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T R A N S F E R  T H E O R E M S  A N D  THE A L G E B R A  OF M O D A L  O P E R A T O R S  

V. A. Lyubetsky* UDC 510.66+512.55 

A set theory Z F I '  which does not employ the Law of the Ezcluded Middle ~o V -~o, for all ~o, 

retains the stock of ezpressire capacities of the classical set theory ZF,  on the one hand, and has 

many of the features of an effective theory on the other. In the article, a broad class of formulas 

is eonn~ructed for which Z F ~- ~ implies Z F I'  ~" ~. Thin result provides a generalization of 

Friedman's theorem on AE-arithmetic formulas. Besides, we prove transfer theorems of classical 

logic for ~he ease of rings; in particular, Hilbert's ~heorem on zeros and Ar~in's theorem on 

ordered fields are eztended to the case of regular f-rings, and we bring in appropriate upper 

bounds for them. 

A set theory ZFI' which does not make use of the Law of the Excluded Middle ~o v -,~0 (LEM) for all 

formulas ~o, while keeping up expressive capacities of the classical set theory ZF (for describing schemes, 

images, relations, and the like), has a lot of traits of an effective theory. For instance, formulas of the form 

Vz3y ~Oo inferable in ZF often define functions in a certain effective way. 

In the article we construct a broad class of formulas ~ for which ZF }- ( implies ZFI' }- ( .  This result 

provides a generalization of Friedman's known theorem on AE-arithmetic formulas [1], and is used to ground 

an algorithm designed in [2]. Besides, here we prove transfer theorems of classical logic for the case of rings, 

ordered rings included. As an illustration, Hi]bert's theorem on seros and Artin's theorem on ordered fields 

are extended to the case of regular f-rings, and we supply appropriate upper bounds. 

As a classical set theory ZF we consider the Zermelo-Fraenkel set theory, with the r-induction and 

collection axiom taken instead of foundation and replacement axioms, respectively, that  is, we deal with 

the ordinary system of axioms for classical set theory. As a corresponding intuitionistic set theory ZFI' we 

consider ZF that  is freed of the axiom ~o V -~o. 

The symbol ~-- stands for "is equal by definition" or "is equivalent by definition." The reader is expected 

to be familiar with [3-5]. 

A phi-formulais one in which the premise of any one of its implications satisfies the following: it does not 

contain the quantifier V, while the quantifier 3 does not enter into the domain of the connective ~ .  Every 

formula is classically equivalent to a phi-formula, for instance, to a formula in the prenex form. Further, 

an AE-formula is one of the form V z t . . .  Z n 3 Y l  . . .  Yn ~0, where ~o0 is quantifier-free. A formula with tight 

negations is one that  contains an implication only in the form of negation of its atomic parts. The negation 

--~o is always understood as ~o ~ / .  
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Fix an arbitrary language that includes the equality symbol =, and also some functional symbols f , . . .  

and predicate symbols P, . . . .  For instance, let / and P be binary. Assume that  K is some interpretation of 

those symbols in a countable constructive set, say, in the set of all positive integers w ~ { 0 ,  I ,  2 , . . . ,  }. Under 

this interpretation, z - y is thought of as an identity, that is, two sets z and y coincide, and f :  w 2 --* w, 

P C_ w 2. In essence, /f  ~-- (w, f , . . . ,  P , . . . )  is an atbitraty countable structure (with functions and relations). 

The approach attempted below makes use of the countability of a support and aims at verifying relations 

(*x) and (*2), speci~ed later. The relations ate conditions on a support K of the structure K ,  satisfied for 

K - 0J. If we assume that  these ate satisfied for K then for a structure of the form K ~-- (K, f , . . . ,  P,...), 
f :  K 2 ~ K,  P C K 2, Theorem 1 (see below), too, will be valid. A question as to which sets K apart  from 

w satisfy the above conditions will be dealt with in some other work. 

Thus, let ~ be an arbitrary phi-formula and Ib an arbitrary AE-formula in our language and let (~ ~ ~b)~ 

express some property of the structure /~ and be a formula in the language of the set theory ZF; more 

specifically, it will be one of the following: either V f ,  P , . . .  ( f :  w 2 --, wAP C_ w2A...  => (V~ (~o => ~b))~,Lp,... ) 

or V f ,  P , . . .  (~:(f, P , . . . )  => (V~ (~o => @))~,/,e,...), where 2 ate all free variables in q0 and @ and ~ is a 

formula in the languageof  ZF describing the s t ructure/~.  Here we limit ourselves to the first case. The 

second case is treated similarly (see Remark 2 below). Denote by ~ the first formula, and by ~' a formula 

obtained from ~ by adding Vz, ! /E w (P(z,  y) v ",P(z,  ~/)) in the premise for all predicate symbols P , . . .  

occurring in r If, for instance, the premise of r says that P is a recursive predicate then we can take 

itself to be ~'. 

T H E O R E M  1. If ZF k- ~ then ZFI' k- ~'. 

P roof .  Suppose that  the condition of the theorem holds. Further argument is an explicit metamath- 

ematical description of the inference in ZFI', spoken of in the conclusion. From that,  in particular, we 

see that  the length of an intnitionistic inference is a linear function of length of a corresponding classical 

inference, with certain small coefficients, which it is easy to explicitly specify. 

Put ~2 ~ {0,1}, where < is defined to be 0 < 1. Then u <__ v ~-- u < v V u  : v. This structure is 

a Boolean algebra. (Of course, its completeness is not maintained.) Let J2 be a set of all ideals in ~2; 

as usual, the ideal a is a subset of 2~, with the following properties: 0 E a, Vexe2 E a (ex V e2 E a), and 

Ve E 2~2 Vex E a (e <_ ex => e E a). An order in ,3"2 is naturally defined as follows: a <__ b ~-- a C_ b. That  

structure is a complete Heyting algebra. For instance, (V aa) A b _< V(aa A b). In this case a A b ~-- a N b 
r a 

and VA ~-- {0} U U A since {0} u LJ A is an ideal. Fix an embedding of the Boolean algebra ~2 in .72 to be 
0~{0}, 1~ 77- z. 

Denote by A2 a set of all modal operators, or, in other words, of all 3-operators on J2; see [6]. As usual, 

a J-operatoris the map J :  g'2 ~ J2 for which J(a) >_ a, J (aAb)  = J ( a ) A J ( b ) ,  J ( J ( a ) )  = J(a) ,  Va, b E .3"2. 

An order in A2 is defined thus: Jx _< J2 ~-- Va E .72 (Jx(a) C 32(a)). This structure is a complete Heyting 
/ \ 

algebra. In this case (A 3a)(a)~-- ~(./a(a))and (V 3a) (a) ~-- f3{b[a C_ b, Ja(b)=b, Vet}. Define the 
\c, / (21 \ a  / 

embedding .Tz --, A2 as a ~ 3~, where 3~(b) = a v b. This is a cHa-embedding, that is, {0} ~-, 30 = id, 
where id(a) -~ a, 77. 2 t-~ ./1; here, by definition, 3x(a) - Z2, 3~^~ = 3~ ̂ 3b, and 3V." = V 3 ~ .  Note that 

r 

(-~-~,t,)3~ = .r~ since (-~,t,)3~ = 3 ~, where 3~(t,) - -  a ~ b. Indeed, 2~ ^ J~ =~id = 3o, 2~ v 3" = 3x. 
Therefore, any Ja E B2 ~-- {./ E A2] (-~'~A~).7 : J},  that is, ,7"~ is cHa-embedded also in B~. The B~ is a 

complete Boolean algebra, tailored to this form - -  as any algebra - -  from the complete Heytlng algebra. 
Define the evab~ation 

[k = t]~ = {0} U {z [ z = I, k = t} C__ Z2, [" = "Is:  K" J2. 
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In fact, each of its values is an ideal. For any terms st and s~, define [ s t ( i )  = s2(k)] e to be [k = tie, where 

s t ( i )  ~-- k, s t(k)  ~- t (st and s2 are computed in K).  Similarly we define [P( s , , s2 ) ]e  = [P(s~176 

(where s o and s ~ are values of the terms sl and sa in /~)  = {0}U{z I z = 1, P(s~ s~ �9 ff~. To extend the 

map [- = "JR from the set of all terms with parameters in K to the set of all formulas with parameters from 

K (without free variables), we use induction on the connectives. There are two ways. The first one is to 

use operations in ,3"a, and the second - -  in B~. These result in the maps, which we denote by, respectively, 

[ .  ].7", and [ .  ] ~ .  The condition 

v~, t  �9 K (~ = t v ~, .# t) ( .1)  

is satisfied for the support  B: ~-- w. The outcome is that  the situation becomes much simpler: [st : s2]R = 

{0} Or [ s  t ~-: s 2 ]  e - -  ~2-  Similarly, [ p ( s l , s ~ ) ] g  = {0} or [P(sx, s~)]e = ~ ,  due to an extra premise 

P V --P in r The property that we have specified will be called the normality of a valuation. Accordingly, 

[sx = s2]n, = Jo or [s, = s2]n, = J l  and [e(s l , s~)]$ ,  = Jo or [V(sx,s2)]~, = d,.  Here (and in the 

theorems below), we can directly assume the normality condition: ( [ / =  t]R , [P(k, t )]  R �9 Z2), Vk, t  �9 K 

[resp., �9 B(K)] .  

L E M M A  1. Any formula ~ satisfies the following: 

~ e  r ( ( ~ l ~ ,  = r.2). 

The p r o o f  is by induction on the length of ~o. We have (sl = s2)R r (k -- t ) e  r  ([k = tie = ~2) r 

([st  = s2]R = z2). Similarly P ( s l , s 2 ) e  r P(k , t )  r ( [P(s t , s2)]g  = 2~2). If [~o v r  = 77.2, then 

1 E ([~o] U [~b]), 1 E [~o], or 1 E [~b 1. If (~o =r ~b)e and e E [vlj,, then e : 0 or e = 1, and by induction, 
e �9 [r If ~e and [r _< [r then [r = r~2, ee. If [3zr = g2, then I �9 ({0} U U [~(k)]s~ and 

k 

[~(k)]~.  = H2, for some k �9 s  

Denote by V n~ the Boolean-valued universe for the complete Boolean algebra B~. The class V of all 

sets is then embedded in V 5~ in the usual way as follows: z v ~ {yv[ y �9 z}_,  where X_ stands for the 

identity function defined on X. Here (.)v : V ~ V n~. By induction on the length of the argument, it is 

easy to infer that  if ZF l- ~ then ~ ] v ~ ,  = J~ and, in particular, [ f v :  (~vv)z ~ t0v, p v  C_ (o~v) 2 ^ . . .  

(v~(~ ~ r  = .&, 
[~o,0v]V. , _< [r  , .  (1) 

We obtain relation (1) in accordance with the premise of Theorem 1, and use it repeatedly below; our 

appeal to the premise of Theorem 1 will be limited to just this case. In deriving (1), we note, use is also 

made of the equality [ fv  : (wv)2 --~ 0~v]v,2 = j~. The proof of single-valuedness is nontrivial: we need to 

show that  

= t2]vn , < ~f(kx, k2) v = f ( t t , t 2 ) v ] v . . .  

This follows from Lemma 2; the case with kx, tx, k2, t2 �9 w is overt in virtue of w being strongly decidable. 

Recall that  X is called strongly decidable if the transitive closure X + of X, defined by c-induction to be 

X + = X u O {Y+I Y �9 X}, possesses the property that  Vu, v �9 X + (u = v v 3w �9 u (w ~ v) V 3w �9 v 
(~ r ~)). 

L E M M A  2. Any formula ~ satisfies the following: 

, . . . , k . ) . v , m e v l v . , .  [ ~ ( k l , . . . ,  k , ) ] s ,  = [~(k~' v 

The p r o o f  is by induction on the length of ~o. 
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Ist  a tomic case. Obviously, [k = t ]~  < [k v = tV]v.,  <_ [k v = tv]v , ,  (al ternatively,  using normali ty,  

we immediate ly  obta in  ik = t i t  r _< [k v : t v ] e a ,  ). 

Assume the condit ion 

[k v = t V l v , ,  _< ik = t i e .  ( * , )  

For k, t E to, this is satisfied trivially, as is the case with any other strongly decidable set. Thus ,  [ k = r i g  = 

[k v = tVlv.,. 
Term ease. For one functional  symbol, we have [/(kV,t v) = , v h ,  = [ ( k v , t v , ,  v)  E f v ] ~ ,  - 

V [k v " = ~ h ,  ^ [ tv = ~ l ~ ,  ^ [ '~  = f ( ~ ,  ~ ) q n ,  = V [k = u l e  x It = ~ ] e  ^ [" = / ( u ,  ~)]~ : 
u,~EK u,vEK 

V [k = u] ^ i t  = v] ^ [r = f(k,t)] = [ r  = f(k,t)]1r T h e  last bu t  one equa l i ty  follows from 
~,vEK 
[k = u ] i  r A It = v ] e  ^ [ r  = /(k,  t)]]ir < [r - /(u,  v)]E.  In the general case [f(tl ,  t , )  = s i s  , = [ (3z,  y 

( / ( = , u )  = s ^ t ,  : = ^ t ,  = 1/))Kvh, = V i/(=~,1/v) : d ~ ,  ^ it ,  = =~]~, ^ I t ,  : ~Vh ,  -" 
z,yEK 

V U ( = ,  1/) = s i c  ^ [t~ = = l e  ^ [t~ = f i e  = V itt = z ] ~  ^ i t ,  = 1/]~r ^ [ f ( t t , t h )  = s i c  = 
z,yEK z,~IEK 
[ f ( t l , t ~ )  = s i c .  

2nd atomic case. I p v ( k v , t V ) ] v ,  , = [<kV,t v) �9 PV]v ,  , = V [ kv = uv]v  . ,  ^ [ tv = vV]v , ,  = 
('~,")eP 

V [k = ,,]e^it = ,,le = [p(k,t)le. The last equality is verified ~ectly. S~,-~arlr IP~(~,.,~)],,., = 
(u,'P)EP 
[(3z,1/ (PV(z ,  1/) A s t  : = A s ,  = Y))K~Iv- ,  : V ~PVCzV,1/v)],,  A [ ' t  : ~ v ] , ,  ^ [ , ,  : yv]ls,  : 

z,yEK 
V ~P(=, 1/)]g A [st  = z ] e  ^ Is ,  = 1/]/r = [P(Sl, s , ) ]  E .  The  last equali ty is verified directly.  

z,yEK 
Cases with connectives are obvious. 

R e m a r k  1. I n t h e  above argument ,  we did not  make use of the s ta tement  tha t  [k v = t v ] y  2 = ~k -- t]~t, 

where k and t are a rb i t ra ry  sets, which is nevertheless useful for a be t te r  unders tanding  of  the idea behind it. 

Indeed, let t ha t  equali ty hold for all z �9 k and ! / � 9  t. In one direction, the induct ion hypothes is  is not 

needed: e � 9  = r 1 4 9  v : t  v ] o r k  v = t  v. I f e � 9  v = tv ]a .2 ,  t h e n e : 0 v e = l .  

The  first case is trivial. In the second case 1 e �9 [k v v = 1/v].% .. ,  = = t  ]3", = A V [=v ^ .  t ha t  is, for any 
zEk yet 

= �9 k, there  exists a y �9 t such tha t  1 �9 ~zv = 1/v]3. a and 1 �9 [z  = y |g. ,  z = y, t ha t  is, = �9 t, k C t, and 

similarly t C_ k. Thus  k = t and [k = t ] e  = ~ : ,  1 �9 [k = t i e .  

L E M M A  3. (a) For any phi-formula q0 with parameters  ]: = (k~ , . . . ,  k,,) �9 K ,  [qo(k)]% < iqo(k)]n~ 

holds. 

(b) For any AE-formula  ~b with parameters  k = ( k x , . . . ,  k,,) �9 K ,  (a < [~b(k)]n~ ) =~ (a < i~b(k]a.~) 

holds for any a �9 fla. 

P r o o f .  (a) Assume, first, tha t  ~o has no quantifier V and tha t  the quantifier 3 does not  enter  into the 

domain  of ~ .  Use induct ion on the length of ~o to verify tha t  if r does not  contain ~ then  [~o]j. = [~o]n, �9 

g , ,  and if ~0 does contain 3 then [~o]~, = [~0]~. In fact,  for q0 an atomic formula, the first s t a t emen t  follows 

by the normal i ty  property.  For the cases with A and V, it is trivial. For ~ ,  the formula  ~o does not  contain 

q by assumption,  and the result follows. The  ease with ~ is trivial. 

Now let r be a phi-formula.  If qo is a tomic or is const ructed via the connectives A, V, ~, and V, the,, 

s t a tement  (a) of L e m m a  3 needs no elucidation. If ~o is obta ined through ~ox =:. ~0z then,  for r we 

have ~r = [q0t]~, by the previous paragraph.  By the induct ion hypothesis,  [~o,]~r, < [q0,]~,, and so 

(b) If ~b(k) is atomic,  tha t  is, of the form st = s ,  or P(sx, s,), then i~b(k)]3. ' = i~b(le)]n~ by definition, 
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and ~b(k)] E 22 by the normality property. Propositional operations A, V, --, in J2 and in 132, if applied 

to elements of 22, that  is, to the ideals {0} and 22 or to the operators J0 and J1, yield the same result 

belonging to 22. For ~b(k) a quantifier-free formula, therefore, again we obtain [~b(k)]~r, = [~b(k)]n3 G 22 

by induction on the length of ~. Here condition (*x) is essential. For the case with 3y~b, [3y~b(y, k)]Y2 = 

[3y~b(y, k)]n2 E ,7"2 follows from the fact that .7"2 is era-embedded in B2. Lastly, for the case with Vz3y~b, 

the inequality that  we are verifying is straightforward. 

We finish the proof of Theorem 1. Assume that  f : ~2 __, a~, P C w 2, ~a~,,f,~,(k), and that  (*2) 

holds. By Lemma 1, then, we obtain [~a]~q = 7/.2, and by (a) of Lemma 3, [~]ts2 = J1. By Lemma 2, 
V . . . .  , kn)KV]vn~ -- J1, by Lemma 2, [~(k)]5, - [~o(k~, . . ,  k,~)K,,]v,2 = J1. By relation (1), we have [~b(k~, v 

J l ,  and by (b) of Lemma 3, [~b(k)].~. = 22. In view of Lemma 1, ~w,1,p(]:). 

R e m a r k  2. In the second case envisaged before Theorem 1, we must first assume that  the formula 

is absolute, that  is, 

~(o~, f ,  e , . . . )  =~ ([~(o~ v, fv ,  p V . . - ) l v , ,  = x). (*3) 

Next assume that ~ ( ~ , f , p , . . . )  to arrive at [~ (o~ , f  ~, P ~ , . . . ) ] v , ,  = 1, whence (1), and then proceed 

further as in the proof of Theorem 1. Of course, the typical structure (~, +, - , . ,  _<, 0, 1) is described by an 

absolute formula. This is an instance of Friedman's theorem. All recursive functions and relations on w are 

also described by absolute formulas. If g is positive, with bounded quantifier V, then it is absolute. If g is 

with tight negations and relativised to the set U such that  the transitive closure of {z, y} (for any z, y E U) 

is strongly decidable, then g is absolute. If B2 is an apartness algebra, then any formula ~ with bounded 

quantifiers is absolute. The proof of all these cases is by a straightforward induction. A statement similar 

to Theorem 1 will hold for the many-sorted language, which is the case, for instance, in our Theorem 3 (see 

below) where an extra sort of variables runs over an algebraically or really closed extension of the initial 

ring. 

Instead of one formula ~0 we can consider a theory T consisting of the set of phi-formulas, in which case 

T~  is understood a s / ~  ~ T, for a suitable description of T in terms of a set of codes, which are natural 

numbers. Normally, T contains a countable set of axioms and can be described, for instance, as some cl C_ w. 

Therefore, i fVn E a (K ~ n), then [Vn E av( /{  ~ n)] = A{[(~a,~)K]I n E a} = J1. 

Below we give Theorem 2, according to which to some axioms in the inference one can apply elimination 

procedures such as cut-elimlnation and the elimination of LEM in Theorem 1. Statements concerning the 

possibility of such eliminations are sometimes referred to as transfer theorems. 

A formula ~ is called weakly positive if it is constructed from atomic formulas inductively via the 

connectives A, V, 3, V, and by the special rule for the implication: if ~ is a P-formula and ~2 is weakly 

positive then ( ~  ~01)A(V~ (~o~ =~ ~o2)) is weakly positive. A weakly Horn formula ~ is determined inductively 

as one constructed from atomic formulas via the connectives A, ~, V, and by the special rule for the 

implication: if ~ol is weakly positive and ~o2 is weakly Horn then (~o~ ::~ ~o2) is weakly Horn. Recall that  a 

P-formula is defined as atomic or as one that obtains via A, ~, V, and by the special rule for the implication: 

(~2 ~ )  A (V~ (~o~ :~ ~o2)), where ~ox and ~o2 are P-formulas. 

Let ~o and ~b be such formulas in the language of rings. 

T H E O R E M  2. (a) If ZFI ~ ~- V + , - , . , 0 , 1  (+ : ~2 ~ ~v,- : ~ --. ~ , .  : ~ ~ ~ ,0 ,1  E 

~a ::~ [~3 :~ u (~o(~) ::~ ~b(~))]~,+,-,.,0,x), then ZFI ~ k- V + , - , . , 0 ,  1 (... =~ [K(w, +, - ,  ., 0, 1) ::~ V~ 

(~o(2) =~ ~b(2))]~,+,-,.,o,~), where ... stands for the corresponding expression in the premise, K(~ ,  +,  - , . ,  0, 1) 

says that  the structure <~v, +,  - , . ,  0, 1) is a ring, and ~3 says that the r ing/~ ~ (c~, +,  - , . ,  0, 1) is indecom- 

posable, that  is, each of its decompositions into a direct sum of ideals is trivial (of the form K ~ {0}). 
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(b) The claim of (a) remains valid if we omit the assumption on the countability of ~7, that  is, assume 

that the support  K of the r ing /{  is an arbitrary set, and add, instead, a condition on the decidability of 

the set B(~:) of all central idempotents of K, that is, put Vet,e2 E B(K) (el = e2 V el r e2). 

(c) If ZF ~- V+, - , . ,  0, 1 [i =~ V~ (~0(2) ~ r then ZFI' ~- V+, - , . ,  0, 1 [i' =~ V2 (~o(2) =~ 

r Here, in addition, ~o is a phi-formula, ~b is an AE-formula, and (i, i~), for instance, are the 

following pairs of properties (including that of being a ring): (biregular, quasisimple), (strongly regular, a 

division ring). In the hypotheses of (a) and (b), we can add in the premi-~e and the conclusion the property 

~ t  .~ "is a normal ring." 

Thus, in clauses (a) and (b), the property ~3 is eliminated; in (c), the Law of the Excluded Middle is 

eliminated, and i is replaced by a much weaker property i ~. Recall, for instance, that  strongly regular tings 

are specified by the condition Yz �9 K 3y �9 K (z 2 �9 y = z). Those form a class of rings which is much 

broader than the class of division rings. 

The p r o o f  is as in Theorem 1. We point out the differences. Given a / { ,  form a Boolean algebra B(/~) 

(not ~2), and then proceed as above to form i f (K)  and B(K).  Define the evaluation [k = t]K ~- {e �9 B(~:) ] 
e.  k = e - t )  �9 i f (K)  and extend it to [ ' ] y (K)  and ~ "]B(K)- Now, the conclusion of Lemma 1 fails and the 

following holds instead: 

L E M M A  4. (a) If ~o is weakly positive then ~oK ~ (~o~y(K) = B). 

(b) If ~o is weakly Horn then (~o~y(K) = B) ~ ~oK. 

P r o o f .  Both clauses are proved by a simultaneous induction on the length of ~o. If ~o is atomic, then 

(st = s~)/r r (Is1 = s2]K = B). We handle case (a). For the connectives A, V, 3, V, the argument is trivial, 

and for ~ ,  we have the following: if (3zqot A (Vz (~ot ==~ ~o2)))K, then 3ko �9 K([qot(ko)ly = B),  whence 

[Vz (~ot =~ ~o2)]y = n{[~o2(k)]y[ k �9 K, [~ot(k)]y = B}, from which it follows that the last expression 

is equal to B. We  check the first equality. It suffices to show that [Vz (~ot ~ ~o2)]y >_ the "right part," 

that is, (~ox(k)] --* [~o2(k)]) _> the "right part," Vk. This follows from the inequality [~ot(k)]A the "right 

part" < [ ~ ( k ) ] ,  that  is, from Ye �9 ~9~t(k)], Vk~k~ [(e) A [~o2(kt)] < ~o~(k)~], where ~ot(k)]  = B. We 

claim that the latter is satisfied if we put kt ~- e �9 k + (1 - e) �9 k0. Indeed, let e ~ be any element on the 

left-hand side. Then e' < e, and e' �9 [k = kt] A [~o2(kx)~ < [~o2(k)], and e �9 [k = kt] A [~ot(k)] < ~ot(kt)] ,  

( l - e )  �9 [k t = ko] A~ot(k0)~ < [~ot(k~)], [~ot(kt)]y = B. In what follows, (e) is a principal ideal generated 
by e. 

We turn to case (b). For A, V, the argument is trivial, and for ~ we obtain the following: if [~z~o~y = B, 
I ' where the {e~) are pairwise disjoint and ei �9 [~o(k,)~, and then put then 1 = et V . . .  V en = e~ v . . .  ven ,  

ko ~-- ~ e~. ki. It follows that e~. ko = ei-  ko, e~ �9 ~ko -- ki]~r A [~o(ki)]y < [~o(ko)~j, B -- [~o(ko)]~r, and 
i 

by the induction hypothesis, ~o(ko)g. For the connective ~ ,  we have: if [~'t =~ ~o~]y = B and (~t)K, then 

by (a), [~o~]y = B, [~.o2].~r = B, and (~o2)K. 

As in Lemma 2, in the Boolean-valued universe V B(K)' we choose a nonstandard representation of the 

s t ructure/~.  (The index K will often be omitted.) In this case, this is not (K v , f v ,  p v )  but  (K' ,  + ' ,  - ' ,  .', 0', 

1'), where g '  ~- {P~I k �9 g } _ ,  P~(t v) ~-- [k -- t]K , t runs through K, and +' = {(P~,, P~, P~+t)l k,t  �9 
K}_,  and similarly for - ' ,  .'; lastly, 0' ~-- P0, 1' ~ />1 .  It is worth noting that ~+':  (K ' )  2 ---* K']v~, -" Jt 
(and similarly for all other operations including [0', 1' �9 K']v~ = Jr). The verification of single-valuedness 

is nontrivial: we have to arrive at [P~, = Pr A [ P ~  = Pc,Iv _< [P~,+~ = Pt ,+t , ]v .  By Lemma 2, which 

in this case does also hold under the same condition (*2) (see a proof below), we need first check that 

[kt = t t ] s  A ~k~ = t~]s <_ [kt + k~ = tt + tz] t  ~, that is, [k I = t l ]  K A [k~ = t~]K <_ [ k l +  k2 = t l + t 2 ] g .  The 
latter is true for any function f (e.g., of two arguments) for w h i c h / ( e ,  kt, e .  kz) = e . / ( k t ,  kz), Ve �9 B(K),  
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Vkt, k2 E K, in particular, for +, - ,  .. More specifically, condition (*3) now has the form 

[~" = t"lv,, , ,~ < [k = t lK,  v k , t  ~ K. ( * d  

In this case Lemma 2 follows from the condition [P~ : Pt]v,a(,c) <_ [k = t]K , that  is, [tom 

N ([k = z]K ~ U [t = Y]K ^ [ zv = YV]n) ^ " "  --< [k = t]K. (*5) 
zEK yEK 

Here ... stands for the reverse inclusion. Obviously, (*4) ~ (*5). 

The p r o o f  of Lemma 2 (for Theorem 2). We verify that 

[ ~ ( k l , . . . ,  k,,)]5(K ) = [~(P}, . . . .  , P~.)Iv,<-, ,  vTc ~ K. (2) 

Atomic case. Condition (*s) immediately implies that 

[k = t]K = [Pk = P,]., vk,t ~ K. (3) 

Condition (*4) iS satiSfied for any strongly decidable set. 
Term case (with one functional symbol). We have [f(Pk, Pt) - P,']5 = [(Pk, Pt, P,) E ft]~ = 

U [PI, = P,.]s ^ [ p ,  = P,,ls ^ [ P ,  = PI(,,,,,)] = U[k  = U ] K ^ [ t  = V l K ^ [ r  = f(u,v)] K = 

U [ k  - ulK ^ I t  - v~K A [ r  = f ( k , t ) ]  K - I t = f (k , t ) ]  K. The last but one equality uses the tela- 
~ 7  

tion [ k  - u]x  A It -- v]g A [ r  = f (u ,  v)] K < [r ---- f (k ,  t)]K, where f iS any function with the property 

e. f(~,~) = f(e- u,e. ~). 
Term c~ (with a number of fuuction~a symbo',). We have [f(t~,t~) = s]~ = [(3~,y (f(~,y) = 

,A(t, = ~)A(t2 = ~')))~'l,, = U [f(P.,Py) = slz, A[tl = P=lnA[t~ = P, lls = U U(z,y) = slKA[tl = 
z,yEK z,y 

Lemma 3 iS caxried over to this case without changes (the normality of a valuation follows from property 

{'). Theorem 2 iS thus proved. 

A positively AE-Horr~ formula is one of the form ~0 => ~b, where ~o is a weakly positive phi-formula and 

is an AE-weakly Horn formula. The set of all such formulas true in some structure or some class of 

structures is called a positively AE-Horn ~heory of that  structure or that class of structures. 

C O R O L L A R Y .  A positively AE-Horn theory of the class of strongly regular rings coincides with a 

positively AE-Horn theory of the class of division rings, and this iS also true for all pairs (i p, i) of classes of 

rings described in (c) of Theorem 2. 

R e m a r k  3. In Theorem 2, the formula ~ may also include any formulas of the form ~', where ~ iS 

arbitraxy in C a) and (b), and r is a phi-formula in (c). In (a) and (b), the ~ can be arbitrary, and then in the 

conclusion we should write ,~, instead of ,~. In (c) and the corollary, the ,~ can be an arbitrary AE-formula, 

and then in the conclusion we must write ,)' again. 

The results presented above remain valid if, instead of ~ and ,~, we consider theories consisting of 

formulas of the same types. 

The language of rings can also be enriched by any predicate symbols P (as in Lemma 2 for Thin. 1), 

subject to the requirement that  P(z,  y) ~ P(e-  z, e .  y), Ve 6 B(K) ,  Vz, y 6 K .  For instance, if Ve 6 B ( K )  

(e >_ 0), the requirement holds for a relation _<. 

An illustration to Remark 3 is Theorem 3 below. We start by giving a number of general statements 

needed in its proof. 
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Let A be a strongly regular o rdered / - r ing  considered in a language of rings with the extra relation <. 

T ha t  is, <__ is the lattice order and (z >__ 0, a A b = 0) ~ (a A (b. z) = a A (z .  b) ---- 0). We will make use of 

the following elementary properties of / - r ings:  if c > 0, then (a v b)- c = a .  c V b. c (and similarly for A and 

from the left), la. b I - la l"  Ibt, a '  >__ 0, a n d  a ^ b - O a .  b = 0. 

Let B(A)  be a Boolean algebra of all central idempotents of the ring A and let B C_ 3" C_ B be ordinary 

extensions such as those in Theorem 2. The evaluations [ .  ]A, [" ]Y, and [ - ] s  are determined as above, 

and [sx _< a l i a  ~-- [k _< t]• (where k and t are values of the terms sx and s2 in A) ~- {e E B[ e-  k _< e .  t}. 

The order relation in B, defined above as (el < el)  ~ e l -  e2 = el, coincides with an order relation induced 

by A. Indeed, if el <B el,  that is, el �9 e2 = el,  then (el - el)  1 = (el - el).  Hence e2 - el >_A 0. If el  <A el, 

then (1 - e l ) -  el  <_ 0 and (1 - e l ) -  el ?_ 0. Therefore (I - e~)- el -" 0. Moreover, el Aa el = el  AA e2 and 

el V s e 2 : e 1 VA e2. In fact, e l "  e l  <_ e l ,  e l "  e l  < e2, and if a <_ el,  a < e2, then (1 - e l )"  a < 0, a <__ e 1 - a ,  

e l ' a _ <  e l - e l ,  a < el "el.  

We handle the case with v a .  Here (el VA el) �9 (el VA e2) "- (el VA el),  that  is, (el VA el)  E B a n d  

el, e I < (e I V A e2) , so e I V B e 1 < e I V A e 2 (in B) and el VA el _< el Va el (in A). 

Thus, the order relation and lattice operations in A are extensions of the corresponding relation and 

operations in B. It is also worth noting that  

[0 <_ k] A = [k-  = 0]A. (4) 

Indeed, the condition ek >_ 0 implies e(k A O) = ek A 0 = 0 and the condition e(k ^ 0) = 0 implies 

ek A 0 = O, ek ~_ O. Hence, the normality of [ .  ]A follows from its being normal for the equality, and 

the latter in turn is stipulated by the strong regularity. So, for any quantifier-free formula ~o we have 

It is not hard to obtain [vzq9 (z : 0 V z -  y = y-  z : 1)]y = B and [Vz, y ( z  _< y V y < z ) ] y  : B. 

Indeed, [0 _< z]~ r v y  [z <_ 0]y  : [ z -  : 0 ] V [ z  + : 0]. Let z + -- z + . y . z  + and e ~- y - z  + E B; 

then z + �9 (1 - e) : 0, that  is, 1 - e belongs to the second summand and e belongs to the first, since 

(z + ) A ( - z - )  = 0, (z+) - ( - z - )  = 0, z + - z -  = 0, yz + . z -  = 0, a n d e . z -  : 0. Therefore, the union 

contains I. 

1. For J- and B-global truths, we can state that 

A is a (linearly) ordered division ring. (5) 

The second statement  follows from the fact that  the notion oflinearity and the concept of a division ring are 

defined in terms of phi-formulas, and clause (a) of Lemma 3 does also hold ~ in the form [~]~r(~t) <_ [~o]t~(A)- 

Now, define some extension .4 of the ring A. To do this, we follow Theorem 2 to define A' E g :r C_ V s 

such that  [~o(kl , . . . ,  k,,)] s : [q0(P~t,. . . ,  Pk~)A']vs, for all formulas ~o such as in Lemma 2. Then  [A' is a 

linearly ordered division ring]vs = J1. Let ~A" is a really closed ordered division ring, A' C A " ] v s  = J1. 

Put ,4 ~--- (A")^m~ ~--- {g e VB(A) I [g e A"]v,, = Jl}. We have 

[fi_ -- A " ] v .  ---- 3". 

Define [ .  ]B(A),A in the usual way by setting [ / =  g]S(A),X ~- [.f = g]V" for any / ,  g E A, and similarly 

for 5 .  Operations in .4 axe induced by those in (A)_ via the predicate ( [ .  ]v s  = T) .  There are two sorts 

of variables: z, l/, z, running through A, and a ,  /~, ~/ running through .4; moreover, [Vz~o(z)]t~(.4),~ I 

I �9 E A}, etc. 
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L E M M A  5. (a) A ring .4 is an extension of the ring A under the embedding h ~-* P} including 

operations A and V; [(A)_ = A"]V B = T; the valuations [~0]B(A),~i and [~oA"]VB coincide, the A and V 

included; [ .  ]n(A),~ coincides with [ .  ]~'(A),~ for all atomic formulas sl : s2 and sl < s2, the A and V 

included. 
(b) The structure (.4, [" ]B(A),X) is a B-orthocomplete, really closed, strongly regular f-ring. 

(c) For every B-orthocomplete, really closed, strongly regular f-ring A1 extending A, there exists an 

A" E V ~ such that  [A" is a really closed division ring and an extension of ^ ' I v ,  = T and Az = (A") ̂ s(A). 

P roof .  (a) If / c + A t  = r, then [ (A ,P t ,  A+t )  E + ' ]vs  - T and [P~+, = P,]vs = T,  whence 

A +~ Pt = P,. If/c <_A t, then [ ( A , P t )  E_<' ] v -  = T and A <__.~ Pt. If k AA t = r, then r < /r AVu 

(u <_ t,~ =~ u < r), P.  ~_ A ,  P,, and [ A  <__ P, V P, < A I r -  = T, where [Pt ~ P,]vs  _(x) [k _~ t]A = J .  
and [Pt _ P~]v ~ : [t < ]~]A ~- Jb. In other words, J , V ~ J b  = J~v:rb = Jx, a V y b  = B, ~e~ ~ a, 

e2 ~ b (e I V e 2 : 1), where e~k < exg and e2~ _~ e2]~. Then (e:]~) A^ el~ "- el~ -- e l f ,  el]~ = el f .  Since 

[ A  -- P~]v e :(~) [k = r]A, we have s < [ A  = P , ] s  A [ A  <_ Pt]s -< [ A  AA,, P~ : Pr]s- Similarly, 

s <_ [ A  AA, P~ - P ,]s .  Therefore, ~A AA,, Pt : P , ] s  = T and A A~ Pt = P~. 
It remains to verify equalities (1) and (2). Equality (2) is formula (3), which was checked earlier, and 

(1) follows immediately from (2): [ A  <_ Pt]v .-~ [ ( A , P t )  ~ <__A"]S -- [ ( A , P t )  ~ A '  ]~ ---- V s { [ A  -- 

P~]~ ̂  [P, = P,]~I ,~ _< ,~} = v~{[~ = ,~]A A It = "hAl u <_ v} = [~ <_ qA" 
The next statement of (a) is obvious and so omitted. We proceed further to first check that 

[(st + s2) ~ = s] + a l ly , .  = T,  [s = "~ = T,  (~) 
([s~ + s~ = s 3 l v . ,  = T) r s~ + s~ = s3 in i .  

Here s and s ~ are, respectively, a term and its value in A. It follows immediately that  I s  1 -* S~]g ~--- [S~ - -  

s~] z = [s] =A" S~]v.  -- [SX = s~] v"  and [sx <_ sa] A = Is] <_ s~] A = [s~ <_A,' ~lv .  = [81 ~--- S2]VS '  a n d  

we use induction on the number of connectives to eventually see that values of all the formulas coincide. The 

first relation in (6) is, in essence, a definition, and the second is verified inductively as follows: [s~ + s~ : 

(~ + ~ ) ~  (where b~  = ~ = [s~ = s~] = T) = Y{[s~ = ~1 ^ [ ~  = ~1 ^ [<~,~, (~ + s~) ~ e + l }  > ~- 
The third relation in (6) is straightforward: if [~z, y, z ~ A" (s: = z ^ s~ = ~ A s3 = z ^ z + 9 ----- z)] = T, 

t h e n ~ / , g , h ~ A ( [ s ~ = f A s ~ : g A s 3 = h A / + g : h ] = T , s ~ = f , s ~ = g , s ~ : h ) , a n d v i c e v e r s a .  It is 

worth mentioning that  the operations A and v in ~i have ordinary meanings: 

if f ^g g -- h, that  is, [jr hA" g : h]v --- T, then h ~A f ,  g, and if u ~-A f ,  g then u ~A h. 

Conversely, if h is the greatest lower bound for f and 9 in A then [h < f ,  9]s A [Vu < (7) 

f , g ( u < h ) ] s - T .  

Finally, we verify the last relation stated in Lemma 5. For atomic cases, we have Is1 : s2]A (as was 

checked in the proof of Lemma 2 for Theorem 2) = [sx : A "  S2]vs ~-- ~81 -" $2].~ and [$1 < $2]A ~ 

[s~ <_ s~] A [by equality (1)]= [s~ <_ S~]vs = Is1 ~ s2Li. Here we use the relation [P(,(k ...... ~))~ : 

( s (Ps~ , . . . ,Pk~) )~  : T, which may be verified by using induction on the length of a term s since 

[P(.~+,~)- = Po:+,~ = P,: + Pq = sl + s~] T. 
(In the derivation above, use was made of just one fact - -  that A" is a linearly ordered extension of A'.) 

(b) The property of being B-or~hocompie~e means that,  for any family {(ha, fa)}  of "conforming" paixs 

(i.e., b~,Ab~ _< [fa = fa]~, V~,, ~, where b~ E B and f~ E A), there exists an fo E .4 for which 

ba ~ If0 = f~], Vc~. In our case this property is obvious. The properties of being really closed and strongly 

regular, as well as the f-property, are expressed via Horn formulas, whence the result. 
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(c) The p r o o f  of this statement can be found in [4, p. 119]. 

Thus, in the class ~:.4 ~ {K _D A I K is a strongly regular f-ring}, ~-orthocomplete,  really closed 

elements correspond - -  in a nonstandard sense - -  to really closed division rings extending the nonstandard 

image A' of the ring A. 

Suppose that  the language of (ordered) rings is extended by adding a new sort of variables a,  j3, "y.. . ,  

running through A, .4 C_ B(A), an ordered, strongly regl, lar f-ring, which now may or may not be chosen 

in the same way as above. 

A P-formula in the ezr language is defined as atomic or as one that  obtains by means of A, Vz, 

3a, Vow, and also as (3a~ol) A (Vct(~ol ::~ ~o2)), where ~o i and ~02 are P-formulas. A weakly positive -formula 
in the same language is defined as atomic or as one that  obtains by means of A, V, 3z, Vz, 3a,  Va, and 

also as (3a~ol) A (Va(~0i ~ ~o2)), where ~ol is a P-formula and ~o2 is weakly positive. 

An input formula in the language in question is defined as weakly positive of the form ~o ', where ~o is 

a phi-formula in the initial language of rings, or as a weakly positive phi-formula in the initial language of 

rings, or as one that  obtains via the connectives A, V, 3z, Vz and 3a, Va. Recall that  ~o' is a formula in 

the initial language of rings, equivalent to [~ ]y  = T; see [4, p. 115]. A normal -formula is one of the form 

~o =~ r  where ~o is an input formula and r is an AE-formula in the initial language of rings. 

L E M M A  6. (a) For any input formula ~o, if ~OA,X, then [(~O~162 = J1, where ~0 is constructed 

from ~o by changing each part of the form u ' by u, that  is, by deleting the sign '. 

The p r o o f  is by induction that follows the definition of an input formula. For ~o ~, we have [~o]y(A ) - B 

by the definition of ~o ~, [~o]n(A ) -- J1 by the condition of being a phi-formula, and [q0A']VueA) -- J1 by 

Lemma 2. For a weakly positive formula, we proceed by induction on its length. There are two atomic 

cases to consider - -  in A and in /]. For s l  = s2 and sl _< s2, where Sl and s2 are terms oyez /l, as in 

(a) of Lemma 3 we use induction on the length of terms, applying [sl = S~]A ---- [(sx -- S~)A']vs and 

[sl < S~]A = [(sl <_ S~)A']v~. For the case where sl and s~ are terms over .4, appeal to the definition of 

A. The case with connectives is obvious. 

For simplicity, from this point on we assume that  A is a commutative regular ordered f-ring. Then  ~A ~ 

is an ordered field]ca : 3i. There exists a really closed extension of A', and we let [A" is a really closed 

field, A' C A " ] r  = Ji-  Put  g ~- ( A ' ) ^ ~ .  

Let ~o ~ r be a normal formula. By (c) of Lemma 4, [~o~ (,~} ~r -- J i .  If ZFC k- (~o ~ ~ r for 

any ordered field A and really closed extension A, then [r = J i .  As above, we obtain r  and hence 

also CA, provided that  r is weakly Horn. 

An eztension is always taken in that  class of rings in which the initial ring is taken. Below, if we say 

that  something is valid we mean that  a corresponding statement is inferable in ZFC. 

We have thus proved the following: 

T H E O R E M  3. Let ~o ~ r be a normal formula. If, in the class of ordered fields A and their really 

closed extensions A, the formula ~o ~ ~ r is valid, then ~o :~ ~b ~ is valid in the class of regular commutative 

f-rings A and their B-orthocomplete really closed extensions/] .  

As above, a positively AF_,-Horn formula is one of the form ~0 ~ ~, where ~o is a weakly positive formula 

in the extended language of rings or a weakly positive phi-formula in the initial language of rings, and r 

is an AE-weakly Horn formula in the initial language. The set of all such formulas true in some structure 

or some class of structures is referred to as a positively AF_,-Horn theory of that  s t ructure or tha t  class of 

structures. 

C O R O L L A R Y .  A positively AE-Horn theory for the class of ordered fields and their really closed 
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extensions coincides with a positively AE-Horn theory for the class of regular commutative f-rings and 

their B-orthocomplete really closed extensions. 

R e m a r k  4. In the above corollary and in Theorem 3, as A we can take, respectively, only one real 

closure of a field A and only one B-orthocomplete closure of a ring A, which is (A'-)^m A) by definition. 

Let/C be a class of all regular commutative f-rings. An example to the corollary may be furnished by 

Hi]bert's theorem on zeros (including a bound for the degree and degrees of polynomials) and by Artin's 

theorem, which were stated for the class ~:. We cite the second of them. 

For every ring A in /C, there exists an (above-described) class of really closed extensions A in/C such 

that  for any polynomial f over A, if f _~ 0 over A, then f is represented as a sum of squares of functions 
F~t  

fi rational over A, that  is, f : ~ c~- (fi)  2, where c~ is in A and c~ > 0. The bound for the number m and 
i--1 

degrees of polynomials occurring in f~ is the same as is the case with fields. 

This statement, as many others, gives an affirmative answer to Hilbert's 17th problem, for the class of 

rings/C. 

R e m a r k  5. In theorem 3, instead of paired properties such as (a strongly regular f-ring, an ordered 

division ring) and (a regular commutative /-ring, an ordered field), we can take all typical pairs of ring 

properties (like in [3, 7, 8]), or take a pair ~0' ~ ~ in the general form. 

P r o o f .  We bring out only those parts of proofs that relate to the passage from one member of a pair 

to the other, keeping the rest unchanged. 

(1) A is a projective f-r ing iff [A' is linearly ordered]v . -- T; 

(2) A is a quasiregular f-ring iff [A' is/-simple, linearly ordered]r  = T; 

(3) A is a projective f-ring without nilpotent dements itf [A' is linearly ordered, without zero 

divisors]v,  = T. 

The same relations are true also for [ .  ]v~,- and [ .  ]B(A),~i-evaluations. 

(1) Recall that  a projective ring A is specified by the condition 

Vax ,a2EA3bi ,  b2E A ( a l = b l + b z A I b x i A l a 2 l = O A V b e  A(IblA]a2l=O::=~lb2iAIbl=O)), (8) 

from which it follows that  A = a# + a2 •177 Va2 E A, where a~- : {b E A[ Ibl A la~[ = 0) is a polar of a2 

(i.e., %very polar" is a "direct summand ' ) .  Each polar M • is an/-ideal,  where M C A. Assuming that  

the left-hand side is satisfied, we verify that [0 < z]A V [z < 0]A = [ z -  : 0]A V [z + : 0]A = T. By 

assumption, A = (z+) • + (z+) •177 Choose e so that 1 : e + y, e E (z+) • y E (z+) s177 Then Vu E (z+) • 

(eu = ue : u) since u = ue + uy : ue, and Vv E (z+) s177 (ev : ve : 0). It follows that  Va E A (a = u + v, 

ae : ea), that  is, e is a central element. Since e is an idempotent (1 = e + y = e 2 + y 2  e - e 2 : y2 _ y : 0), 

we have e e B(A) and e > 0. Thus z+ A ( - z  - ) = 0, z + �9 ( - z - )  : 0, z + - z -  : 0, z -  e (z+) • e . z -  = z - ,  
( 1  - -  e)-  z -  = 0, and 1 - e belongs to the first summand. Because z + E (z+) •177 we have e �9 z + = 0 and e 

belongs to the second summand. 

The converse s tatement  for a if-evaluation holds by reason of the fact that  formula (8) follows from 

the linearity condition and is Horn. For a B-evaluation, if we assume that ~A ' is linear]v~ --- T, we obtain 

[Px < Py V Py <__ P=]r  : T. In view of equality (1), [z < Y]A VI$ {y <_ Z]A : [Z < Y]A Vff ~y <_ Z]A : T 
and [Vz, y E A' (z < y V y < z ) ]v~  : T; for a [ .  ]y-evaluation, there is nothing to prove. 

(2) A quasisimple ring A is defined by the condition 

A ---- (a2) + a # ,  Va2 E A, that is, Val,a2 E A 3bl,b2 E A 

(al  : bl + b2 A 3n e N 3 d l , . . . , d ~ , f l , . . . , f , ,  E A (Ibll < (9) 
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d~.  I .~ I " /~  + . . .  + ~ "  l a ~ i " / .  ^ Ib21 ̂  I-~I = 0)).  

A n / - s i m p l e  ring A is specified by the condit ion of  having no p rope r / - idea l s ,  t h a t  is, 

Va E A (a : 0 A V b  E A 3n E l~3dl . . . . .  d,,, f l , . . .  , f , ,  E A ([b[ < 

d x - l a l - / x  +... + d ~ .  lal"/,,)). (10) 

We have a l ~  _~ (a) and a ~ •  = (a) ( if  ~ ~ a • ^ a -L then Izl ^ Izl = I~1 = 0), from which  it foUows 
t ha t  a quasis imple ring A is project ive,  and  by clause (1), [.4' is l i a e ~  = T. Let  us check t h a t  [A '  is 

l-simple]] = T; see (10). Let e be  a centra l  i dempoten t  corresponding to a n / - i d e a l  (a), that is, (1 - e ) . e  = 0. 

T h e n  [a : 0]A 9 (1 -- e). Now if we show tha t  e is contained in the second s u m m a n d  of  (10) we ob t a in  the 

desired s t a t emen t .  Take  an a rb i t r a ry  factor  cor responding to b and  choose bx and  b2 for which b = bx + b2, 

Ibxl _< dx.  la[" fx + . . .  + d, , .  [a l" / , , ,  and  Ib21 ̂  lal = 0. We have [Ibl < d l .  lal" Ix + . . .  + d,,lalf.lA ~ e since 

[Ibl _< Ibll + Ib21lA = it, [ Ih l  + Ib21 ___ dx .  lal" :1 + . - .  + 4 "  l a l " / .  + Ib~tl = T, and e .  Ib21 = 0 in v iew of  
Ib21 ~ a ' ,  (1 - e)-Ib21 = Ib21. 

The converse s t a t emen t  for a i f -eva lua t ion  follows by observing tha t  / -s implici ty  and  l inear i ty  imply  

quas i regular i ty  and  project ivi ty,  which are expressed via Horn formulas;  here we also use the  fact  t h a t  an 

a lgebra  f f  is compac t .  For a B-evaluat ion,  the passage f rom the l lneari ty in V B to t h a t  in V y is as in clause 

(1). To  express the condit ion of be ing / - s imple ,  write Va2 E A Vax E A qn E l~3dx . . . .  ,din, f x , . . .  ~,f,, E A 

(a = 0 V (lal l  < dx .  [ a2[ - /x  + . . .  + d~ .  In21" f , ) ) .  This  formula  is B-globally t rue  and  so i f -g loba l ly  true,  

in view of  equalities (1) and  (2). This,  by the above,  implies quasixegularity. 

(3) Let  A be a project ive f - r ing  wi thout  ni lpotent  demen t s .  We check t h a t  [Vz,~/ ( z . y  - 0 ::> 

z = 0 V y  = 0)] = T. I r e  E [ z - ~ /  = 0], then  e z y  = 0, e [z ] - I I / I  = 0. Fur ther ,  0 < (e [z lA[Y[)2  = 

el=l 2 ^ el=l"  IVl A elY[" Iz[ ^ lYl 2 <_ ~1=1" lYl -- 0, whence el=l A Ivl = 0, e= ~ V l ,  by one of the  condit ions.  

By the o ther  condit ion,  ~/• + y •177  = A. Let  e '  be a central  i dempo ten t  cor responding  to the s u m m a n d  y• 

T h e n  (1 - e ' )  . e z  = 0, (1 - e ' ) . e  E [z = 0]. On the other  hand,  g E y•  e '  ^ I~/I = 0, e ' .  lY[ = 0, let~/I = 0, 

ely = O, e e ' . y  -- 0, ee '  E Iv = 0]. Therefore  (1 - e ' ) . e  V e 'e : e E [z -- 0] V y  [y : 0]. 

A r g u m e n t  for the converse s t a t emen t  is as in clauses (1) and (2). 

A number  of  s ta tements ,  which are t rue  for rings on the r igh t -hand  sides of  the  above-envisaged  equiv- 

alences (viz., for l inearly ordered rings, /-simple rings, rings wi thout  ,.ero divisors, division rings or fields, 

and  the like), or for a lgebras  over such rings, have the above-specified form ~ ~ ~b, or we are able  to  reduce 

t h e m  to a series of  s t a t emen t s  in this form. The  s t a t emen t s  can then be carried over to rings or to  a lgebras  

over rings occurr ing on the lef t -hand sides.* 

R e m a r k  6. Theo rems  2 and 3 can be formula ted  for a rb i t ra ry  s t ruc tures  like T h e o r e m  1. Let  q0 be a 

set of  funct ions  defined on the set K .  Elements  of  K can be represented  as cons tan ts ,  and  we m a y  ~ in this 

sense ~ confine our  account  to functions.  A bas/s in ~o is the par t  B C ~o such t h a t  e E B ~--- e o e = e , . . . .  

Let  q00 ~- { f  ~ qo[ f o e = e o f }  (on the left, e is applied to all a rgumen t s  of  the  funct ion f ) .  Pu t t i ng  

[h - t ]K  ~-- {e E BI e o k -- e o t}, then,  we can develop a theory close to the one above.  T h e  set  q0o may  

also include relat ions P such t ha t  P ( z )  ::~ P (e z ) .  This,  we think, will make  it possible to define a semant ics  

for some language  of funct ional  p rog ramming .  

T h e  classes of  input  and  ou tpu t  formulas  can be extended as follows. Let  a fo rmula  q0 be of  the  form 

t h a t  guaran tees  t ha t  q0~ ~ ([~o] fi J0), where J0 is some filter. By set- theoret ic  considera t ions ,  then ,  we 

*Currently, I van preparing a summaary of these results. Among them are Rite's theorem on zeros for differential polyno- 
mials, the Letm-Zeidenberg theorem on critical points of ,* polynomial mapping C ---* C u , the Gelfand-Ponomaryov theorem 
o~ the representation of free modular lattices, the classification of Hen~elltm fields, etc. 
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obtain [~] 6 j l ,  where j l  is, generally speaking, another filter with the property ([~] 6 j l )  => ~K for 

formulas ~b from a certain class. In the end, as was shown above, j0 : -  j l  ~- {T~. 

Note: Parts of the theorems presented in this article are contained in [3]; for the language of rings, they 
are given with a proof in [7, p. 111] and without a proof in [8]. 
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