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TRANSFER THEOREMS AND THE ALGEBRA OF MODAL OPERATORS

V. A. Lyubetsky® UDC 510.66+512.55

A set theory ZFI' which does not employ the Law of the Ezcluded Middle ¢ V ~yp, for all o,
retains the stock of ezpressive capacities of the classical set theory ZF, on the one hand, and has
many of the features of an effective theory on the other. In the article, a broad class of formulas
¢ is constructed for which ZF \ ( implies ZFI' - (. This result provides a generalization of
Friedman’s theorem on A E-arithmetic formulas. Besides, we prove transfer theorems of classical
logic for the case of rings; in particular, Hilbert’s theorem on zeros and Artin’s theorem on

ordered fields are extended to the case of regular f-rings, and we bring in appropriate upper
bounds for them.

A set theory ZFI' which does not make use of the Law of the Excluded Middle ¢ v ¢ (LEM) for all
formulas ¢, while keeping up expressive capacities of the classical set theory ZF (for describing schemes,
images, relations, and the like), has a lot of traits of an effective theory. For instance, formulas of the form
Vz3y pg inferable in ZF often define functions in a certain effective way.

In the article we construct a broad class of formulas ¢ for which ZF + ¢ implies ZFI' - ¢. This result
provides a generalization of Friedman’s known theorem on AE-arithmetic formulas [1], and is used to ground
an algorithm designed in [2]. Besides, here we prove transfer theorems of classical logic for the case of rings,
ordered rings included. As an illustration, Hilbert’s theorem on zeros and Artin’s theorem on ordered fields
are extended to the case of regular f-rings, and we supply appropriate upper bounds.

As a classical set theory ZF we consider the Zermelo—Fraenkel set theory, with the s-induction and
collection axiom taken instead of foundation and replacement axioms, respectively, that is, we deal with
the ordinary system of axioms for classical set theory. As a corresponding intuitionistic set theory ZFI' we
consider ZF that is freed of the axiom ¢ V —¢.

The symbol = stands for “is equal by definition” or “is equivalent by definition.” The reader is expected
to be familiar with [3-5].

A phi-formulais one in which the premise of any one of its implications satisfies the following: it does not
contain the quantifier ¥, while the quantifier 3 does not enter into the domain of the connective =>. Every
formula is classically equivalent to a phi-formula, for instance, to a formula in the prenex form. Further,
an AE-formula is one of the form Vz;...z,3y1...¥n @0, Where g is quantifier-free. A formula with tight
negations is one that contains an implication only in the form of negation of its atomic parts. The negation
4 is always understood as ¢ = L.
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Fix an arbitrary language that includes the equality symbol =, and also some functional symbols f,..
and predicate symbols P,.... For instance, let f and P be binary. Assume that K is some interpretation of
those symbols in a countable constructive set, say, in the set of all positive integers w = {0,1,2,...,}. Under
this interpretation, z = y is thought of as an identity, that is, two sets z and y coincide, and f: w? — w,
P C w? Inessence, K = (v, f,..., P,...) is an arbitrary countable structure (with functions and relations).
The approach attempted below makes use of the countability of a support and aims at verifying relations
(*1) and (*3), specified later. The relations are conditions on a support K of the structure K, satisfied for
K = w. If we assume that these are satisfied for K then for a structure of the form K = (X, f,..., P,.. 9,
f: K* - K, P C K%, Theorem 1 (see below), tco, will be valid. A question as to which sets K apart from
w satisfy the above conditions will be dealt with in some other work.

Thus, let ¢ be an arbitrary phi-formula and 4 an arbitrary AE-formula in our language and let (¢ = ¥)z
express some property of the structure K and be a formula in the language of the set theory ZF; more
specifically, it will be one of the following: either Vf, P,...(f: w? - wAP CwiA... = (VZ (p = ¥))us.p...)
or Vf, P,... (k(f,P,...) = (VZ (¢ = ¥))u,s,P,..), Where Z are all free variables in y and ¥ and x is a
formula in the language of ZF describing the structure K. Here we limit ourselves to the first case. The
second case is treated similarly (see Remark 2 below). Denote by ¢ the first formula, and by ¢’ a formula
obtained from { by adding Vz,y € w (P(z,y) V ~P(z,y)) in the premise for all predicate symbols P,...
occurring in (. If, for instance, the premise of { says that P is a recursive predicate then we can take ¢
itself to be {’.

THEOREM 1. If ZF - { then ZFI' - (',

Proof. Suppose that the condition of the theorem holds. Further argument is an explicit metamath-
ematical description of the inference in ZFI', spoken of in the conclusion. From that, in particular, we
see that the length of an intuitionistic inference is a linear function of length of a corresponding classical
inference, with certain small coefficients, which it is easy to explicitly specify.

Put Z; = {0,1}, where < is defined to be 0 < 1. Then u < v = u < vV u = v. This structure is
a Boolean algebra. (Of course, its completeness is not maintained.) Let J; be a set of all ideals in Z,;
as usual, the ideal a is a subset of Z;, with the following properties: 0 € a, Veie; € a (ey V ez € a), and
Ve € Z3 Ve; € a (e < e; = e € a). An order in J; is naturally defined as follows: a < b = a C b. That
structure is a complete Heyting algebra. For instance, (V ag)Ab < V(a,x Ab). In this case aAb=and
and VA = {0} U|J A since {0} U|J A is an ideal. Fix an embeddmg of the Boolean algebra Z, in J; to be
0+ {0}, 1+ Z,.

Denote by A; a set of all modal operators, or, in other words, of all J-operators on J; see [6]. As usual,
a J-operatoris the map J: J, — J; for which J(a) > a, J(aAbd) = J(a) AJ(b), J(J(a)) = J(a), Va,b € T>.
An order in A; is defined thus: J; < J3 = Va € Jz (J1(a) C Jz(a)). This structure is a complete Heyting
algebra. In this case (/\J ) (a) = ﬂ(J {a)) and (VJ ) (a) = N{bla C b, J4(b) = b, Va}. Define the
embedding J2 — A; as a — J,, where Ja(d) = a Vv b. This is a cHa-embedding, that is, {0} — Jo = id,
where id (a) = a, Z; — Jy; here, by definition, J1(a) = Z;, Jaap = Jo A Js, and JV o = =V J,.. Note that

a
(m—a,)da = Jq since (—4,)J, = J%, where J%(b) = a — b. Indeed, J, A J® =aid =Jo, JavV It =T,
Therefore, any J, € By = {J € Az| (-—4,)J = J}, that is, J; is cHa-embedded also in B;. The B; is a

complete Boolean algebra, tailored to this form — as any algebra — from the complete Heyting algebra.
Define the evaluation

[k=tlg ={0}U{e|e=1,k=t}CL, [ =1g: k2= T

170



In fact, each of its values is an ideal. For any terms sy and s3, define [s;(k) = s;(k)] ¢ to be [k = t], where
31(E) = k, s2(k) = t (51 and s; are computed in K). Similarly we define [P(s1, 52)lz = [P(s}, s3]z
(where 52 and s are values of the terms s; and s; in K) = {0}u{z| z = 1, P(s, 53)} € J2. To extend the
map [- = -]z from the set of all terms with parameters in K to the set of all formulas with parameters from
K (without free variables), we use induction on the connectives. There are two ways. The first one is to
use operations in J2, and the second — in B;. These result in the maps, which we denote by, respectively,
[-1, and [-]s,- The condition

VE,teK (k=tVk#t) (*1)

is satisfied for the support K = w. The outcome is that the situation becomes much simpler: [s; = s3] g =
{0} or [s1 = s3]z = Z,. Similarly, [P(s1,3)]g = {0} or [P(21,52)]g = Z3, due to an extra premise
PV P in {'. The property that we have specified will be called the normality of a valuation. Accordingly,
[s1 = s2]p, = Jo or [s1 = s3]5, = J; and [P(s1,82)1s, = Jo or [P(s1,32)]l5, = J1. Here (and in the
theorems below), we can directly assume the normality condition: ([k = t]g, [P(k,t)]z € Z3), Vk,t € K
[resp., € B(K)].

LEMMA 1. Any formula ¢ satisfies the following:

vr © ([els, = Za)-

The proof is by induction on the length of . We have (sy = 83)g @ (k=t)g & ([k =tlg = Z3) &
([s1 = s3lg = Z3). Similarly P(sy,83)g & P(k,t) & ([P(s1,33)]g = Z2). I [V ¥l = Zj, then
1€ ([eJul¥l), 1 €e], or 1 € [¥]. If (p = ¥)g and e € [¢] ,, then e = 0 or e = 1, and by induction,
e € [¥]. H og and [¢];, < [¥],, then [¥],, = Z3, Y- I [3z¢];, = Z3, then 1 € ({O}Uij[tp(k)]]Jj and
[e(k)l7, = Z3, for some k € K.

Denote by VP2 the Boolean-valued universe for the complete Boolean algebra B;. The class V of all
sets is then embedded in V52 in the usual way as follows: z¥ = {y¥| y € z}_, where X_ stands for the
identity function defined on X. Here (-)V: V — V®2, By induction on the length of the argument, it is
easy to infer that if ZF - ¢ then [}, s, = J1 and, in particular, [f¥: (w¥)? = wY, PY C (wY)?A... >
(VZ(e = $)uv,pv,pv)l = 11,

[‘Pw"]]V": < ['I’u"nv':' (1)
We obtain relation (1) in accordance with the premise of Theorem 1, and use it repeatedly below; our
appeal to the premise of Theorem 1 will be limited to just this case. In deriving (1), we note, use is also

made of the equality [fV: (w¥)? = w"], s, = J1. The proof of single-valuedness is nontrivial: we need to
show that

B = {1y, ATE = )y < [F(kn k)Y = £(t1,82) Ty ms-

This follows from Lemma 2; the case with kj,%1,k2,t2 € w is overt in virtue of w being strongly decidable.
Recall that X is called sirongly decidable if the transitive closure X+ of X, defined by e-induction to be
Xt = XulJ {Y*| Y € X}, possesses the property that Vu,v € Xt (u=vvIwecu(wg¢v)vIwevr
(v & u)).

LEMMA 2. Any formula ¢ satisfies the following:

lo(ks,. .., kﬂ)]]s, =[o(ky, ..., kn Jov,1v, Py e,

The proof is by induction on the length of .
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Ist atomic case. Obviously, [k = t]x < [k = tY]y s, < [k =tY]y s, (alternatively, using normality,
we immediately obtain [k =t]z < [k =tY]ya,).
Assume the condition
B = ]ym, < [k = tlg- (+2)

For k,t € w, this is satisfied trivially, as is the case with any other strongly decidable set. Thus, [k = t]z =
Ay .

Term case. For one functional symbol, we have [f(kY,tY) = rV]y, = [(kV,tY,rV) € fY]y, =
V [F =uw'lg ARY = vV]g, AlrY = f(u,0)]s, = V [E=ulgAlt =vlg Alr = flu,0)lg =
u,v€K u,v€K

V IE=ulAlt =v]Alr = f(k8)] = [r = f(k,t)]g. The last but one equality follows from
u,vEX

[E=ulg Alt =vlg Alr = f(k,t)]g < [r = f(v,v)]z. In the general case [f(t1,t2) = s]g, = [(Fz,y
(flz,y) = sAts = 2Aty = y)kvls, = \éx f(zV,9Y) = slg, Ats = 2¥]5, Alta = V], =
z,y

V [f(z.9) = slg Alts = 2] Allta = y];z = V [t = zlg Atz = vlg ALf(01,22) = slg

i

z,yeK zvyGK
[f(t1,t2) = slg-
2nd atomic case. [PY(kY,tY)]ys, = [(V,tY) € PV]ys, = V &Y =u'lys, ARtY = vV]ys, =

{u,v)EP
V [k =u)lgAlt = vlg = [P(k,t)]g. The last equality is verified directly. Similarly [PY(sy, 52)}y s, =
{u,0)EP

[(3z,y (PY(z,¥) A8y = 2 A 83 = y))gviys, = \éx [PY(z¥,y )ls, A1 = 2¥]g, Als2 = ¥V]s, =

z,y
V [P(z,v)lg Alls1 = z]g Allsz = ylg = [P(s1,32)]¢- The last equality is verified directly.
EN[3:¢
Cases with connectives are obvious.

Remark 1. In the above argument, we did not make use of the statement that [kV = tV], = [k =t]g,
where k and t are arbitrary sets, which is nevertheless useful for a better understanding of the idea behind it.
Indeed, let that equality hold for all z € k and y € t. In one direction, the induction hypothesis is not
needed: e €[k =t]; > e=0ve=1and0€ [k =t"]or kY =t¥. He€ [k¥ =t'], ,thene =0Ve=1.

The first case is trivial. In the second case 1 =e € [k¥ =tY}, = A V [z¥ =y"]; A..., thatis, for any
zek yEt
z € k, there exists a y € t such that 1 € [z¥ = y¥]; and 1 € [z = ylg, 2 =y, thatis, z € ¢, k C ¢, and

similarly t C k. Thus k=t and [k =t]z = Z3, 1 € [k = ¢].

LEMMA 3. (a) For any phi-formula ¢ with parameters k = (k;,..., ka) € K, [p(k)l, < [0(F)l3,
holds.

(b) For any AE-formula ¢ with parameters k = (k1,...,k.) € K, (e < |[¢(l—c)]a,) = (a < [¥(k],,)
holds for any a € J3.

Proof. (a) Assume, first, that ¢ has no quantifier V¥ and that the quantifier 3 does not enter into the
domain of =. Use induction on the length of ¢ to verify that if ¢ does not contain 3 then f¢] , = [¢]g, €
Z3, and if ¢ does contain 3 then [p] ; = [¢]g,. In fact, for p an atomic formula, the first statement follows
by the normality property. For the cases with A and V, it is trivial. For =, the formula ¢ does not contain
3 by assumption, and the result follows, The case with 3 is trivial.

Now let ¢ be a phi-formula. If ¢ is atomic or is constructed via the connectives A, Vv, 3, and V, then
statement (a) of Lemma 3 needs no elucidation. If ¢ is obtained through ¢; = ¢, then, for ¢;, we
have [p1};, = 1], by the previous paragraph. By the induction hypothesis, fv2];, < [¢:]g,, and so

(lesdg, =7 be2lz) S Lol =8, lealy, < leals, —ss [eals, . )
(b) If (k) is atomic, that is, of the form s; = s; or P(s),s3), then [%(k)] s, = [¥(k)]s, by definition,

172



and [y (k)] € Z; by the normality property. Propositional operations A, V, — in J; and in B, if applied
to elements of Z;, that is, to the ideals {0} and Z; or to the operators Jy and Ji, yield the same result
belonging to Z,. For ¥(k) a quantifier-free formula, therefore, again we obtain [¥(k)],, = [1/;(12)]],’ € Z,y
by induction on the length of ¢. Here condition (+;) is essential. For the case with Jyy, [3yy(y, k)] I =
Byv(y, IE)]]B, € J, follows from the fact that J; is cHa-embedded in B;. Lastly, for the case with VYz3yv,
the inequality that we are verifying is straightforward.

We finish the proof of Theorem 1. Assume that f: w? — w, P C w?, @, s p(k), and that (x3)
holds. By Lemma 1, then, we obtain [p], = Z3, and by (a) of Lemma 3, [¢]5, = J;. By Lemma 2,
[o(kY,...,k¥)kv)ys, = J1. By relation (1), we have [(k},...,kY)xv]ys, = J1, by Lemma 2, [¢(k)]5, =
J1, and by (b) of Lemma 3, [¢(E)]]J’ = Z;. In view of Lemma 1, ¥, s p(k).

Remark 2. In the second case envisaged before Theorem 1, we must first assume that the formula «
is absolute, that is,

w(w, £, P,...) = ([e(wY, ¥, PY,.. ) ye, = 1) (*3)

Next assume that x(w, f, P,...) to arrive at [r(w", fY, PY,...)}ys, = 1, whence (1), and then proceed
further as in the proof of Theorem 1. Of course, the typical structure {w,+, —,-, <, 0,1) is described by an
absolute formula. This is an instance of Friedman’s theorem. All recursive functions and relations on w are
also described by absolute formulas. If k is positive, with bounded quantifier V, then it is absolute. If « is
with tight negations and relativized to the set U such that the transitive closure of {z,y} (for any z,y € U)
is strongly decidable, then x is absolute. If B; is an apartness algebra, then any formula x with bounded
quantifiers is absolute. The proof of all these cases is by a straightforward induction. A statement similar
to Theorem 1 will hold for the many-sorted language, which is the case, for instance, in our Theorem 3 (see
below) where an extra sort of variables runs over an algebraically or really closed extension of the initial
ring.

Instead of one formula ¢ we can consider a theory T consisting of the set of phi-formulas, in which case
Tg is understood as K |= T, for a suitable description of T in terms of a set of codes, which are natural
numbers. Normally, T contains a countable set of axioms and can be described, for instance, as some o C w.
Therefore, if Vn € a (K | n), then [Vn € V(K kE n)] = A{{(¢a)k}| n € a} = J;.

Below we give Theorem 2, according to which to some axioms in the inference one can apply elimination
procedures such as cut-elimination and the elimination of LEM in Theorem 1. Statements concerning the
possibility of such eliminations are sometimes referred to as transfer theorems.

A formula ¢ is called weakly positive if it is constructed from atomic formulas inductively via the
connectives A, V, 3, V, and by the special rule for the implication: if ¢, is a P-formula and ¢, is weakly
positive then (3% ¢,)A(VE (91 = ¢3)) is weakly positive. A weakly Horn formula 1 is determined inductively
as one constructed from atomic formulas via the connectives A, 3, ¥V, and by the special rule for the
implication: if ¢, is weakly positive and ¢, is weakly Horn then (¢; = ¢,) is weakly Horn. Recall that a
P-formula is defined as atomic or as one that obtains via A, 3, ¥, and by the special rule for the implication:
(3% ¢1) A (VZ (o1 = p2)), where vy and ¢, are P-formulas.

Let ¢ and % be such formulas in the language of rings.

THEOREM 2. (a) If ZFI' + V+,—,,0,1 (+ : v? > 0,— : w — w,-: w? — 0,1 €
w = [®3 = Vi (p(Z) = ¥(Z))w,4+,-,01), then ZFI' F V4 — . 0,1 (... = [K(w,+,—,,0,1) = VZ
(e(Z) = ¥(£))]w,+,-,0,1), where ... stands for the corresponding expression in the premise, K (v, +, —,-,0,1)
says that the structure (w,+, —,,0,1) is a ring, and ®3 says that the ring K = (v, +, -, -,0, 1) is indecom-
posable, that is, each of its decompositions into a direct sum of ideals is trivial (of the form K & {0}).
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(b) The claim of (a) remains valid if we omit the assumption on the countability of K, that is, assume
that the support K of the ring K is an arbitrary set, and add, instead, a condition on the decidability of
the set B(K) of all central idempotents of K, that is, put Ve;,e3 € B(K) (e; = e3 V ey # e3).

(¢) If ZF + Y+, —,-,0,1 [i = Vz (p(Z) = $(£)))w,+,-,.0,1, then ZFI' F V4 — - 0,1 [ = VZ (p(2) =
¥(Z))]w,+,-,-0,1. Here, in addition, ¢ is a phi-formula, 3 is an AE-formula, and (%, i'), for instance, are the
following pairs of properties (including that of being a ring): (biregular, quasisimple), {strongly regular, a
division ring). In the hypotheses of (a) and (b), we can add in the premise and the conclusion the property
¢; = “is a normal ring.”

Thus, in clauses (a) and (b), the property ®; is eliminated; in (c), the Law of the Excluded Middle is
eliminated, and i is replaced by a much weaker property #’. Recall, for instance, that strongly regular rings
are specified by the condition ¥z € K 3y € K (2? -y = z). Those form a class of rings which is much
broader than the class of division rings.

The proof is as in Theorem 1. We point out the differences. Given a K, form a Boolean algebra B(K)
(not Z3), and then proceed as above to form J(K) and B(K). Define the evaluation [k = t],, = {e € B(K)|
e-k=e-t} € J(K) and extend it to [-17)and [-]lg(x)- Now, the conclusion of Lemma 1 fails and the
following holus instead:

LEMMA 4. (a) If ¢ is weakly positive then px = ([¢] 7k, = B).

(b) If ¢ is weakly Horn then ([¢] 7 x) = B) = ¢k

Proof. Both clauses are proved by a simultaneous induction on the length of . If ¢ is atomic, then
(81 = 32)x © ([s1 = 32]x = B). We handle case (a). For the connectives A, V, 3, V, the argument is trivial,
and for =>, we have the following: if (3z¢; A (V2 (91 = ¥1)))k, then kg € K([cpl(ko)]J = B), whence
Vz (o1 = v2)l; = N{lp2(k)],| k € K, [p1(k)]; = B}, from which it follows that the last expression
is equal to B. We check the first equality. It suffices to show that [Vz (p; => ¢3)], > the “right part,”
that is, ([w1(k)] — [wa(k)]) > the “right part,” Vk. This follows from the inequality [, (k)]A the “right
part” < [p2(k)], that is, from Ve € [o1(k)], Yk3ky [{e) A [o2(k1)] < [w2(k)]], where [p1(k)] = B. We
claim that the latter is satisfied if we put ky = e -k + (1 —e) - kg. Indeed, let &’ be any element on the
left-hand side. Then €’ < e, and ¢’ € [k = k1] A f2(k1)] < [p2(k)], and e € [k = k1] A [w1(k)] < [e1(k1)],
(1—e) € [ky = ko] Allp1(ko)] < [e1(k1)]s [1(k1)] 7 = B. In what follows, (e) is a principal ideal generated
by e.

We turn to case (b). For A, V, the argument is trivial, and for 3 we obtain the following: if [Fz¢] , = B,
then 1 =e;V...Ve, =€ V... Ve,, where the {e]} are pairwise disjoint and e} € [¢(k:)], and then put
ko = 3_ e} - k;. It follows that e} - ko = ¢; - ko, €} € [ko = ki]; A [o(ki)l; < [@(ko)l s, B = [(ko)] s, and
by the .induction hypothesis, p(ko)x. For the connective =, we have: if [p) = 93], = B and (p1)k, then
by (a), fpal; = B, [pal, = B, and (p)x.

As in Lemma 2, in the Boolean-valued universe V3(X) we choose a nonstandard representation of the
structure K. (The index K will often be omitted.) In this case, this is not (K'Y, f¥, P¥) but (K', +',-',",0,
1), where K' = {Pi| k € K}_, Pe(t¥) = [k = t]x, t runs through K, and +' = {{Pk, P, Piy:)| kit €
K}_, and similarly for -/, /; lastly, 0’ = Py, 1’ = P;. It is worth noting that [+': (K')? —» K'}y,» = J4
(and similarly for all other operations including [0',1’ € K’} 5 = J;). The verification of single-valuedness
is nontrivial: we have to arrive at {Pi, = P, Js A[Pi, = P.,]g < [Pr,+k; = Py +t:]5- By Lemma 2, which
in this case does also hold under the same condition (*;) (see a proof below), we need first check that
[k1 = ti]g Alk2 = t2] 5 < k1 + k2 = 1+ 2] g, thatis, [by = t1 ] ARz = 2] < [ki+ k2 =ty + 23] . The
latter is true for any function f (e.g., of two arguments) for which f(e-ky,e-k;) = e- f(ky, k2), Ve € B(K),
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Vky, k2 € K, in particular, for +, —,-. More specifically, condition (*;) now has the form
[£Y =tV o) <[k =t]g, VE,tEK. (*4)
In this case Lemma 2 follows from the condition [Px = P}y nx) < [k = t], that is, from

ﬂ(l[/c::z:]x—; U[t:y]K/\[zv:vaB)/\...S[kztlx. (*s)
€K yeK
Here ... stands for the reverse inclusion. Obviously, (*4) = (*s).
The proof of Lemma 2 (for Theorem 2). We verify that

[o(ke,.. -y kn)]B(K) = [o(Pris---» Py, vk € K. (2)

Atomic case. Condition (*s5) immediately implies that
ﬂk:t]]Kzlpg:Pg]B, Yk,t € K. (3)

Condition (*4) is satisfied for any strongly decidable set.
Term case (with one functional symbol). We have [f(P¢,P.) = Plg = [(P:,P.,P:) € f'ls =
U [P = BJg AR = Plg AP = Ppuw)] = Uk = ulg At = vlg Alr = flwv)]k =

u,vEK u,v

Uk = ulg ATt = v]g Alr = f(k,t)lg = [r = f(k,t)]x. The last but one equality uses the rela-

:i:n [k =ul At = vig Alr = f(u,v)lc < [r = f(k,t)lx, where f is any function with the property
e f(u,v) = f(e-u,e-v).

Term case (with a number of functional symbols). We have [f(t1,t2) = slg = [(3=z,y (f(z,¥) =
sA(tr=z)A(t2 = ¥)))x]p = UK [f(P:z, Py) = slg Aty = PolgAlts = Py = U [f(2,y) = sl AltL =

z,y€ z,y
zlx Atz = vl = Ults = 2] Atz = y] A [f (21, 82) = 5}
Lemma 3 is carried over to this case without changes (the normality of a valuation follows from property
i'). Theorem 2 is thus proved.
A positively AE-Horn formula is one of the form ¢ = 1, where y is a weakly positive phi-formula and
% is an AE-weakly Horn formula. The set of all such formulas true in some structure or some class of
structures is called a positively AE-Horn theory of that structure or that class of structures.

COROLLARY. A positively AE-Horn theory of the class of strongly regular rings coincides with a
positively AE-Horn theory of the class of division rings, and this is also true for all pairs (i, 1) of classes of
rings described in {c) of Theorem 2.

Remark 3. In Theorem 2, the formula ¢ may also include any formulas of the form ¢’, where ( is
arbitrary in (a) and (b), and  is a phi-formula in (c). In (a) and (b), the ¥ can be arbitrary, and then in the
conclusion we should write ¢’ instead of . In {c) and the corollary, the 3 can be an arbitrary AE-formula,
and then in the conclusion we must write ¢’ again.

The results presented above remain valid if, instead of ¢ and ¥, we consider theories consisting of
formulas of the same types.

The language of rings can also be enriched by any predicate symbols P (as in Lemma 2 for Thm. 1),
subject to the requirement that P(z,y) = P(e-z,e-y), Ve € B(K), Vz,y € K. For instance, if Ve € B(K)
(e > 0), the requirement holds for a relation <.

An illustration to Remark 3 is Theorem 3 below. We start by giving a number of general statements
needed in its proof.
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Let A be a strongly regular ordered f-ring considered in a language of rings with the extra relation <.
That is, < is the lattice order and (z > 0, aAb=0) = (aA(b-z) = a A (z-b) = 0). We will make use of
the following elementary properties of f-rings: if ¢ > 0, then (aVb)-c =a-cVb-c (and similarly for A and
from the left), |a-b| = |a|- |b],a? > 0,and aAb=0=>a-b=0.

Let B(A) be a Boolean algebra of all central idempotents of the ring A and let B C J C B be ordinary
extensions such as those in Theorem 2. The evaluations [- 4, [-],, and [ - ]5 are determined as above,
and [s; < s3], = [k < t] (where k and ¢ are values of the terms s; and s;in A) = {e€ Bl e-k < e-t}.
The order relation in B, defined above as (e; < e;) = e; - €3 = ey, coincides with an order relation induced
by A. Indeed, if e; <pej, that is, e; - e; =€), then (e2 —e;)? = (e3 —e;). Hence ez —e; >4 0. If e; <4 €3,
then (1 —e3)-e; <0 and (1 — e2)-e; > 0. Therefore (1 —e3) - e; = 0. Moreover, e; Ag ez = €1 A4 €3 and
e1Vpes =e; Ve Infact,e; e <ej,e1-e2<e3,andifa<e;,a<ez then(l—-e€;)-a<0,a<e; a,
e1-a<e;-ez,a<e;-e;.

We handle the case with V. Here (e; V4 €3) - (€1 V4 e2) = (e; V4 €3), that is, (e; V4 e2) € B and.
e1,e3<(e1V4ez),s0e1Vpes<e Vyey (in B) and ey Vaez3 < e; Vpep (in A).

Thus, the order relation and lattice operations in A are extensions of the corresponding relation and
operations in B. It is also worth noting that

[0 < k], = [ =0],. (4)

Indeed, the condition ek > 0 implies e(k A 0) = ek A0 = 0 and the condition e(k A 0) = 0 implies
ek A0 = 0, ek > 0. Hence, the normality of [ - |, follows from its being normal for the equality, and
the latter in turn is stipulated by the strong regularity. So, for any quantifier-free formula ¢ we have
[el7,s € B(A). ‘

It is not hard to obtain [Vz3y (z =0Vz-y=y-z=1)], = B and [Vz,y(z < yVy < )], = B.
Indeed, [0 < 2], Vs [z < 0], =[z =0]V[z*t =0]. Let 2+t =2+ .y.-z* and e = y =+ € B;
then z*+ - (1 — €) = 0, that is, 1 — e belongs to the second summand and e belongs to the first, since
(z¥)A(=z") =0, (z*)-(-z") = 0,2t -2~ = 0, yzt -2~ = 0, and e -z~ = 0. Therefore, the union
contains 1.

1. For J- and B-global truths, we can state that

A is a (linearly) ordered division ring. (5)

The second statement follows from the fact that the notion of linearity and the concept of a division ring are
defined in terms of phi-formulas, and clause (a) of Lemma 3 does also hold — in the form [y] 7(4, < lelsca):

Now, define some extension A of the ring A. To do this, we follow Theorem 2 to define A’ € V7 C | %4
such that [p(ky,...,ka)]g = [@(Pe,,. .-+ Pr,)a’ly s, for all formulas ¢ such as in Lemma 2. Then {4’ is a
linearly ordered division ringly» = Jy. Let [A” is a really closed ordered division ring, A’ C A"}, s = J1-
Put 4 = (A" 54 = {g € VB(A) | [g € A"]ys = J1}. We have

[A-_ = Anuvp = T.

Define [-]g4) 4 in the usual way by setting [f = g]g(4) 1 = [f = gly» forany f,g € A, and similarly
for <. Operations in A are induced by those in (A)_ via the predicate ([-]» = T). There are two sorts
of variables: z, y, z, running through 4, and «, B, v running through A; moreover, [Vztp(z)]s( AT
AIp(Po)lys | = € 4}, ete.
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LEMMA 5. (a) A ring A is an extension of the ring A under the embedding k — P; including
operations A and V; [(4). = 4”]V53 = T; the valuations lels 4),4 and [oar]ys coincide, the A and V
included; [ - ]5( 4),4 coincides with [-1 7(a),4 for all atomic formulas s; = 3; and s; < 3, the A and Vv
included.

(b) The structure (4,[-] B(A), i) is a B-orthocomplete, really closed, strongly regular f-ring.

(c) For every B-orthocomplete, really closed, strongly regular f-ring A, extending A, there exists an
A" € VB such that [A" is a really closed division ring and an extension of A’} 5 = T and 4; = (A")"s@).

Proof. (a) f k +4¢t = r, then [(Py, P, Piye) € +'lys = T and [Peye = Pr]lys = T, whence
Pi+zPe=P,. Hk <4t then [(Pi,P) €<’ Jyn = T and Pp <z P.. fkApt =1, thenr < k,tAVU
(u<kt=>u<r),P,<Pi Pyand [P, <P, VP < Pilys = T, where [P < Plys =V [k <t], = Ja
and [P < Pllys = [t < k], = Jo. In other words, Jo Ve Js = Jav,b = J1, aVy b = B, 3ey € a,
ez € b (e; Vey = 1), where e;k < eyt and eyt < ezk. Then (e1k) Aq e1t = et = eyr, ek = ey7. Since
[P = Py» = [k = 4, we have Ji.y < [P = PJg A [P < P]g < [Pc Aan Py = P,]g. Similarly,
J(h) < [Pk Aan P = P']B' Therefore, [[Pk Agn P = P"I'B =Tand P A P, =P,.

It remains to verify equalities (1) and (2). Equality (2) is formula (3), which was checked earlier, and
(1) follows immediately from (2): [Px < Plg = [(Px, Pt) € Savls = [(Pr, P) €<ar 1Ig = Vo{[Px =
Pda AP = Plglu< v} = Vollk =l ARt = o], u< v} = [k <t

The next statement of (a) is obvious and so omitted. We proceed further to first check that

[(s1+s)° =si+98lys=T, [s=2]ys =T,
([s1+s2=33lys, =T) & s1 +s3 =s3in A

(6)

Here s and s° are, respectively, a term and its value in A. It follows immediately that [s; = s3] ; = [s§ =
314 = I3 =an s3lvs = [s1 = 02y and [s1 < s2) 5 = [s] < s3] = [s1 <av s3)ve = [s1 < s2lvs, and
we use induction on the number of connectives to eventually see that values of all the formulas coincide. The
first relation in (6) is, in essence, a definition, and the second is verified inductively as follows: [s; + 352 =
(s1+90) g (where [ = sil = [ =] =T)=V{la =zlAln=yAllzn(an+au)) e +]} 2T

The third relation in (6) is straightforward: if [3z,y,z € A” (sy = zAs3 =yAsz=zAz+y=12)] =T,
then 3f, g, h€ A([sy = fAs;=gAs3=hAf+g=h]=T,s} =f,s3 =g, s} =h), and vice versa. It is
worth mentioning that the operations A and V in A have ordinary meanings:

if fAzg =h,thatis, [fAsvng=h]g=T,thenh<; f,g,andifu<4 f,g thenu <z h.
Conversely, if h is the greatest lower bound for f and g in A then [ < f, g}z A [Vu < )
fig(u S h)]B =T.

Finally, we verify the last relation stated in Lemma 5. For atomic cases, we have [s; = 3;], (as was
checked in the proof of Lemma 2 for Theorem 2) = [s1 =4~ s3}ys = [51 = 52]; and [s; < s3], =
fs3 < s3], [by equality (1))= [s$ < s3]ys = [s1 < s2];. Here we use the relation [P(,,,.. k) =
(3(Peyy---2 Pr,))lys = T, which may be verified by using induction on the length of a term s since
{P(,l+,,)o = P,g+.; = P,g + P,g =3 + 32]1..

(In the derivation above, use was made of just one fact — that A” is a linearly ordered extension of 4’.)

(b) The property of being B-orthocomplete means that, for any family {(bs, fo)} of “conforming” pairs
(i.e., ba Abg < [fa = fsl;, Yo, B, where b, € B and f, € A), there exists an fo € A for which
ba < [fo = fal, Va. In our case this property is obvious. The properties of being really closed and strongly
regular, as well as the f-property, are expressed via Horn formulas, whence the result.
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(¢) The proof of this statement can be found in (4, p. 119].

Thus, in the class K4 = {K D A| K is a strongly regular f-ring}, S-orthocomplete, really closed
elements correspond — in a nonstandard sense — to really closed division rings extending the nonstandard
image A’ of the ring A.

Suppose that the language of (ordered) rings is extended by adding a new sort of variables o, 3, 7v.. .,
running through 4, A C B(4), an ordered, strongly regular f-ring, which now may or may not be chosen
in the same way as above.

A P-formula in the extended language is defined as atomic or as one that obtains by means of A, Vz,
3a, Yo, and also as (Jap;) A (Ya{p1 = ¢2)), where vy and ¢; are P-formulas. A weakly positive formula
in the same language is defined as atomic or as one that obtains by means of A, v, 3z, Vz, 3a, Va, and
also as (Japy) A (Ya(py = 93)), where o, is a P-formula and ¢; is weakly positive.

An input formula in the language in question is defined as weakly positive of the form ¢’, where ¢ is
a phi-formula in the initial language of rings, or as a weakly positive phi-formula in the initial language of
rings, or as one that obtains via the connectives A, Vv, 3z, Vz and 3o, Va. Recall that ¢’ is a formula in
the initial language of rings, equivalent to [p] ; = T; see [4, p. 115]. A normal formula is one of the form
@ = P, where ¢ is an input formula and v is an AE-formula in the initial language of rings.

LEMMA 6. (a) For any input formula o, if ¢4 z, then [(¢°) 4, 4)_lys = J1, where ¢° is constructed
from ¢ by changing each part of the form ' by u, that is, by deleting the sign ’.

The proof is by induction that follows the definition of an input formula. For ¢/, we have [y] 74 = B
by the definition of ¢’, [“’]s( 4) = J1 by the condition of being a phi-formula, and foa}ys = J1 by
Lemma 2. For a weakly positive formula, we proceed by induction on its length. There are two atomic
cases to consider — in A and in A. For s; = s; and s, < s3, where s, and s; are terms over A, asin
(a) of Lemma 3 we use induction on the length of terms, applying [s; = #2], = [(s1 = s2)a']y= and
[s1 < 321, = [(s1 < s3)ar]y 5. For the case where s; and s; are terms over A, appeal to the definition of
A. The case with connectives is obvious.

For simplicity, from this point on we assume that A is a commutative regular ordered f-ring. Then [A’
is an ordered field], s = J;. There exists a really closed extension of A’, and we let [A” is a really closed
field, A’ C A"],,» = J1. Put A = (4") 8,

Let ¢ = 9 be a normal formula. By (c) of Lemma 4, [wiv,(j)_]!vs =J;. HZFCF (9% = ), 1 for
any ordered field A and really closed extension A, then [y 4'lys = J1. As above, we obtain ¥/, and hence
also 14, provided that ¢ is weakly Horn.

An eztension is always taken in that class of rings in which the initial ring is taken. Below, if we say
that something is valid we mean that a corresponding statement is inferable in ZFC.

We have thus proved the following:

THEOREM 3. Let ¢ = ¥ be a normal formula. If, in the class of ordered fields A and their really
closed extensions A, the formula ¢° => ¢ is valid, then ¢ => ' is valid in the class of regular commutative
f-rings A and their B-orthocomplete really closed extensions A.

As above, a positively AE-Horn formula is one of the form ¢ = 3, where ¢ is a weakly positive formula
in the extended language of rings or a weakly positive phi-formula in the initial language of rings, and %
is an AE-weakly Horn formula in the initial language. The set of all such formulas true in some structure
or some class of structures is referred to as a positively AE-Horn theory of that structure or that class of
structures.

COROLLARY. A positively AE-Horn theory for the class of ordered fields and their really closed
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extensions coincides with a positively AE-Horn theory for the class of regular commutative f-rings and
their B-orthocomplete really closed extensions.

Remark 4. In the above corollary and in Theorem 3, as A we can take, respectively, only one real
closure of a field A and only one B-orthocomplete closure of a ring A, which is (A"')""“) by definition.

Let K be a class of all regular commutative f-rings. An example to the corollary may be furnished by
Hilbert’s theorem on zeros (including a bound for the degree and degrees of polynomials) and by Artin’s
theorem, which were stated for the class X. We cite the second of them.

For every ring A in K, there exists an (above-described) class of really closed extensions A in K such
that for any polynomial f over A, if f > 0 over A, then f is represented as a sum of squares of functions

fi rational over A, thatis, f = i ¢ - (f;)?, where ¢; isin A and ¢; > 0. The bound for the number m and
degrees of polynomials occurrin'g_iln fi is the same as is the case with fields.

This statement, as many others, gives an affirmative answer to Hilbert’s 17th problem, for the class of
rings K.

Remark 5. In theorem 3, instead of paired properties such as (a strongly regular f-ring, an ordered
division ring) and (a regular commutative f-ring, an ordered field), we can take all typical pairs of ring
properties (like in [3, 7, 8]), or take a pair ¢’ & ¢ in the general form.

Proof. We bring out only those parts of proofs that relate to the passage from one member of a pair
to the other, keeping the rest unchanged.

(1) A is a projective f-ring iff [A’ is linearly ordered], s = T;

(2) A is a quasiregular f-ring iff [4’ is [-simple, linearly ordered],s = T;

(3) A is a projective f-ring without nilpotent elements iff [A’ is linearly ordered, without zero
divisors]l, s = T. ‘

The same relations are true also for [ -]y ;- and [ -] (4, s-¢valuations.

(1) Recall that a projective ring A is specified by the condition

VYay,a; € A3by, by € A(a1 =b+ b A [b1| A ‘azl =0AVYbe A(lb‘ A !az| =0= |b2| A ‘bl = 0)), (8)

from which it follows that A = af + azt, Va; € A, where af = {b € A| |b| A |az| = 0} is a polar of a;
(i.e., “every polar” is a “direct summand”). Each polar M1 is an l-ideal, where M C A. Assuming that
the left-hand side is satisfied, we verify that [0 <z}, v[z < 0], =[c- =0}, v[z*t =0], = T. By
assumption, A = (z*)* + (z+)**. Choose e so that 1 =e+y, e € (z)*, y € (zF)**. Then Vu € (z*)*
(eu = ue = u) since u = ue + uy = ue, and Vv € (z*)1L (ev = ve = 0). It follows that Va € A (a = u + v,
ae = ea), that is, e is a central element. Since e is an idempotent (1 =e+y =2 +y*, e—e? = y? —y =0),
we have e € B(A) and e > 0. Thus z* A(—-27) =0,z - (~z")=0,zt.2~ =0,z € (z*)}, ez =27,
(1—e)-z~ =0, and 1 — e belongs to the first summand. Because z+ € (z*), we have e-z+ =0 and ¢
belongs to the second summand.

The converse statement for a J-evaluation holds by reason of the fact that formula (8) follows from
the linearity condition and is Horn. For a B-evaluation, if we assume that [A’ is linear], s = T, we obtain
[P: <Py Vv Py < Plys =T. In view of equality (1), [z <yl valy <zl =z <yl Vo ly <zl =T
and [Vz,y € A’ (z < yVy< z)lys =T, for a [ -] ;-evaluation, there is nothing to prove.

(2) A quasisimple ring A is defined by the condition

A = (a;) + aF, Vaz € 4, that is, Vay,a3 € A3by, by € A
(a1 =by+bA3n€NIdy,...,dn, f1,---1 fn EA(|b1| < (9)
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dy - lagl- f +...+dn'|agi'f,./\lb2|/\|azl =0)).
An l-simple ring A is specified by the condition of having no proper l-ideals, that is,

Va€ A(a=0AVbE AIn€N3dy,...,dn, f1,....fu € A (] <
dl-|a|-f1+...+d“-|a|-f,.)). ’ (10)

We have at! D (a) and at+ = (a) (if z € a** A a then |z] A |2] = |z] = 0), from which it follows
that a quasisimple ring A is projective, and by clause (1), [4’ is linear] = T. Let us check that [A’ is
I-simple] = T; see (10). Let e be a central idempotent corresponding to an I-ideal {a), that is, (1—e)-e = 0.
Then [a = 0], 5 (1—e). Now if we show that e is contained in the second summand of (10) we obtain the
desired statement. Take an arbitrary factor corresponding to b and choose b; and b; for which b = b; + b,,
jb1] < di-lal- fi+...+dn-|a]: fa, and |b2] Ala| = 0. We have [|b] < di-|a|- fi+...+dnla|fal, D e since
6] < 1bal + Ball g = T, Dbal + Ibal < di-lal- fy + ..+ da - fal  fo + [bal] = T, and e - [ba] = 0 in view of
lb2] € at, (1 —e) - |b2] = |bs). ‘

The converse statement for a J-evaluation follows by observing that I-simplicity and linearity imply
quasiregularity and projectivity, which are expressed via Horn formulas; here we also use the fact that an
algebra J is compact. For a B-evaluation, the passage from the linearity in V2 to that in V7 is as in clause
(1). To express the condition of being I-simple, write Va; € A Va; € 4 3n € N3d,,...,dn, firo-  fan €EA
(@=0V(lai| < di-laz|- fi+...+dn-|az|- fa)). This formula is B-globally true and so J-globally true,
in view of equalities (1) and (2). This, by the above, implies quasiregularity.

(3) Let A be a projective f-ring without nilpotent elements. We check that [Vz,y (z-y=0=
z=0Vy=0)] =T Ifee€[z-y=0] then exy = 0, e|z}- [y] = 0. Further, 0 < (e|z| A ly])? =
elz]* Aelz| - ly| Aely| - |2] A ly]® < e|z]|- |y| = 0, whence e|z| A |y] = 0, ez € y*, by one of the conditions.
By the other condition, y* + y*1 = A. Let ¢’ be a central idempotent cotresponding to the summand y*.
Then (1 -¢')-ez =0, (1 —¢')-e € [z =0]. On the other hand, ¢ € y*, ' Ajy| =0, ¢ - |y| = 0, |¢'y] = 0,
e€'y=0,ee-y=0, e’ € [y = 0]. Therefore (1 -¢')-eVee=ec [z=0]vs[y=0]

Argument for the converse statement is as in clauses (1) and (2).

A number of statements, which are true for rings on the right-hand sides of the above-envisaged equiv-
alences (viz., for linearly ordered rings, I-simple rings, rings without zero divisors, division rings or fields,
and the like), or for algebras over such rings, have the above-specified form ¢ = ¥, or we are able to reduce
them to a series of statements in this form. The statements can then be carried over to rings or to algebras
over rings occurring on the left-hand sides.*

Remark 6. Theorems 2 and 3 can be formulated for arbitrary structures like Theorem 1. Let ¢ be a
set of functions defined on the set K. Elements of K can be represented as constants, and we may — in this
sense — confine our account to functions. A basisin ¢ is the part B C g such that e € B =¢€eoe =e,....
Let o = {f € 9| foe = eo f} (on the left, e is applied to all arguments of the function f). Putting
[k =t}x = {e € B| eok = e o t}, then, we can develop a theory close to the one above. The set o may
also include relations P such that P(z) = P(ez). This, we think, will make it possible to define a semantics
for some language of functional programming.

The classes of input and output formulas can be extended as follows. Let a formula ¢ be of the form
that guarantees that px = ([¢] € jo), where jg is some filter. By set-theoretic considerations, then, we

*Currently, [ am preparing a summary of these results. Among them are Ritt’s theorem on zeros for differential polyno-
mials, the Lean-Zeidenberg theorem on critical points of a polynomial mapping C — C?, the Gelfand~Ponomaryov theorem
on the representation of free modular lattices, the classification of Henselian fields, etc.
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obtain [y] € j;, where j; is, generally speaking, another filter with the property ([¥] € j1) = ¥k for
formulas 3 from a certain class. In the end, as was shown above, jo = j; = {T}.
Note: Parts of the theorems presented in this article are contained in [3]; for the language of rings, they

are given with a proof in [7, p. 111} and without a proof in [8].
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