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19th century real analysis, forward and backward

Abstract. 19th century real analysis received a major impetus from
Cauchy’s work. Cauchy mentions variable quantities, limits, and in-
finitesimals, but the meaning he attached to these terms is not identical
to their modern meaning.

Some Cauchy historians work in a conceptual scheme dominated by
an assumption of a teleological nature of the evolution of real analysis
toward a preordained outcome. Thus, Gilain and Siegmund-Schultze
assume that references to limite in Cauchy’s work necessarily imply
that Cauchy was working with an Archimedean continuum, whereas
infinitesimals were merely a convenient figure of speech, for which
Cauchy had in mind a complete justification in terms of Archimedean
limits. However, there is another formalisation of Cauchy’s procedures
exploiting his limite, more consistent with Cauchy’s ubiquitous use of
infinitesimals, in terms of the standard part principle of modern in-
finitesimal analysis.

We challenge a misconception according to which Cauchy was allegedly
forced to teach infinitesimals at the Ecole Polytechnique. We show that
the debate there concerned mainly the issue of rigor, a separate one
from infinitesimals. A critique of Cauchy’s approach by his contem-
porary de Prony sheds light on the meaning of rigor to Cauchy and
his contemporaries. An attentive reading of Cauchy’s work challenges
received views on Cauchy’s role in the history of analysis, and indi-
cates that he was a pioneer of infinitesimal techniques as much as a
harbinger of the Epsilontik.
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20 19th century real analysis

Since Weierstrass’s time, we have
held a fairly contemptuous view of
the infinitesimalists which I regard
as unfair.

– Grattan-Guinness

1. Introduction. Cauchy exploited the concepts of variable quan-
tity, limit, and infinitesimal in his seminal 1821 textbook Cours d’Analyse
(CdA). However, the meaning he attached to those terms is not identical
to their modern meanings. While Cauchy frequently used infinitesimals
in CdA, some scholars have argued that Cauchyan infinitesimals are
merely shorthand for prototypes of ε, δ techniques. Moreover, one can
legitimately ask whether the material found in CdA was actually taught
by Cauchy in the classroom of the Ecole Polytechnique (EP). A valuable
resource that sheds light on such issues is the archive of summaries of
courses and various Conseil meetings at the EP, explored by Guitard
([29], 1986), Gilain ([23], 1989), and others. Among the key figures at EP
at the time was Gaspard de Prony, whose critique of Cauchy’s teaching
will be examined in Sections 3.5 and 3.6. While de Prony was critical of
Cauchy, a careful examination of the criticism indicates that de Prony’s
main target was what he felt was excesssive rigor, rather than an alleged
absence of infinitesimals. While scholars sometimes claim that Cauchy
avoided infinitesimals in the 1820s, de Prony’s comments and other pri-
mary documents indicate otherwise.

1.1. Limites. Cauchy defined limits as follows in his Cours d’Analyse
(CdA):

On nomme quantité variable celle que l’on considère comme
devant recevoir successivement plusieurs valeurs différentes
les unes des autres. . . . Lorsque les valeurs successivement
attribuées à une même variable s’approchent indéfiniment
d’une valeur fixe, de manière à finir par en différer aussi
peu que l’on voudra, cette dernière est appelée la limite de
toutes les autres.1 (Cauchy [15], 1821, p. 4; emphasis in the
original)

1Translation from [14, p. 6]: “We call a quantity variable if it can be considered as
able to take on successively many different values. . . . When the values successively
attributed to a particular variable indefinitely approach a fixed value in such a way
as to end up by differing from it by as little as we wish, this fixed value is called the
limit of all the other values.”
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Here Cauchy defines limits in terms of a primitive notion of a variable
quantity. As Robinson pointed out, Cauchy “assign[ed] a central role to
the notion of a variable which tends to a limit, in particular to the limit
zero” (Robinson [40], 1966, p. 276).

Elsewhere in CdA, Cauchy used what appears to be a somewhat
different notion of limit, as for example when the value of the derivative
is extracted from the ratio of infinitesimals ∆y and ∆x (see Section 2.1).
Two distinct approaches used by Cauchy are analyzed in Section 1.2.

1.2. A-track and B-track for the development of analysis.
The article Katz–Sherry [33] introduced a distinction between two types
of procedures in the writing of the pioneers of infinitesimal calculus:

(A) procedures in pioneering work in analysis that can be based on an
Archimedean continuum (or the A-track approach), cf. [2]; and

(B) procedures that can be based on a Bernoullian (i.e., infinitesimal-
enriched) continuum (the B-track approach), as they appear in
Leibniz, Bernoulli, Euler, and others.

This is not an exhaustive distinction, but one that helps broaden the
lens of a historiography often handicapped by self-imposed limitations
of a Weierstrassian type; see Section 1.4.

Here we use the term procedure in a broad sense that encompasses
algorithms but is not limited to them. For instance, Euler’s proof of
the infinite product formula for the sine function is a rather coherent
procedure though it can hardly be described as an algorithm; see [5] for
an analysis of Euler’s proof.

Like Leibniz, Cauchy used both A-track and B-track techniques in
his work. The sample discussed in Section 3.8 below illustrates his A-
track work. Elsewhere, as we document in this article and in earlier work
(see e.g., [12]), Cauchy used B-track techniques, as well.

1.3. What is Cauchy’s limite? Scholars who stress Cauchy’s use
of the limit concept rely on a traditional but flawed dichotomy of in-
finitesimals vs limits. The dichotomy is flawed because limits are present
whether one works with an Archimedean or Bernoullian continuum (see
Section 1.2). In fact, the definition of derivative found in Cauchy (see
Section 2.1) suggests that he works with the B-track version of limits
which is referred to as the standard part function in modern infinitesi-
mal analysis; see Section 4, formula (4.3). Thus the real issue is whether
Cauchy’s continuum was Archimedean or Bernoullian, and the genuine
dichotomy is between A-track ε, δ techniques and B-track infinitesimal
techniques.
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1.4. Butterfly model. The articles (Bair et al. [4]), (Bair et al. [5]),
and (Fletcher et al. [22]) argued that some historians of mathematics op-
erate within a conceptual scheme described in (Hacking [30], 2014) as
a butterfly model of development.

Inspired in part by (Mancosu [38], 2009), Ian Hacking proposes a dis-
tinction between the butterfly model and the Latin model, namely the
contrast between a model of a deterministic (genetically determined) bi-
ological development of animals like butterflies (the egg–larva–cocoon–
butterfly development), as opposed to a model of a contingent historical
evolution of languages like Latin.

Historians working within the butterfly paradigm often assume that
the evolution of mathematical rigor has a natural direction, leading
forward to the Archimedean framework as developed by Weierstrass and
others (what Boyer referred to as “the great triumvirate” [13, p. 298]).
Such historians also tend to interpret the qualifier rigorous as necessarily
implying Archimedean, as we illustrate in Section 1.5.

1.5. Siegmund-Schultze on Cours d’Analyse. As an illus-
tration of butterfly model thinking by modern historians, we turn to
a review by historian Siegmund-Schultze of an English edition of CdA
(Bradley–Sandifer [14], 2009). The review illustrates the poignancy of
Grattan-Guinness’ comment quoted in our epigraph. The comment ap-
pears in (Grattan-Guinness [26], 1970, p. 379) in the context of a dis-
cussion of CdA.

Siegmund-Schultze’s Zentralblatt (zbMATH) review ([42], 2009) of
the English edition of CdA contains two items of interest:

(SS1) Siegmund-Schultze quotes part of Cauchy’s definition of continuity
via infinitesimals, and asserts that Cauchy’s use of infinitesimals
was a step backward: “There has been . . . an intense historical
discussion in the last four decades or so how to interpret certain
apparent remnants of the past or – as compared to J. L. Lagrange’s
(1736–1813) rigorous ‘Algebraic Analysis’ – even steps backwards
in Cauchy’s book, particularly his use of infinitesimals. . . ” ([42];
emphasis added).

(SS2) Siegmund-Schultze quotes Cauchy’s comments (in translation) on
rigor in geometry, and surmises that the framework for CdA was
Archimedean, similarly to Euclid’s geometry: “a non-Archimedian
interpretation of the continuum would clash with the Euclidean
theory, which was still the basis of Cauchy’s book. Indeed, Cauchy
writes in the ‘introduction’ to the Cours d’Analyse: ‘As for meth-
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ods, I have sought to give them all the rigor that one demands in
geometry, . . . ’ ” (ibid.; emphasis added).

Siegmund-Schultze’s zbMATH review goes on to continue the quotation
from Cauchy:

“. . . in such a way as never to revert to reasoning drawn from
the generality of algebra. Reasoning of this kind, although
commonly admitted, particularly in the passage from con-
vergent to divergent series and from real quantities to imag-
inary expressions, can, it seems to me, only occasionally be
considered as inductions suitable for presenting the truth,
since they accord so little with the precision so esteemed
in the mathematical sciences.” (Cauchy as quoted in [42];
emphasis added).

Cauchy’s objections here have to do with the cavalier use of divergent
series, based on a heuristic principle Cauchy called the generality of
algebra, by his illustrious predecessors Euler and Lagrange, rather than
with the issue of using or not using infinitesimals, contrary to Siegmund-
Schultze’s claim. We will evaluate Siegmund-Schultze’s claims further in
Section 1.6.

1.6. Analysis of a review. The zbMATH review quoted in Sec-
tion 1.5 tends to confirm the diagnosis following Hacking. Namely, the
comment on infinitesimals quoted in (SS1) leading specifically backward
will surely be read by the zbMATH audience as indicative of an assump-
tion of an organic (butterfly model) forward direction (culminating in
the great triumvirate).

Similarly, the comment quoted in (SS2) appears to take it for granted
that Euclid’s framework, being rigorous, was necessarily Archimedean.
Yet the facts are as follows:

(i) Books I through IV of The Elements are developed without the
Archimedean axiom;

(ii) developments around 1900 showed conclusively that the complete-
ness property of R is irrelevant to the development of Euclidean
geometry, and in fact the latter can be developed in the context
of non-Archimedean fields.

Indeed, Hilbert proved that these parts of Euclidean geometry can be
developed in a non-Archimedean plane (modulo some specific assump-
tions such as circle–circle intersection and postulation of the congruence
theorems); see further in [3, Section 5].
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While Euclid relied on the Archimedean axiom to develop his theory
of proportion, Hilbert obtained all the results of Euclidean geometry
including the theory of proportion and geometric similarity without such
a reliance; see Hartshorne ([31], 2000, Sections 12.3–12.5 and 20–23) or
Baldwin ([6], 2017).

Furthermore, starting with Descartes’ Geometry, mathematicians
implicitly relied on ordered field properties rather than the ancient the-
ory of proportion.

Moreover, it is difficult to understand how Siegmund-Schultze would
reconcile his two claims. If Cauchy used Euclidean Archimedean math-
ematics exclusively, as implied by (SS2), then what exactly were the en-
tities that constituted a step backward, as claimed in (SS1)? Siegmund-
Schultze’s counterfactual claims are indicative of butterfly-model think-
ing as outlined in Section 1.4.

Like the zbMATH review by Siegmund-Schultze, the Cauchy schol-
arship of Gilain tends to be colored by teleological assumptions of the
sort detailed above, as we argue in Sections 2 and 3.

A number of historians and mathematicians have sought to challenge
the received views on Cauchy’s infinitesimals, as we detail in Sections 1.7
through 1.9.

1.7. Robinson on received views. Abraham Robinson noted
that the received view of the development of the calculus

[would] lead us to expect that, following the rejection of Leib-
niz’ theory by Lagrange and D’Alembert, infinitely small and
infinitely large quantities would have no place among the
ideas of Cauchy, who is generally regarded as the founder
of the modern approach, or that they might, at most, arise
as figures of speech, as in ‘x tends to infinity’. However, this
expectation is mistaken. [40, p. 269].

Robinson described Cauchy’s approach as follows:

Cauchy regarded his theory of infinitely small quantities
as a satisfactory foundation for the theory of limits and
(d’Alembert’s suggestion notwithstanding) he did not in-
troduce the latter in order to replace the former. His proof
procedures thus involved both infinitely small (and infinitely
large) quantities and limits. [40, p. 271] (emphasis added)

Note Robinson’s focus on Cauchy’s procedures (for a discussion of the
procedure/ontology dichotomy, see Błaszczyk et al. [9]). After quoting
Cauchy’s definition of derivative, Robinson notes:
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Later generations have overlooked the fact that in this def-
inition ∆x and ∆y were explicitly supposed to be infinitely
small. Indeed according to our present standard ideas, we
take f ′(x) to be the limit [of] ∆y/∆x as ∆x tends to zero,
whenever that limit exists, without any mention of infinitely
small quantities. Thus, as soon as we consider limits, the as-
sumption that ∆x and ∆y are infinitesimal is completely
redundant. It is therefore the more interesting that the as-
sumption is there, and, indeed, appears again and again
also in Cauchy’s later expositions of the same topic (Cauchy
[1829, 1844]). [40, p. 274]

Robinson’s conclusion is as follows:

We are forced to conclude that Cauchy’s mental picture
of the situation was significantly different from the picture
adopted today, in the Weierstrass tradition. (ibid.)

It is such received views in what Robinson refers to as the Weierstrass
tradition that we wish to reconsider here.

1.8. Grattan-Guinness on Cauchy’s infinitesimals. Robin-
son’s 1966 comments on the Weierstrassian tradition cited in Section 1.7
were echoed by historians Ivor Grattan-Guinness and Detlef Laugwitz.
Thus, fourteen years later, Grattan-Guinness wrote:

[Cauchy’s definition of infinitesimal] is in contrast to the
view adopted from the Weierstrassians onwards (and occa-
sionally earlier), where an infinitesimal is a variable with
limit zero. . . (Grattan-Guinness [27], 1980, p. 110; empha-
sis added)

Concerning the term limit, it is necessary to disassociate the following
two issues:

(Ca1) the issue of whether or not limits were at the base of Cauchy’s
approach;

(Ca2) the issue of Cauchy’s systematic use of infinitesimals as numbers
in his textbooks and research articles.

1.9. Laugwitz on Cauchy’s infinitesimals. As far as item (Ca2)
is concerned, Laugwitz acknowledged that Cauchy started using in-
finitesimals systematically in the 1820s (whereas his attitude toward
them during the preceding decade was more ambiguous and limits may
have played a larger role):
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. . . after 1820, Cauchy developed his analysis by utilizing in-
finitesimals in a deliberate and consequent manner. (Laug-
witz [36], 1989, p. 196; emphasis in the original)

Laugwitz’ position is consistent with Gilain’s observation that infinites-
imals first appeared in Cauchy’s course summary during the academic
year 1820–1821:

Année 1820–1821 . . . Notons aussi l’apparition, pour la première
fois dans les Matières des leçons, des notions de quantités
infiniment petites et infiniment grandes (leçon 3).2 (Gilain
[23], §52, 1989)

In 1997, Laugwitz elaborated on the subject (of Cauchy’s endorsement
of infinitesimals circa 1820) in the following terms:

Cauchy avoided the use of the infinitely small. This provoked
growing criticism on the part of his colleagues, including the
physicist Petit, who emphasized the didactical and practical
advantages of the use of infinitely small magnitudes. In 1819
and in 1820, the Conseil d’Instruction at the Ecole exerted
strong pressure on Cauchy, but this alone would not have
made this rather stubborn man change his mind. Around
1820, he must have realized that infinitesimal considerations
were a powerful research method at a time when he was in
a state of constant rivalry, especially with Poisson. (Laug-
witz [37], 1997, p. 657; emphasis added)

In the textbook Cours d’Analyse [15], limite is not the only central
foundational concept for Cauchy, as we argue in Section 2.

We challenge a common misconception according to which Cauchy
was forced to teach infinitesimals at the Ecole Polytechnique allegedly
against his will. We show that the debate there concerned mainly the
issue of rigor, a separate one from infinitesimals ; see Section 3.

2. Cauchy’s limite and infiniment petit. In this section we
will analyze the meaning of Cauchy’s terms limite and infiniment petit.

2.1. Differentials and infinitesimals. In his work, Cauchy care-
fully distinguishes between differentials ds, dt which to Cauchy are non-
infinitesimal variables, on the one hand, and infinitesimal increments ∆s,
∆t, on the other:
2Translation: “Year 1820–1821 . . . We also note the appearance, for the first

time in the Lesson summaries, of the notions of infinitely small and infinitely large
quantities (lesson 3).”
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. . . soit s une variable distincte de la variable primitive t. En
vertu des définitions adoptées, le rapport entre les différentielles ds,
dt, sera la limite du rapport entre les accroissements infini-
ment petits ∆s, ∆t.3 (Cauchy [17], 1844, p. 11; emphasis
added)

Cauchy goes on to express such a relation by means of a formula in
terms of the infinitesimals ∆s and ∆t:

On aura donc
ds

dt
= lim.

∆s
∆t

(2.1)

(ibid., equation (1); the period after lim in “lim.” in the
original; equation number (2.1) added)

Cauchy’s procedure involving the passage from the ratio of infinitesimals
like ∆s

∆t to the value of the derivative ds
dt

as in equation (2.1) has a close
parallel in Robinson’s infinitesimal analysis, where it is carried out by
the standard part function; see equations (4.1) and (4.2) in Section 4.

Paraphrasing this definition in Archimedean terms would necessar-
ily involve elements that are not explicit in Cauchy’s definition. Thus
Cauchy’s “lim.” finds a closer proxy in the notion of standard part,
as in formula (4.3), than in any notion of limit in the context of an
Archimedean continuum; see also Bascelli et al. ([7], 2014).

2.2. Definite integrals and infinitesimals. Similar remarks ap-
ply to Cauchy’s 1823 definition of the definite integral which exploits
a partition of the domain of integration into infinitesimal subintervals.
Here Cauchy writes: “D’après ce qui a été dit dans la dernière leçon, si
l’on divise X − x0 en élémens4infiniment petits x1− x0, x2− x1 . . . X −
xn−1, la somme

(1) S = (x1 − x0)f(x0) + (x1 − x2)f(x1) + . . .+ (X − xn−1)f(xn−1)

convergera vers une limite représentée par l’intégrale définie

(2)
∫ X

x0
f(x)dx.

Des principes sur lesquels nous avons fondé cette proposition il résulte,
etc.” (Cauchy [16], 1823, Leçon 22, p. 85; emphasis added).
3Translation: “Let s be a variable different from the primitive variable t. By virtue

of the definitions given, the ratio of the differentials ds, dt will be the limit of the
ratio of the infinitely small increments ∆s,∆t.”
4We preserved the original spelling.
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Note that there is a misprint in Cauchy’s formula (1): the difference
(x1 − x2) should be (x2 − x1). In this passage, Cauchy refers to the
successive differences x1 − x0, x2 − x1, X − xn−1 as infinitely small
elements.

Analogous partitions into infinitesimal subintervals are exploited in
Keisler’s textbook [34] (and throughout the literature on infinitesimal
analysis; see e.g., [24, p. 153]). Cauchy’s use of limite in the passage
above is another instance of limit in the context of a Bernoullian con-
tinuum, which parallels the use of the standard part function (see Sec-
tion 4) enabling the transition from a sum of type (1) above to the
definite integral (2), similar to the definition of the derivative analyzed
in Section 2.1.

2.3. Un infiniment petit in Cauchy. What is the precise mean-
ing of Cauchy’s infiniment petit (infinitely small)? All of Cauchy’s text-
books on analysis contain essentially the same definition up to slight
changes in word order:

Lorsque les valeurs numériques successives d’une même vari-
able décroissent indéfiniment, de manière à s’abaisser au-
dessous de tout nombre donné, cette variable devient ce
qu’on nomme un infiniment petit ou une quantité infiniment
petite. Une variable de cette espèce a zéro pour limite.5 [15,
p. 4] (emphasis in the original)

An examination of the books [15], [16] reveals that Cauchy typically did
not define his infinitely small literally as a variable whose limit is zero.
Namely, he rarely wrote “an infinitely small is a variable, etc.” but said,
rather, that a variable becomes (devient) an infinitely small.

Thus, the passage cited above is the first definition of the infinitely
small in Cours d’Analyse. The next occurrence is on page 26 there, again
using devient, and emphasizing infiniment petite by means of italics. On
page 27 Cauchy summarizes the definition as follows: “Soit α une quan-
tité infiniment petite, c’est-à-dire, une variable dont la valeur numérique
décroisse indéfiniment.” This is a summary of the definition already
given twice, the expression “infiniment petite” is not italicized, and “is”
is used in place of “becomes” as shorthand for the more detailed and

5Translation: “When the successive numerical values of such a variable decrease
indefinitely, in such a way as to fall below any given number, this variable becomes
what we call infinitesimal, or an infinitely small quantity. A variable of this kind has
zero as its limit” [14, p. 7].
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precise definitions appearing earlier in Cauchy’s textbook. An identical
definition with devient appears in his 1823 textbook [16, p. 4].

Cauchy’s term becomes implies a change of nature or type.6 Namely,
a variable is not quite an infinitesimal yet, but only serves to generate
or represent one, as emphasized by Laugwitz:

Cauchy never says what his infinitesimals are; we are told
only how infinitesimals can be represented. (Laugwitz [35],
1987, p. 271)

See also Sad et al. [1]. This indicates that Cauchy considered an infinites-
imal as a separate type of mathematical entity, distinct from variable
or sequence.

2.4. Variable quantities, infinitesimals, and limits. To com-
ment more fully on Cauchy’s passage cited in Section 2.3, note that
there are three players here:

(A) variable quantity;
(B) infinitesimal;
(C) limit zero.

We observe that the notion of variable quantity is the primitive notion in
terms of which both infinitesimals and limits are defined (see Section 1.1
for Cauchy’s definition of limit in terms of variable quantity). This order
of priorities is confirmed by the title of Cauchy’s very first lesson in his
1823 book:

1.re Leçon. Des variables, de leurs limites, et des quantités
infiniment petites [16, p. ix]

Thus, Cauchy is proposing a definition and an observation:

(Co1) a variable quantity that diminishes indefinitely becomes an in-
finitesimal; and

(Co2) such a variable quantity has zero as limit.

6To illustrate such a change in modern terms, note that in the context of the
traditional construction of the real numbers in terms of Cauchy sequences u =
(un) ∈ QN of rational numbers, one never says that a real number is a sequence, but
rather that a sequence represents or generates the real number, or to use Cauchy’s
terminology, becomes a real number. A related construction of hyperreal numbers
out of sequences of real numbers, where a sequence tending to zero generates an
infinitesimal, is summarized in Section 4.
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Here item (Co2) is merely a restatement of the property of diminishing
indefinitely in terms of the language of limits. As noted in Section 1,
Robinson pointed out that Cauchy assigned a central role to the notion
of a variable which tends to a limit. Cauchy’s notion of limit here is
close to the notion of limit of his predecessor Lacroix (see Section 3.9).

2.5. Assigning a sign to an infinitesimal. Cauchy often uses
the notation α for a generic infinitesimal, in both his 1821 and 1823
textbooks. In his 1823 textbook Cauchy assumes that α is either positive
or negative:

Cherchons maintenant la limite vers laquelle converge l’expression
(1 + α)

1
α , tandis que α s’approche indéfiniment de zéro. Si

l’on suppose d’abord la quantité α positive et de la forme 1
m

,m
désignant un nombre entier variable et susceptible d’un ac-
croissement indéfini, on aura (1 +α)

1
α =

(
1 + 1

m

)m
. . . Sup-

posons enfin que α devienne une quantité négative. Si l’on
fait dans cette hypothèse 1 + α = 1

1+β , β sera une quan-
tité positive, qui convergera elle-même vers zéro, etc. [16,
pp. 2–4]

It is well known that variable quantities or sequences that generate
Cauchyan infinitesimals are not necessarily monotone. Indeed, Cauchy
himself gives a non-monotone example at the beginning of CdA:

1
4 ,

1
3 ,

1
6 ,

1
5 ,

1
8 ,

1
7 , &c. . . . [15, p. 27]

This poses a problem since it is not obvious how to assign a sign plus or
minus to an arbitrary null sequence (i.e., a sequence tending to zero).

When Cauchy actually uses infinitesimals in proofs and applications,
he assumes that they can be manipulated freely in arithmetic operations
and other calculations. While formal order theory is a few decades away
and is not to be found as such in Cauchy, he does appear to assume that
a definite sign can be attached to an infinitesimal. Besides assuming that
they have a well-defined sign, Cauchy also routinely applies arithmetic
operations to infinitesimals.

This creates a difficulty to those who consider that Cauchy merely
used the term “infinitely small” as shorthand for a sequence with limit 0,
since it is unclear how to assign a sign to an arbitrary null sequence,
whereas Cauchy does appear to assign a sign to his infinitesimals.

Which process exactly did Cauchy envision when he spoke of a se-
quence becoming an infinitesimal? Cauchy does not explain. However,
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Cauchy’s assumption that each infinitesimal has a sign suggests that a
sequence is not identical to the infinitesimal it generates.

Even monotone sequences are not closed under arithmetic opera-
tions. Namely, such operations necessarily lead to non-monotone ones,
including ones that change sign.

Cauchy routinely assumes in his work, particularly on integrals, that
one can freely add infinitesimals and obtain other infinitesimals, i.e.,
that the numbers involved are closed under arithmetic operations.

Such an assumption is valid in modern theories of ordered fields
properly extending R, but if one is working with sequences, such an
assumption leads to a dilemma:

1. either one only works with monotone ones, in which case one gets
into a problem of closedness under natural arithmetic operations;

2. or one works with arbitrary sequences, in which case the assump-
tion that a sequence can be declared to be either positive or neg-
ative becomes problematic.

Cauchy was probably not aware of the difficulty that that one can’t
both assign a specific sign to α, and also have the freedom of apply-
ing arithmetic operations to infinitesimals. The point however is that
the way he uses infinitesimals indicates that both conditions are as-
sumed, even though from the modern standpoint the justification pro-
vided is insufficient. In other words, Cauchy’s procedures are those of an
infinitesimal-enriched framework, though the ontology of such a system
is not provided.

Cauchy most likely was not aware of the problem, for otherwise he
may have sought to address it in one way or another. He did have some
interest in asymptotic behavior of sequences. Thus, in some of his texts
from the late 1820s he tried to develop a theory of the order of growth
at infinity of functions. Such investigations were eventually picked up
by du Bois-Reymond, Borel, and Hardy; see Borovik–Katz ([12], 2012)
for details.

2.6. Gilain on omnipresence of limits. Gilain refers to Cauchy’s
course in 1817 as a

cours très important historiquement, où les bases de la nou-
velle analyse, notamment celle de l’Analyse algébrique de
1821, sont posées. . . [23, §30]

He goes on to note “l’omniprésence du concept de limite” (ibid.). How
are we to evaluate Gilain’s claim as to the “omnipresence” of the concept
of limit?
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With regard to Cauchy’s pre-1820 courses such as the one in 1817
mentioned by Gilain, there appears to be a consensus among scholars
already noted in Section 1.8 concerning the absence of infinitesimals.
As far as Cauchy’s 1821 book is concerned, the presence (perhaps even
“omnipresence” as per Gilain) of limits in the definition of infinitesimals
goes hand-in-hand with the fact that Cauchy defined both limits and
infinitesimals in terms of the primitive notion of a variable quantity (see
beginning of Section 1 as well as Section 2.4). It is therefore difficult to
agree with Gilain when he claims to know the following:

On sait que Cauchy définissait le concept d’infiniment petit
à l’aide du concept de limite, qui avait le premier rôle (voir
Analyse algébrique, p. 19; . . . ) [23, note 67]

Here Gilain claims that it is the concept of limite that played a primary
role in the definition of infinitesimal, with reference to page 19 in the
1897 Ouevres Complètes edition of CdA [15]. The corresponding page in
the 1821 edition is page 4. We quoted Cauchy’s definition in Section 2.3
and analyzed it in Section 2.4. An attentive analysis of the definition
indicates that it is more accurate to say that it is the concept of variable
quantity (rather than limite) that “avait le premier rôle.”

Cauchy exploited the notion of limit in [15, Chapter 2, §3] in the
proofs of Theorem 1 and Theorem 2. Theorem 1 compares the conver-
gence of the difference f(x+ 1)− f(x) and that of the ratio f(x)

x
. Theo-

rem 2 compares the convergence of f(x+1)
f(x) and [f(x)]

1
x . These proofs can

be viewed as prototypes of ε, δ arguments. On the other hand, neither
of the two proofs mentions infinitesimals. Therefore neither can support
Gilain’s claim to the effect that Cauchy allegedly used limits as a basis
for defining infinitesimals. The proof of Theorem 1 is analyzed in more
detail in Section 3.8.

Cauchy’s procedures exploiting infinitesimals have stood the test of
time and proved their applicability in diverse areas of mathematics,
physics, and engineering.

Gilain and some other historians assume that the appropriate mod-
ern proxy for Cauchy’s limite necessarily operates in the context of an
Archimedean continuum (see Section 2.4). Yet the vitality and robust-
ness of Cauchy’s infinitesimal procedures is obvious given the existence
of proxies in modern theories of infinitesimals. What we argue is that
modern infinitesimal proxies for Cauchy’s procedures are more faithful
to the original than Archimedean proxies that typically involve anachro-
nistic paraphrases of Cauchy’s briefer definitions and arguments.
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This article does not address the historical ontology of infinitesimals
(a subject that may require separate study) but rather the procedures of
infinitesimal calculus and analysis as found in Cauchy’s oeuvre (see [9]
for further details on the procedure/ontology dichotomy).

2.7. Limite and infinity. As we noted in Section 1.3, the use
of the term limite by Cauchy could be misleading to a modern reader.
Consider for example its use in the passage cited in Section 2.3. The fact
that Cauchy is not referring here to a modern notion of limit is evident
from his very next sentence:

Lorsque les valeurs numériques successives d’une même vari-
able croissent de plus en plus, de manière à s’élever au-dessus
de tout nombre donné, on dit que cette variable a pour limite
l’infini positif indiqué par le signe∞ s’il s’agit d’une variable
positive. . . 7 [16, p. 4]

In today’s calculus courses, it is customary to give an (ε, δ) or (ε,N)
definition of limit of, say, a sequence, and then introduce infinite ‘limits’
in a broader sense when the sequence diverges to infinity. But Cauchy
does not make a distinction between convergent limits and divergent
infinite limits.

Scholars ranging from Sinaceur ([43], 1973) to Nakane ([39], 2014)
have pointed out that Cauchy’s notion of limit is distinct from the Weier-
strassian Epsilontik one (this is particularly clear from Cauchy’s defi-
nition of the derivative analyzed in Section 2.1); nor did Cauchy ever
give an ε, δ definition of limit, though prototypes of ε, δ arguments do
occasionally appear in Cauchy; see Section 1.2.

3. Minutes of meetings, Poisson, and de Prony. Here we
develop an analysis of the third of the misconceptions diagnosed in
Borovik–Katz ([12], 2012, Section 2.5), namely the idea that Cauchy
was forced to teach infinitesimals at the Ecole Polytechnique allegedly
against his will. We show that the debate there concerned mainly the
issue of rigor, a separate one from infinitesimals.

Minutes of meetings at the Ecole are a valuable source of information
concerning the scientific and pedagogical interactions there in the 1820s.

3.1. Cauchy pressured by Poisson and de Prony. Gilain pro-
7Translation: “When the successive numerical values [i.e., absolute values] of the

same variable grow larger and larger so as to rise above each given number, one
says that this variable has limit positive infinity denoted by the symbol∞ when the
variable is positive.”
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vides detailed evidence of the pressure exerted by Siméon Denis Poisson,
Gaspard de Prony, and others on Cauchy to simplify his analysis course.
Thus, in 1822

Poisson et de Prony. . . insistent [sur la] nécessité. . . de sim-
plifier l’enseignement de l’analyse, en multipliant les exem-
ples numériques et en réduisant beaucoup la partie analyse
algébrique placée au début du cours. [23, §61]

Similarly, in 1823, Cauchy’s course was criticized for being too compli-
cated:

des voix se sont élevées pour trouver trop compliquées les
feuilles de cours en question et il était décidé de proposer au
Ministre la nomination d’une commission qui serait chargée
chaque année de l’examen des feuilles d’analyse et des mod-
ifications éventuelles à y apporter. [23, §72]

The critics naturally include Poisson and de Prony:

Cette commission, effectivement mise en place, comprendra,
outre Laplace, président, les examinateurs de mathématiques
(Poisson et de Prony),. . . (ibid.)

The complaints continue in 1825 as François Arago declares that

ce qu’il y a de plus utile à faire pour le cours d’analyse, c’est
de le simplifier. [23, §84]

At this stage Cauchy finally caves in and declares (in third person):

il ne s’attachera plus à donner, comme il a fait jusqu’à
présent, des démonstrations parfaitement rigoureuses. [23,
§86] (emphasis added)

Note however that in these discussions, the issue is mainly that of rigor
(i.e., too many proofs) rather than choice of a particular approach to
the foundations of analysis. While Cauchy’s commitment to simplify the
course may have entailed skipping the proofs in the style of the Epsilon-
tik of Theorems 1 and 2 in [15, Chapter 2, §3] (see end of Section 2.4),
it may have also entailed skipping the proofs of as many as eight theo-
rems concerning the properties of infinitesimals of various orders in [15,
Chapter 2, §1], analyzed in [12, Section 2.3].

3.2. Reports by de Prony. Gilain notes that starting in 1826,
there is a new source of information concerning Cauchy’s course, namely
the reports by de Prony:
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de Prony reproche de façon générale à Cauchy de ne pas
utiliser suffisamment les considérations géométriques et les
infiniment petits, tant en analyse qu’en mécanique. [23, §101]
(emphasis added)

Thus with regard to the post-1820 period, only starting in 1826 do we
have solid evidence that not merely excessive rigor but also insufficient
use of infinitesimals was being contested. Even here, the complaint is not
an alleged absence of infinitesimals, but merely insufficient use thereof.
We will examine de Prony’s views in Section 3.5.

3.3. Course summaries. According to course summaries repro-
duced in [23], Cauchy taught both continuous functions and infinitesi-
mals (and presumably the definition of continuity in terms of infinites-
imals after 1820) in the première année during the academic years
1825–1826, 1826–1827, 1827–1828, and 1828–1829 (the summaries for
the première année during the 1829–1830 academic year, Cauchy’s last
at the Ecole Polytechnique, are not provided). All these summaries con-
tain identical comments on continuity and infinitesimals for those years:

Des fonctions en général, et des fonctions continues en par-
ticulier. – Représentation géométrique des fonctions contin-
ues d’une seule variable. – Du rapport entre l’accroissement
d’une fonction et l’accroissement de la variable. – Valeur que
prend ce rapport quand les accroissemens deviennent infin-
iment petits. (Cauchy as quoted by Gilain; emphasis added)

In 1827 for the first time we find a claim of an actual absence of in-
finitesimals from Cauchy’s teaching. Thus, on 12 january 1827,

le cours de Cauchy a de nouveau été mis en cause pour
sa difficulté, (le gouverneur affirmant que des élèves avaient
déclaré qu’ils ne le comprenaient pas), et son non-usage de
la méthode des infiniment petits (voir document C12).8 [23,

8To comment on Gilain’s “document C12” (denoted C12 in [23]), it is necessary to
reproduce what the document actually says: “Un membre demande si le professeur
expose la méthode des infiniment petits, ainsi que le voeu en a été exprimé.” What
was apparently Cauchy’s response to this query is reproduced in the next paragraph
of document C12: “On répond que le commencement du cours ne pourra être fondé
sur les notions infinitésimales que l’année prochaine, parce que le cours de cette
année était commencé à l’époque où cette disposition a été arrêtée; que M. Cauchy
s’occupe de la rédaction de ses feuilles, en conséquence, et qu’il a promis de les
communiquer bientôt à la commission de l’enseignement mathématique.”

Thus, the actual contents of document C12 indicate that Gilain’s claim of “non-
usage” is merely an extrapolation.
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§103] (emphasis added)

Tellingly, this comment by Gilain is accompanied by a footnote 111
where Gilain acknowledges that in the end Cauchy did use infinitesi-
mals that year in his treatment of the theory of contact of curves; see
Section 3.4 for details.

3.4. Cauchy taken to task. Gilain writes that during the 1826–
1827 academic year, Cauchy was taken to task in the Conseil de Per-
fectionnement of the École Polytechnique for allegedly not teaching in-
finitesimals (see [23, §103]). Gilain goes on to point out in his foot-
note 111 that Cauchy exploited infinitesimals anyway that year, in de-
veloping the theory of contact of curves:

S’il ne fonde pas le calcul différentiel et intégral sur la ‘méthode’
des infiniment petits, Cauchy n’en utilise pas moins de façon
importante ces objets (considérés comme des variables dont
la limite est zéro),9 en liaison notamment avec l’exposition
de la théorie du contact des courbes. [23, note 111]

It emerges that Cauchy did use infinitesimals that year in his treat-
ment of a more advanced topic (theory of contact). Thus Cauchy’s ac-
tual scientific practice was not necessarily dependent on his preliminary
definitions. There is conflicting evidence as to whether Cauchy used in-
finitesimals (as developed in [15] and [16]) in the introductory part of his
course that year. As we mentioned in Section 3.2, the course summary
for 1826–1827 does include both continuity and infinitesimals.

3.5. Critique by de Prony. Gilain describes de Prony’s criticism
of Cauchy as follows:

[De Prony] critique notamment l’emploi de la méthode des
limites par Cauchy au lieu de celle des infiniment petits,
faisant appel ici à l’autorité posthume de Laplace, décédé
depuis le 5 mars 1827 (voir document C14).

[23, §105]

Here Gilain is referring to the following comments by de Prony:

9Gilain’s parenthetical remark here is an editorial comment for which he provides
no evidence. The remark reveals more about Gilain’s own default expectations (see
Section 1) than about Cauchy’s actual foundational stance.
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Les démonstrations des formules generales10 du mouvement
varié se sont encor trouvées melées de considerations rela-
tives aux limites ; . . . (de Prony as quoted in Grattan-Guinness
[28], 1990, p. 1339; emphasis in the original)

Having specified the target of his criticism, namely Cauchy’s concept of
limite, de Prony continues:

. . . il me semble qu’en employant, immediatement et exclu-
sivement, la methode des infiniment petits, on abrege et on
simplifie les raisonnements sans nuire à la clarté; rappellons
nous combien cette methode était recommandée par l’illustre
collegue [Laplace] que la mort nous a enlevé. (ibid.)

What is precisely the nature of de Prony’s criticism of Cauchy’s ap-
proach to analysis? Does his criticism focus on excessive rigor, or on
infinitesimals, as Gilain claims? The answer depends crucially on un-
derstanding de Prony’s own approach, explored in Section 3.6.

3.6. De Prony on small oscillations. In his work Mécanique
philosophique, de Prony considers infinitesimal oscillations of the pen-
dulum (de Prony [18], 1799, p. 86, §125). He gives the familiar formula
for the period or more precisely halfperiod, namely

π
√

a
g

where a is the length of the cord, and g is acceleration under gravity.
Limits are not mentioned. In the table on the following page 87, he states
the property of isochronism, meaning that the halfperiod π

√
a
g

is inde-
pendent of the size of the infinitesimal amplitude. This however is not
true literally but only up to a passage to limits, or taking the standard
part;11 see Section 4. Thus de Prony’s own solution to the conceptual
difficulties involving limits/standard parts in this case is merely to ig-
nore the difficulties and suppress the limits.

10The spelling as found in (Gilain [23, Document C14]) is générales (i.e., the mod-
ern French spelling). Gilain similarly replaced encor by encore, melées by mêlées,
immediatement by immédiatement, methode by méthode, abrege by abrège, and col-
legue by collègue.
11Even if literally infinitesimal amplitudes are admitted, there is still a discrepancy

disallowing one to claim that the halfperiod is literally π
√
a
g . This difficulty can be

overcome in the context of modern infinitesimal analysis; see Kanovei et al. ([32],
2016).
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In his article “Suite des leçons d’analyse,” de Prony lets n = Az
([19], 1796, p. 237). He goes on to write down the formula

cos z =

[
cos z

n
+ sin z

n

√
−1

]n
+
[
cos z

n
− sin z

n

√
−1

]n
2

as well as a similar formula for the sine function. Next, de Prony makes
the following remark:

Je remarque maintenant qu’à mesure que A diminue et n
augmente, ces équations s’approchent de devenir

cos z =

[
1 + z

√
−1
n

]n
+
[
1− z

√
−1
n

]n
2

(3.1)

(ibid.; labeling (3.1) added)

De Prony’s formula (3.1) is correct only up to taking the standard part
of the right-hand side (for infinite n). Again de Prony handles the con-
ceptual difficulty of dealing with infinite and infinitesimal numbers by
suppressing limits or standard parts. Note that both of de Prony’s for-
mulas are taken verbatim from (Euler [21], 1748, §133 – §138).12

It is reasonable to assume that de Prony’s criticism of Cauchy’s
teaching of prospective engineers had to do with what Prony saw as
excessive fussiness in dealing with what came to be viewed later as
conceptual difficulties of passing to the limit, i.e., taking the standard
part. Note that in the comment by de Prony cited at the beginning of
this section, he does not criticize Cauchy for not using infinitesimals,
but merely for excessive emphasis on technical detail involving limites.
Therefore Gilain’s claim to the contrary cited at the beginning of Sec-
tion 3.5 amounts to massaging the evidence by putting a tendentious
spin on de Prony’s criticism.

3.7. Foundations, limits, and infinitesimals. Can one claim
that Cauchy established the foundations of analysis on the concept of
infinitesimal?
12Schubring lodges the following claim concerning de Prony: “The break with pre-

vious tradition, which was probably the most visible to his contemporaries, was the
exclusion and rejection of infiniment petits by the analytic method. In de Prony the
infiniment petits were excluded from the foundational concepts of his teaching by
simply not being mentioned; only in a heading did they appear in a quotation, as
‘so-called analysis of the infinitely small quantities’” (Schubring [41], 2005, p. 289).
Schubring’s assessment of de Prony’s attitude toward infinitesimals seems about as
apt as his assessment of Cauchy’s; see (Błaszczyk et al. [10], 2017).
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The notions of infinitesimal, limit, and variable quantity are all fun-
damental for Cauchy. One understands them only by the definition
which explains how they interact. If Cauchy established such founda-
tions it was on the concept of a variable quantity, as analyzed in Sec-
tion 2.4.

Can one claim that Cauchy conferred upon limite a central role
in the architecture of analysis? The answer is affirmative if one takes
note of the frequency of the occurrence of the term in Cauchy’s oeuvre;
similarly, Cauchy conferred upon infinitesimals a central role in the said
architecture.

A more relevant issue, however, is the precise meaning of the term
limite as used by Cauchy. As we saw in Section 2.1 he used it in the
differential calculus in a sense closer to the standard part function than
to any limit concept in the context of an Archimedean continuum; and
as we saw in Section 2.2, he used it in the integral calculus in a sense
closer to the standard part than any Archimedean counterpart.

Did Cauchy ever seek a justification of infinitesimals in terms of lim-
its? Hardly so, since he expressed both concepts in terms of a primitive
notion of variable quantity. In applications of analysis, Cauchy makes
no effort to justify infinitesimals in terms of limits.

3.8. Cauchy’s A-track arguments. Let us examine in more de-
tail the issue of ε, δ arguments in Cauchy, as found in [15, Section 2.3,
Theorem 1] (already mentioned in Section 2.6). Cauchy seeks to show
that if the difference f(x+1)−f(x) converges towards a certain limit k,
for increasing values of x, then the ratio f(x)

x
converges at the same time

towards the same limit; see [14, p. 35].
Cauchy chooses ε > 0, and notes that we can give the number h a

value large enough so that, when x is equal to or greater than h, the
difference f(x+ 1)− f(x) is always contained between k− ε and k + ε.
Cauchy then arrives at the formula

f(h+ n)− f(h)
n

= k + α,

where α is a quantity contained between the limits −ε and +ε, and even-
tually obtains that the ratio f(x)

x
has for its limit a quantity contained

between k − ε and k + ε.
This is a fine sample of a prototype of an ε, δ proof in Cauchy.

However, as pointed out by Sinkevich, Cauchy’s proofs are all missing
the tell-tale sign of a modern proof in the tradition of the Weierstrassian
Epsilontik, namely exhibiting an explicit functional dependence of δ (or
in this case h) on ε (Sinkevich [44], 2016).
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One of the first occurrences of a modern definition of continuity in
the style of the Epsilontik can be found in Schwarz’s summaries of 1861
lectures by Weierstrass; see (Dugac [20], 1973, p. 64), (Yushkevich [46],
1986, pp. 74–75). This definition is a verbal form of a definition featuring
a correct quantifier order (involving alternations of quantifiers).

The salient point here is that this sample of Cauchy’s work has no
bearing on Cauchy’s infinitesimals. Nor does it imply that infinitesimals
are merely variables tending to zero, since the term infinitely small does
not occur in this proof at all. Nor does Cauchy’s argument show that
he thought of limits in anything resembling post-Weierstrassian terms
since his recurring definition of limit routinely falls back on the primitive
notion of a variable quantity, rather than on any form of an alternating
quantifier string, whether verbal or not.

3.9. Lacroix, Laplace, and Poisson. The Bradley–Sandifer edi-
tion quotes a revealing comment of Cauchy’s on the importance of in-
finitesimals. The comment is found in Cauchy’s introduction:

In speaking of the continuity of functions, I could not dis-
pense with a treatment of the principal properties of in-
finitely small quantities, properties which serve as the foun-
dation of the infinitesimal calculus. (Cauchy as translated in
[14, p. 1])

Bradley and Sandifer then go on to note: “It is interesting that Cauchy
does not also mention limits here” (ibid., note 6; emphasis added).

The circumstances of the publication of the 1821 Cours d’Analyse
indicate that attaching fundamental importance to infinitesimals rather
than limits (noted by Bradley and Sandifer) was Cauchy’s personal
choice, rather than being dictated by the constraints of his teaching
at the École Polytechnique. Indeed, unlike Cauchy’s later textbooks, his
1821 book was not commissioned by the École but was rather written
upon the personal request of Laplace and Poisson, as acknowledged in
(Gilain [23], 1989, note 139).

Sinaceur points out that Cauchy’s definition of limit resembles, not
that of Weierstrass, but rather that of Lacroix13 dating from 1810 (see
[43, p. 108–109]).14 This is acknowledged in (Grabiner [25], 1981, p. 80).

13As a student at the Polytechnique, Cauchy attended Lacroix’s course in analysis
in 1805; see (Belhoste [11], 1991, p. 10, 243).
14Sinaceur explicitly denies Cauchy the honor of having published the first arith-

metic definition of limits, by writing: “Or, 1) l’épsilonisation n’est pas l’œuvre de
Cauchy, mais celle de Weierstrass ; . . . on ne peut dire qu’il en donne une définition
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Cauchy’s kinematic notion of limit was expressed, like his notion of
infinitesimal α, in terms of a primitive notion of variable quantity (see
Section 2.4). Thus, Cauchy’s comment that when a variable becomes an
infinitesimal α, the limit of such a variable is zero, can be interpreted
in two ways. It can be interpreted in the context of an Archimedean
continuum. Alternatively, it could be interpreted as the statement that
the assignable part of α is zero, in the context of a Bernoullian (i.e.,
infinitesimal-enriched) continuum, or in modern terminology, that the
standard part of α is zero; see Section 4.

4. Modern infinitesimals in relation to Cauchy’s procedures.
While set-theoretic justifications for either A-track or B-track modern
framework are obviously not to be found in Cauchy, Cauchy’s procedures
exploiting infinitesimals find closer proxies in Robinson’s framework for
analysis with infinitesimals than in a Weierstrassian framework. In this
section we outline a set-theoretic construction of a hyperreal exten-
sion R ↪→ ∗R, and point out specific similarities between procedures
using the hyperreals, on the one hand, with Cauchy’s procedures, on
the other.

Let RN denote the ring of sequences of real numbers, with arithmetic
operations defined term-wise. Then we have

∗R = RN/MAX

where MAX is the maximal ideal consisting of all “negligible” sequences
(un). Here a sequence is negligible if it vanishes for a set of indices of
full measure ξ, namely, ξ

(
{n ∈ N : un = 0}

)
= 1. Here

ξ : P(N)→ {0, 1}

is a finitely additive probability measure taking the value 1 on cofinite
sets, where P(N) is the set of subsets of N. The subset Fξ ⊆ P(N)
consisting of sets of full measure ξ is called a free ultrafilter. These
originate with [45, 1930]. The set-theoretic presentation of a Bernoullian
continuum (see Section 1.2) outlined here was therefore not available
prior to that date.

The field R is embedded in ∗R by means of constant sequences. The
subring

hR ⊆ ∗R

purement arithmétique ou purement analytique. Sa définition . . . n’enveloppe pas
moins d’intuition géométrique que celle contenue dans le Traité de Lacroix. . . ”
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consisting of the finite elements of ∗R admits a map st to R, known as
standard part

st : hR→ R, (4.1)

which rounds off each finite hyperreal number to its nearest real number.
This enables one, for instance, to define the derivative of t = f(s) as

f ′(s) = st
(

∆t
∆s

)
(4.2)

(here ∆s 6= 0 is infinitesimal) which parallels Cauchy’s definition of
derivative (see Section 2.1) more closely than any Epsilontik definition.
Limit is defined in terms of st, e.g., by setting

lim
s→0

f(s) = st(f(ε)) (4.3)

where ε is a nonzero infinitesimal, in analogy with Cauchy’s limit as
analyzed in Section 1.3. For additional details on Robinson’s framework
see e.g., [22].

5. Conclusion. The oft-repeated claim (as documented e.g., in [4];
[8] that “Cauchy’s infinitesimal is a variable with limit 0” (see Gilain’s
comment cited in Section 3.4) is a reductionist view of Cauchy’s foun-
dational stance, at odds with much compelling evidence in Cauchy’s
writings, as we argued in Sections 2 and 3.

Gilain, Siegmund-Schultze, and some other historians tend to adopt
a butterfly model for the development of analysis, to seek proxies for
Cauchy’s procedures in a default modern Archimedean framework, and
to view his infinitesimal techniques as an evolutionary dead-end in the
history of analysis. Such an attitude was criticized by Grattan-Guinness,
as discussed in Section 1. The fact is that, while Cauchy did use an
occasional epsilon in an Archimedean sense, his techniques relying on
infinitesimals find better proxies in a modern framework exploiting a
Bernoullian continuum.

Robinson first proposed an interpretation of Cauchy’s procedures in
the framework of a modern theory of infinitesimals in [40] (see Sec-
tion 1.7). A set-theoretic foundation for infinitesimals could not have
been provided by Cauchy for obvious reasons, but Cauchy’s procedures
find closer proxies in modern infinitesimal frameworks than in modern
Archimedean ones.
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XIX-wieczna analiza rzeczywista, tam i z powrotem.

J. Bair, P. Błaszczyk, P. Heinig, V. Kanovei, M.G. Katz

Streszczenie. Prace Cauchy’ego znacznie przyspieszyły rozwój XIX-
wiecznej analizy rzeczywistej. Cauchy mówi o wielkościach zmiennych,
granicach i nieskończenie małych, ale znaczenie tych terminow jest
u niego inne niż przyjęte współcześnie.

Niektórzy badacze interpretują dorobek Cauchy’ego w schemacie poję-
ciowym zdominowanym przez założenie (natury teleologicznej), że ana-
liza rzeczywista rozwijała się ku ostatecznej, z góry ustalonej postaci.
Tak na przykład Gilain i Siegmund-Schultze zakładają, że skoro w pra-
cach Cauchy’ego występuja odniesienia do limite, to musiał on posługi-
wać się kontinuum spełniającym aksjomat Archimedesa, zaś wielkości
nieskończenie małe były jedynie wygodną figurą retoryczną, dla której
Cauchy przewidywał uzasadnienie za pomocą pojęcia granicy w sensie
Archimedesowym. Jest jednak inna formalizacja procedur Cauchy’ego
wykorzystujących jego pojęcie limite, bardziej zgodna z wszechobec-
nymi w pracach Cauchy’ego nieskończenie małymi, mianowicie za po-
mocą znanego we współczesnej analizie niestandardowej twierdzenia
o części standardowej. W artykule kwestionujemy błędne przekona-
nie, jakoby Cauchy był zmuszony do wykładania nieskończenie małych
w École Polytechnique. Pokazujemy, że tocząca się wówczas debata
dotyczyła głównie kwestii poprawności rozumowań, nie zaś wielkości
nieskończenie małych. Krytyka podejścia Cauchy’ego, przeprowadzona
przez współczesnego mu Gasparda de Prony, pozwala zrozumieć, jak
Cauchy i jemu współcześni pojmowali poprawność rozumowań mate-
matycznych. Uważna lektura prac Cauchy’ego podważa powszechnie
przyjęty pogląd na rolę, jaką Cauchy odegrał w historii analizy i wska-
zuje, że był on zarówno pionierem technik infinitezymalnych, jak i pre-
kursorem epsilontyki (technik epsilon-delta).

2010 Klasyfikacja tematyczna AMS (2010): 01A55; 01A60; 01A70;
01A73; 13N99.

Słowa kluczowe: “model motyla”; ciągłość; nieskończenie małe; limite;
część standardowa; wielkość zmienna; Cauchy; de Prony.
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