-C>~77[~,]r =/, /_U=i, C=£, 
J 

The second assertion requires an opening up of condition (7). Let E=_ r. Then we have 

7~O~'1~eO}-~O=C~. 7¢I/} _--~ /=~)77~' and using equivalence (6) we obtain 77~, 
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d) This statement has already been proven in the context of other statements. 

e) This directly follows from the previous proof. 

Remark. A translation ~ ~-+~ [and consequently conditions of the form (7)] has a 

direct set-theoretical meaning. We first clarify it using the example of a quantifier-free 

formula ~ of the form ~ ~ U t C 4 f = ~ i N , , , n  P 1 ~ ' ~ $ t l  ~ ' "  )] Z = !  . . . . .  ~} where the multiple dots 

denote other equations and other inequalities, respectively, in the f-th disjunctive term, 

and ^j~ , ulf ~f ' Sir are both polynomials and the values of these polynomials for given 
• ! 

parameters. Then L~ is equivalent to the following condition: There exists a decomposi- 

tion of the ring ~ as a direct sum A'=O~.,I l i=/ .... ,~j where ~e~IK), such that ~'~ = 

-'~E (for all equations contained in the f-th term) and 8,'~f~ ,.=~°"F'f" ~: (for all inequali- 

ties contained in the ~'-th term), where F.p~C,S=VEO(ff~}~£O.r~j.S) If ~ , where 

is a quantifier prefix, then ~ .  

THEOREM 3. Conclusions of Theorems 1 and 2 remain true if in their statement ~A,,, 

is replaced with ~.~I~)~ ' where Z(. ' is any absolute formula. 

Proof. We need only to add the following argument to the previous proof. We know that 

j , .T ,  ~ )  . :: = ~ ~ , , / ! ~  _ / • F ' ~ / ~  " ~ 7 i k . .jA~ , and furthermore il~,~.~ j ~ - ~ sznce by Proposition 5 we have ~, =A / ..~ = . 

(The case ~lis formulated and studied ~ similarly.) 

In particular, we note that with this method many difficult proofs in the theory ~r~ 

are automatically transformed into intuitionistic proofs of same assertions. For example, 

this is true for the known positive solution of Hilbert's seventeenth problem. 

LITERATURE CITED 

i. R. Grayson, "Heyting-valued models for intuitionistic set theory," Lect. Notes Math., 
753, 402-414 (1979). 

2. P. S. Novikov, "On some existence theorems (1939)," in: Izbrannye Trudy [in Russian], 
Nauka, Moscow (1979). 

3. V.A. Lyubetskii, "Valuations and sheaves. On some questions of nonstandard analysis," 
Usp. Mat. Nauk, 44, No. 4, 99-153 (1989). 

4. M.P. Fourman and D. S. Scott, "Sheaves and logic," Lect. Notes Math., 753, 302-401 
( 1 9 7 9 ) .  

5. V.A. Lyubetskii, "Some applications of the theory of toposes in the study of algebraic 
systems," in: P. T. Johnson, Topos Theory [Russian translation], Nauka, Moscow (1986), 
pp. 376-433. 

6. V.A. Lyubetskii, "Intuitionistic theory of algebraic systems and nonstandard analysis," 
Algebra Logika, 30, No. 3, 320-332 (1991). 

439 


