
Abh. Math. Semin. Univ. Hambg. (2008) 78: 91–98
DOI 10.1007/s12188-008-0003-y

Some natural equivalence relations in the Solovay model

Sy-David Friedman · Vladimir Kanovei

Received: 27 February 2008 / Published online: 31 May 2008
© Mathematisches Seminar der Universität Hamburg and Springer 2008

Abstract We obtain some non-reducibility results concerning some natural equivalence re-
lations on reals in the Solovay model. The proofs use the existence of reals x which are
minimal with respect to the cardinals in L[x], in a certain sense.
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1 Introduction

The Borel reducibility of Borel and analytic equivalence relations is one of the key points of
interest in modern descriptive set theory. Given a pair of equivalence relations E and F on
Borel sets resp. X,Y (sets of reals or sets situated in any Polish space), E is said to be Borel
reducible to F, symbolically E ≤BOR F, iff there exists a Borel map ϑ : X → Y such that

x E x ′ ⇐⇒ ϑ(x) F ϑ(x ′)

for all x, x ′ ∈ X. Such a map ϑ obviously induces an injection from the quotient X/E to Y/F.
Therefore the inequality E ≤BOR F can be understood as the fact that the Borel cardinality
of X/E is ≤ that of Y/F. We refer to [7] for matters of original motivation and some basic
results in this direction, and to [5] for a more modern exposition.
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The structure of Borel cardinalities (that is, Borel equivalence relations under ≤BOR) is
quite rich: in particular it embeds the structure of P (ω) under inclusion modulo finite [9],
and therefore embeds any partial order of size ℵ1. Compare this to the structure of Borel
cardinalities of pointsets in Polish spaces, which contains only finite cardinalities, ℵ0, and
the continuum c, and to the structure of true set theoretic cardinalities of pointsets and their
quotients, which depends on the basic setup of the set theoretic universe.

This note belongs to a somewhat different branch of descriptive set theory whose broad
description is real-ordinal definable (ROD for brevity) pointsets and relations in the Solovay
model. (This model served as the background of several outstanding theorems in the early
era of forcing. In particular Solovay [10] proved that in this model all ROD (including all
projective) sets of reals are Lebesgue measurable and have the Baire property.)

Let ≤ROD be the order of ROD reducibility, similar to ≤BOR but with ROD maps ϑ . The
≤ROD structure of ROD equivalence relations in the Solovay model has some striking sim-
ilarities to the ≤BOR structure of Borel and analytic equivalence relations. In particular the
following dichotomy holds in the Solovay model, see [3]:

if E is a ROD equivalence relation on the reals then either E admits a ROD reduction
to equality on the set 2<ω1 of all countable transfinite dyadic sequences, or E0 ≤BOR E,

where E0 in this context can be identified with the Vitali equivalence relation on the real line.
This can be compared with the Ulm-style dichotomy for analytic (that is, �1

1 ) equivalence
relations, proved under the hypothesis of sharps in [2] and under the hypothesis that the
universe is a set generic extension of the constructible universe L in [4]:

if E is an analytic equivalence relation then either E admits a �1
2 (in the codes) reduc-

tion to the equality on 2<ω1 , or E0 ≤BOR E.

Another relevant result of [6] asserts that the ≤ROD-interval between E0 and E1 is empty in
the Solovay model, similarly to the emptiness of the ≤BOR-interval between E0 and E1 by a
classical result of [8].

These initial results lead us to a general problem of the structure of Borel, and, generally
speaking, ROD equivalence relations under the ROD reducibility in the Solovay model. We
consider, in the Solovay model, a series of OD (ordinal-definable) equivalence relations1

Ωn, 1 ≤ n < ω, where xΩn y iff ωL[x]
n = ω

L[y]
n , and prove that they are pairwise ≤ROD-

incomparable. Quite differently from the known irreducibility proofs in the theory of Borel
reducibility, our proof involves some forcing coding systems, most notably a coding by a
minimal real earlier developed in [1].

2 The main theorem

Let κ be inaccessible in L and consider L[G], where G is generic for the gentle Lévy
collapse P of κ to ω1 (i.e., a condition in P is a finite function f from a subset of ω ×κ into
κ such that f (n,α) < α for each (n,α) in Dom(f )). We refer to M = L[G] as the Solovay
model.2 It was exactly the model where by [10] all ROD (including all projective) sets of

1Introduced by P. Kawa, who also conjectured their mutual ≤ROD-incomparability in the Solovay model, in
a discussion with the second author of this paper in the course of a meeting at the University of Florida,
Gainesville, May 2007.
2Sometimes the term “Solovay model” is used to refer not to M , but to the L(R) of M . But as M and the
L(R) of M have the same notion of ROD-reducibility, this distinction is not relevant for the results of this
paper.
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reals are Lebesgue measurable. In M we consider the equivalence relations:

xΩξ y iff ω
L[x]
ξ = ω

L[y]
ξ for each ξ, 0 < ξ < κ = ω1.

We make it clear that Ωξ are considered in this paper as equivalence relations on the reals
(that is, on the Baire space ωω), although in principle they make sense for sets x, y of any
kind.

Theorem 1 In M , Ω1 is not ROD-reducible to Ω2.

Proof For the sake of simplicity, we consider only the case of OD-reducibility. The general
ROD case (that is, when a real parameter is added) is an easy relativisation. Thus we prove
that Ω1 is not reducible to Ω2 via any OD function.

For the proof of this fact we need a lemma that involves a “cardinal-minimality” cod-
ing, and this is the key lemma in the proof. The lemma holds under the assumption of the
countability of ωL

4 , therefore is true in the Solovay model.

Lemma 2 Suppose that ωL
4 is countable. Then there is a real x such that ω

L[x]
1 = ωL

2 ,
ω

L[x]
2 = ωL

4 but there is no real a in L[x] such that ω
L[a]
2 = ωL

3 .

Proof Start with L as the ground model. First Lévy collapse ωL
3 to ωL

2 in the usual way, using
conditions of size ωL

1 . As this forcing has only ωL
4 antichains in L by a simple cardinality

argument, our hypothesis implies that a generic for this forcing exists in V . In this generic
extension let A be a subset of ωL

2 which codes a wellordering of ωL
2 of length ωL

3 .
Now we introduce a forcing P in the new ground model L[A] which adds the desired

real x. This forcing bears some similarity to the forcing found in [1], Sect. 6.1. In L[A],
define a tree to be a set T of finite, increasing sequences of countable ordinals closed under
initial segments with the property that if σ belongs to T then σ has uncountably many
extensions in T . In addition, we require that whenever σ is a splitting node of T , i.e., an
element of T such that σ ∗ α belongs to T for more than one α, then in fact there are
uncountably many such α’s. The nth splitting level of T consists of those splitting nodes σ

of T such that exactly n proper initial segments of σ are also splitting nodes of T .
Any such tree in L[A] in fact belongs to L, as L and L[A] have the same subsets of ωL

1 .
The forcing P consists of those trees which code as much of A as possible, in the sense we
next describe.

By induction on i < ωL
2 define the ordinal μi as follows: μi is the least ordinal μ greater

than each μj , j < i, such that A = Lμ[A∩ i] is admissible and has ωL
1 as its largest cardinal.

We write Ai for Lμi
[A ∩ i]. For each tree T we define |T | to be the least i such that T

belongs to Ai and call it the rank of T .
As ωL

1 is countable in V , any tree T has branches in V which are cofinal in ωL
1 , in the

sense that the ordinals appearing in the branch are cofinal in ωL
1 . We say that the tree T

codes A at i iff for each branch b through T in V which is cofinal in ωL
1 :

(∗) i ∈ A iff Lμi
[b] is admissible.

Although this notion refers to branches through T in V , it is nonetheless expressible in
the model L[A], for the following reason: Suppose that (∗) were to fail for some b in V

(where b is a branch through T which is cofinal in ωL
1 ). Now let P be a forcing in L[A]

which forces that ωL
1 is countable. If G is P -generic over V , then (∗) fails for some b in



94 S.-D. Friedman, V. Kanovei

V [G] and therefore by absoluteness, also for some b in L[A][G] (as T and ωL
1 are countable

in that model). So (∗) fails for some b in a set-generic extension of L[A]. Conversely, if (∗)

fails for some b in a set-generic extension of L[A], then it also fails for some b in a set-
generic extension of V and therefore again by absoluteness, for some b in V . Thus instead
of referring to branches in V we can equivalently refer to branches in a set-generic extension
of L[A], a quantifier expressible in the model L[A].

Now let P consist of all trees T in L[A] such that T codes A at i for each i less than |T |.
Conditions in P are ordered by T0 ≤ T1 iff T0 is a subtree of T1.

Sublemma 3 Suppose that T belongs to P and i < ωL
2 . Then T has an extension T ∗ such

that i ≤ |T ∗|.

Proof We prove this by induction on i. The case i = 0 is vacuous. Suppose that i = j + 1.
By induction we may first extend T to have rank at least j and therefore can assume that
|T | equals j . Thus T belongs to Aj = Lμj

[A ∩ j ].
First suppose that j is an element of A. View T as a partial order which belongs to Aj

and we will thin T to T ∗ ∈ Ai so that each branch b through T ∗ which is cofinal in ωL
1

is generic for the partial order T over Aj . To achieve this, first note that if Dn, n ∈ ω, are
dense subsets of T in Aj and σ is any splitting node of T , we can thin T (σ) = (T above σ)

to T ∗(σ ) so that any branch through T ∗(σ ) meets each Dn. The latter is done by thinning
T below each σ ∗ α to meet D0, then thinning below each τ ∗ α, where τ is an extension
of σ on the next splitting level, to meet D1, and so forth. Now using this, thin T to T ∗ as
follows: List the dense subsets of T which belong to Aj as 〈Dα | α < ωL

1 〉; such a list exists
inside Ai , as Aj has cardinality ωL

1 in Ai . Now thin T below each σ ∗ α, where σ is on the
0th splitting level of T , to guarantee that any branch through σ ∗ α meets each of the Dβ ,
β < α. Then thin below each node τ ∗ α, where τ is on the first splitting level, to guarantee
that any branch through τ ∗ α meets each of the Dβ , β < α, and so forth. The result is a tree
T ∗ with the property that whenever the ordinal α appears on a branch b through T ∗, b meets
each Dβ , β < α. Thus whenever b is a branch through T ∗ which is cofinal in ωL

1 , b is generic
for the partial order T over the model Aj . As the enumeration of the Dα’s was chosen in
Ai , it follows that T ∗ can also be chosen in Ai , and therefore has rank i. And as any branch
through T ∗ which is cofinal in ωL

1 is generic over Aj for the partial order T ∈ Aj , it follows
that Lμj

[b] is admissible for any such branch b, as admissibility is preserved by set-forcing.
Now suppose that j does not belong to A. We wish to thin T to T ∗ so that any cofinal

branch through T ∗ will destroy the admissibility of Aj (i.e., Lμj
[b] will be inadmissible).

Choose a subset B of ωL
1 in Ai such that B codes a wellordering of ωL

1 of length μj . This is
possible as μj has cardinality ωL

1 in the model Ai . Then Lμj
[B] is inadmissible. For each

α < ωL
1 , let βα < ωL

1 be the position of B ∩ α in the canonical wellordering of L, and let
C consist of these βα’s. Then C is unbounded in ωL

1 and Lμj
[D] is inadmissible for any

cofinal D ⊆ C, as from D we can easily recover B .
Now thin T to T ∗ as follows: Suppose that σ is on the 0th splitting level of T . List

SuccT (σ ) = {α | σ ∗ α ∈ T } in increasing order as 〈γα | α < ωL
1 〉. Thin out T below σ by

discarding the σ ∗ γα for α not in C. Now repeat this for nodes σ that remain and are on the
first splitting level, by saving only those σ ∗ γ which are “indexed” in C. After ω steps, the
resulting tree T ∗ has the property that for any branch b:

If σ is an initial segment of b which is a splitting node of T ∗, then b extends σ ∗ γ

where γ is “indexed” in C.



Some natural equivalence relations in the Solovay model 95

In particular, if b is a cofinal branch through T ∗, then b determines a cofinal subset D of C,
which in turn determines B , and therefore Lμj

[b] is inadmissible, as desired.
Finally suppose that i is a limit ordinal. We may assume that |T | is less than i. First

suppose that i has L-cofinality ω and choose an ω-sequence i0 < i1 < · · · cofinal in i with
|T | < i0. Note that this sequence can be chosen in Ai as in this model i has cofinality either
ω or ωL

1 and the latter cannot occur. Let σ be on the 0th splitting level of T . As T above
any σ ∗ α is a condition of rank at most that of T , we can apply induction to thin out T

above each such node to a condition of rank i0. Then for each remaining node σ on the first
splitting level, thin out the tree above each σ ∗ α to a condition of rank i1. Continue in this
way for ω steps and the result is a tree with the property that each cofinal branch b codes A

at j for each j less than i. Moreover this construction can be carried out in Ai , and therefore
the resulting tree has rank i, as desired.

If i has L-cofinality ωL
1 then choose an ωL

1 -sequence i0 < i1 < · · · cofinal in i with
|T | < i0. Again we may assume that this sequence belongs to Ai . Now thin out T in ω

steps as in the case where i has L-cofinality ω, except when considering a node whose last
component is the ordinal α, thin the tree above this node to have rank iα . The result is a tree
with the property that for any branch b and any ordinal α occurring on b, b codes A at j for
each j less than iα . It follows that for any cofinal branch b, b codes A at j for all j less than
the supremum of the iα’s, namely i. �

Sublemma 4 The forcing P collapses ωL
1 and preserves all other cardinals.

Proof Clearly P collapses ωL
1 as the intersection of the trees in a generic produces an ω-

sequence cofinal in ωL
1 . And as P has size ωL

2 in L[A], it follows that cardinals greater than
ωL

2 are preserved. So we need only check that ωL
2 is preserved. As ωL

1 is collapsed, it suffices
to show that if T forces ḟ to be a function from ω into ωL

2 , then some extension of T forces
a bound on the range of ḟ . In L[A] let 〈Mn | n < ω〉 be a �1-elementary chain of submodels
of a large H(θ) = Lθ [A] such that:

1. M0 contains A, P , T , the name ḟ and all countable ordinals as elements.
2. Each Mn has cardinality ω1 and contains 〈Mm | m < n〉 as an element.
3. If Mω is the union of the Mn’s, then the sequence 〈Mn | n ∈ ω〉 is definable over Mω .

It is straightforward to obtain such a sequence, by taking the first ω-many �1-elementary
submodels of Lθ [A] which contain the parameters mentioned in 1 above. Note that if in
denotes the intersection of Mn with ωL

2 , then the transitive collapse of Mn is an initial seg-
ment of Ain (as in is a cardinal in the former but not in the latter), which is in turn an initial
segment of the transitive collapse of Mn+1. Also the transitive collapse of Mω is an initial
segment of Aiω , where iω is the supremum of the in’s (as iω is a cardinal in the former but
not in the latter).

Now thin T below each σ ∗ α, where σ is on the 0th splitting level of T , to a condition
forcing a value of ḟ (0). This can be done inside M0. Thin T further in Ai0 so that the
resulting T0 is a condition of rank i0 below each σ ∗ α, and therefore T0 itself is a condition
of rank i0, belonging to the model Ai0 . Then thin T0 below each σ ∗ α, where σ is on the
first splitting level of T0, to a condition forcing a value of ḟ (1). This can be done inside M1.
Thin further in Ai1 so that the resulting T1 is a condition of rank i1. The resulting sequence
of Tn’s can be chosen definably over Mω and therefore belongs to Aiω . The intersection of
the Tn’s is therefore a condition forcing the range of ḟ to be contained in the set of possible
values of ḟ (n) occurring in this construction. �
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Sublemma 5 Suppose that G is P -generic over L[A]. Let f : ω → ωL
1 be the unique infinite

branch through all of the trees in G. Then the range of f is cofinal in ωL
1 and L[A][G] =

L[f ].

Proof The first conclusion is clear, as given any α < ωL
1 , any condition can be thinned so

that any infinite branch includes an ordinal greater than α. It follows from the definition of
the forcing and Sublemma 3 that f codes A at i for every i less than ωL

2 , and therefore
A ∩ i can be inductively decoded in L[f ]. So A belongs to L[f ]. Finally, note that G

consists precisely of those conditions T in L[A] such that f is a branch through T , as if
f is a branch through a condition T , then T must have uncountable intersection with each
condition in G, else the range of f would be bounded in ωL

1 . �

Sublemma 6 Suppose that a is a real in L[f ] and ωL
1 is countable in L[a]. Then f belongs

to L[a].

Proof Suppose that T is a condition forcing ġ to be a cofinal function from ω into ωL
1 . We

show that some extension of T forces that ḟ belongs to L[ġ], where ḟ is the canonical name
for the cofinal function f : ω → ωL

1 added by G. Let σ be on the 0th splitting level of T and
for each α such that σ ∗ α belongs to T , thin T above σ ∗ α to force a value of ġ(0). Then
for each σ on the first splitting level of the resulting tree T1, thin out above each σ ∗ α in T1

to force a value of ġ(1). Using an ω-sequence of �1-elementary submodels as in the proof
of Sublemma 4, we can ensure that after continuing this for ω steps, the result is a condition
T ∗, and moreover, the function that assigns to each node σ on the nth splitting level of T ∗

the value of ġ(n) forced by T ∗ below σ belongs to A|T ∗|.
Now as T forces that ġ has range cofinal in ωL

1 , so does T ∗, and therefore there are
uncountably many values of ġ forced by T ∗ below its various splitting nodes σ . Therefore
for some n0, uncountably many values of ġ(n0) are forced by T ∗ below nodes on the n0th
splitting level of T ∗. Let X0 be an uncountable subset of the n0th splitting level so that if
σ , τ are distinct elements of X0, then T ∗ below σ and T ∗ below τ force distinct values of
ġ(n0). Thin out T ∗ by discarding nodes on the n0th splitting level which do not belong to
X0. Now for each remaining node σ on the n0th splitting level, we may choose n1 and an
uncountable X1 consisting of nodes extending σ on the n1-st splitting level so that if τ0 and
τ1 are distinct nodes in X1, then T ∗ below τ0 and T ∗ below τ1 force distinct values of ġ(n1).
Discard all nodes on the n1-st splitting level that extend σ and do not belong to X1. Continue
this for ω steps and note that the resulting tree T ∗∗ still belongs to A|T ∗|. As each node of
T ∗∗ has uncountably many extensions in T ∗∗, we may further thin T ∗∗ to a condition T ∗∗∗

in A|T ∗|.
Now note that if G is P -generic and contains the condition T ∗∗∗, then f = ḟ G, the

unique infinite branch through all of the conditions in G, can be recovered from g = ġG, as
any two distinct branches through T ∗∗∗ give rise to different versions of ġ. So f belongs to
L[A,g]. But as A is a subset of ωL

2 = ω
L[A,f ]
1 with constructible proper initial segments, it

then follows that forces f belongs to L[g], as desired. �

Now come back to the proof of Lemma 2. Let f be as in Sublemma 5. First of all, there
obviously exists a real x such that L[x] = L[f ]. Further, all L-cardinals except for ωL

1 and
ωL

3 are still cardinals in L[x] = L[f ] = L[A][G] by Sublemma 4 and the choice of A. It
follows that ω

L[x]
1 = ωL

2 and ω
L[x]
2 = ωL

4 . Now to finish the proof consider any real a ∈ L[x]
and prove that ω

L[a]
2 �= ωL

3 . There are two cases. If ωL
1 is countable in L[a] then f ∈ L[a]
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by Sublemma 6, hence ω
L[a]
2 = ωL

4 . If ωL
1 = ω

L[a]
1 then ωL

2 = ω
L[a]
2 because ωL

2 remains a
cardinal even in the bigger model L[x]. �

Now it does not take much to finish the proof of Theorem 1. (Recall that only the case of
OD-reducibility is considered.) Suppose that Ω1 were OD-reducible to Ω2 via the OD func-
tion ϑ . Note that for each real z, L[z] is closed under ϑ , as the fact that we are in the Solovay
model implies that any real which is OD relative to z is contructible relative to z. Choose x as
in Lemma 2; so (ω

L[x]
1 ,ω

L[x]
2 ) = (ωL

2 ,ωL
4 ). Choose y a real arising from the usual Lévy col-

lapse of ωL
1 to ω; then (ω

L[y]
1 ,ω

L[y]
2 ) = (ωL

2 ,ωL
3 ). As xΩ1 y holds and ϑ reduces Ω1 to Ω2,

it follows that ϑ(x)Ω2 ϑ(y) holds, i.e., that ω
L[ϑ(x)]
2 = ω

L[ϑ(y)]
2 . Now ω

L[ϑ(y)]
2 cannot be ωL

2 ,
else ϑ(y) Ω2 0 Ω2 ϑ(0) holds, which implies that yΩ1 0 holds, contradicting ω

L[y]
1 = ωL

2 .
So ω

L[ϑ(y)]
2 must be ωL

3 . But by the choice of x, no real z in L[x] satisfies ω
L[z]
2 = ωL

3 , and
in particular ω

L[ϑ(x)]
2 does not equal ωL

3 , contradicting ϑ(y)Ω2 ϑ(x). �

3 Generalization

Theorem 1 has the following straightforward generalisation:

Theorem 7 In the Solovay model M , Ωm is not ROD-reducible to Ωn for any 0 < m <

n < ω.

Proof First suppose that m equals 1. Let A ⊆ ωL
n code a Lévy collapse of ωL

n+1 to ωL
n ,

code A by B ⊆ ωL
2 without collapsing cardinals, and finally code B by a real x as in the

proof of Theorem 1, collapsing ωL
1 but preserving all other cardinals. Then for any real z

in L[x], either ω
L[z]
1 = ωL

1 , in which case ωL[z]
n = ωL

n , or x belongs to L[z], in which case
ωL[z]

n = ωL
n+2. In particular, there is no real z in L[x] such that ωL[z]

n = ωL
n+1.

Now let y code a Lévy collapse of ωL
1 to ω. Then x and y are Ω1-equivalent. Suppose

that ϑ were an OD-reduction of Ω1 to Ωn. Then we have ωϑ(x)
n = ω

ϑ(y)
n . Now ω

ϑ(y)
n cannot

be ωL
n , else ϑ(y)Ωn ϑ(0) and therefore yΩ1 0, contradicting ω

L[y]
1 = ωL

2 . So ω
ϑ(y)
n equals

ωL
n+1. But this contradicts the fact that ωϑ(x)

n = ω
ϑ(y)
n and no real z in L[x], such as ϑ(x),

can satisfy ωL[z]
n = ωL

n+1.
Now suppose that m is greater than 1. Then the proof is easier: Let A ⊆ ωL

n code a Lévy
collapse of ωL

n+1 to ωL
n , let B ⊆ ωL

m−1 code both A and a Lévy collapse of ωL
m to ωL

m−1 and
then let C ⊆ ωL

1 code B . Now choose x to be a real coding C using ω-splitting trees, in
analogy to the proof of Theorem 1, which used ω1-splitting trees to code a subset of ωL

2 .
Then L[C] and L[x] have the same cardinals and x has the property that for any real z in
L[x], either z belongs to L or x belongs to L[z]. In particular, for any real z in L[x], ωL[z]

n

is either ωL
n or ωL

n+2.
Now let y code a Lévy collapse of ωL

m to ωL
m−1. Then x and y are Ωm-equivalent. Suppose

that ϑ were an OD-reduction of Ωm to Ωn. Then we have ωϑ(x)
n = ω

ϑ(y)
n . Now ω

ϑ(y)
n cannot

be ωL
n , else ϑ(y)Ωn ϑ(0) and therefore yΩm 0, contradicting ω

L[y]
m = ωL

m+1. So ω
ϑ(y)
n equals

ωL
n+1. But this contradicts the fact that ωϑ(x)

n = ω
ϑ(y)
n and no real z in L[x], such as ϑ(x),

can satisfy ωL[z]
n = ωL

n+1. �

We finish with the easier result establishing irreducibility in the opposite direction:

Proposition 8 In M , Ωn is not ROD-reducible to Ωm for 0 < m < n.
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Proof Choose a real x such that ωL[x]
n > ωL

n but ωL[x]
m = ωL

m. (Such a real is obtained by cod-
ing a collapse of ωL

n+1 to ωL
n using almost disjoint coding; perfect-tree coding is not needed.)

Then x is not Ωn-equivalent to 0. If ϑ were an OD-reduction of Ωn to Ωm, then it follows
that ϑ(x) is not Ωm-equivalent to ϑ(0), which contradicts ωL[ϑ(x)]

m = ωL
m = ωL[ϑ(0)]

m . �

4 Questions

(1) In M , for any countable ordinal α define xΩα y iff ωL[x]
α = ωL[y]

α . For which pairs α, β

of countable ordinals is Ωα OD-reducible to Ωβ in M? (Note, for example, that for limit
ordinals ξ less than the least L-inaccessible, Ωξ and Ωξ+1 are identical, as by Jensen’s
Covering Theorem, ω

L[x]
ξ+1 is the least L-cardinal greater than ω

L[x]
ξ for any real x, which

is uniquely determined by (and uniquely determines) ω
L[x]
ξ .)

(2) Is there a real x such that (ω
L[x]
1 ,ω

L[x]
2 ) = (ωL

2 ,ωL
4 ) and for each real y in L[x], either

(ω
L[x]
1 ,ω

L[y]
2 ) is (ωL

2 ,ωL
4 ) or y preserves cardinals over L?
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