TRANSFER FROM DEDUCIBILITY IN THE CLASSICAL SET THEORY
TO DEDUCIBILITY IN INTUITIONISTIC SET THEORY FOR THE
LANGUAGE OF RINGS

V. A. Lyubetskii UDC 510.67:512.55

This article is a direct continuation of our previous publication [6] and is essential-
ly a detailed study of one aspect of Theorem 1 cited in [6]. We show that for a large class
of properties in the language of ring theory their deducibility in the classical Zermelo—
Frankel set theory ZF implies their deducibility in intuitionistic set theories 77 and
ZF7" defined by Grayson in [1]. Furthermore, the derivation of the latter deducibility from
the former one is done finitely (by means of a primitively recursive function), i.e., com-
pletely explicitly, and in such a way that the increase in the length of the second conclu-

sion depends linearly on the length of the first conclusion.

Theories 7.7 and (to a lesser degree) 547’ have properties of disjunction and exis-
tence. Recall that the first of these properties means that if Z77 ~FZ¢/Z) , then a therm
fztg}¢(y{} is defined explicitly in the language ZF and satisfies S5/ + @(7) and
SFI —F!z(z=¢). In the theory ZF/' this property means the same, but for certain restric-
tions on the form of the formula ¥. Therefore, we can envision the following "programming"
scheme: If Z7+Jzy(z) then 5I7 v+ Fz¢’(x) and therefore ZFJ |- ¢'(7) where 7 is the cor-
responding therm. Here ¢/= ¢ and ¢' is close in meaning to ¢. If the formula Jzy¢(I}
is replaced by a formula %xiizw(a;a?) then a similar scheme holds, where the therm 7 now
depends on a parameter «. This scheme combines the expressive power of the language and
theory Z7 with a certain effectiveness (the possibility of constructing a program). Be-
sides, apart from this circumstance, the topic of transferring from the classical logic to
an intuitionistic one under which a formula ¢ does not acquire "meaningless" insertions (for
example, connectives 77 and relativizations to the class of stable sets) has long been ac-
tively studied, beginning with [2]. In the latter publication, Novikov proved a theorem
corresponding to this scheme and stated a conjecture that his theorem is "true for very

broad conditions.”" We think that this conjecture in particular is shown to be true in this

paper.

We also note a connection between our paper and Markov's principle. The theorem by
Novikov mentioned above and other theorems on this topic can be considered to be special

cases of a general semantic Markov principle.

Unless otherwise stated, throughout this paper the metamathematics used is deducibility

in the theory ZF/; the other two possibilities are deducibility in the theory ZF7'and

Mathematics Institute, Academy of Sciences of the USSR. Translated from Albegra i
Logika, Vol. 30, No. 6, pp. 652-670, November-December, 1991. Original article submitted
January 18, 1991.

0002-5232/91/3006-0427$12.50 1992 Plenum Publishing Corporation 427



strictly finite metamathematics. Grayson made a similar assumption in [1].

In the sequel 47 is a fixed complete Heyting algebra. Grayson in his fundamental [1]
defined a class V"(all of whose functions are defined everywhere) and a valuation &]A?
for the language ZF with a family of parameters Vﬁg For more details on definitions and

properties cited below (up to Proposition 1) see [1, 3].
The mentioned valuation satisfies the following properties:
He;]ﬁ =U{g(A) [7/’=/i:ﬂg | heo(@),
=91, = ﬂU[/ie,ﬂ]Q —liegd, lheDHyv D}

Let LEM be the scheme of axioms of the law of the excluded middle. This valuation has

(1)

the following values on logical axioms of intuitionistic computation of predicates and on
special axioms of the theory ZF. VYor axioms of capacity, pairing, union, power-set, infin-
ity, separation, and £-induction (which is equivalent to foundedness if the LEM axiom
holds) it is equal to the unit 1 (in47). The same is true for the axiom of substitution
and even the axiom of collection, but then the theory ZFI' has to be chosen as the metamathe-

matics.

Let Ord (Z) be an ordinary formula stating " £ is an ordinal." We define the rank of a
P + e {2\ AN <~ :
set as pk(x)_,U{(,nk(%/) ]ye,z'} and \éc-, U{L \\,‘13)};550,3, \/—,UU;C wﬂd(d})} , where ﬁ(.t) is the power
set of the set 7. We obtain

bd irkiz), Yo Yo (Ordiz) srki)z), VrizeV )

Fk(£)+/;
cca =V el . / : =prk{V
wes =V \/ﬁ,, zeyel szeV s Y nlh=rk(i, ). (2)

Here « and p take values in @%, on the class of all ordinals.

5
V—=V*¥ by letting 2%\

;'ku:) I(;f) = UU[#;/]] I T/E.T/}, where

;‘/’;E \//Jp ' (3)
<rk(z)

We define a mapping (-)V:

In the sequel we omit the index in the notation of this and subsequent valuations where the

meaning is clear.
The following properties hold:
1) [7()=:9]IA [‘P(Tn)]é [tp(?)], where ¢ is any formula with parameters;

2) Wzef ¢ = n{fiz) = iollze 0} , Bzef vial =U{F 20 [p(zll| 1€ D(f)} where o

is any formula with parameters.

Definition 1. A function 7ﬂeV!: is called extensional with respect to valuation [-]&?

if
i,y 2¢0) (fon Lz-yl<f). (4)

Proposition 1. If Tﬁis an extensional function then Vyei)({’) ([yef’]:/(y)).

The proof is obvious.
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Definition 2. Let K be an associative ring with a unit. Let Z(K) be a Boolean alge-

bra of all central idempotents of the ring K, and J(K) a complete Heyting algebra of all
simple ideals of F(X). The class Y74} is called a Heyting-valued universe corresponding

to the ring K.

Let A(K) be a zero-dimensional complete Heyting algebra of all J -operators on the
algebra J(K) and B(K) a sublattice of A(K) of all stable elements of A(K). (An element A
in z is called stable if 77%Z =z where 77 is computed in A .) This lattice B(K) is a com-
plete Boolean algebra. All of this has been studied in greater detail in {4, 3]. The class
\/*@(“ is called a Boolean-valued universe corresponding to the ring X . In the above and

subsequent notations we shall frequently omit the index K .

Recall that J canonically imbeds into B so therefore

vicv?

We define an auxiliary valuation:

[k=£] = {eeB(K) e k=e-¢) e T(K).
This estimate, like any other valuation, canonically extends to the set of all sentences of
the corresponding language, in this case the set of all sentences in the language of rings
with a parameter set K. One such extension of this valuation is obtained for values in

7(K) (which we denote by [']T ), and another valuation is obtained for values in .3,K) (which
we denote by [']1.73)' Clearly, [(/:Z‘:ﬂf =[k=ﬂ]%s\/,é,f6/( For more details see [3].

We note that
Kevf ;. 7 ~ , 7 _ 7
nk(A/)’/(' \/<n/<(/<)_“/ and VkeK(ke\/pk(/\,)/\ﬂk(k)erk(/()),@?!ke()sb/ﬂ

The same holds for V,@(,().

1) We define a function ,Z7 by

v i T A= VAL N ] 12e k).

f We define a function /(’ VJP +—7 by K(f) ) UU[?P D]] [k},

Clearly, {p|/<€/(} v nk(K)

~
g \,Y

vhere 7[)5\/ k(/O \i”;{'(/(} U PR(K) -

Clearly, K €_Vk(K)+

2) We similarly define a function K',é , replacing in the definition of Kg,- the algebra
T with algebra A

3) A ring £ is called a J-ring if V,é zek (k= z‘j] lk= f] ; and it is called a @ -
ring if Vé,zle/( (Dé Zl_.ﬂ <[k-—é]ﬁ It is easy to see a $-ring is a 7- -ring.

4) We define a fur;_ction + ; \/< s as +( {’);U[[/-\ n’.S" f‘+5>]{/‘ |p,se,(j where o is
. ! 14 /
such that <e’€’l7a(>€léc for all P_n, s'pt in Vp/((K) . We similarly define +° ,-" ,.
and 0’5,00 'S /2,7 . All the dashes denote an index J, since they are related to valua-
tion [‘-_'Rg,. Replacing this valuation with [.]ﬁ we obtain definitions of functions -§-é _é, .
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/ ! -
al ,ﬂ% s /ﬁ . As before, we shall omit indices 7 and # if there is no danger of ambiguity.

Proposition 2. a) The functions /52 (for all 4€K ) are extensional with respect to

valuations [*Jy and ['1,
b) A J-ring A satisties [F =] =[4={], Yk {eX. A B-ring K satisfies 771,
= [4=11, W, ek,
¢) The following relations hold.

1) [4=rInlf,=s)= [Zst=res], V2,70, 5K,

2) [\ S" >€ +'1 —/, V/’, S€A.  The same is true for valuation {[]1,5

3) A J-ring A satisfies the following: [<. /’,ps,f/))t + ﬂ(ﬂ'lg‘p>€+:ﬂ ﬂ:z?—p]

\//157/,2,16/( The same holds for a B-ring £ with respect to valuation i[]}

4) A [ -ring K satisfies [+ JA,-Z//\{r_’/\;]f==/: The same holds for a J-ring X with re-

spect to valuation []1

Proof. a) We compute :7/ )ﬂU—QJ —UU}: f]y N k= ﬂn[’ 9] )Tf‘:/\} U{_ﬂ:g Zf_ﬂ N k=27 f¢

A"}= "’({g) . The valuation L J_ﬁ is computed exactly the same way.

=
x

b) The existence property and Proposition 1 imply that the left-hand side can be com-

puted as ﬂ{p, (/)Hp(f)ly‘é crki /&)} We first check the inequality going one way: [f f:ﬂﬂ

5 iH=U{l=el N e 1 U012k )< UL~ n LE-ddi0 €K} =5 (f) - We obtain  [k={J< (7 4) o

Fn, [k={1<[F, = £l

We now check the 1nequality the other way: IED ‘7] =N ,’J(f “’3’ )I ﬂ (letting rﬂ equal
to ~, we continue) é:i(k)"*f?‘z(f{’)'LU{ﬂk ﬂ] N [4= Z&_—J]MEK} -~ UUM ﬂ] nL{ f] | Zf€Kj) (reducing
the premise, leaving only the £ -term, we continue) <I({fk k] ﬂﬁ:;(f Ki=1)—1. )j uUDQ é_ﬂ N
i£=£11z€ K} (and using the assumption we obtain) ~U{,{[,<_é_ﬂﬂ [{ ﬂ‘ée&’}sﬂ 1.

The valuation ['],@ is computed the same way.

¢) 1) If ¢ belongs to the left-hand side then £4,=6r , €5,=£Sso therefore €(f+7,)=

e(r+5); i.e., € belongs to the right-hand side of the desired inclusion,

—

- N
2) Clearly, we have I=+' (<P P P >)5L\a'g’,€+§>€r :ﬂf;

PIEYINES

3) The left-hand side (of this inequality) is computed as < U /U [T_
7*9[’ $/

r3,82
I snp=<l =<0 D 2> = U O =z
NG Ry P52 N <2.2.5°1 £.9.07.51,., [7/=7,02y=74 n

/"Dm’ [V

=7 N> a7 ; ; s U 2 =t
,7.7M+5/ ~ n . r2ts 'sz]? using statement b) we continue] rhstone Seﬂ}’/ renss =52nrissd=In

ré+58=1] (using relation 1 of this section we continue) € U [ri+s/=rz2 +$2] N[pi+8/=
rf,54,n2, 52
[ Nr+88= Z‘:Hs U[C f_] and once again using statement b) we obtain] = ﬂ:,U ,—77?5]

v

4) We have to show that [V/E% (where 717 is a triple of elements in ;‘(/]y_ﬁ ={ and
[V;c,yeK':77”€+’(p/(/)=znpz(/)=}’)Jy; = [¥f,9(P P P(gmp(f) /7(9#17(/)-/-7;)1]] =1, where

P'is the i-th term of the 72-tuple. This is shown directly.
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Definition 3. We define an interpretation of a formula ¢ of the language of rings in

the language of a set theory ZF by induction on the construction of ¢J, Theobtained inter-
pretation will be denoted by ((,WX . A formula {(’mx in the language JF, for every free vari-
able Z in ¢, contains a free variable ’Z?z: in addition to variables K 4+ - ¢, 0,/ . Thus,

an interpretation of a formula ¢ :-,'\ai=7f) is a formula (¢), = (/93‘/7},). Note that the sym-
bol = has different meanings on the left- and right-hand sides of the above equation; on the
left it means identity, whereas on the right it means equicapacity. If cﬁﬁ(fﬁ(‘fz = y) , then
(<p)K‘—7_77u,zre/([(z‘,=zz)Kﬂ (4=V) OCU,U',py>€+{ . Here (é/':u)/( means that the formula (Z‘,=Zz)

in the language of rings is interpreted in the language Z/, the set-theoretical variable

'Du corresponding to the ring variable ¥ is replaced by a set-theoretical variable #, and
<+, +,*> denotes a triple. We similarly define interpretation of therms containing other
operations. Propositional connectives are then transferred, and gﬁ’:(j’x;&(zﬂ is interpreted

as _:7.26/((99)/( - The case ¢= {V.ﬂ{,@) is defined similarly.

Proposition 3. Fix a ring X, and let /é=<,<’/,,..,/é/z>6/( and p/<—‘-=<[::</,,,,,/7kﬁ >,

a) Let [ be therm with free variables Z, ¥ a variable in the language of rings, and
f/f)=§/ a formula in the language of rings. Let Z'(/\T) ={ be the corresponding sentence
(where ,?’ Lek ). Then we have [(Z,-(ﬁk)'tprf)/\”]j' = ﬂ_—f(k)=£_ﬂ if A is a /-ring, and
L#2y=£5),1 =1tk)={] if £ is a B -ring.

J4 2Kk B

b) Let ‘?’0@} be a formula with free variables 7 in the language of rings and (ﬂ(;) the
corresponding sentence (4€£) . Then ﬁg&(.%})!(;]j_ = Qp&)}y if £ is a §-ring, and
gsp{%})x,j% = fpk)d,; if Kisa B-ring. '

2 T A N

c) Under the same assumptions as in b) we have KK, +,=',*, 0,7/ > is a ring 1¢=

ki+7 - 0 > isaring]ﬁ=7,

Proof. a) This is proven by induction on the length of the therm. The first step is

contained in Proposition 2b).

We study the case appearing in Definition 3. We have

{((f*tz){ﬁk)-:,p{)l(,}g. = U{K wynK'wo)nlz, w,, a

H

=) 0 <a i Byery [ reay <Ulfe Ao
r=P0 (£,2),, n(4,=P), NP P Eye] lu, "Evr/«/o’ et
[using Proposition 2c) we continue] < {[le%:ﬂﬂ [r=7] HMZ/=%)K/]ﬂEt2=’Dﬁ )K’]] n [/ZZ’=;.7S‘+P] s

§, e ‘\"} (here §+ 7 is computed externally in the ring £, as is the case for valuations

ﬂ:l‘yg =U{lxz- /7] N lr= /7] nﬂj é)-S]]ﬂﬂ:Z‘(r(’)-ﬂﬂ [£=5+r] | u,v, s, r}{again using Proposi-
tion 2¢), we obta1n]~UU[u /DJ] 0[0_17] ﬂ[Z‘ kH’Zl(K) ﬂ'lé g8, ”_} ﬂ:(?f*f)(/()‘g_-ﬂ
0

-

We now show the opposite 1nequallty [i(k) G} {where Z‘Z{/-H?Z ) = [é'f ng_{,’__ﬂ (where 7, =

Z/(K) and ?f —»&lf(k})x g:z.“’i»z“’ :B,v (and in addition ﬂ:{f/ p) a“) ,]} =/, }[(zfg D’) ")K'] =/

e [<szsz%0 €lp =1 so therefore) =[<o, o, 7>€+ A ’?owméz (5 ~Faa )1,
é]ﬂ(a‘ﬂ-ég}(,ﬂ )= ) ]] , since by letting Z&"";pfa and pb;a we obtain /((ZZ)=/(((/')=/,
(SO &/ < ! 2
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The case of the valuation [']},@ is treated in exactly the same way.

b) This is proven by induction on the length of the formula ). For atomic formulas
this has already been proven in a). For propositional connectives this equality is obvious.
The case of quantifiers is dealt with as follows: [(_—Zzwkl]” = UM’/(VZ‘) ﬂﬂztﬂ(.f,'b;)),(f]ylf€°@(/</)]=
Ullz=21, 0lpiz. 20 12,24} =Ulle=B 1 0 Up(5, B)) 1 1 2,2) =UiLz-Fd, 0 [, K], 122} = ul({u
[$='Dt]fl$})ﬂ [go(ﬁ,k)]]flzf}{ﬂw(a,b]]f - The quantifier VY is treated similarly: [(szp)/(,:]]=u{/('(1)1

= ] f 75 3 7 7
vtz Dize i) =K lo1= Ko n gtz B Dz j=n{KTey~ U{Te =10 lotz.2) Jled] 12)=n{K iz~ Uz -

@]ﬂ(w(@,g)z{,,ﬂlZ}‘:c}=ﬂ{/<?$>eu{[[$= A1 nlptd, b1t} |z}« U5 =,Zé7]n[<p(tf>]li}%e/(}sng[go(%]ﬂ&/(}
=rﬂ’i{[‘&1‘,fﬂ]. To prove the converse inequality, it suffices to show that H{W(/i/?)]”feﬂﬂ/('(x)é
U{[z:pt] n [(p(f, Zﬂ | ZLeK}, The latter follows from an inequality [:B=,Z7,,]ﬂ Ly (r, ,Z)]s

right-hand side.
The case of the valuation []jj is treated similarly.

Definition 4. 1) A normal JB-ring is called a (*)-ring. A formula "a £ -normal J§-

ring" in the language 27 is denoted by *(X). A ring A is called normal if (‘;‘? )Kr, where
C-'Z is a formula in the language of rings that naturally expresses the following fact:
VeTele B(K)  VYeeR(K) (F-A"z(] = p<pf) . The "usual" rings are normal.

2. A ring A is called strictly decidable (J-decidable) if its carrier K is strictly
decidable (respectively, the set J(K) is decidable). A set A is called strictly decidable
if, for all x,7€4A the heredity {/?,Z"f. of a set (&%) (where ,X'+‘:,Lf{;2‘+{$e)(}b',\‘() satisfies
the following property: j,ufe{bk.fr(g_r@ﬁua#{) where @#0 % szyzean Z!ff) U(Z.dﬂﬂZEﬁ.’. An
arbitrary set X is called decidable if V7 yéx, (L=4 U IT#FY); for the set F(X) this is
equivalent to a condition Yee #(K) (¢=0 UE#(P) . Clearly, in the classical sense , every
ring is strictly decidable and B -decidable. On the other hand, in intuitionistic sense a

ring with a countable carrier is strictly decidable, and every irreducible ring is F-decid-

able. A ring A is called irreducible if (‘?{;)K where c;%:—, Vk(kzaéﬂ\fz‘(kf:?k)=‘*‘/<=0Uk=/)'

Proposition 4. a) If a ring K is JF-decidable then it is a J -ring.

b) If a ring K is strictly decidable (for example, has a countable carrier) then it
is a F-ring.

Proof. In both cases we have to show that ﬂ:/<=ﬂ] < [/( =2f] , where the left-hand side con-
tains a valuation in either 7 or #B. To prove statement a) we have to show that [/<=Zf_7ff§
ﬂ:ﬂy-- Let Ee[/(=f:ﬂ5. , then ¢=0U€#0 . 1f ¢=(¢ then £ is contained in the right-hand
side. Suppose that @#¢ . By £-induction on the first argument of the valuation we show
that (ee[k=ﬁ]5.) = k=7 (which immediately implies the desired inclusion). Suppose that
TEA . Then E€(K(T) — [£€L[J)f=[x€2f], since .l‘€o’0(k?. Therefore, €€ U{z‘(;)n[z‘-—g] [;5,@(5)}
=u{[=yInLz=glig; yer}< U{[ 2=y | yel}, e=¢et..ven , vhere pie [g=yil, nel .
Induction on /4 shows that é/#0 for one of them. Therefore, U#é’ie[x:yj_] and by the
induction assumption we have x:ygjezf. If ye?f, then we similarly obtain es[yék]}, g=01+,.4
én where (4 ¢ie [y=$i],$i€k . Descending in the first argument, we obtain Iz’.—.—y, ye,é
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Remark. a) If ee[k=z‘j|]f=>e/(=e#, Vee Z(k), Yk,ZeX  then K is a J -ring.

b) First, £-induction on the variable éﬂ shows that ng/ apé heﬂg:&" and &'#{%[ﬂ*&é’]} =0,
Vz,6e{k, ¢} where 4, teK. 1f ad b then {[agﬁgzu{é’({’m@#}}{ﬁg,{}(ﬁ’;}:u{[f:ﬂn[53:/_}}{{7;
yef}suiﬂz:yfﬂ |y}eg‘} where a#y,VgE{ . By the induction assumption the latter sum is equal
to 0 and [ged],=0 . 1f 2#% then let, say, Jz(zean fﬁ/g) . We obtain Hb=ﬂzé(a[$)~—,
ﬂ:z“efll)=[:c E_ﬂ = U{J[$=y]] Iyeé’} , where $#y Vye:f By the induction assumption the latter

sum is equal to 0.

Finally, either k=2‘,z or k#b‘ . In the first case {k=z‘_}}=/ . In the second case
[k=21_=0.
3
Proposition 5. Let K be any J-ring. Define A Va,ﬁ — ff vhere \{f contains all pairs

V) - e
of elements of V(m(/(/()-b as /L(f’)va,[f—<k,;i>Jﬁlk€K} . Then

a) [h:K — K’ is an onto homomorphism 1,=1,

b) [k 1h)=0}=F5=1; ana

c) {[/z:/(/ﬁa ;K’]ﬁ=/.

Broof. a) We have [4cK2k), =/ and [Vzek Fyek'(<zy>ehl =1 . LiyekTrek (cz,y>
é/zil]]g =/ . TFurthermore, [[Vx,yeﬁ (/7’(x)spl(y)»ﬂfﬂ-—-ﬂz(g/))]]ﬂ=/ , since [A:ﬂ@s[/(:ﬂ]f W:@]ﬂ .

Finally, we show that the value of the following formula is equal to 7/:

Vi g, ceh Voyek cay, P e+ NPigy=x n
nPi6- y) = <f92;g), 250, P>+’ ], since =<k, 451 n
N lg=<m,2,>10 U=<a, 2510 [e=rnly=s1nKa,g. Aifpe +
NPlgr2nP &)=y where km,55ek)<icr s, ks e+ Nm=rnn=5)] <
<kmakoedelR =R1<kD 2 Arels P 776,7, Het'],

b) This statement is proven similarly.

c) This follows directly from previous results.

Definition 5. Let &(+) be a formula in the language 7/ (describing a family of sets
K <K+~ 0, />) . The formula #(¢) is called absolute if VYK(#()=K is a ring N[pK~
P =1).
7)1,=1)

Proposition 6. A usual formula in the language ZF describing the ring Z (or @ etc.)

is an absolute formula.

Definition 6. An expression "J -theory" /7 or ".Z-formula" ¢ means that all formulas

in / (respectively, formula ¢ ) depend only on the free variables occurring in Z, where
Z=\zfy.,..,Zn>, #20 . For simplicity of formulations we assume that the theory / is re-
cursively enumerable (even though this is not essential). Thus, a notation Ak ’-7'—’([) is
understood as YredKE (r'f‘(fl,)(/?)), where T is the code of a theory 7—([;(%4“”@)?/('1"7—‘1&”)‘
Since YK (KE rt/f'(/(j) "‘KP(Z))K: we can write (T(Z—))K . Another formulation of this question,

using infinite disjunctions and conjunctions, is also possible. In this case we obtain
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ﬂ-_T(Z)]l £ ﬂ{[fo(/;)_—ﬂ ]5067'} etc. Interestingly, this second path has already been noted in
{1].

Definition 7. A formula ¢ in the language of rings is called a phi-formula if the

premise of every implication appearing in ¢ satisfies the following two conditions: i) it
does not contain the quantifier V¥ ; ii) it does not contain the quantifier 7 in the domain
of action of any implication. A theory consisting of phi-formulas is called a phi-theory.
Given any theory 7 we can use certain natural methods to define a theory T¢ that consists
of formulas composing 7/ rewritten as phi-formulas. For example, an interesting case is Ar

where Ar is either Peano or complete arithmetic.

Definition 8. 1) A formula in the language of rings is called almost positive if it

can be obtained from "blocks,'" i.e., formulas of the form V?(gﬂ({) = (,//(zz_}) » where ¢ is any
Horn formula and ¢/ is any positive or an almost positive formula that has already been con-

structed, by imposing connectives 7,V,U, 1.

2) A sentence 4.0(;\:) is called decidable with respect to a given ring K, where E&K if
(&,0{[}))\, %p@{;)] » where the operator A[*] is defined by induction on the length of g&([) as fol-
lows. If ¢ is a positive formula then Z(y] =7 . If this formula is a block then the value
of 7 by definition is equal to A €K([$0(g)]=/ n sz.é/(((gf)(g)x:%" /7[5//(37)] )s furthermore, ,DE{@;ﬂJ-‘;
FkeK (¢uo, n PLuckD, P¥zg)s Ve K (Plp ki), Plendls PIIn Pl, Ploudl= (Piglnig) Ju(P ¥
ﬂ(w,()- A theory /() is called decidable with respect to a given ring K if all its senten-

ces are decidable with respect to this ring A.

Definition 9. Let gﬂ(/() be any sentence in the language of rings (k€A ). Define a trans-

lation ;0(/{_}#——’ (f’(/aé) (where {,ﬂlis also a formula in the language of rings and ¢ is a

special variable which assumes all values in J(X)] by induction on the length of ¢. Let
{k=Z‘)lr_»g k=g L‘) WMM wm,, (_771(0)-'4sz (t’z’zﬂ} V:w and the most important cases {:p:’u’
Vé&{{€§‘€ﬂ§0(*‘3§)}$¢(c’5’) (here eJ . ¢/ and g2 are special variables just like e), ({U@Y%

»y - _ - - - -
T« t\(/g//( 2l=/=6)n e’y n Ule2)) Let ‘T/;I(KDI:’ ¢'{x,/). If 7 is a theory then / s

ica/lg 7' .

Proposition 7. Let X« be any ring.

a) Condition \,,”'(/(,E)}A, is equivalent to a condition cc[(,/(/()] for any formulas ¢

in the language of rings, parameters rcA and eeSK). In partlcular, (k) e ([90([)]
A

=1).

b) If ¢(x) is such that the premises of its implications contain positive formulas

Fik)

then 7/’(/29) is a Horn formula.

Proof. a) This is proven by induction on the construction of the formula ¢ . For an
atomic formula ¢ this is satisfied by the definition o¢f the variation [‘]5"(/()' Cases ¢ny,
5$¢ (with the property of attainability of [:], e taken into account) and V:cr; are
clear. A condition ((@U‘f/)lxé?f;\. is equivalent to F2/.¢2:¢5.K) fvel=¢éngic [Q]GE.BE[@//]}) &
{;’E@U;’/_}}. A condition ((Q#Q}’(é),)A, is equivalent to a condition YeleB(K) (¢0<se = (eoely] =

0elyl), i.e., <e>nlyl<[yl.
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b) We use induction on the construction of the formula ¥ to show that if ¢ is positive

then ¢’ is also positive, and then prove the validity of the desired statement.

Proposition 8. Let A be a ring.

a) If (‘?‘7/)/\, then [[67171]]%()-'-‘/,
b) We have {C’%Br(,’(‘:?‘

c) If (), then Ml]ﬂm:/ and (Q%)K where pairs of symbols ¢ . ¢’ ( ¢ can take values
2, 3, 4, 5) denote the following pairs of properties in the language of rings: strictly
biriccart — prime (7=2) biregular -~— quasisimple (¢=3) strictly regular < skew field
(£=4) strictly riccart -— has no zero divisors {{=5) (for detailed definitions of these

properties see [5, p. 389]).

Proof. a) Suppose that (qu )/( is true. It suffices to show that [Ye[p%¢ n V¢ (et=te)n
k=0l [eﬁgmvg(%‘:zfg}neéEOHﬂK) ={ for every fixed K and #0 that corresponds to this X by
the definition of normality. This valuation can be computed in both directions only for &
such that the corresponding premise has value 1. In this case, if [eim 47 (85=Z€)ﬂ ek=q] =17,
then g€F(K), ¢k=0 and therefore £<£0 . Conversely, if Lé=2 nVYilet=te)ne<egl=/ then
€eB(K), e< €0, and therefore €4=0.

b) We have to show that [A%=A1n[VEké=24)] < [k=0) U k=11 for all kek . Suppose that
ge([k:k]nﬂ{ﬂf=fk_ﬂ/lf€/(}. Then (€//<)2=@/< and 8k~ZL=Zf'Zk,VLZ€/(, i.e., gkeB[K). We obtain
okelk=1] » since 5/<2=(8/<)2=€zé . On the other hand, &(7-éxy elk=01 since e(/~gk) k=bk-
02k eh-(ek)= 0 . Therefore, ekueli-ek)e k=0 U k=1] . Bere eok.e(/-gk)=e({-ex) ok -ek-2%ei=0.
Therefore, e,:’(ue(/-ef*/(}=@k+é’{/—@/<)=€,i.e., féﬁ:@&]}u[@{ﬂ.

¢) The proof of this statement has been given in [5, pp. 388-393].

Proposition 9. Let A be any ring.

a) If ¢ is a positive sentence in the language of rings, then (/'  implies Wj}ﬂxz:"
b) If ¢ is a Horn sentence in the language of rings then W/]f(/():/ implies W/‘)K'

¢) Suppose that a theory 7(4) in the language of rings is decidable for a ring X (kek).

It (TR))y » then [T(hI =1

Proof. a) For atomic formulas this statement follows from the definition of the valua-

tion. The rest of the proof proceeds using induction on the construction of the formula ¢.

b) This is proven by induction on the length of the formula ¢/. The cases of atomic
formulas and connectives N, ¥ are obvious, and the case of the connective J follows from
the property of attainability of the valuation. The case ¢ = ¢ is studied as follows.
Let ($)¢ - Then from a) we obtain [¢]=7 and therefore [¢]={, soby the induction hy-
pothesis (¢ -

c¢) We define the rank of an almost positive formula # in the language of rings. An

almost positive formula such that all conclusions in its blocks contain positive formulas
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is defined to have rank 0. An almost positive formula such that all conclusions in its
blocks contain almost positive formulas of rank up to and including p is defined to have
rank (zZ+/).

Now using induction on the rank of an almost positive formula £ we obtain ({a?)Kﬂp@)—q

([&V]WX}= /) . The desired assertion follows directly from this.

Suppose that £ has rank 0. Let us consider induction on the construction of a sen-

tence Z. Let #be a block. Assume that td?)K nral . Taking into account F[#) we obtain
[£]={[(,Il(f)lf€/\/w[¢(f)=/} vhich is equal to 1, since every factor is equal to 1. Indeed,
[(p(z‘)]-—-,/ implies ((P(‘LL?)K and therefore W(ZL))K , [(//(f)]z /, since ¢ is a positive formula.
_ Y A(d ; _

If 2=¢n¢, thenly)N(¢) and PlInPy] . 1f 2z=guy . then (@) N PR u((9), NP LY.

If g=Jx¢ . then Jkek (pky NP lpkll) - If 2-=lz¢, then Yke K up(k)x), Vke K (7 [pal),

Suppose that 2 has rank s+/ . Let us once again use induction with respect to the con-
struction of the sentence ®. If & is a block and (€ . #r#) , then proceeding exactly as

before we see that g;f(:",’,.\ and using the second property in F{#] we obtain P[Y(£)] . As be-

fore, we then apply the induction assumption on either the rank /7 or the construction of &.

Proposition 10. Let X be a normal ring.

a) Every phi-sentence gﬂ(/é—) where keK, satisfies [¢(Z>]¢(~ms ﬂ_'(’p(/z)]%_(”,

b) Every Af-sentence ()’(Z} where /<_€/\f’ is such that if [99‘(2)]‘1;3(’“ >Q , then ‘ZV(E{H?(}(‘

Yae (K]

%
&

Proof. a) First, suppose that the formula ¢ does not contain the quantifier Y and
does not contain the quantifier Z in the domain of action of a connective = . Using induc-
tion on the length of ¢ we shall show that if ¢ does not contain =/, then [[90]7 = [('/”]963(/\’)
and if ¢ contains =, then Lpl,. = [5[’]],9 . An atomic formula ¢ satisfies the first assertion
(because of the normality of tlr;e ringl/(). In the case gﬂ:((ﬂ’ = 902 ), we see that ¢, (fc do
not contain = (by assumption), from which we obtain the first assertion. The case where

= A ) .
¥ Ny, or gug, , or .57@901 is obvious.

Now suppose that ¢ is a phi-formula. Using induction we prove the desired inequality.
If ¢=¢n¢g, or YUy, or Tz, or ng}, then the induction step is obvious. If 90={g:; >
%) then ¢ is the same as in the last paragraph. Therefore, it satisfies [%]yzﬂjgé}]@ and
8:3%];, < [902]@ simultaneously. From this we obtain the desired inequality.

b) We first note that for every normal ring K and every quantifier-free sentence (&)
we have the following

Lok, = Lok, €8k (11)

Tk A(x)

We prove this using induction on the length of ¢ . For an atomic formula this follows from
the definition of valuation. Propositional operations on elements of J(K) computed in A(K)

belong to AB(K) and coincide with the values of propositional operations in J and 3.

436



In case of 4 -valuations sup is preserved in comparison to the 7 -valuation. Therefore,

we have
[(,0]:,, = [Cﬁ]ﬂ for every £-formula ¢, (12)

Thus, if ngﬁ,]mk)?za«, then [5/),([)]%(/02@' Vk; ﬂfs%(/?fﬂywéa, [v‘f"ﬂ]]{/{)'

The following three theorems are purely finite.

In their statements 7 is any T -theory in the language of rings, 7;, is a phi-theory,
¢ is a T -formula in the language of rings, and ._¢ is a AE T -formula. A notation of the
form /7D = 50(.?3)]&, denotes YkeK [Tk ——‘579{;&(

THEOREM 1. a) Suppose that ZF7 '+ YK [7'(53),47,@3:90(2)]/(. Then ZF/' —VK (Kis a J -
ring #[7,(5),97?=¢¢’(1‘DK). The formula ¢/ can be omitted simultaneously from the premise and

the conclusion.

b) Suppose that ZF VYK [7' T) = W:L‘]K Then 1) ZI7 FV/((*(K)’?L#Z);‘S” ‘1) (recall that
if ¢ is Horn then ¢'s¢); and 2) ZFL" =¥K (x(K)= [7,(3), & » ¢ @], )

c) Suppose that ZF YK [7,( z),qb:w@]}( . Then 1) ZFI+ YK((K) @[Té (Z)=> (7YY (Z], 5 and
2) zrI WK (*(K)= [7,@) 9‘“’=>“90($3

d) We can simultaneously add '17—‘; the premise of formula 7' in a) and ; to its conclusion,
where 7 = 2, 3, 4, 5. We can simultaneously add 7’ to the premise of 7;0 in b) and ¢), and {

to its conclusion, where ; = 3, 4, 5.

e) In all previous statements the length of the deduction in the conclusion depends

linearly on the length of the deduction in the premise.

THEOREM 2. Suppose that [ | : ., ¢ satisfy the conditions of Theorem 2. Then con-
clusions of Theorem 2 remain true if we replace both 7 in its premises and 7'in its conclu-
sions by 7, adding to the conclusions the condition of decidability 7/Z) for the ring A

{or alternatively making a metamathematical assumption that 7/Z) is a positive theory).

Proof of Theorems 1 and 2. a) Let A be a J-ring and (T(’.Z),@”, \«A, where £<A and “/9
could be omitted. Proposition 7a) implies that [[7_([)] ={ . If K=%,, then by Proposition
8a) we obtain [‘?b] =7 and by Proposition b) we always have [‘?"}I =/ . By Proposition 3b)
we obtain 7 'Dk ”gD)A”L]f =/. A predicate f[}}j." 7 is closed under Z77' -deducibility,
so therefore ﬂ:(gﬂ(pk))/\,,]“/ Thus, [cp(/()]]y=/ and (90’(;6))/(

In the case (zf}K of statement d), using Proposition 8c)we obtain | ilﬁ;r and the proceed

as before.

If 7 satisfies the conditions of Theorem 2 then by Proposition 9 we obtain [7'(,(7)]]7=

and then proceed as before.

We note that one could write a number of logical laws (for example, ones related to the
second infinite law of distributivity) for which the value of a valuation [+]_ is equal to

1; all of such laws can be eliminated in a way similar to C?:':; .
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b) Let A be a (¥*)-ring and 7/{16)/ Proceeding as in the proof of statement a), we obtain
[T(E):Hr«=/ By Proposition 10a) we have [f{k}] - By Proposition 3b) we have ﬂf(p ) q:ﬂ

A predicate [- 1 =/ 1is closed with respect to ZF-deducibility, so therefore [ﬂgutp ) }3 ,’.
,3 .

wJ

This in turn 1mp11es that [(// k)] =/ and by Proposition 10b) we have ﬂ:s#\/\)?\;~-/,1 e.,

(¢ \f\))K - In the second part we addltlonally have (‘?;)K © We now prove that
Lokl -=1) &= (k) ) (6)
for all sentences Y-\_‘; of the language of rings, and from this the desired result directly

follows.

We prove it by induction on the construction of ¢. For atomic formulas (6) follows
from the definition of valuation. For conjunction it is obvious. We prove the case of
disjunction as follows. Let [] u[n//]]-—/_, then either T=¢/ue2, éfelyl, é2¢ fvl, fr=0 or
¢/=1{ . Let us consider the case ¢/=(0 and £2=( . We obtain a contradiction. The case of
implication is proven as follows. Let lr/)=-5£// Since either [(Q:F:J or [Lﬂ]]=/ we have
[l <[] - The case of the existence quantifier is treated as follows. Let [ZZ¢]=/- Then
the property of attainability implies that [@(K)] =/ for some K&A and hence {.:7£(,9>K . The

case of the quantifier of universality is obvious.

Concerning d), if (Z:)K then by Proposition 8c) we have [[zf/]]., ={ and 7' is a phi-formu-

la. Therefore, [L/Jﬁ =/ and then we proceed as before.

c) Here we supplement the proof of b) by the fact that the classical proof uses a sen-
tence G% as an axiom. This is not related to any special role of the sentence 073 itself
(for example, 3 could be replaced with le }, but it illustrates the possibility of using

faven)
something like og which is not a phi-formula. Exactly as in b) we obtain [CP? :>(70:Uﬁ=/ .

Let qb ViFt ki=tink’k k=0 U k=t). Classically, C?Z; is equivalent to Q%, so therefore,
[Cﬁ’:ﬂ ‘[‘/’JJ% However, Gb; is a phi-formula, so therefore [9‘?;%5 [59]]« [using Propositions

10a) and b)]. Intuitionistically, we have d7 —>Cb where (*) is the usual Godel negative
translation. Using the normality of the ring K we obtain [Cb 1= ﬁ:d’] f_ﬂab]] < W’T"(f]r s
i.e., ™M H:C//J] =7. By Proposition 7 the latter is equivalent to (7—“)” /,\ s whereas it is also

equivalent to the following condition:
YeO<e (J120) = e0=0)] =¢=0, Ye. 7
Recall that a letter £ (perhaps with some indices) denotes an element in J(K)

In the framework of classical metamathematics condition (7) is equivalent to a condi-

. b oo -
tion \75/:—.&:5(}7{;.;7’5:1} \(// ear.

The above equivalence is easy to prove. Suppose that (7) holds. Then L. == 2=C".

Therefore, <2>J'[yj}f — ¢=() where adjf:,ﬁzgg{zei-——éi#}, since the left-hand side is equiva-
lent to [...] . Thus, "‘"[9’7}}9,,={<5> ?<€>5[(«3}__}=(/7.“&}§}I=5 Suppose that ‘z"[(/‘:ﬁ =] and the premise
in (7) is true. Then <@@[y].. Therefore, <¢>=7[J] . </-£>2 [U] =/ J-i=! =0,

The second assertion requires an opening up of condition (7). Let £=7. Then we have

o0 he0) = e0=0). T 't) = /=(),"«’ and using equivalence (6) we obtain 7y
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d) This statement has already been proven in the context of other statements.
e) This directly follows from the previous proof.

Remark. A translation ¢ +—~ ¢’ [and consequently conditions of the form (7)] has a
direct set-theoretical meaning. We first clarify it using the example of a quantifier-free
formula ¢ of the form ¢ = Ui('észZ{/z' n.,,.n f’/d TJ:S/I,' N, e=1,.... /Z} where the multiple dots
denote other equations and other inequalities, respectively, in the 7-th disjunctive term,
and 4, Zt . 7y .9, are both polynomials and the values of these polynomials for given
parameters. Then (qu is equivalent to the following condition: There exists a decomposi-
tion of the ring A as a direct sum Kf—cP[ELv A lez={,,..,n} where ¢ e€F(K), such that £ &, =

84'5”' {for all equations contained in the 7-th term) and & .77--F,. (for all inequali-

z fz
ties contained in the :-th term), where 2. r#& §=Ved(2 <£)(e0-r7és-s). 1f ¢={Qy , where

{ is a quantifier prefix, then =0y,

THEOREM 3. Conclusions of Theorems 1 and 2 remain true if in their statement V~...

is replaced with VA (&Z(K!'=. . . where &(-' is any absolute formula.

Proof. We need only to add the following argument to the previous proof. We know that

Tir 5 YT T VT . i v 7]
L/Lje)l-v(,;q"'¥ and furthermore £ A, 'J =/ since by Proposition 5 we have E\Bgﬁ(/;éjg =/,

Ky~ 27 / &
(The case J.ﬂ~is formulated and studied similarly.)

In particular, we note that with this method many difficult proofs in the theory 77
are automatically transformed into intuitionistic proofs of same assertions. For example,

this is true for the known positive solution of Hilbert's seventeenth problem.
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