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1. Introduction

A set of reals B is a basis for a family F of sets of reals, if any non-empty set X ∈ F contains a real in 
B . Typically both B and F here are connected with this or another type of definability or mathematical 
constructivity, so the question then can be understood as whether a non-empty definable set contains a 
definable element. Questions related to the definability of mathematical objects, appeared in the focus 
of attention of discussions on mathematical foundations immediately after the publication of the famous 
Zermelo’s paper on the axiom of choice and its application to the problem of wellorderability in 1905, and 
also, to some extent, in connection with a simultaneous publication of the Richard paradox. For instance, 
Hadamard, Borel, Baire, and Lebesgue, participants of the discussion published in [13], in spite of significant 
differences in their positions regarding problems of mathematical foundations, emphasized that a proof of 
nonemptiness, that is, a proof of pure existence of an element in a given set, and a direct definition (or 
an effective construction) of such an element are different mathematical results, and the second of them 
does not follow from the first. In particular, Lebesgue, in his part of [13], pointed at the difficulties in the 
problem of effective choice, that is, a selection of a definable element in a definable (nonempty) set.3

For the sake of convenience, let us represent Lebesgue’s remark as follows.

Does every non-empty definable set of reals contain a definable element?

The answer depends on the type of definability considered. In the context of the classes Σ1
n , Π1

n , Δ1
n (see 

[39]) of the analytical hierarchy, the most profound basis result, a corollary of the Novikov–Kondo–Addison 

3 “Ainsi je vois déjà une difficulté dans ceci dans un M ′ déterminé je puis choisir un m′ déterminé”, in the original. Thus I 
already see a difficulty with the assertion that “in a determinate M ′ I can choose a determinate m′”, in the English translation.
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uniformization theorem, claims that every non-empty (lightface) Σ1
2 set of reals has a Δ1

2 element, see [39, 
4E.4 and 4E.5].4 As for the dual class Π1

2 , and subsequently all higher classes, no similar basis result is 
possible. Indeed, Levy [36] defined a model of ZFC, in which it is true that a certain Π1

2 set of reals (the 
set of all non-constructible reals), is non-empty but contains no analytically definable reals of any class Δ1

n , 
and even more, no ordinal-definable5 elements. This non-basis result has been recently sharpened to the 
extent that a Π1

2 set X �= ∅ of reals, containing no OD elements, can be countable [24], and even can be 
equal to a Vitali class (a shift of the rationals)6 [22] in appropriate models. See related discussions at the 
Mathoverflow7 and FOM8 exchange boards.

The basis problem, as well as the uniformization problem, introduced by Luzin [37,38], and the related 
wellordering problem, are well known in modern set theory. (See Moschovakis [39, Section 6C and 8H.10], 
Kechris [35], Hauser and Schindler [15], Ressayre [41], Woodin [42], Caicedo and Schindler [3], Vera Fischer 
e.a. [7,6] among other, both older and more recent studies on different aspects of basis, uniformization, and 
wellorderings.)

Anyway, it seems that the most transparent way to get a basis result is to make use of an analytically 
definable wellordering < of the reals, which enables one to pick the <-least real in each non-empty set 
of reals. This leads to the question: is the existence of an analytically definable wellordering < of the 
reals necessary for the basis theorem. In principle, the negative answer is well-known: indeed, the axiom 
of projective determinacy PD: 1) is incompatible with the existence of a projective (let alone analytically 
definable) wellordering of the reals, but 2) implies that any non-empty Σ1

2n set of reals contains a Δ1
2n real, 

for each n ≥ 1, see [39, 6C.6]. However PD is an extraordinarily strong axiom, whose consistency strength 
crucially exceeds ZFC. Therefore, following the approach outlined in [8], it can be interesting to get the 
negative answer by pure means of a set-generic extension of the constructible universe L, in particular, 
with no reference to any extra axioms. This is the main content of this paper.

Theorem 1.1. In a suitable set-generic extension of L, it is true that every non-empty lightface analytically 
definable set of reals contains a lightface analytically definable real (the full basis theorem), but there is no 
lightface analytically definable wellordering of the continuum.

More precisely, there is a cardinal-preserving generic extension L[X] of L, such that X = 〈xξk〉ξ<ωL
1 ∧k<ω , 

where each xξk is a real in 2ω , and in addition

(I) if m < ω then it is true in the submodel L[Xm] that there is a Δ1
m+3 wellordering of the reals of 

length ω1 , where Xm = 〈xξk〉ξ<ωL
1 ∧k<m ;

(II) if m < ω then ωω ∩ L[Xm] is a Σ1
m+3 set in L[X];

(III) if m < ω then L[Xm] is an elementary submodel of L[X] w.r.t. all Σ1
m+2 formulas with reals in

L[Xm] as parameters;
(IV) it is true in L[X] that there is no lightface analytically definable wellordering of the reals.

4 Some important and difficult basis results related to classes lower than Σ1
2 , for instance the Kleene and Gandy basis theorems, 

A.1.3 and A.1.4 in [10], are out of the scope of this paper.
5 The class OD of ordinal-definable sets contains all sets definable by a set theoretic formula with only ordinals as parameters. 

This is perhaps the most broad version of effective definability admitted in modern set theory. Unlike the pure (parameterfree) 
definability, the ordinal definability admits a set theoretic formula, which adequately expresses the property of a set x to be ordinal 
definable, see [40]. The class Ord of all ordinals is an extension of the natural numbers, unique and determined enough for not to 
insist on definability of the ordinals themselves.
6 Or a E0 -equivalence class, if we consider reals in 2ω or ωω . Recall that E0 is an equivalence relation on ωω defined so that 

x E0 y iff x(n) = y(n) for all but finite n.
7 A question about ordinal definable real numbers. Mathoverflow, March 09, 2010. http://mathoverflow .net /questions /17608.
8 Ali Enayat. Ordinal definable numbers. FOM Jul 23, 2010. http://cs .nyu .edu /pipermail /fom /2010 -July /014944 .html.

http://mathoverflow.net/questions/17608
http://cs.nyu.edu/pipermail/fom/2010-July/014944.html
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To see that the additional claims imply the main claim (the full basis theorem), let, in L[X], Z ⊆ ωω

be a non-empty Σ1
m+2 set of reals. Then Z ′ = Z ∩ L[Xm] is a Σ1

m+3 set by (II), and Z ′ �= ∅ by (III). It 
remains to pick the least real in Z ′ in the sense of the lightface Δ1

m+3 wellordering given by (I).

2. Comments

To prove the theorem, we make use of a generic extension of L via a finite-support product of forcing 
notions that resemble Jensen’s minimal Π1

2 singleton forcing. The history of this approach goes down to 
Jensen [17], where a subforcing J of the Sacks forcing is defined in L, the constructible universe, such that 
the canonical J-generic real in 2ω is the only J-generic real in the extension, and ‘being a J-generic real’ 
is a Π1

2 property. Thus any J-generic extension of L contains a Π1
2 nonconstructible singleton. See 28A in 

[16] for an up-to-date exposition of Jensen’s forcing.9

Later Jensen’s forcing construction was extended by Abraham. This included a model [2] containing a 
definable minimal collapsing real, and a minimal model [1] for the negation of CH, based on iterations of 
Jensen’s forcing constructed with some semblance of the Sacks forcing iterations as in [12] or [21]. Another 
modification of Jensen’s forcing construction by Jensen and Johnsbraten [19] yields such a forcing notion 
in L that any extension of L, containing two generic reals x �= y , necessarily satisfies ωL

1 < ω1 .
Somewhat later, Ali Enayat (Footnote 8) conjectured that some definability questions can be solved by 

finite-support products of Jensen’s [17] forcing J. Enayat demonstrated in [4] that a symmetric part of 
the Jω -generic extension of L definitely yields a model of ZF (not a model of ZFC!) in which there is a 
Dedekind-finite infinite Π1

2 set of reals with no OD elements.
Following the conjecture, we proved in [24] that indeed it is true in a Jω -generic extension of L that the 

set of J-generic reals is a countable non-empty Π1
2 set with no OD elements. We also proved in [22] that the 

existence of a Π1
2 E0 -equivalence class with no OD elements is consistent with ZFC, using a E0 -invariant 

version of Jensen’s forcing.10 A similar technique was used in [11] to define a generic extension L[x, y] of 
L by reals x, y , in which the union of E0 -classes of x and y is a lightface Π1

2 set, but neither of these two 
E0 -classes is an ordinal-definable set.

A suitable finite-support product of Jensen’s forcing was employed in [23] to define a generic extension of 
L where there is a Π1

2 set P ⊆ ωω × ωω which is non-uniformizable by a projective set and has countable 
cross-sections Px = {y : 〈x, y〉 ∈ P}, and, more specifically, whose all non-empty cross-sections are Vitali 
classes [26]. A combination of finite-support product and iteration of Jensen’s forcing was used in [9] to 
define a model of ZF in which the countable AC holds but the principle of dependent choices DC fails for 
a Π1

2 relation on the reals.
A different modification of Jensen’s forcing construction was engineered in [20] in order to define an 

extension of L in which, for a given n ≥ 2, there is a nonconstructible Π1
n singleton while all Σ1

n reals are 
still constructible. The idea is to complicate the inductive construction of Jensen’s forcing J =

⋃
α<ω1

Jα

in L by the requirement that the sequence 〈Jα〉α<ω1 intersects any set, of a certain definability level, dense 
in the collection of all possible countable initial steps of the construction — inner definable genericity.11

Using this tool, generic modes have been recently defined, in which, for a given n ≥ 3:

9 Another nonconstructible Π1
2 singleton was defined in [18] via the almost-disjoint forcing, yet the construction in [17] has the 

advantage of minimality of J-generic reals and some other advantages as a coding system (as well as some disadvantages).
10 On the contrary, it is true in some “more elementary” generic extensions of L, like Cohen, Solovay-random, Sacks, that every 
countable OD set contains only constructible elements [25] (also true for dominating real extensions), and OD Borel sets admit 
constructible Borel codes of the same rank [28,29]. The elementarity of such extensions is somewhat illusory though. See e.g. [34]
on Cohen reals, or [5] on a theorem, originally by Solovay, that it is true in a generic extension L[a] of L by a Sacks real that there 
is an ordinal-definable equivalence relation on the reals, which has exactly two equivalence classes, and these classes are not OD.
11 This method of inner genericity was originally introduced and developed in Harrington’s handwritten notes [14] on the base 
of the Jensen–Solovay almost-disjoint forcing [18], and applied towards some great results in set theory that unfortunately have 
never been published in a mathematical journal. We have recently reproved some results of [14] in [32,33].
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(1) there is a Π1
n E0 -equivalence class with no OD elements, and in the same time every countable Σ1

n set 
consists of OD elements, [27];

(2) there is a Δ1
n real that codes a collapse of ℵL

1 , and in the same time every Σ1
n−1 set x ⊆ ω is constructible, 

[30];
(3) there is a planar Π1

n−1 set with countable vertical cross-sections, not uniformizable by a real-ordinal-
definable set, and in the same time all planar boldface Σ1

n−1 sets with countable cross-sections are 
Δ1

n -uniformizable, [31].

3. The structure of the paper

To prove Theorem 1.1, we define, in L, a system of forcing notions Pξk , ξ < ω1 and k < ω , whose 
finite-support product P =

∏
ξ,k Pξk adds a generic array X = 〈xξk〉ξ<ω1,k<ω of reals xξk to L, such that 

conditions (I), (II), (III), (IV) of Theorem 1.1 hold in L[X].
We employ the inner definable genericity idea here in such a way that if m < ω then the m-tail 

〈Pξk〉ξ<ω1∧k≥m of the forcing construction, bears an amount of inner definable genericity which strictly 
depends on m. (See Definition 21.1, where a key concept is introduced.) This obscures the coding construc-
tion to the extent that the partial analytical wellorderings mentioned in (I) of Theorem 1.1 cannot be glued 
into a common analytically definable wellordering.

Chapter I contains a general formalism related to forcing by perfect trees and finite-support products, 
convenient for our goals. Following Jensen [17], we consider forcing notions of the form P =

⋃
α<λ Pα , 

where λ < ω1 and each Pα is a countable set of perfect trees in 2<ω . Each term Pα has to satisfy some 
routine conditions of refinement with respect to the previous terms, in particular, to make sure that each 
Pα remains pre-dense at further steps. Also, each Pα has to seal some dense sets in 

⋃
ξ<α Pξ so that they 

remain pre-dense at further steps as well. And this procedure has to be extended from single forcing notions 
to their finite-support products. These issues are dealt with in Chapter II.

Then we consider real names with respect to finite-support products of perfect-tree forcing notions in
Chapter III. Here the key issue is to make sure that if P is a factor in a product forcing considered then 
there is no other P-generic real in the whole product extension except for the obvious one.

In Chapter IV we define the forcing notion PPP =
∏

ξ<ω1,k<ω Pξk to prove the main theorem, in the form of 
a limit of a certain increasing sequence of countable products of countable perfect-tree forcing notions. Quite 
a complicated construction of this sequence in L involves ideas related to diamond-style constructions, as 
well as to some sort of definable genericity, as explained above.

The forcing P as a whole is not analytically definable; however each k-th layer 〈Pξk〉ξ<ω1 belongs to 
Δ1

k+4 . But it is a key property that the PPP-forcing relation restricted to Σ1
n formulas is essentially Σ1

n . We 
prove this in Chapter V, with the help of an auxiliary forcing notion forc . We also establish the invariance 
of forc with respect to countable-support permutations of ω1 × ω .

We finally prove Theorem 1.1 in Chapter VI, on the base of the results obtained in two previous chapters.

I. Basic constructions

We begin with some basic things: perfect trees in the Cantor space 2ω , perfect tree forcing notions (those 
which consist of perfect trees), their finite-support products, and a splitting construction of perfect trees.

4. Perfect trees

Let 2<ω be the set of all strings (finite sequences) of numbers 0, 1. If t ∈ 2<ω and i = 0, 1 then t�k
is the extension of t by k . If s, t ∈ 2<ω then s ⊆ t means that t extends s, while s ⊂ t means proper 
extension. If s ∈ 2<ω then lh(s) is the length of s, and 2n = {s ∈ 2<ω : lh(s) = n} (strings of length n).
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A set T ⊆ 2<ω is a tree iff for any strings s ⊂ t in 2<ω , if t ∈ T then s ∈ T . Every non-empty tree 
T ⊆ 2<ω contains the empty string Λ. If T ⊆ 2<ω is a tree and s ∈ T then put T �s = {t ∈ T : s ⊆ t ∨ t ⊆ s}.

Let PT be the set of all perfect trees ∅ �= T ⊆ 2<ω . Thus a non-empty tree T ⊆ 2<ω belongs to PT iff 
it has no endpoints and no isolated branches. Then there is a largest string s ∈ T such that T = T �s ; it is 
denoted by s = stem(T ) (the stem of T ); we have s�1 ∈ T and s�0 ∈ T in this case.

Definition 4.1 (perfect sets). If T ∈ PT then [T ] = {a ∈ 2ω : ∀n (a�n ∈ T )} is the set of all paths through 
T , a perfect set in 2ω . Conversely if X ⊆ 2ω is a perfect set then tree(X) = {a�n : a ∈ X ∧ n < ω} ∈ PT
and [tree(X)] = X .

Trees T, S ∈ PT are almost disjoint, ad for brevity, iff the intersection S ∩ T is finite; this is equivalent 
to just [S] ∩ [T ] = ∅. �

The simple splitting of a tree T ∈ PT consists of smaller trees

T (→ 0) = T �stem(T )�0 and T (→ 1) = T �stem(T )�1

in PT, so that [T (→ i)] = {x ∈ [T ] : x(h) = i}, where h = lh(stem(T )). We let

T (→ u) = T (→ u(0))(→ u(1))(→ u(2)) . . . (→ u(n− 1))

for each string u ∈ 2<ω, lh(u) = n; and separately T (→ Λ) = T .

Lemma 4.2. Suppose that T ∈ PT. Then:

(i) if u ∈ 2<ω then there is a string s ∈ 2<ω such that T (→ u) = T �s ;
(ii) if s ∈ 2<ω then there is a string u ∈ 2<ω such that T �s = T (→ u);
(iii) if ∅ �= U ⊆ [T ] is a (relatively) open subset of [T ], or at least U has a non-empty interior in [T ], 

then there is a string s ∈ T such that T �s ⊆ U . �
If T ∈ PT and a ∈ 2ω then the intersection T (→ a) =

⋂
n<ω T (→ a�n) = {hT (a)} is a singleton, and 

the map hT is a canonical homeomorphism from 2ω onto [T ]. Accordingly if S, T ∈ PT then the map 
hST (x) = hT (hS

−1(x)) is a canonical homeomorphism from [S] onto [T ].

5. Perfect tree forcing notions

Let a perfect-tree forcing notion be any non-empty set P ⊆ PT such that if s ∈ T ∈ P then T �s ∈ P, or 
equivalently, by Lemma 4.2, if u ∈ 2<ω then T (→ u) ∈ P. Let PTF be the set of all such forcing notions 
P ⊆ PT.

Example 5.1. If s ∈ 2<ω then the tree [s] = {t ∈ 2<ω : s ⊆ t ∨ t ⊆ s} belongs to PT. The set Pcoh =
{[s] : s ∈ 2<ω} of all such trees (the Cohen forcing) is a perfect-tree forcing notion, special and regular in 
the sense of Definition 5.4. �
Lemma 5.2. Let P ∈ PTF. If T ∈ P and a set X ⊆ [T ] is (relatively) open (resp., clopen) in [T ], then 
there is a countable (resp., finite) set S of pairwise ad trees S ∈ P, satisfying

⋃
S∈S [S] = X . �

Lemma 5.3. (i) If s ∈ T ∈ P ∈ PTF then T �s ∈ P.
(ii) If P, P′ ∈ PTF, T ∈ P, T ′ ∈ P′ , then there are trees S ∈ P, S′ ∈ P′ such that S ⊆ T , S′ ⊆ T ′ , and

[S] ∩ [S′] = ∅.
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Proof. (i) use Lemma 4.2. (ii) If T = T ′ then let S = T (→ 0), S′ = T (→ 1). If say T �⊆ T ′ then let 
s ∈ T � T ′ , S = T �s , and simply S′ = T ′ . �
Definition 5.4. A set A ⊆ PT is an antichain iff any trees T �= T ′ in A are ad, that is, [T ] ∩ [T ′] = ∅. A 
forcing notion P ∈ PTF is:

small , if it is countable;
special , if there is an antichain A ⊆ P such that P = {T �s : s ∈ T ∈ A} — note that A is unique if exists; 

we write A = base(P) (the base of P);
regular , if for any S, T ∈ P, the intersection [S] ∩ [T ] is clopen in [S] or clopen in [T ] (or clopen in both 

[S] and [T ]). �
Lemma 5.5. Let P ∈ PTF. If P is special and S, T ∈ P are not ad, then they are comparable: S ⊆ T or
T ⊆ S .

If P is special then P is regular. If P is regular, then

(i) if S, T ∈ P are not ad, then they are compatible in P, that is, there is a tree R ∈ P such that
R ⊆ S ∩ T ;

(ii) if S1, . . . , Sk ∈ P then there is a finite set of pairwise ad trees R1, . . . , Rn ∈ P such that [S1] ∩. . .∩[Sk] =
[R1] ∪ . . . ∪ [Rn];

(iii) if S1, . . . , Sk are finite collections of trees in P then there is a finite set of trees R1, . . . , Rn ∈ P such 
that 

⋃
S∈S1

[S]∩ . . .∩
⋃

S∈Sk
[S] = [R1] ∪ . . .∪ [Rn], and for any Si and Rj , there is S ∈ Si such that

Rj ⊆ S .

Proof. (iii) Apply (ii) to every set of the form [S1] ∩ . . . ∩ [Sk], where Si ∈ Si , ∀ i, then gather all trees Ri

obtained in one finite set. �
Remark 5.6. Any set P ∈ PTF can be considered as a forcing notion (if T ⊆ T ′ then T is a stronger 
condition); then P adds a real x ∈ 2ω . �
Lemma 5.7. If a set G ⊆ P is generic over a ground set universe V (resp., over a transitive model, e.g. L) 
then

(i) the intersection
⋂

T∈G[T ] contains a single real x = x[G] ∈ 2ω , and
(ii) this real x is P-generic, in the sense that if D ⊆ P is dense in P and belongs to V (resp., to the 

ground model) then x ∈
⋃

T∈D[T ]. �
As usual, a set D ⊆ P is:

− open in P, if for any trees T ⊆ S in P, S ∈ D =⇒ T ∈ D ;
− dense in P, if for any T ∈ P there is S ∈ D , S ⊆ T ;
− pre-dense in P, if the set D′ = {T ∈ P : ∃S ∈ D (T ⊆ S)} is dense in P.

6. Splitting construction

We proceed with an important splitting/fusion construction of perfect trees by means of infinite splitting 
systems of such trees.
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Definition 6.1. Let FSS be the set of all finite splitting systems, that is, systems of the form ϕ = 〈Ts〉s∈2≤n , 
where n = hgt(ϕ) < ω (the height of ϕ), each value Ts = Tϕ

s = ϕ(s) is a tree in PT, and

(∗) if s ∈ 2<n and i = 0, 1 (so s�i ∈ 2≤n) then Ts�i ⊆ Ts(→ i) — it easily follows that [Ts�0] ∩[Ts�1] = ∅.

We add the empty system Λ to FSS, with hgt(Λ) = −1. �
A tree T occurs in ϕ ∈ FSS if T = ϕ(s) for some s ∈ 2≤hgt(ϕ) . If all trees occurring in ϕ belong to some 

P ∈ PTF then say that ϕ is a finite splitting system over P, symbolically ϕ ∈ FSS(P).
Let ϕ, ψ be systems in FSS. Say that ϕ extends ψ , symbolically ψ � ϕ, if n = hgt(ψ) ≤ hgt(ϕ) and 

ψ(s) = ϕ(s) for all s ∈ 2≤n , and properly extends, ψ ≺ ϕ, if in fact hgt(ψ) < hgt(ϕ) strictly.
Each system ϕ ∈ FSS(P) with hgt(ϕ) = 0 consists essentially of a single tree Tϕ

Λ ∈ P. The next lemma 
provides systems of arbitrary height.

Lemma 6.2. Assume that P ∈ PTF. If n ≥ 1 and ψ = 〈Ts〉s∈2≤n ∈ FSS(P) then there is a system
ϕ = 〈Ts〉s∈2≤n+1 ∈ FSS(P) which properly extends ψ .

Proof. If s ∈ 2n and i = 0, 1 then let Ts�i = Ts(→ i). �
The next well-known lemma belongs to the type of splitting/fusion lemmas widely used in connection 

with the perfect set forcing and some similar forcings.

Lemma 6.3. Let P ∈ PTF. Then there is an ≺-increasing sequence 〈ϕn〉n<ω of systems in FSS(P). And if
〈ϕn〉n<ω is such then:

(i) the limit system ϕ =
⋃

n ϕn = 〈Ts〉s∈2<ω satisfies (∗) of Definition 6.1 on the whole domain of strings
s ∈ 2<ω ;

(ii) T =
⋂

n

⋃
s∈2n Ts is a perfect tree in PT and [T ] =

⋂
n

⋃
s∈2n [Ts];

(iii) if u ∈ 2<ω then T (→ u) = T ∩ Tu =
⋂

n≥lh(u)
⋃

s∈2n,u⊆s Ts . �
7. Multiforcings and multitrees

We’ll systematically make use of finite support products of perfect tree forcings in this paper. The 
following definitions introduce suitable notation.

Call a multiforcing any map π : |π| → PTF, where |π| = domπ ⊆ ω1 × ω . Thus each set π(ξ, k), 
〈ξ, k〉 ∈ |π|, is a perfect tree forcing notion. Such a π is:

− small, if both |π| and each forcing π(ξ, k), 〈ξ, k〉 ∈ |π|, are countable;
− special, if each π(ξ, k) is special in the sense of Definition 5.4;
− regular , if each π(ξ, k) is regular, in the sense of Definition 5.4.

Let MF be the set of all multiforcings.
Let a multitree be any map p : |p| → PT, such that |p| = domp ⊆ ω1 × ω is finite and each value 

Tp
ξk = p(ξ, k) is a tree in PT. In this case we define a cofinite-dimensional perfect cube in (2ω)ω1×ω

[p] = {x ∈ (2ω)ω1×ω : ∀ 〈ξ, k〉 ∈ |p| (x(ξ, k) ∈ [Tp
ξk])} =

= {x ∈ (2ω)ω1×ω : ∀ 〈ξ, k〉 ∈ |p| ∀m (x(ξ, k)�m ∈ Tp
ξk)} .
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Let MT be the set of all multitrees. We order MT componentwise: q � p (q is stronger) iff |p| ⊆ |q|
and T q

ξk ⊆ Tp
ξk for all 〈ξ, k〉 ∈ |p|; this is equivalent to [q] ⊆ [p], so that stronger multitrees correspond to 

smaller cubes. The weakest multitree Λ ∈ MT is just the empty map; |Λ| = ∅ and [Λ] = 2ω1×ω .

Definition 7.1. Multitrees p, q are somewhere almost disjoint, or sad, if, for at least one pair of indices 
〈ξ, k〉 ∈ |p| ∩ |q|, the trees Tp

ξk , T q
ξk are ad, that is, [Tp

ξk] ∩ [T q
ξk] = ∅, or equivalently, Tp

ξk ∩T q
ξk is finite. �

If π is a multiforcing then a π-multitree is any multitree p with |p| ⊆ |π| and Tp
ξk ∈ π(ξ, k) for 

all 〈ξ, k〉 ∈ |p|. Let MT(π) be the set of all π -multitrees; it is equal to the finite support product ∏
〈ξ,k〉∈|π| π(ξ, k).

Corollary 7.2 (of Lemma 5.5(i)). If π is a regular multiforcing and multitrees p, q ∈ MT(π) are not sad, 
then p, q are compatible in MT(π), so that there is a multitree r ∈ MT(π) with r � p, r � q . �

The following is similar to Lemma 5.5(iii).

Lemma 7.3. If a multiforcing π is regular, ξ ⊆ |π| is finite, and U1, . . . , Uk are finite collections of multitrees 
in MT(π) with |p| = ξ for all p ∈

⋃
i Ui , then there is a finite set of multitrees u1, . . . , un ∈ MT(π) such 

that |uj | = ξ for all j ,
⋃

p∈U1
[p] ∩ . . . ∩

⋃
p∈Uk

[p] = [u1] ∪ . . . ∪ [un],

and for any Ui and uj , there is p ∈ Ui such that [uj ] ⊆ [p]. �
We consider sets of the form MT(π) in the role of product forcing notions. A set D ⊆ MT(π) is:

− open in MT(π), if for any p � q in MT(π), q ∈ D =⇒ p ∈ D ;
− dense in MT(π), if for any p ∈ MT(π), there is q ∈ D , q � p;
− pre-dense in MT(π), if the set D′ = {p ∈ MT(π) : ∃ q ∈ D (p � q)} is dense in MT(π).

Remark 7.4. As a forcing notion, each MT(π) adds an array 〈xξk〉〈ξ,k〉∈|π| of reals, where each real xξk ∈ 2ω
is a π(ξ, k)-generic real. Namely if a set G ⊆ MT(π) is generic over the ground set universe V then each 
factor

G(ξ, k) = {Tp
ξk : p ∈ G ∧ 〈ξ, k〉 ∈ |p|} ⊆ π(ξ, k)

(where 〈ξ, k〉 ∈ |π|) is accordingly a set π(ξ, k)-generic over V, the real xξk = xξk[G] = x[G(ξ, k)] ∈ 2ω is 
the only real satisfying xξk ∈

⋂
T∈G(ξ,k)[T ], and xξk is π(ξ, k)-generic over V as in Lemma 5.7. �

The reals of the form xξk[G] will be called principal generic reals in V[G].

Definition 7.5. A componentwise union of multiforcings π, ϙ is a multiforcing π∪cwϙ satisfying |(π∪cwϙ)| =
|π| ∪ |ϙ| and

(π ∪cw ϙ)(ξ, k) =

⎧⎪⎨
⎪⎩

π(ξ, k), whenever 〈ξ, k〉 ∈ |π|� |ϙ|
ϙ(ξ, k), whenever 〈ξ, k〉 ∈ |ϙ|� |π|

π(ξ, k) ∪ ϙ(ξ, k), whenever 〈ξ, k〉 ∈ |π| ∩ |ϙ|

Similarly, if #»π = 〈πα〉α<λ is a sequence of multiforcings then define a multiforcing π =
⋃cw #»π =

⋃cw
α<λ πα

so that |π| =
⋃

|πα| and if 〈ξ, k〉 ∈ |π| then π(ξ, k) =
⋃

πα(ξ, k). �
α<λ α<λ, 〈ξ,k〉∈|πα|
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8. Multisystems

The next definition introduces multisystems, a multi version of the splitting/fusion technique of Section 6, 
whose intention is to define suitable multiforcings, as will be shown in Section 11 below.

Definition 8.1. A multisystem is any map ϕ : |ϕ| → FSS, such that |ϕ| ⊆ ω1 × ω × ω is finite.12 This 
amounts to

(1) the map hϕ(ξ, k, m) = hgt(ϕ(ξ, k, m)) : |ϕ| → ω , and
(2) the finite collection of trees Tϕ

ξk,m(s) = ϕ(ξ, k, m)(s), where 〈ξ, k, m〉 ∈ |ϕ| and s ∈ 2≤hϕ(ξ,k,m) , such 
that if 〈ξ, k, m〉 ∈ |ϕ| then ϕ(ξ, k, m) = 〈Tϕ

ξk,m(s)〉s∈2≤hϕ(ξ,k,m) is a finite splitting system in FSS.

If π is a multiforcing, |ϕ| ⊆ (|π|)×ω , and ϕ(ξ, k, m) ∈ FSS(π(ξ, k)) for all 〈ξ, k, m〉 ∈ |ϕ| (or equivalently, 
Tϕ
ξk,m(s) ∈ π(ξ, k) whenever 〈ξ, k, m〉 ∈ϕ and s ∈ 2≤hϕ(ξ,k,m)), then say that ϕ is a π -multisystem, 

ϕ ∈ MS(π). �
Let ϕ, ψ be multisystems. Say that ϕ extends ψ , symbolically ψ � ϕ, if |ψ| ⊆ |ϕ|, and, for every 

〈ξ, k, m〉 ∈ |ψ|, ϕ(ξ, k, m) extends ψ(ξ, k, m), that is, hϕ(ξ, k, m) ≥ hψ(ξ, k, m) and Tϕ
ξk,m(s) = Tψ

ξk,m(s)
for all s ∈ 2≤hψ(ξ,k,m) .

It will be demonstrated in Section 11 that a suitably increasing infinite sequence ϕ0 � ϕ1 � ϕ2 � . . .

of multisystems in some MS(π) leads to a “limit” multiforcing ϙ with |ϙ| =
⋃

n |ϕn|, such that each factor 
ϙ(ξ, k), 〈ξ, k〉 ∈ |π|, is filled in by trees Qξk,m , m < ω , in such a way, that the (ξ, k,m)-components of the 
systems ϕn are responsible for the construction of the tree Qξk,m .

The next lemma introduces different ways to extend a given multisystem.
Say that a multisystem ϕ is 2wise disjoint if [Tϕ

ξk,m(s)] ∩ [Tϕ
η
,n(t)] = ∅ for all triples 〈ξ, k, m〉 �= 〈η, �, n〉

in |ϕ| and all s ∈ 2hϕ(ξ,k,m) and t ∈ 2hϕ(η,
,n) .

Lemma 8.2. Let π be a multiforcing and ϕ ∈ MS(π).

(i) If 〈ξ, k, m〉 ∈ |ϕ| and h = hϕ(ξ, k, m) then the extension ψ of ϕ by hψ(ξ, k, m) = h + 1 and
Tψ
ξk,m(s�i) = Tϕ

ξk,m(s)(→ i) for all s ∈ 2h and i = 0, 1, belongs to MS(π) and ϕ � ψ .
(ii) If 〈ξ, k, m〉 /∈ |ϕ| then the extension ψ of ϕ by |ψ| = |ϕ| ∪{〈ξ, k, m〉}, hψ(ξ, k, m) = 0 and Tψ

ξk,m(Λ) =
T , where T ∈ π(ξ, k) and Λ is the empty string, belongs to MS(π) and ϕ � ψ .

(iii) If 〈ξ, k, m〉 ∈ |ϕ| and a set D ⊆ π(ξ, k) is open dense in π(ξ, k) then there is a multisystem ψ ∈
MT(π) such that |ψ| = |ϕ|, ϕ � ψ , and Tψ

ξk,m(s) ∈ D whenever s ∈ 2hψ(ξ,k,m) .
(iv) There is a 2wise disjoint ψ ∈ MT(π) such that |ψ| = |ϕ| and ϕ � ψ .

Proof. To prove (iii) first use (i) to get a multisystem ψ ∈ MS(π) with ϕ � ψ and hψ(ξ, k, m) = h + 1, 
where h = hϕ(ξ, k, m). Then replace each tree Tψ

ξk,m(s) = ψ(ξ, k, m)(s), s ∈ 2h+1 , with a suitable tree 

T ′ ∈ D , T ′ ⊆ Tψ
ξk,m(s).

To prove (iv) first apply (i) to get a multisystem ψ ∈ MS(π) with ϕ � ψ , |ψ| = |ϕ|, and hψ(ξ, k, m) =
hϕ(ξ, k, m) + 1 for all 〈ξ, k, m〉 ∈ |ϕ|. Now if 〈ξ, k, m〉 �= 〈η, �, n〉 are triples in |ϕ| and s ∈ 2hϕ(ξ,k,m)+1 , 
t ∈ 2hϕ(η,
,n)+1 , then, by Lemma 5.3(ii), there are trees S ∈ π(ξ, k) and T ∈ π(η, �) satisfying [S] ∩ [T ] = ∅
and S ⊆ Tψ

ξk,m(s), T ⊆ Tψ
η
,n(t). Replace the trees Tψ

ξk,m(s), T ⊆ Tψ
η
,n(t) with resp. S , T . Iterate this 

shrinking construction for all triples 〈ξ, k, m〉 �= 〈η, �, n〉 and strings s, t as above. �
12 To explain the third dimension ω in |ϕ|, we note that the goal of the multisystem technique will be to define a refinement
of a given small multiforcing π . This preassumes the construction of countably many ad and rather independent trees for each 
〈ξ, k〉 ∈ |π|. The natural number parameter m below will enumerate these new trees, and the extra dimension ω is its domain.
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II. Refinements

Here we consider refinements of perfect tree forcings and multiforcings, the key technical tool of definition 
of various forcing notions in this paper.

9. Refining perfect tree forcings

If T ∈ PT (a perfect tree) and D ⊆ PT then T ⊆fin ⋃
D will mean that there is a finite set D′ ⊆ D

such that T ⊆
⋃
D′ , or equivalently [T ] ⊆

⋃
S∈D′ [S].

Definition 9.1. Let P, Q ∈ PTF be perfect tree forcing notions. Say that Q is a refinement of P (symbolically 
P � Q) if

(1) the set Q is dense in P ∪ Q: if T ∈ P then ∃Q ∈ Q (Q ⊆ T );
(2) if Q ∈ Q then Q ⊆fin ⋃P;
(3) if Q ∈ Q and T ∈ P then [Q] ∩ [T ] is clopen in [Q] and T �⊆ Q. �
Lemma 9.2.

(i) If P � Q and S ∈ P, T ∈ Q, then [S] ∩ [T ] is meager in [S], therefore P ∩ Q = ∅ and Q is open 
dense in P ∪ Q;

(ii) if P � Q � R then P � R, thus � is a strict partial order;
(iii) if 〈Pα〉α<λ is a �-increasing sequence in PTF and 0 < μ < λ then P =

⋃
α<μ Pα � Q =

⋃
μ≤α<λ Pα ;

(iv) if 〈Pα〉α<λ is a �-increasing sequence in PTF and each Pα is special then P =
⋃

α<λ Pα is a regular 
forcing in PTF;

(v) in (iv), each Pγ is pre-dense in P =
⋃

α<λ Pα .

Proof. (i) Otherwise there is a string u ∈ S such that S�u ⊆ [T ] ∩ [S]. But S�u ∈ P, which contradicts to 
Definition 9.1(3).

(ii), (iii) Make use of (i) to establish Definition 9.1(3).
(iv) To check the regularity let S ∈ Pα , T ∈ Pβ , α ≤ β . If α = β then, as Pα is special, the trees 

S, T are either ad or ⊆-comparable by Lemma 5.5. If α < β then [S] ∩ [T ] is clopen in [T ] by Defini-
tion 9.1(3).

(v) Let S ∈ Pα , α �= γ . If α < γ then by 9.1(1) there is a tree T ∈ Pγ , T ⊆ S . Now let γ < α. Then 
S ⊆fin ⋃

Pγ by Definition 9.1(2), in particular, there is a tree T ∈ Pγ such that [S] ∩ [T ] �= ∅. However 
[S] ∩ [T ] is clopen in [S] by Definition 9.1(3). Therefore S�u ⊆ T for a string u ∈ S . Finally S�u ∈ Pα since 
Pα ∈ PTF. �

Note that if P, Q ∈ PTF and P � Q then a dense set D ⊆ P is not necessarily dense or even pre-dense in 
P ∪Q. Yet there is a special type of refinement which preserves at least pre-density. We modify the relation 
� as follows.

Definition 9.3. Let P, Q ∈ PTF and D ⊆ P. Say that Q seals D over P, symbolically P �D Q, if P � Q
holds and every tree S ∈ Q satisfies S ⊆fin ⋃D . Then simply P � Q is equivalent to P �P Q. �

As we’ll see now, a sealed set has to be pre-dense both before and after the refinement. The addi-
tional importance of sealing refinements lies in fact that, once established, it preserves under further 
simple refinements, that is, �D is transitive in a combination with � in the sense of (ii) of the follow-
ing lemma:



12 V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 172 (2021) 102929
Lemma 9.4. (i) If P �D Q then D is pre-dense in P ∪Q, and if in addition P is regular then D is pre-dense 
in P as well;

(ii) if P �D Q � R (note: the second � is not �D !) then P �D R;
(iii) if 〈Pα〉α<λ is a �-increasing sequence in PTF, 0 < μ < λ, and P =

⋃
α<μ Pα �D Pμ , then

P �D Q =
⋃

μ≤α<λ Pα .

Proof. (i) To see that D is pre-dense in P ∪ Q, let T0 ∈ P ∪ Q. By 9.1(1), there is a tree T ∈ Q, T ⊆ T0 . 
Then T ⊆fin ⋃

D , in particular, there is a tree S ∈ D with X = [S] ∩ [T ] �= ∅. However X is clopen 
in [T ] by 9.1(3). Therefore, by Lemma 5.2, there is a tree T ′ ∈ Q with [T ′] ⊆ X , thus T ′ ⊆ S ∈ D and 
T ′ ⊆ T ⊆ T0 . We conclude that T0 is compatible with S ∈ D in P ∪ Q.

To see that D is pre-dense in P (assuming P is regular), let S0 ∈ P. It follows from the above that 
S0 is compatible with some S ∈ D , hence, S and S0 are not absolutely incompatible. It remains to use 
Lemma 5.5(i).

To prove (ii) on the top of Lemma 9.2(ii), let R ∈ R. Then R ⊆fin ⋃
Q, but each T ∈ Q satisfies 

T ⊆fin ⋃D . The same for (iii). �
The existence of �D -refinements will be established below.

10. Refining multiforcings

Let π, ϙ be multiforcings. Say that ϙ is an refinement of π , symbolically π � ϙ, if |π| ⊆ |ϙ| and 
π(ξ, k) � ϙ(ξ, k) whenever 〈ξ, k〉 ∈ |π|.

Corollary 10.1 (of Lemma 9.2). If π � ϙ � ρ then π � ρ.
If π � ϙ then the multiforcing MT(ϙ) is open dense in MT(π ∪cw ϙ). �
Our next goal is to introduce a version of Definition 9.3 suitable for multiforcings; we expect an appro-

priate version of Lemma 9.4 to hold.
First of all, we accommodate the definition of the relation ⊆fin in Section 9 for multitrees. Namely if u

is a multitree and D a collection of multitrees, then u ⊆fin ∨D will mean that there is a finite set D′ ⊆ D

satisfying 1) |v| = |u| for all v ∈ D′ , and 2) [u] ⊆
⋃

v∈D′ [v].

Definition 10.2. Let π, ϙ be multiforcings, and π � ϙ. Say that ϙ seals a set D ⊆ MT(π) over π , 
symbolically π �D ϙ if the following condition holds:

(∗) if p ∈ MT(π), u ∈ MT(ϙ), |u| ⊆ |π|, |u| ∩ |p| = ∅, then there is q ∈ MT(π) such that q � p, still
|q| ∩ |u| = ∅, and u ⊆fin ∨D|u|

q , where

D|u|
q = {u′ ∈ MT(π) : |u′| = |u| and u′ ∪ q ∈ D} . �

Note that if p, u, D, q are as indicated then still u ∪ q ⊆fin ∨
D holds via the finite set D′ =

{u′ ∪ q : u′ ∈ D|u|
q } ⊆ D . Anyway the definition of �D in 10.2 looks somewhat different and more complex 

than the definition of �D in 9.3, which reflects the fact that finite-support products of forcing notions in 
PTF behave differently (and in more complex way) than single perfect-tree forcings. Accordingly, the next 
lemma, similar to Lemma 9.4, is way harder to prove.

Lemma 10.3. Let π, ϙ, σ be multiforcings and D ⊆ MT(π). Then:

(i) if π �D ϙ then D is dense in MT(π) and pre-dense in MT(π ∪cw ϙ);



V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 172 (2021) 102929 13
(ii) if π �D ϙ and D ⊆ D′ ⊆ MT(π) then π �D′ ϙ;
(iii) if π is regular, π �Di

ϙ for i = 1, . . . , n, all sets Di ⊆ MT(π) are open dense in MT(π), and
D =

⋂
i Di , then π �D ϙ;

(iv) if D is open dense in MT(π) and π �D ϙ � σ then π �D σ ;
(v) if 〈πα〉α<λ is a �-increasing sequence in MF, 0 < μ < λ, π =

⋃cw
α<μ πα , D is open dense in MT(π), 

and π �D πμ , then π �D ϙ =
⋃cw

μ≤α<λ πα .

Proof. (i) To check that D is pre-dense in MT(π∪cw ϙ), let r ∈ MT(π∪cw ϙ). Due to the product character 
of MT(π ∪cw ϙ), we can assume that |r| ⊆ |π|. Let

X = {〈ξ, k〉 ∈ |r| : T r
ξk ∈ ϙ(ξ, k)} , Y = {〈ξ, k〉 ∈ |r| : T r

ξk ∈ π(ξ, k)} .

Then r = u ∪ p, where u = r�X ∈ MT(ϙ), p = r�Y ∈ MT(π). As ϙ seals D , there is a multitree 
q ∈ MT(π) such that q � p, |q| ∩ |u| = ∅, and u ⊆fin ⋃D|u|

q . We assert that
(*) there is a multitree u′ ∈ D|u|

q compatible with u in MT(ϙ).
Indeed by definition there is a finite set U ⊆ D|u|

q such that 1) |v| = |u| for all v ∈ U , and 2) [u] ⊆
⋃

v∈U [v]. 
Then obviously there is a multitree u′ ∈ U such that [u′] ∩ [u] �= ∅. This implies [Tu

ξk] ∩ [Tu′

ξk ] �= ∅ for 
all 〈ξ, k〉 ∈ |u′| = |u|. Here Tu

ξk ∈ ϙ(ξ, k) (as u ∈ MT(ϙ)) and Tu′

ξk ∈ π(ξ, k) (as u′ ∈ MT(π)). However 
we have π � ϙ, hence in particular π(ξ, k) � ϙ(ξ, k) for all 〈ξ, k〉 ∈ |u′| = |u|. It follows by definition 
that if 〈ξ, k〉 ∈ |u′| = |u| then [Tu

ξk] ∩ [Tu′

ξk ] is a non-empty clopen subset of [Tu
ξk]. Therefore by Lemma 5.2

there is a tree Tξk ∈ ϙ(ξ, k) with [Tξk] ⊆ [Tu
ξk] ∩ [Tu′

ξk ]. The multitree w defined by |w| = |u′| = |u| and 
Tw
ξk = Tξk for all 〈ξ, k〉 ∈ |w|, belongs to MT(ϙ) and satisfies w � u and w � u′ . This completes the proof 

of (∗).
By (*), let w ∈ MT(ϙ), w � u, w � u′ , |w| = |u′| = |u|. Then the multitree r′ = w ∪ q ∈ MT(π∨ϙ)

satisfies r′ � r and r′ � u′ ∪ q ∈ D .
To check that D is dense in MT(π), suppose that p ∈ MT(π). Let u = Λ (the empty multitree) in (∗) 

of Definition 10.2, so that |u| = ∅ and D|u|
q = D .

(ii) is obvious. To prove (iii), let p ∈ MT(π), u ∈ MT(ϙ), |u| ⊆ |π|, |u| ∩ |p| = ∅. Iterating (∗) for Di , 
i = 1, . . . , n, we find a multitree q ∈ MT(π) such that q � p, |q| ∩ |u| = ∅, and u ⊆fin ∨

(Di)|u|
q for all 

i, where

(Di)|u|
q = {u′ ∈ MT(π) : |u′| = |u| and u′ ∪ q ∈ Di} .

Thus there are finite sets Ui ⊆ (Di)|u|
q such that [u] ⊆

⋃
v∈Ui

[v] for all i. Using the regularity assumption 
and Lemma 7.3, we refine multitrees in 

⋃
i Ui , getting a finite set W ⊆ MT(π) such that still |w| = |u|

for all w ∈ W , 
⋂

i

⋃
v∈Ui

[v] =
⋃

w∈W [w], and if i = 1, . . . , n and w ∈ W then [w] ⊆ [v] for some 

v ∈ Ui — therefore w ∪ q ∈ Di . We conclude that if w ∈ W then w ∪ q ∈ D , hence w ∈ D|u|
q . 

Thus W ⊆ D|u|
q . However [u] ⊆

⋃
w∈W [w] by the choice of W . We conclude that u ⊆fin ∨

D|u|
q , as 

required.
(iv) It follows from Corollary 10.1 that π � σ , hence it remains to check that σ seals D over π . Assume 

that u ∈ MT(σ), |u| ⊆ |π|, p ∈ MT(π), |u| ∩|p| = ∅. As ϙ � σ , there is a finite set U ⊆ MT(ϙ) such that 
|v| = |u| for all v ∈ U , and [u] ⊆

⋃
v∈U [v]. As π �D ϙ, by iterated application of (∗) of Definition 10.2, 

we get a multitree q ∈ MT(π) such that q � p, still |q| ∩ |u| = ∅, and if v ∈ U then v ⊆fin ∨
D|u|

q , 
where

D|u|
q = {v′ ∈ MT(π) : |v′| = |v| = |u| ∧ v′ ∪ q ∈ D} .

Note finally that u ⊆fin ∨U by construction, hence u ⊆fin ∨D|u|
q as well.
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(v) We have to check that ϙ seals D over π . Let u ∈ MT(ϙ), |u| ⊆ |π|, p ∈ MT(π), |u| ∩ |p| = ∅. As 
above, there is a finite set U ⊆ MT(πμ) such that |v| = |u| for all v ∈ U and [u] ⊆

⋃
v∈U [v]. And so on 

as in the proof of (iv). �
11. Generic refinement of a multiforcing

Here we introduce a construction, due to Jensen in its original form, which implies the existence of 
refinements of forcings and multiforcings, of types �D and �D .

Definition 11.1. 1. Suppose that π is a small multiforcing, and M ∈ HC is any set. (Recall that HC = all 
hereditarily countable sets.) This is the input.

2. The set M+ of all sets X ∈ HC, ∈-definable in HC by formulas with sets in M as parameters, is 
still countable. Therefore there exists a �-increasing sequence 〈ϕ(j)〉j<ω of multisystems ϕ(j) ∈ MS(π), 
M+ -generic in the sense that it intersects any set Δ ⊆ MS(π), Δ ∈ M+ , dense in MS(π). (The density 
means that for any ψ ∈ MS(π) there is a multisystem ϕ ∈ Δ with ψ � ϕ.)

Let us fix any such a M+ -generic sequence Φ = 〈ϕ(j)〉j<ω .
3. Suppose that 〈ξ, k〉 ∈ |π| and m < ω . In particular, the sequence Φ intersects every (dense by 

Lemma 8.2(i),(ii)) set of the form

Δξkmh = {ϕ ∈ MS(π) : hϕ(ξ, k,m) ≥ h} ∈ M+ , where h < ω .

Hence a tree T Φ
ξk,m(s) ∈ π(ξ, k) can be associated to any s ∈ 2<ω , such that, for all j , if 〈ξ, k, m〉 ∈ |ϕ(j)|

and lh(s) ≤ hϕ(j)(ξ, k, m) then Tϕ(j)
ξk,m(s) = T Φ

ξk,m(s).
4. Then it follows from Lemma 6.3 that each set QΦ

ξk,m =
⋂

h

⋃
s∈2h T

Φ
ξk,m(s) is a tree in PT (not 

necessarily in π(ξ, k)), as well as the trees

QΦ
ξk,m(s) =

⋂
n≥lh(s)

⋃
t∈2n, s⊆t T

Φ
ξk,m(t) ,

and obviously QΦ
ξk,m = QΦ

ξk,m(Λ). Let QΦ
ξk = {QΦ

ξk,m(s) : m < ω ∧ s ∈ 2<ω}.
5. If 〈ξ, k〉 ∈ |π| then let ϙ(ξ, k) = QΦ

ξk = {QΦ
ξk,m(s) : m < ω ∧ s ∈ 2<ω}.

6. Finally if ϙ = ϙ[Φ] is obtained this way from an M+ -generic sequence Φ of multisystems in MS(π), 
then ϙ is called an M-generic refinement of π . �
Proposition 11.2 (by the countability of M+). If π is a small multiforcing and M ∈ HC then there is an
M-generic refinement ϙ of π . �
Theorem 11.3. If π is a small multiforcing, a set M ∈ HC contains π , |π| ⊆ M, and ϙ is an M-generic 
refinement of π , then:

(i) ϙ is a small special multiforcing, |ϙ| = |π|, and π � ϙ;
(ii) if 〈ξ, k〉 ∈ |π| and a set D ∈ M, D ⊆ π(ξ, k) is pre-dense in π(ξ, k) then π(ξ, k) �D ϙ(ξ, k);

(a) if 〈ξ, k〉 ∈ |π|, m < ω , and s ∈ 2<ω then QΦ
ξk,m(s) = QΦ

ξk,m(→ s);
(b) if 〈ξ, k〉 ∈ |π|, m < ω , and s ∈ 2<ω then QΦ

ξk,m(s) ⊆ T Φ
ξk,m(s);

(c) if 〈ξ, k〉 ∈ |π|, m < ω , and strings t′ �= t in 2<ω are ⊆-incomparable then [QΦ
ξk,m(t′)] ∩

[QΦ
ξk,m(t)] = [T Φ

ξk,m(t′)] ∩ [T Φ
ξk,m(t)] = ∅;

(d) if 〈ξ, k, m〉 �= 〈η, �, n〉 then [QΦ
ξk,m] ∩ [QΦ

η
,n] = ∅;
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(e) if 〈ξ, k〉 ∈ |π|, S ∈ ϙ(ξ, k) and T ∈ π(ξ, k) then [S] ∩[T ] is clopen in [S] and T �⊆ S , in particular,
π(ξ, k) ∩ ϙ(ξ, k) = ∅;

(f) if 〈ξ, k〉 ∈ |π| then the set ϙ(ξ, k) is open dense in ϙ(ξ, k) ∪ π(ξ, k).

If in addition π =
⋃cw

α<λ πα , where λ < ω1 , 〈πα〉α<λ is a �-increasing sequence of small special 
multiforcings, and M contains 〈πα〉α<λ and all α < λ, then

(iii) if α < λ then πα � ϙ.
Proof. Let ϙ = ϙ[Φ] be obtained from an M+ -generic sequence Φ of multisystems in MS(π), as above. We 
argue in the notation of Definition 11.1.

If 〈ξ, k〉 ∈ |π| and m < ω then by construction the system of trees T Φ
ξk,m(s) ∈ π(ξ, k), s ∈ 2<ω , 

satisfies 6.1(∗) on the whole domain s ∈ 2<ω . This leads to (a), (b) (essentially corollaries of Lemma 6.3) 
and (c).

To prove (d) note that the set Δ of all 2wise disjoint multisystems ϕ such that |ϕ| contains 
both 〈ξ, k, m〉 and 〈η, �, n〉, is dense in MS(π) by Lemma 8.2, and obviously Δ ∈ M+ . Therefore 
there is j < ω such that ϕ(j) ∈ Δ. Let h = hϕ(j)(ξ, k, m) and h′ = hϕ(j)(η, �, n). Then the 
sets

A =
⋃

s∈2h [Tϕ(j)
ξk,m(s)] =

⋃
s∈2h [T Φ

ξk,m(s)], B =
⋃

t∈2h′ [Tϕ(j)
ξ
,n (t)] =

⋃
t∈2h′ [T Φ

ξ
,n(t)]

are disjoint as ϕ(j) ∈ Δ. However [QΦ
ξk,m] ⊆ A and [QΦ

η
,n] ⊆ B .
(i) Thus the sets ϙ(ξ, k) = QΦ

ξk are special PTFs (Definition 5.4), and hence ϙ is a small special multi-
forcing, and |ϙ| = |π|. See a continuation below.

(e) To prove the clopenness claim, note that the set Δ of all multisystems ϕ ∈ MS(π) such that 
〈ξ, k, m〉 ∈ |ϕ| and if s ∈ 2h , where h = hϕ(ξ, k, m), then either Tϕ

ξk,m(s) ⊆ T or [Tϕ
ξk,m(s)] ∩ [T ] = ∅, 

is dense. To prove T �⊆ S , the set Δ′ of all multisystems ϕ ∈ MS(π) such that 〈ξ, k, m〉 ∈ |ϕ|
and T �⊆

⋃
s∈2h T

ϕ
ξk,m(s), where h = hϕ(ξ, k, m), is dense. Note that Δ, Δ′ ∈ M+ and argue as 

above.
(f) Density. If T ∈ π(ξ, k) then the set Δ(T ) of all multisystems ϕ ∈ MS(π), such that 

Tϕ
ξk,m(Λ) = T for some m, is dense in MS(π) by Lemma 8.2(ii), therefore ϕ(j) ∈ Δ(T ) for 

some j . Then T Φ
ξk,m(Λ) = T for some m < ω . However QΦ

ξm,k(Λ) ⊆ T Φ
ξk,m(Λ). Openness. Sup-

pose that S ∈ ϙ(ξ, k), T ∈ ϙ(ξ, k) ∪ π(ξ, k), T ⊆ S . Then T /∈ π(ξ, k) by (e). Therefore T ∈
ϙ(ξ, k).

(i), continuation. To establish π � ϙ, let 〈ξ, k〉 ∈ |π|. We have to prove that π(ξ, k) � ϙ(ξ, k). This 
comes down to conditions (1), (2), (3) of Definition 9.1, of which (1) follows from (f) and (3) from (e), and 
(2) is obvious since QΦ

ξk,m(s) ⊆ T Φ
ξk,m(s) ∈ π(ξ, k) for all m.

(ii) As π � ϙ has been checked, it remains to prove QΦ
ξk,m ⊆fin ⋃

D for all m. It follows from the 
pre-density of D that the set

D′ = {T ∈ π(ξ, k) : ∃S ∈ D (T ⊆ S)} (•)

is open dense in π(ξ, k), and still D′ ∈ M+ . Then the set Δ ∈ M+ of all multisystems ϕ ∈ MS(π) such 
that 〈ξ, k, m〉 ∈ |ϕ| and Tϕ

ξk,m(s) ∈ D′ for all s ∈ hϕ(ξ, k, m), is dense in MS(π) by Lemma 8.2(iii). 
Thus ϕ(j) ∈ Δ for some j , which witnesses QΦ

ξk,m ⊆fin ⋃
D′ , and hence ⊆fin ⋃

D as well by 
(•).

(iii) We have to prove that πα(ξ, k) � ϙ(ξ, k) whenever 〈ξ, k〉 ∈ |πα|. And as π(ξ, k) � ϙ(ξ, k) has been 
checked, it suffices to prove that QΦ

ξk,m ⊆fin ⋃
πα(ξ, k) for all m. However D = πα(ξ, k) is pre-dense in 

π(ξ, k) by Lemma 9.2(v), and still D ∈ M+ , hence we can refer to (ii). �
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Corollary 11.4. In the assumptions of Proposition 11.2, if |π| ⊆ Z ⊆ ω1 × ω and Z is at most countable 
then there is a small special multiforcing ϙ such that |ϙ| = Z and π � ϙ.
Proof. If |π| = Z then let M be any countable set containing π , pick ϙ by Proposition 11.2, and apply 
Theorem 11.3. If |π| � Z then we trivially extend the construction by ϙ(ξ, k) = Pcoh (see Example 5.1) for 
all 〈ξ, k〉 ∈ Z � |π|. �
Corollary 11.5. Suppose that λ < ω1 , and 〈Pα〉α<λ is an �-increasing sequence of countable special forcings 
in PTF. Then there is a countable special forcing Q ∈ PTF such that Pα � Q for each α < λ.

Proof. If α < λ then let a multiforcing πα be defined by |πα| = {〈0, 0〉} and by πα(0, 0) = Pα . By 
Proposition 11.2 and Theorem 11.3 there is a multiforcing ϙ satisfying |ϙ| = {〈0, 0〉} and πα � ϙ, ∀α. Let 
Q = ϙ(0, 0). �
12. Sealing dense sets

This Section proves a special consequence of M+ -genericity of multiforcing refinements, the relation �
of Definition 10.2 between a multiforcing and its refinement.

Theorem 12.1. In the assumptions of Theorem 11.3, if D ∈ M+ , D ⊆ MT(π), and D is open dense in 
MT(π), then π �D ϙ.

Proof. We suppose that ϙ = ϙ[Φ] is obtained from an increasing M+ -generic sequence Φ of multisystems 
in MS(π), as in Definition 11.1, and argue in the notation of 11.1. Suppose that p ∈ MT(π), u ∈ MT(ϙ), 
|u| ∩ |p| = ∅, as in (∗) of Definition 10.2; the extra condition |u| ⊆ |π| holds automatically as we still 
have |ϙ| = |π|. Let X = |u|, Y = |π| � X . If 〈ξ, k〉 ∈ X then Tu

ξk = QΦ
ξk,mξk

(sξk), where mξk < ω and 

sξk ∈ 2<ω . By obvious reasons we can assume that sξk = Λ, hence Tu
ξk = QΦ

ξk,mξk
, for all 〈ξ, k〉 ∈ X .

Consider the set Δ of all multisystems ϕ ∈ MS(π) such that there is a number H > 0 and a multitree 
q ∈ MT(π) satisfying (1), (2), (3), (4) below.

(1) |q| ∩X = ∅ and q � p;
(2) if 〈ξ, k〉 ∈ X then 〈ξ, k, mξk〉 ∈ |ϕ|;
(3) if 〈ξ, k, m〉 ∈ |ϕ| then hϕ(ξ, k, m) = H .

To formulate the last requirement, we need one more definition. Suppose that τ = 〈tξk〉〈ξ,k〉∈X is a 
system of strings τ(ξ, k) = tξk ∈ 2H , symbolically τ ∈ (2H)X . Define a multitree s(ϕ, τ) ∈ MT(π) so 
that |s(ϕ, τ)| = X and T s(ϕ,τ)

ξk = Tϕ
ξk,mξk

(tξk) for all 〈ξ, k〉 ∈ X . Note that |s(ϕ, τ)| = |u|, and hence the 
multitree s(ϕ, τ) ∪ q belongs to MT(π) as well.13 Now goes the last condition.

(4) If τ ∈ (2H)X then s(ϕ, τ) ∪ q ∈ D .

Lemma 12.2. The set Δ is dense in MS(π).

Proof (Lemma). Suppose that ψ ∈ MS(π); we have to find a multisystem ϕ ∈ MS(π) with ψ � ϕ. First 
of all, by Lemma 8.2(i)(ii) we can assume that

13 Here, if p, q are multitrees satisfying |p| ∩ |q| = ∅ (disjoint domains), then p ∪ q , a disjoint union, is a multitree such that 
|p ∪ q| = |p| ∪ |q| and Tp∪q

ξk = Tp
ξk whenever 〈ξ, k〉 ∈ |p| but Tp∪q

ξk = T q
ξk whenever 〈ξ, k〉 ∈ |q|.
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(a) if 〈ξ, k〉 ∈ X then 〈ξ, k, mξk〉 ∈ |ψ|;
(b) there is a number g > 0 such that hψ(ξ, k, m) = g for all 〈ξ, k, m〉 ∈ |ψ|.

Let H = g + 1. Define χ ∈ MS(π) so that |χ| = |ψ|, and hχ(ξ, k, m) = H , Tχ
ξk,m(s�i) = Tψ

ξk,m(s)(→ i)
for all 〈ξ, k, m〉 ∈ |ψ| and s�i ∈ 2H ; then ψ � χ.

It follows from the open density of D that there is a multitree q ∈ MT(π) satisfying (1), and a multi-
system ϕ ∈ MS(π) satisfying (4) and such that still |ϕ| = |ψ| and hϕ(ξ, k, m) = H for all 〈ξ, k, m〉 ∈ |ψ|, 
and in addition

(c) if 〈ξ, k〉 ∈ X and s ∈ 2H then Tϕ
ξk,mξk

(s) ⊆ Tχ
ξk,mξk

(s);
(d) Tϕ

ξk,m(s) = Tχ
ξk,m(s) for all applicable ξ, k, m, s not covered by (c).

Namely to achieve (4) for one particular τ ∈ (2H)X , consider the multitree r = s(χ, τ) ∪ p. There 
is a multitree r′ ∈ D , r′ � r . Let a new multisystem χ′ be obtained from χ by the reassignment 
Tχ′

ξk,mξk
(τ(ξ, k)) = T r′

ξk for all 〈ξ, k〉 ∈ X . To get the input for the next step, let p′ = r′�Y ,14 so that 
r′ = s(χ′, τ) ∪ p′ ∈ D .

Now consider another τ ′ ∈ (2H)X and the multitree r′ = s(χ′, τ ′) ∪ p′ . There is r′′ ∈ D , r′′ � r′ . 
Define χ′′ from χ′ by the reassignment Tχ′′

ξk,mξk
(τ ′(ξ, k)) = T r′′

ξk for all 〈ξ, k〉 ∈ X . Let p′′ = r′′�Y , so that 
r′′ = s(χ′′, τ ′) ∪ p′′ ∈ D .

And so on. The final multisystem and multitree of this construction will be ϕ and q satisfying (1), (2), 
(3), (4). Note that ψ � ϕ, as we only amend the H -th level of χ absent in ψ . �(Lemma)

Note that Δ is defined in HC using sets D , π , p, X , and the map 〈ξ, k〉 → mξk : X → ω as parameters. 
Now, D , π belong to M+ straightforwardly, X belongs to M+ since it is a finite subset of a set |π| ⊆ M, 
and p belongs to M+ by similar reasons. It follows that Δ belongs to M+ as well.

Therefore, by the lemma and the choice of Φ, there is an index j such that the multisystem ϕ(j) belongs 
to Δ, which is witnessed by a number H > 0 and a multitree q ∈ MT(π) satisfying (1), (2), (3), (4) for 
ϕ(j) instead of ϕ. To prove that u ⊆fin ∨D|u|

q , note that the multitrees s(ϕ(j), τ) ∪q , τ ∈ (2H)X , belong 
to D by (4), and easily [u] ⊆

⋃
τ∈(2H)X [s(ϕ(j), τ)]. �

III. Structure of real names

Here we discuss the structure of reals in models of MT(π)-generic type, π being a multiforcing. We 
are going to focus on non-principal reals, i.e., those different from the principal generic reals xξk[G] (Re-
mark 7.4). We’ll work towards the goal of making every non-principal real to be non-generic with respect 
to each of the factor forcing notions π(ξ, k).

13. Real names

Our next goal is to introduce a suitable notation related to names of reals in the context of forcing notions 
of the form MT(π).

Definition 13.1. A real name is any set c ⊆ MT× (ω×ω) such that the sets Kc
ni = {p ∈ MT : 〈p, n, i〉 ∈ c}

satisfy the following:

14 Here r′�Y is the plain restriction of the function r′ : |r′| → PT to the set |r′| ∩ Y .
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(∗) if n, k, � < ω , k �= �, and p ∈ Kc
nk , q ∈ Kc

n
 , then p, q are sad (somewhere almost disjoint, see 
Definition 7.1).

A real name c is small if each set Kc
ni is at most countable — then the sets dom c =

⋃
n,i K

c
ni ⊆ MT and 

|c| =
⋃

n,i

⋃
p∈Kc

ni
|p| ⊆ ω1 × ω , and c itself, are countable, too. �

Definition 13.2. Let c be a real name and G ⊆ MT a pairwise compatible set. Define the evaluation
c[G] ∈ ωω so that c[G](n) = i iff:

− either ∃p ∈ G ∃ q ∈ Kc
ni (p � q) (recall that p � q means p is stronger),

− or just i = 0 and ¬ ∃p ∈ G ∃ q ∈
⋃

i K
c
ni (p � q) (default case). �

Definition 13.3. Let π be a multiforcing. A real name c is said to be a π-real prename if, in addition to (∗) 
above, the following condition holds:

(†) each set Kc
n =

⋃
i K

c
ni is pre-dense for MT(π), in the sense that the set Kc

n↑π =
{p ∈ MT(π) : ∃ q ∈ Kc

n (p � q)} is dense (then obviously open dense) in MT(π).

Generally speaking, we do not assume that Kc
n ⊆ MT(π). However if, in addition to (∗), (†) above, 

Kc
n ⊆ MT(π) holds for all n, then say that c is a π-real name. Then each set Kc

n =
⋃

i K
c
ni is a pre-dense 

subset of MT(π). �
Remark 13.4. Let π be a multiforcing, c be a π -real prename, and a set G ⊆ MT(π) be MT(π)-generic 
over the collection of all sets Kc

n↑π as in (†). (All of Kc
n↑π are dense by the choice of c.) Then the “or” 

case in Definition 13.2 never happens, because we have G ∩ (Kc
n↑π) �= ∅ by the choice of G. �

Remark 13.5. If π is a regular multiforcing then the notions of being sad and being incompatible in MT(π)
are equivalent by Lemma 5.5(i), so that a π-real name is the same as a MT(π)-name for an element of ωω

in the general theory of forcing. �
Example 13.6. If ξ < ω1 , k < ω , then .

xξk is a real name such that if i = 0, 1 then the set K
.
xξk

ni consists of 
a lone multitree r = rξkni with |r| = {〈ξ, k〉} and T r

ξk = {t ∈ 2<ω : lh(t) ≤ n ∨ t(n) = i}, and if i ≥ 2 then 

K
.
xξk

ni = ∅. �
Remark 13.7. If π ∈ MT and 〈ξ, k〉 ∈ |π| then .

xξk is a π -real prename of the real xξk = xξk[G] ∈ 2ω , the 
(ξ, k)th term of a MT(π)-generic sequence 〈xξk[G]〉〈ξ,k〉∈|π| . That is, if G ⊆ MT(π) is generic then the real 
xξk[G] defined by 7.4 coincides with the real .

xξk[G] defined by 13.2. �
14. Direct forcing

The following definition of the direct forcing relation is not explicitly associated with any concrete forcing 
notion, but in fact the direct forcing relation (in all three instances) is compatible with any forcing notion 
of the form MT(π).

Let c be a real name. Let us say that a multitree p:

• directly forces c(n) = i, where n, i < ω , iff there is a multitree q ∈ Kc
ni such that p � q (meaning: p is 

stronger);
• directly forces s ⊂ c, where s ∈ ω<ω , iff for all n < lh(s), p directly forces c(n) = i, where i = s(n);
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• directly forces c /∈ [T ], where T ∈ PT, iff there is a string s ∈ ω<ω�T such that p directly forces s ⊂ c.

Lemma 14.1. If π is a multiforcing and c is a π-real prename, p ∈ MT(π), 〈ξ, k〉 ∈ |π|, T ∈ PT, n < ω , 
then

(i) there is a number i < ω and a multitree q ∈ MT(π), q � p, which directly forces c(n) = i;
(ii) there is a multitree q ∈ MT(π), q � p, which directly forces c /∈ [T (→ 0)] or directly forces c /∈

[T (→ 1)].

Note that if T ∈ π(ξ, k) then the trees T (→ i), i = 0, 1 belong to π(ξ, k).

Proof. (i) Use the density of sets Kc
n↑π by Definition 13.3(†) above.

(ii) Let r = stem(T ), n = lh(r). By (i), there is a multitree q ∈ MT(π), p′ � p, and, for any m ≤ n, — 
a number im = 0, 1, such that q directly forces c(m) = im , ∀m < n. Define s ∈ 2n+1 by s(m) = im for 
each m ≤ n. Then q directly forces s ⊂ c. Yet s cannot belong to both T (→ 0) and T (→ 1). �
15. Sealing real names

The next definition extends Definition 10.2 to real names.

Definition 15.1. Assume that π, ϙ are multiforcings, c is a real name, and π � ϙ. Say that ϙ seals c over
π , symbolically π �c ϙ, if ϙ seals, over π , each set Kc

n↑π defined in Definition 13.3(†), in the sense of 
Definition 10.2. �
Corollary 15.2 (of Theorem 12.1). In the assumptions of Theorem 11.3, if c ∈ M+ and c is a π-real 
prename then π �c ϙ.

Proof. Note that each set Kc
n↑π belongs to M+ (as so do c and π) and is dense in MT(π), so it remains 

to apply Theorem 12.1. �
Lemma 15.3. Let π, ϙ, σ be multiforcings and c be a real name. Then

(i) if π �c ϙ then c is a π-real prename and a (π ∪cw ϙ)-real prename;
(ii) if π �c ϙ � σ then π �c σ ;
(iii) if 〈πα〉α<λ is a �-increasing sequence in MF, 0 < μ < λ, π =

⋃cw
α<μ πα , and π �c πμ , then

π �c ϙ =
⋃cw

μ≤α<λ πα .

Proof. (i) By definition, we have π �Kc
n↑π ϙ for each n, therefore Kc

n↑π is dense in MT(π) (then obviously 
open dense) and pre-dense in MT(π ∪cw ϙ) by Lemma 10.3(i). It follows that Kc

n↑(π ∪cw ϙ) is dense in 
MT(π ∪cw ϙ).

To check (ii), (iii) apply (iv), (v) of Lemma 10.3. �
16. Non-principal names and avoiding refinements

Let π be a multiforcing. Then MT(π) adds a collection of reals xξk , 〈ξ, k〉 ∈ |π|, where each principal 
real xξk = xξk[G] is π(ξ, k)-generic over the ground set universe. Obviously many more reals are added, 
and given a π-real prename c, one can elaborate different requirements for a condition p ∈ MT(π) to force 
that c is a name of a real of the form xξk or to force the opposite. But we are mostly interested in simple 
conditions related to the “opposite” part. The next definition provides such a condition.
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Definition 16.1. Let π be a multiforcing, 〈ξ, k〉 ∈ |π|. A real name c is non-principal over π at ξ, k if the 
following set is open dense in MT(π):

Dπ
ξk(c) = {p ∈ MT(π) : p directly forces c /∈ [Tp

ξk]} . �
We’ll show below (Theorem 18.2(i)) that the non-principality implies c being not a name of the real 

xξk[G]. And further, the avoidance condition in the next definition will be shown to imply c being a name 
of a non-generic real.

Definition 16.2. Let π, ϙ be multiforcings, π � ϙ, 〈ξ, k〉 ∈ |π|. Say that ϙ avoids a real name c over π at
ξ, k , in symbol π �c

ξk ϙ, if for each Q ∈ ϙ(ξ, k), ϙ seals, over π , the set

D(c, Q,π) = {r ∈ MT(π) : r directly forces c /∈ [Q]} ,

in the sense of Definition 10.2 — formally π �D(c,Q,π) ϙ. �
Lemma 16.3. Assume that π, ϙ, σ are multiforcings, 〈ξ, k〉 ∈ |π|, and c is a π-real prename. Then:

(i) if π �c
ξk ϙ and Q ∈ ϙ(ξ, k) then the set D(c, Q, π) is open dense in MT(π) and pre-dense in

MT(π ∪cw ϙ);
(ii) if π �c

ξk ϙ � σ then π �c
ξk σ ;

(iii) if 〈πα〉α<λ is a �-increasing sequence in MF, 0 < μ < λ, π =
⋃cw

α<μ πα , and π �c
ξk πμ , then

π �c
ξk ϙ =

⋃cw
μ≤α<λ πα .

Proof. (i) Apply Lemma 10.3(i).
(ii) Let 〈ξ, k〉 ∈ |π| and S ∈ σ(ξ, k). Then, as ϙ � σ , there is a finite set {Q1, . . . , Qm} ⊆ ϙ(ξ, k) such 

that S ⊆ Q1 ∪ · · · ∪Qm . We have π �D(c,Qi,π) ϙ for all i since π �c
ξk ϙ, therefore π �D(c,Qi,π) σ , ∀ i, by 

Lemma 10.3(iv). Note that 
⋂

i D(c, Qi, π) ⊆ D(c, S, π) since S ⊆
⋃

i Qi . We conclude that π �D(c,S,π) σ

by Lemma 10.3(ii), (iii). Therefore π �c
ξk σ . �

17. Generic refinement avoids non-principal names

The following theorem says that generic refinements as in Section 11 avoid nonprincipal names. It resem-
bles Theorem 12.1 to some extent, yet the latter is not directly applicable here as both the multitree Q and 
the set D(c, Q, π) depend on ϙ, and hence the sets D(c, Q, π) do not necessarily belong to M+ . However 
the proof will be based on rather similar arguments.

Theorem 17.1. In the assumptions of Theorem 11.3, if 〈η, K〉 ∈ |π| ⊆ M and c ∈ M is a π-real prename 
non-principal over π at η, K then π �c

ηK ϙ.

Proof. Assume that ϙ = ϙ[Φ] is obtained from an M+ -generic sequence Φ of multisystems in MS(π), as in 
Definition 11.1. We stick to the notation of 11.1.

Let Q ∈ ϙ(η, K); we have to prove that ϙ seals the set D(c, Q, π) over π . By construction Q =
QΦ

ηK,m̃(s0) ⊆ QΦ
ηK,m̃ for some m̃ < ω ; it can be assumed that Q = QΦ

ηK,m̃ . Following the proof of 
Theorem 12.1, we suppose that p ∈ MT(π), u ∈ MT(ϙ), |u| ∩ |p| = ∅, define X = |u|, Y = |π| �X , and 
assume that Tu

ξk = QΦ
ξk,mξk

, where mξk < ω , for each 〈ξ, k〉 ∈ X .
Consider the set Δ of all multisystems ϕ ∈ MS(π) such that there is a number H > 0 and a multitree 

q ∈ MS(π) satisfying conditions



V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 172 (2021) 102929 21
(1) |q| ∩X = ∅ and q � p;
(2) if 〈ξ, k〉 ∈ X then 〈ξ, k, mξk〉 ∈ |ϕ|;
(3) if 〈ξ, k, m〉 ∈ |ϕ| then hϕ(ξ, k, m) = H ;

(but not (4) though) as in the proof of Theorem 12.1, along with two more requirements

(5) 〈η, K, m̃〉 ∈ |ϕ| — hence still hϕ(η, K, m̃) = H by (3);
(6) if s ∈ 2H and τ ∈ (2H)X then s(ϕ, τ) ∪ q directly forces c /∈ [Tϕ

ηK,m̃(s)].

Lemma 17.2. Δ is dense in MS(π).

Proof. Suppose that ψ ∈ MS(π); we can assume that ψ already satisfies

(a) if 〈ξ, k〉 ∈ X then 〈ξ, k, mξk〉 ∈ |ψ|;
(b) there is a number g < ω such that hψ(ξ, k, m) = g for all 〈ξ, k, m〉 ∈ |ψ|;

as in Lemma 12.2, and in addition 〈η, K, m̃〉 ∈ |ψ|.
Let H = g + 1. Define a multisystem χ ∈ MS(π) so that |χ| = |ψ|, and hχ(ξ, k, m) = H , Tχ

ξk,m(s�i) =
Tψ
ξk,m(s)(→ i) for all 〈ξ, k, m〉 ∈ |ψ| and s�i ∈ 2H ; then ψ � χ. We claim that there is a multitree 

q ∈ MT(π) satisfying (1), and a multisystem ϕ ∈ MS(π) satisfying (6) and such that still |ϕ| = |ψ| and 
hϕ(ξ, k, m) = H for all 〈ξ, k, m〉 ∈ |ψ|, and in addition

(c) if 〈ξ, k〉 ∈ X and s ∈ 2H then Tϕ
ξk,mξk

(s) ⊆ Tχ
ξk,mξk

(s), and we also have Tϕ
ηK,m̃(s) ⊆ Tχ

ηK,m̃(s);
(d) Tϕ

ξk,m(s) = Tχ
ξk,m(s) for all applicable ξ, k, m, s not covered by (c).

To achieve (6) in one step for one particular τ ∈ (2H)X , consider the multitree r = s(χ, τ) ∪ p. By 
Lemma 14.1 and the density assumption of the theorem, there is a multitree r′ ∈ MT(ϕ), r′ � r , which 
directly forces c /∈ [T r′

ηK ], and there are multitrees Us ∈ MT(ϕ), s ∈ 2H , such that Us ⊆ Tχ
ηK,m̃(s) and r′

directly forces c /∈ [Us], ∀ s. Let χ′ be obtained from χ by the following reassignment.

(I) We set Tχ′

ξk,mξk
(τ(ξ, k)) = T r′

ξk for all 〈ξ, k〉 ∈ X .
(II) If s ∈ 2H , and either 〈η, K〉 /∈ X , or m̃ �= mηK , or s �= τ(η, K) then we set Tχ′

ηK,m̃(s) = Us . (Note that 
if 〈η, K〉 ∈ X and m̃ = mηK then the tree Tχ′

ηK,m̃(τ(η, K)) = T r′

ηK is already defined by (I).)

Let p′ = r′�Y , so that r′ = s(χ′, τ) ∪ p′ . By construction the tree p′ satisfies (6), for the system τ
chosen, in the case 〈η, K〉 ∈ X , m̃ = mηK , s = τ(η, K) by (I) and in all other cases by (II).

Now consider another τ ′ ∈ (2H)X and the multitree r′ = s(χ′, τ ′) ∪p′ . There is a multitree r′′ ∈ MT(π), 
r′′ � r′ , which directly forces c /∈ [T r′

ηK ] and c /∈ [U ′
s] for each s ∈ 2H , where U ′

s ∈ MT(ϕ) and U ′
s ⊆

Tχ′

ηK,m̃(s) . Let χ′′ be obtained from χ′ by the same reassignment (for τ ′ instead of τ ).
And so on. The final multisystem and multitree of this construction will be ϕ and q satisfying (1), (2), 

(3), (5), (6). �(Lemma)

Come back to the theorem. Note that Δ ∈ M+ , similarly to the proof of Theorem 12.1. Therefore, by 
the lemma, there is an index j such that the system ϕ(j) belongs to Δ. Let this be witnessed by a number 
H > 0 and a multitree q ∈ MT(π), such that conditions (1), (2), (3), (5), (6) are satisfied for ϕ = ϕ(j).

It remains to prove that u ⊆fin ∨
D(c, Q,π)|u|

q . Let V consist of all multitrees v = s(ϕ(j), τ), where 
τ ∈ (2H)X ; [u] ⊆

⋃
[v] by construction.
v∈V
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Further, if s ∈ 2H and v ∈ V then v ∪ q directly forces c /∈ [Tϕ(j)
ηK,m̃(s)] by (6), that is, directly forces 

c /∈ [T Φ
ηK,m̃(s)] in the notation of Definition 11.1. Therefore v ∪ q directly forces c /∈ [QΦ

ηK,m̃(s)] since 
QΦ

ηK,m̃(s) ⊆ T Φ
ηK,m̃(s) by Lemma 11.3(b). However Q = QΦ

ηK,m̃ =
⋃

s∈2H QΦ
ηK,m̃(s) by Lemma 11.3(a). It 

follows that v ∪ q directly forces c /∈ [Q], that is, v ∈ D(c, Q,π)|u|
q .

We conclude that V is a (finite) subset of D(c, Q,π)|u|
q . And this accomplishes the proof of u ⊆fin∨

D(c, Q,π)|u|
q . �

18. Consequences for reals in generic extensions

We first prove a result saying that all reals in MT(π)-generic extensions are adequately represented by 
real names. Then Theorem 18.2 will show effects of the property of being a non-principal name.

Proposition 18.1. Suppose that π is a regular multiforcing, G ⊆ MT(π) is generic over the ground set 
universe V, and x ∈ V[G] ∩ ωω . Then

(i) there is a π-real name c ∈ V such that x = c[G];
(ii) if MT(π) is a CCC forcing in V then there is a small π-real name d ∈ V with x = d[G].

Proof. (i) is an instance of a general forcing theorem (see Remark 13.5 on the effect of regularity). To prove 
(ii), pick a real name c by (i), extend each set Kc

n =
⋃

i K
c
ni to an open dense set On by closing strongwards, 

choose maximal antichains An ⊆ On in those sets — which have to be countable by CCC, and then let 
Ani = An ∩Kc

ni and d = {〈p, n, i〉 : p ∈ Ani}. �
Theorem 18.2. Let π be a regular multiforcing. Then

(i) if a set G ⊆ MT(π) is generic over the ground set universe V, 〈ξ, k〉 ∈ |π|, and x ∈ V[G] ∩ ωω , 
then x �= xξk[G] if and only if there is a π-real name c, non-principal over π at ξ, k and such that
x = c[G].

(ii) if c is a π-real prename, 〈ξ, k〉 ∈ |π|, ϙ is a multiforcing, π �c
ξk ϙ, and a set G ⊆ MT(π ∪cw ϙ) is 

generic over V then c[G] /∈
⋃

Q∈ϙ(ξ,k)[Q].

Proof. (i) Suppose that x �= xξk[G]. By a known forcing theorem, there is a π -real name c such that 
x = c[G] and MT(π) forces that c �= xξk[G]. It remains to show that c is a non-principal name over π at 
ξ, k . We have to prove that the set

Dπ
ξk(c) = {p ∈ MT(π) : p directly forces c /∈ [Tp

ξk]}

is open dense in MT(π). The openness is clear, let us prove the density. Consider an arbitrary q ∈ MT(π). 
Then q MT(π)-forces c �= xξk[G] by the choice of c, hence we can assume that, for some n, it is MT(π)-
forced by q that c(n) �= xξk[G](n). Then by Lemma 14.1(i) there is a multitree p ∈ MT(π), p � q , and a 
string s ∈ ωn+1 , such that p MT(π)-forces s ⊆ c. Now it suffices to show that s /∈ Tp

ξk . Suppose otherwise: 
s ∈ Tp

ξk . Then the tree T = Tp
ξk�s still belongs to MT(π). Therefore the multitree r defined by T r

ξk = T

and T r
ξ′k′ = Tp

ξ′k′ for each pair 〈ξ′, k′〉 �= 〈ξ, k〉, belongs to MT(π) and satisfies r � p � q . However r
directly forces both c(n) and xξk[G](n) to be equal to one and the same value � = s(n), which contradicts 
to the choice of n.

To prove the converse let c ∈ V be a real name non-principal over π at ξ, k , and x = c[G]. Assume to 
the contrary that 〈ξ, k〉 ∈ |π| and x = xξk[G]. There is a multitree q ∈ G which MT(π)-forces c = xξk[G]. 
As c is non-principal, there is a stronger multitree p ∈ G ∩Dπ

ξk(c), p � q . Thus p directly forces c /∈ [Tp ], 
ξk
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and hence MT(π)-forces the same statement. Yet p MT(π)-forces .
xξk ∈ [Tp

ξk], of course, and this is a 
contradiction.

(ii) Suppose towards the contrary that Q ∈ ϙ(ξ, k) and c[G] ∈ [Q]. By definition, ϙ seals, over π , the set

D(c, Q,π) = {r ∈ MT(π) : r directly forces c /∈ [Q]} .

Therefore in particular D(c, Q, π) is pre-dense in MT(π ∪cw ϙ) by Lemma 10.3. We conclude that G ∩
D(c, Q, π) �= ∅. In other words, there is a multitree r ∈ MT(π) which directly forces c /∈ [Q]. It easily 
follows that c[G] /∈ [Q], which is a contradiction. �
19. Combining refinement types

Here we summarize the properties of generic refinements considered above. The next definition combines 
the refinement types �D , �D , �c

ξk .

Definition 19.1. Suppose that π � ϙ are multiforcings and M ∈ HC is any set. Let π ��M ϙ mean that 
the four following requirements hold:

(1) if 〈ξ, k〉 ∈ |π|, D ∈ M, D ⊆ π(ξ, k), D is pre-dense in π(ξ, k), then π(ξ, k) �D ϙ(ξ, k);
(2) if D ∈ M, D ⊆ MT(π), D is open dense in MT(π), then π �D ϙ;
(3) if c ∈ M is a π -real prename then π �c ϙ;
(4) if 〈ξ, k〉 ∈ |π| and c ∈ M is a π -real prename, non-principal over π at ξ, k , then π �c

ξk ϙ. �
Corollary 19.2 (of Lemmas 9.4, 10.3, 15.3, 16.3). Let π, ϙ, σ be multiforcings and M be a countable set. 
Then:

(i) if π ��M ϙ and M′ ⊆ M then π ��M′ σ ;
(ii) if π ��M ϙ � σ then π ��M σ ;
(iii) if 〈πα〉α<λ is a �-increasing sequence in MF, 0 < μ < λ, π =

⋃cw
α<μ πα , and π ��M πμ , then

π ��M ϙ =
⋃cw

μ≤α<λ πα . �
Corollary 19.3. If π is a small multiforcing, M ∈ HC, and ϙ is an M-generic refinement of π (exists by 
Proposition 11.2!), then π ��M ϙ.

Proof. We have π ��M ϙ by a combination of 11.3(ii), 12.1, 15.2, and 17.1. �
IV. The forcing notion

In this chapter we define the forcing notion to prove the main theorem. It will have the form MT(Π), for 
a certain multiforcing Π with |Π| = ω1×ω . The multiforcing Π will be equal to the componentwise union of 
terms of a certain increasing sequence #»

Π of small multiforcings. And quite a complicated construction of this 
sequence in L, the constructible universe, will employ some ideas related to diamond-style constructions, 
as well as to some sort of definable genericity.

20. Increasing sequences of small multiforcings

Recall that MF is the set of all multiforcings (Section 7). Let sMF ⊆ MF be the set of all small special
multiforcings; s accounts for both small and special. Thus a multiforcing π ∈ MF belongs to sMF if |π| is 
(at most) countable and if 〈ξ, k〉 ∈ |π| then π(ξ, k) is a small special (Definition 5.4) forcing in PTF.
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Definition 20.1. Let #      »sMF, resp., #      »sMFω1 be the set of all �-increasing sequences #»π = 〈πα〉α<κ of multiforc-
ings πα ∈ sMF, of length κ = dom( #»π) < ω1 , resp., κ = ω1 , which are domain-continuous, in the sense that 
if λ < κ is a limit ordinal then |πλ| =

⋃
α<λ |πα|. Sequences in 

#      »sMF ∪ #      »sMFω1 are called multisequences. 
We order #      »sMF ∪ #      »sMFω1 by the usual relations ⊆ and ⊂ of extension of sequences.

• Thus #»π ⊂ #»
ϙ iff κ = dom( #»π) < λ = dom( #»

ϙ ) and πα = ϙα for all α < κ.
• In this case, if M is any set, and ϙκ (the first term of #»

ϙ absent in #»π ) satisfies π ��M ϙκ , where 
π =

⋃cw
α<κ πα , then we write #»π ⊂M

#»
ϙ .

If #»π is a multisequence in 
#      »sMF ∪ #      »sMFω1 then let MT( #»π) = MT(π), where π =

⋃cw #»π =
⋃cw

α<κ πα

(componentwise union), and κ = dom #»π . Accordingly a #»π -real (pre)name will mean a π -real (pre)name. �
Corollary 20.2. Suppose that κ < λ < ω1 , M is a countable set, and #»π = 〈πα〉α<κ is a multisequence in
#      »sMF. Then:

(i) the componentwise union π =
⋃cw #»π =

⋃cw
α<κ πα is a regular multiforcing;

(ii) there is a multisequence #»
ϙ ∈ #      »sMF satisfying dom( #»

ϙ ) = λ and #»π ⊂M
#»
ϙ ;

(iii) if moreover 〈sα〉α<λ is an ⊂-increasing sequence of countable sets sα ⊆ ω1 × ω , sα = |πα| for all
α < κ, and sγ =

⋃
α<γ sα for all limit γ < λ, then there is a multisequence #»

ϙ ∈ #      »sMF satisfying
dom( #»

ϙ ) = λ, |ϙα| = sα for all α < λ, and #»π ⊂M
#»
ϙ ;

(iv) if #»π , #»ρ , #»ϙ ∈ #      »sMF and #»π ⊂M
#»ρ ⊆ #»

ϙ then #»π ⊂M
#»
ϙ ;

(v) if #»
ϙ = 〈ϙα〉α<λ ∈ #      »sMF, κ < λ, and #»π ⊂M

#»
ϙ then π =

⋃cw
α<κ πα ��M ϙβ whenever κ ≤ β < λ, and 

also π ��M ϙ′ =
⋃cw

κ≤β<λ ϙβ , therefore

(a) MT(ϙ′) is open dense in MT( #»
ϙ ),

(b) if 〈ξ, k〉 ∈ |π|, D ∈ M, D ⊆ π(ξ, k), D is pre-dense in π(ξ, k), then D remains pre-dense in
π(ξ, k) ∪ ϙ(ξ, k),

(c) if D ∈ M, D ⊆ MT( #»π), D is open dense in MT( #»π), then D is pre-dense in MT(π ∪cw ϙ′) =
MT( #»

ϙ ).

Proof. (i) Make use of Lemma 9.2(iv).
(ii) We define terms ϙα of the multisequence ϙ required by induction.
Naturally put ϙα = πα for each α < κ.
Now suppose that κ ≤ γ < λ, multiforcings ϙα , α < γ , have been defined, and #»ρ = 〈ϙα〉α<γ is a 

multisequence in 
#      »sMF. To define ϙγ , consider the componentwise union ρ =

⋃cw #»ρ =
⋃cw

α<γ ϙα . (Note that 
ρ is not equal to ϙδ in case γ = δ+1 is a successor ordinal.) We can assume that M contains #»ρ and satisfies 
γ ⊆ M (otherwise take a suitably bigger set). By Proposition 11.2, there is an M-generic refinement ϙ of ρ. 
By Theorem 11.3, ϙ is small special multiforcing, ρ � ϙ, and ρα � ϙ for all α < γ . In addition ρ ��M ϙ by 
Corollary 19.3. We let ργ = ϙ. The extended multisequence #»ρ+ = 〈ρα〉α<γ+1 belongs to 

#      »sMF and satisfies 
#»ρ ⊂M

#»ρ+ . It remains to define ϙγ := ργ = ϙ.
(iii) The proof is similar, with the extra care of |ϙα| = sα .
(iv) The relation #»π ⊂M

#»
ϙ involves only the first term of #»

ϙ absent in #»π .
To prove the main claim of (v) make use of Corollary 19.2.
To prove (v)(a) apply Corollary 10.1.
(v)(b) As π ��M ϙ′ and D ∈ M, we have π(ξ, k) �D ϙ(ξ, k). Therefore D is pre-dense in ϙ(ξ, k) by 

Lemma 9.4(ii).
(v)(c) Similarly π �D ϙ′ , D is pre-dense in MT( #»

ϙ ) by Lemma 10.3(i). �
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Our plan regarding the forcing notion for Theorem 1.1 will be to define a certain multisequence #»
Π in 

#      »sMFω1 and the ensuing multiforcing Π =
⋃cw #»

Π with remarkable properties related to definability and its 
own genericity of some sort. But we need first to introduce an important notion involved in the construction.

21. Layer restrictions of multiforcings and deciding sets

The construction of the mentioned multiforcing Π will be maintained in such a way that different layers
〈Π(k, ξ)〉ξ<ω1 , k < ω , appear rather independent of each other, albeit the principal inductive parameter will 
be ξ rather than k . To reflect this feature, we introduce here a suitable notation related to layer restrictions. 
If m < ω then, using a special “layer restriction” symbol �� to provide a transparent distinction from the 
ordinary restriction �, we define sets of multitrees:

MT��<m = all multitrees p ∈ MT such that |p| ⊆ ω1 ×m,

MT��≥m = all multitrees p ∈ MT with |p| ⊆ ω1 × (ω �m),

MT��m = all multitrees p ∈ MT such that |p| ⊆ ω1 × {m},

and, given a multiforcing π , define MT(π)��<m , MT(π)��≥m , MT(π)��m similarly. Accordingly if p ∈
MT then define the layer restriction p��<m ∈ MT��<m so that |p��<m| = {〈ξ, k〉 ∈ |p| : k < m} and 
p��<m(ξ, k) = π(ξ, k) whenever 〈ξ, k〉 ∈ |p��<m|. Define p��≥m ∈ MT��≥m , p��m ∈ MT��m similarly.

The same definitions are maintained with multiforcings:

sMF��<m = all multiforcings π ∈ sMF such that |π| ⊆ ω1 ×m,

sMF��≥m = all multiforcings π ∈ sMF with |π| ⊆ ω1 × (ω �m),

sMF��m = all multiforcings π ∈ sMF such that |π| ⊆ ω1 × {m},

and MF��<m , MF��≥m , MF��m are defined similarly.
Accordingly if π ∈ MF (in particular if π ∈ sMF) and m < ω then define the layer restriction π��<m ∈

MF��<m (resp., ∈ sMF��<m), so that |π��<m| = {〈ξ, k〉 ∈ |π| : k < m} and π��<m(ξ, k) = π(ξ, k) whenever 
〈ξ, k〉 ∈ |π��<m|. Define π��≥m ∈ MF��≥m , π��m ∈ MF��m similarly.

A similar notation applies to multisequences (Definition 20.1). If m < ω then we let #      »sMF��<m , #      »sMF��≥m , 
#      »sMF��m be the set of all multisequences in 

#      »sMF whose all terms belong to resp. sMF��<m , sMF��≥m , 
sMF��m . Define similarly 

#      »sMFω1��<m , #      »sMFω1��≥m , #      »sMFω1��m (multisequences of length ω1).
And further, if #»π = 〈πα〉α<κ ∈ #      »sMF and m < ω then define #»π��<m = 〈πα��<m〉α<κ ∈ #      »sMF��<m , and 

define #»π��≥m ∈ #      »sMF��≥m , #»π��m ∈ #      »sMF��m similarly. The same for #»π = 〈πα〉α<ω1 ∈ #      »sMFω1

Definition 21.1. Assume that m < ω . A multisequence #»π ∈ #      »sMF m-decides a set W if either #»π��≥m

belongs to W (positive decision) or there is no multisequence #»
ϙ ∈ W ∩ #      »sMF��≥m extending #»π��≥m (negative

decision). In particular, #»π 0-decides W if either #»π ∈ W or there is no #»
ϙ ∈ W ∩ #      »sMF extending #»π . �

Lemma 21.2. If #»π ∈ #      »sMF, M is countable, W is any set, and m < ω , then there is a multisequence
#»
ϙ ∈ #      »sMF such that #»π ⊂M

#»
ϙ and #»

ϙ m-decides W .

Proof. By Corollary 20.2, there is a multisequence #»ρ ∈ #      »sMF such that #»π ⊂M
#»ρ . Then either #»ρ outright 

m-decides W negatively, or there is a sequence #»σ ∈ W ∩ #      »sMF��≥m satisfying #»ρ��≥m ⊆ #»σ .
On the other hand, using Corollary 20.2(iii), we get a multisequence #»τ ∈ #      »sMF��<m of the same length as 

#»σ , such that #»ρ��<m ⊆ #»τ . Therefore there exists a multisequence #»
ϙ ∈ #      »sMF of that same length, satisfying 

#»
ϙ ��≥m = #»σ and #»

ϙ ��<m = #»τ — then obviously #»ρ ⊆ #»
ϙ and by definition #»

ϙ decides W positively. Finally 
we have #»π ⊂M

#»ρ ⊆ #»
ϙ , and hence #»π ⊂M

#»
ϙ by Corollary 20.2(iv). �
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22. Auxiliary diamond sequences

Recall that HC is the set of all hereditarily countable sets (those with finite or countable transitive 
closures).

Definition 22.1. We use standard notation ΣHC
n , ΠHC

n , ΔHC
n (slanted Σ, Π, Δ) for classes of lightface

definability in HC (no parameters allowed), and ΣHC
n , ΠHC

n , ΔHC
n (foldface upright Σ, Π, Δ) for classes 

of boldface definability in HC (parameters in HC allowed). �
The next theorem employs the technique of diamond sequences in L.

Theorem 22.2 (in L). There exist ΔHC
1 sequences 〈 #»π�μ�〉μ<ω1 , 〈D�μ�〉μ<ω1 , 〈z�μ�〉μ<ω1 , such that, for 

every μ, D�μ� and z�μ� are sets in HC, #»π�μ� ∈ #      »sMF, dom( #»π�μ�) = μ, and in addition if #»
Π = 〈Πν〉ν<ω1 ∈

#      »sMFω1 , z ∈ HC, and D ⊆ MT( #»
Π ), then the set M of all ordinals μ < ω1 such that

(a) z�μ� = z ;
(b) #»π�μ� is equal to the restricted sub-multisequence #»

Π �μ = 〈Πν〉ν<μ ;
(c) D�μ� = D ∩ MT( #»

Π �μ);

is stationary in ω1 .

Proof. Arguing in L, the constructible universe, we let �L be the canonical wellordering of L. It is known 
that �L orders HC similarly to ω1 , and that �L is ΔHC

1 and has the goodness property: the set of all 
�L -initial segments Ix(�L) = {y : y �L x}, where x ∈ HC, is still ΔHC

1 .
The diamond principle �ω1 is true in L by [16, Theorem 13.21], hence there is a ΔHC

1 sequence of sets 
Sα ⊆ α, α < ω1 , such that

(A) if X ⊆ HC then the set {α < ω1 : Sα = X ∩ α} is stationary in ω1 .

The ΔHC
1 -definability property is achieved by taking the �L -least possible Sα at each step α. We get 

the following two results (B), (C) as easy corollaries.
First, let Aμ = {cα : α ∈ Sμ}, where cα is the α-th element of HC in the sense of the ordering �L . Then 

〈Aμ〉μ<ω1 is still a ΔHC
1 sequence, and

(B) if Xα ∈ HC for all α < ω1 then the set {μ : Aμ = {Xα : α < μ}} is stationary in ω1 .

Second, for any α, if Aα = 〈aγ〉γ<α , where each aγ itself is equal to an ω -sequence 〈anγ 〉n<ω , then let 
Bn

α = 〈anγ 〉γ<α for all n. Otherwise let Bn
α = ∅, ∀n. Then 

〈
Bα

〉
n<ω
α<ω1 is still a ΔHC

1 system of sets in HC, 
such that

(C) if Xn
α ∈ HC for all α < ω1 , n < ω , then, for every μ < ω1 , the set {μ : ∀n (Bn

μ = {Xn
α : α < μ}} is 

stationary in ω1 .

Now things become somewhat more complex.
Let μ < ω1 . We define z�μ� =

⋃
B0

μ . If B1
μ ∈ #      »sMF and dom(B1

μ) = μ then let #»π�μ� = B1
μ ; otherwise 

let #»π�μ� be equal to the �L -least multisequence in 
#      »sMF of length μ. (Those exist by Corollary 20.2(ii).) 

Finally we let D�μ� =
⋃

B2
μ+1 .

Let’s show that the sequences of sets #»π�μ�, D�μ�, z�μ� prove the theorem. Suppose that #»
Π = 〈Πν〉ν<ω1 ∈

#      »sMFω1 , z ∈ HC, and D ⊆ MT( #»
Π ). Let X0

α = z , X1
α = 〈α, Πα〉, X2

α = D ∩ MT( #»
Π �α) for all α. The set
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M = {μ < ω1 : Bn
μ = {Xn

α : α < μ} for n = 0, 1, 2}

is stationary by (C). Assume that μ ∈ M . Then B0
μ = {X0

α : α < μ} = {z}, therefore z�μ� = z . Further 
B1

μ = {X1
α : α < μ} = {〈α,Πα〉 : α < μ} = #»

Π �μ ∈ #      »sMF, therefore #»π�μ� = #»
Π �μ. Finally we have D�μ� =⋃

B2
μ+1 =

⋃
α≤μ X

2
α = D ∩ MT( #»

Π �μ), as required. �
23. Key sequence theorem

Now we prove a theorem which introduces the key multisequence #»
Π .

Theorem 23.1 (V = L). There exists a multisequence #»
Π = 〈Πα〉α<ω1 ∈ #      »sMFω1 satisfying the following 

requirements:

(i) if m < ω then the multisequence #»
Π ��m belongs to the class ΔHC

m+2 ;
(ii) if m′ < ω and W ⊆ #      »sMF is a boldface ΣHC

m′+1 set then there is an ordinal γ < ω1 such that the 
multisequence #»

Π �γ m′ -decides W ;
(iii) if a set D ⊆ MT( #»

Π ) is dense in MT( #»
Π ), then the set Z of all ordinals γ < ω1 such that

#»
Π �γ ⊂{D∩MT( #»

Π �γ)}
#»
Π , is stationary in ω1 .

Proof. If m < ω then let unm(p, x) be a canonical universal Σm+1 formula, so that the family of all boldface 
ΣHC

m+1 sets X ⊆ HC (those definable in HC by Σm+1 formulas with parameters in HC) is equal to the 
family of all sets of the form Υm(p) = {x ∈ HC : HC |= unm(p, x)}, p ∈ HC.

(I) Fix ΔHC
1 sequences 〈 #»π�μ�〉μ<ω1 , 〈D�μ�〉μ<ω1 , and 〈z�μ�〉μ<ω1 satisfying Theorem 22.2; the terms 

D�μ�, z�μ�, #»π�μ� of the sequences belong to HC, and in addition #»π�μ� ∈ #      »sMF, dom( #»π�μ�) = μ.
(II) Let μ < ω1 . If z�μ� is a pair of the form z�μ� = 〈m, p〉 then let m�μ� = m and p�μ� = p, otherwise 

let m�μ� = p�μ� = 0.
(III) If m < ω then let, by Lemma 21.2, #»π�μ,m� ∈ #      »sMF be the �L -least multisequence in 

#      »sMF which 
satisfies #»π�μ� ⊂{D�μ�}

#»π�μ,m� and m-decides the set Υm(p�μ�). Let �μ,m�+ = dom( #»π�μ,m�); then 
μ < �μ,m�+ < ω1 .

Proposition 23.2 (in L). The sequences 〈m�μ�〉μ<ω1 and 〈p�μ�〉μ<ω1 belong to the lightface definability class
ΔHC

1 . If m < ω then the sequences 〈 #»π�μ,m�〉μ<ω1 and 〈�μ,m�+〉μ<ω1 belong to the lightface class ΔHC
m+2 .

Proof. Routine. Note that #»π�μ,m� and �μ,m�+ depend on m through the formulas unm(·, ·), whose 
complexity strictly increases with m → ∞. �

Now define a multisequence #»
Π = 〈Πα〉α<ω1 ∈ #      »sMFω1 and a family of strictly increasing, continuous maps

μm : ω1 → ω1 , m < ω , as follows:

1◦ . Let μm(0) = 0 and μm(λ) = supγ<λμm(γ) for all m and all limit λ < ω1 .
2◦ . Suppose that m < ω , γ < ω1 , μ = μm(γ), and the twofold-restricted sequence ( #»

Π �μ)��m = ( #»
Π ��m)�μ

is already defined. If the following holds:

(∗) m ≥ m′ = m�μ� and ( #»
Π �μ)��m coincides with #»π�μ���m ,

then let μm(γ + 1) = �μ,m′�+ and ( #»
Π ��μ,m′�+)��m = #»π�μ,m′���m .
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3◦ . In the assumptions of 2◦ , if 2◦(∗) fails, then let #»ρ be the �L -least multisequence in #      »sMF with
( #»

Π �μ)��m ⊂ #»ρ (we refer to Corollary 20.2), and define μm(γ + 1) = dom( #»ρ) and ( #»
Π �μm(γ + 1))��m =

#»ρ��m .

To conclude, given γ < ω1 and m, if an ordinal μ = μm(γ), and a multisequence ( #»
Π �μ)��m = ( #»

Π ��m)�μ
are defined, then items 2◦ , 3◦define a bigger ordinal μm(γ + 1) > μ = μm(γ) and a longer multisequence 
( #»

Π �μm(γ + 1))��m satisfying ( #»
Π �μ)��m ⊂ ( #»

Π �μm(γ + 1))��m . Thus overall items 1◦ , 2◦ , 3◦of the definition 
contain straightforward instructions as how to uniquely define the layers #»

Π ��m and maps μm for different 
m < ω , independently from each other.

From now on, fix a multisequence #»
Π = 〈Πα〉α<ω1 ∈ #      »sMFω1 of multiforcings Πα ∈ sMF and increasing 

continuous maps μm : ω1 → ω1 defined by 1◦ , 2◦ , 3◦ . As the maps μm are continuous, the following holds:

Proposition 23.3 (in L). C = {γ < ω1 : ∀m (γ = μm(γ))} is a club in ω1 . �
To show that #»

Π proves Theorem 23.1, we check items (i), (ii), (iii).
(i) Let m < ω . Then the multisequence #»

Π ��m and the map μm belong to the class ΔHC
m+2 by Proposi-

tion 23.2; a routine proof is omitted.
(ii) Suppose that m′ < ω and W ⊆ #      »sMF is a ΣHC

m′+1 set. Pick p ∈ HC such that W = Υm′(p). 
Let z = 〈m′, p〉. As C is a club, it follows from the choice of terms #»π�μ�, D�μ�, and z�μ�, by (I) and 
Theorem 22.2, that there is an ordinal γ ∈ C such that #»π�γ� = #»

Π �γ and z�γ� = z — hence, m�γ� = m′

and p�γ� = p.
Let μ = γ ; then also μ = μm(γ), ∀m — since γ ∈ C, and #»

Π �μ = #»π�μ�.
Then it follows from the choice of #»

Π that item 2◦of the construction applies for the ordinal γ chosen 
and all m ≥ m′ . It follows that the multisequence #»ρ = #»π�μ,m′� and the ordinal ν = μm(γ+1) = �μ,m′�+

satisfy ν = dom( #»ρ) and ( #»
Π �ν)��m = #»ρ��m for all m ≥ m′ . In other words, ( #»

Π �ν)��≥m′ = #»ρ��≥m′ .
However by definition #»ρ m′ -decides the set W = Υm′(p), and the definition of this property depends 

only on #»ρ��≥m′ .
(iii) Assume that a set D ⊆ MT( #»

Π ) is dense in MT( #»
Π ), and C ⊆ C is a club in ω1 . Following the proof 

of (ii), we find an ordinal γ ∈ C such that #»π�γ� = #»
Π �γ , m�γ� = 0, and D�γ� = D ∩ MT( #»

Π �γ). Note that 
γ = μm(γ), ∀m. We have #»π�γ� ⊂{D�γ�}

#»π�γ, 0� by (III) (with μ = γ ), that is,

#»π�γ� ⊂{D∩MT( #»
Π �γ)}

#»π�γ, 0�. (†)

Yet it follows from the choice of γ that condition 2◦(∗) holds (for μ = γ ) for all m ≥ 0. Then, by 
definition 2◦ , the ordinal μ+ = �γ,m�+ satisfies μ+ = μm(γ + 1) and ( #»

Π �μ+)��m = ( #»π�γ, 0�)��m for all 
m, that is, just #»

Π �μ+ = #»π�γ, 0�. We conclude that #»
Π �γ ⊂{D∩MT( #»

Π �γ)}
#»
Π �μ+ by (†), therefore we have 

#»
Π �γ ⊂{D∩MT( #»

Π �γ)}
#»
Π , as required. �(Theorem 23.1)

Definition 23.4 (in L). From now on we fix a multisequence #»
Π = 〈Πα〉α<ω1 ∈ #      »sMFω1 satisfying requirements 

of Theorem 23.1, that is,

(i) if m < ω then the multisequence #»
Π ��m belongs to the lightface ΔHC

m+2 ;
(ii) if m′ < ω and W ⊆ #      »sMF is a boldface ΣHC

m′+1 set then there is an ordinal γ < ω1 such that the 
multisequence #»

Π �γ m′ -decides W ;
(iii) if a set D ⊆ MT( #»

Π ) is dense in MT( #»
Π ), then the set Z of all ordinals γ < ω1 such that

#»
Π �γ ⊂{D∩MT( #»

Π �γ)}
#»
Π , is stationary in ω1 .

We call this fixed #»
Π the key multisequence. �
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As usual, a set U ⊆ sMF��≥m is dense in sMF��≥m if for each #»π ∈ sMF��≥m there is a multisequence 
#»
ϙ ∈ U satisfying #»π ⊆ #»

ϙ .

Lemma 23.5. If m < ω and W ⊆ sMF��≥m is a ΣHC
m+1 set dense in sMF��≥m then there is an ordinal

γ < ω1 such that ( #»
Π �γ)��≥m ∈ W . In particular, if W ⊆ #      »sMF is a ΣHC

1 set dense in #      »sMF then there is
γ < ω1 such that #»

Π �γ ∈ W .

Proof. Apply 23.4(ii). The negative decision is impossible by the density. �
24. Key forcing notion

We continue to argue in L, and we’ll make use of the key multisequence #»
Π = 〈Πα〉α<ω1 introduced by 

Definition 23.4. Π Π

Definition 24.1 (in L). Define the multiforcings

Π =
⋃cw #»

Π =
⋃cw

α<ω1
Πα ∈ MF,

Π<γ =
⋃cw( #»

Π �γ) =
⋃cw

α<γ Πα ∈ sMF, for each γ < ω1

Π≥γ =
⋃cw( #»

Π �(ω1 � γ)) =
⋃cw

γ≤α<ω1
Πα ∈ MF, for each γ < ω1.

We further define PPP = MT(Π) = MT( #»
Π ), and, for all γ < ω1 ,

PPP<γ = MT(Π<γ) = MT( #»
Π �γ) , PPP≥γ = MT(Π≥γ) = MT( #»

Π �(ω1 � γ)) . �
The set PPP = MT(Π) will be our principal forcing notion, the key forcing.

Lemma 24.2 (in L). Π is a regular multiforcing. In addition, |Π| = ω1 × ω , thus if ξ < ω1 and k < ω then 
there is an ordinal α < ω1 such that 〈ξ, k〉 ∈ |Πα|. Therefore PPP =

∏
ξ<ω1, k<ω Π(ξ, k) (with finite support).

Proof. To prove the additional claim, note that the set W of all multisequences #»π ∈ #      »sMF satisfying 
〈ξ, k〉 ∈ | 

⋃cw #»π | is ΣHC
1 (with ξ as a parameter of definition). In addition W is dense in 

#      »sMF. (First extend 
#»π by Corollary 20.2 so that is has a non-limit length and the last term, then make use of Corollary 11.4.) 
Therefore by Lemma 23.5 there is an ordinal γ < ω1 such that #»

Π �γ ∈ W , as required. �
If ξ < ω1 and k < ω then, following the lemma, let α(ξ, k) < ω1 be the least ordinal α satisfying 

〈ξ, k〉 ∈ |Πα|. Thus a forcing Πα(ξ, k) ∈ PTF is defined whenever α satisfies α(ξ, k) ≤ α < ω1 , and 
〈Πα(ξ, k)〉α(ξ,k)≤α<ω1 is a �-increasing sequence of countable special forcings in PTF.

Note that Π(ξ, k) =
⋃

α(ξ,k)≤α<ω1
Πα(ξ, k) by construction.

Corollary 24.3 (in L). If k < ω then the sequence of ordinals 〈α(ξ, k)〉ξ<ω1 and the sequence of multiforcings
〈Πα(ξ, k)〉ξ<ω1, α(ξ,k)≤α<ω1 are ΔHC

k+2 .

Proof. By construction the following double equivalence holds:

α < α(ξ, k) ⇐⇒ ∃π(π = Πα��k ∧ 〈ξ, k〉 ∈ domπ) ⇐⇒
⇐⇒ ∀π(π = Πα��k =⇒ 〈ξ, k〉 ∈ domπ) .

However π = Πα��k is a ΔHC
k+2 relation by Theorem 23.1(i). It follows that so is the sequence 〈α(ξ, k)〉ξ<ω1 . 

The second claim easily follows by the same Definition 23.4(i). �
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Corollary 24.4 (in L, of Lemma 9.2(v)). If ξ < ω1 , k < ω , and α(ξ, k) ≤ α < ω1 then the set Πα(ξ, k) is 
pre-dense in Π(ξ, k) and in Π. �

In spite of Lemma 24.2, the sets |Π<γ | can be quite arbitrary (countable) subsets of ω1 ×ω . However we 
easily get the next corollary:

Corollary 24.5 (in L, of Lemma 24.2). The set C′ = {γ < ω1 : |Π<γ | = γ × ω} is a club in ω1 . �
Lemma 24.6 (in L). PPP is CCC.

Proof. Let A ⊆ PPP be a maximal antichain in PPP. The set

C = {γ < ω1 : A ∩PPP<γ is a maximal antichain in PPP<γ}

is a club in ω1 . Let D = {p ∈ PPP : ∃ q ∈ A (p � q)}; this is an open dense set. By Definition 23.4(iii), there is 
an ordinal γ ∈ C such that #»

Π �γ ⊂{D∩PPP<γ}
#»
Π . Recall that γ ∈ C , hence A ∩PPP<γ is a maximal antichain in 

PPP<γ , thus D∩PPP<γ is open dense in PPP<γ . Therefore the set D∩PPP<γ is pre-dense in the forcing MT( #»
Π ) = PPP

by Corollary 20.2(v)(c). We claim that A = A ∩PPP<γ , so A is countable.
Indeed suppose that r ∈ A � PPP<γ . Then r is compatible with some q ∈ D ∩ PPP<γ ; let p ∈ D ∩ PPP<γ , 

p � q , p � r . As q ∈ D , there is some r′ ∈ A with q � r′ . Then r = r′ as A is an antichain; thus 
q � r ∈ A �PPP<γ . However q ∈ PPP<γ and A ∩PPP<γ is a maximal antichain in PPP<γ , thus q , and hence r , is 
compatible with some r′′ ∈ A ∩PPP<γ . Which is a contradiction. �
Corollary 24.7 (in L). If a set D ⊆ PPP is pre-dense in PPP then there is an ordinal γ < ω1 such that D∩PPP<γ

is already pre-dense in PPP.

Proof. We can assume that in fact D is dense. Let A ⊆ D be a maximal antichain in D ; then A is a 
maximal antichain in PPP because of the density of D . Then A ⊆ PPP<γ for some γ < ω1 by Lemma 24.6. But 
A is pre-dense in PPP. �
V. Auxiliary forcing relation

Recall that PPP = MT(Π), the key forcing notion, is a product forcing notion defined (in L) in Section 24. 
Its components Π(ξ, k) have different complexity in HC, depending on k by Corollary 24.3, hence it’s 
difficult to hope that the forcing notion PPP (or Π) as a whole is definable in HC. Somewhat surprisingly, the 
PPP-forcing relation turns out to be definable in HC when restricted to analytic formulas of a certain level of 
complexity within the usual hierarchy. This will be established on the base of an auxiliary forcing relation.

25. Preliminaries

We argue in L.
Consider the 2nd order arithmetic language, with variables k, l, m, n, . . . of type 0 over ω and variables 

a, b, x, y, . . . of type 1 over ωω , whose atomic formulas are those of the form x(k) = n. Let L be the 
extension of this language, which allows to substitute free variables of type 0 with natural numbers (as 
usual) and free variables of type 1 with small real names (Definition 13.1) c ∈ L. By L -formulas we 
understand formulas of this extended language.

We define natural classes LΣ1
n , LΠ1

n (n ≥ 1) of L -formulas. Let L (ΣΠ)11 be the closure of LΣ1
1 ∪

LΠ1
1 under ¬, ∧, ∨ and quantifiers over ω . If ϕ is a formula in LΣ1

n (resp., LΠ1
n), then let ϕ− be the 

result of canonical transformation of the negation ¬ ϕ to the LΠ1
n (resp., LΣ1

n) form.
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Definition 25.1. If ϕ is a L -formula and G ⊆ MT is a pairwise compatible set of multitrees then let ϕ[G]
be the result of substitution of c[G] for any real name c in ϕ. (Recall Definition 13.2.) Thus ϕ[G] is an 
ordinary 2nd order arithmetic formula, with natural numbers and elements of ωω as parameters. �

The definition of the auxiliary forcing depends on a two more definitions.

Definition 25.2. If m < ω then 
#      »sMF[ #»

Π ��<m] consists of all multisequences #»π ∈ #      »sMF such that #»π��<m ⊂
#»
Π ��<m , that is, #»π��<m = ( #»

Π ��<m)�δ , where δ = dom( #»π) — multisequences which agree with the key 
multisequence #»

Π on layers below m. Obviously 
#      »sMF[ #»

Π ��<m+1] ⊆
#      »sMF[ #»

Π ��<m] ⊆ #      »sMF[ #»
Π ��<0] =

#      »sMF. �
If γ < ω1 then the subsequence #»

Π �γ of the key multisequence #»
Π belongs to 

⋂
m<ω

#      »sMF[ #»
Π ��<m], of 

course. To prove the next lemma use 23.4(i).

Lemma 25.3. #      »sMF[ #»
Π ��<m] is a subset of HC of definability class ΔHC

m+1 . �
The other definition deals with models of a subtheory of ZFC.

Definition 25.4. Let ZFL– be the theory containing all axioms of ZFC− (minus the Power Set axiom) plus 
the axiom of constructibility V = L. Any transitive model (TM) of ZFL– has the form Lα , where α ∈ Ord. 
Therefore it is true in L that for any set x there is a least TM L(x) |= ZFL– containing x. �

If x ∈ HC (HC= all hereditarily countable sets) then L(x) is a countable transitive model (CTM) of 
ZFL– .

26. Auxiliary forcing relation

We continue to argue in L.
Here we define a relation p forc #»π ϕ between multitrees p, multisequences #»π , and L -formulas ϕ, which 

will suitably approximate the true PPP-forcing relation. The definition goes on by induction on the complexity 
of ϕ.

1◦ . Let ϕ be a closed L (ΣΠ)11 formula, #»π ∈ #      »sMF, and p ∈ MT. (Not necessarily p ∈ MT( #»π).) We define:

(a) p forc #»π ϕ iff there is a CTM M |= ZFL– , an ordinal ϑ < dom #»π , and a multitree p0 ∈ MT( #»π�ϑ), 
such that p � p0 (meaning: p is stronger), the model M contains #»π�ϑ (then contains MT( #»π�ϑ)
as well) and contains ϕ (that is, all real names in ϕ), #»π�ϑ ⊂M

#»π , and p0 MT( #»π�ϑ)-forces ϕ[G]
over M in the usual sense — that is, if G ⊆ MT( #»π�ϑ) is a MT( #»π�ϑ)-generic filter over M then 
the formula ϕ[G] (defined by 25.1) is true in M[G] 15;

(b) p wforc #»π ϕ (weak forcing) iff there is no multisequence #»τ ∈ #      »sMF and p′ ∈ MT( #»τ ) such that 
#»π ⊆ #»τ , p′ � p, and p′ forc #»τ ¬ ϕ.

2◦ . If ϕ(x) is a LΠ1
n formula, n ≥ 1, then we define p forc #»π ∃x ϕ(x) iff there is a small real name c

such that p forc #»π ϕ(c).

15 Note that not only we require ϕ[G] to be MT( #»π�ϑ)-forced, but also that this status is suitably sealed by #»π�ϑ ⊂M
#»π , so that 

further extensions of #»π will not bring up a contradiction.
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3◦ . If ϕ is a closed LΠ1
n formula, n ≥ 2, then we define p forc #»π ϕ iff #»π ∈ #      »sMF[ #»

Π ��<n−2], and there 
is no multisequence #»τ ∈ #      »sMF[ #»

Π ��<n−2] and multitree p′ ∈ MT( #»τ ) such that #»π ⊆ #»τ , p′ � p, and 
p′ forc #»τ ϕ− .16

Remark 26.1. It easily holds by induction that if p forc #»π ϕ then

(1) #»π ∈ #      »sMF,
(2) ϕ is a closed formula in one of the classes L (ΣΠ)11, LΣ1

n, LΠ1
n , n ≥ 2,

(3) if n ≥ 2 and ϕ ∈ LΠ1
n ∪ LΣ1

n+1 then #»π ∈ #      »sMF[ #»
Π ��<n−2]. �

Remark 26.2. We claim that the condition

“p0 MT( #»π�ϑ)-forces ϕ[G] over M”

in 1◦a does not depend on the choice of a CTM M. (Note that independence of ϑ is not asserted here!) 
Indeed consider another CTM M′ |= ZFL– still containing #»π�ϑ and ϕ. Suppose towards the contrary that 
a multitree p0 ∈ MT( #»π�ϑ) MT( #»π�ϑ)-forces ϕ[G] over M but does not MT( #»π�ϑ)-force ϕ[G] over M′ .

Then there is a stronger multitree p ∈ MT( #»π�ϑ) which MT( #»π�ϑ)-forces ¬ ϕ[G] over M′ . Now consider 
any filter G ⊆ MT( #»π�ϑ), MT( #»π�ϑ)-generic both over M and over M′ and containing p, then containing 
p0 as well. Then one and the same formula ϕ[G] is true in M[G] but false in M′[G]. However it is known 
by the Mostowski absoluteness theorem [16, Theorem 25.4] that all transitive models agree on Σ1

1 formulas. 
This is a contradiction. �
Corollary 26.3. Let ϕ is a closed L (ΣΠ)11 formula, #»π ∈ #      »sMF, and p ∈ MT. Assume that an ordinal
ϑ < dom #»π , a multitree p0 ∈ MT( #»π�ϑ), and a CTM M |= ZFL– witness p forc #»π ϕ in the sense of 1◦a. 
Then ϑ, p0 , and the model N = L(ϕ, #»π�ϑ)17 witness p forc #»π ϕ as well.

Proof. First of all N ⊆ M, and hence we have #»π�ϑ ⊂N
#»π by Corollary 19.2(i). It remains to make use of 

Remark 26.2. �
Lemma 26.4. Assume that multisequences #»π ⊆ #»

ϙ belong to #      »sMF, q, p ∈ MT, q � p, ϕ is an L -formula 
as in 26.1, and if n ≥ 2 and ϕ ∈ LΠ1

n ∪ LΣ1
n+1 then #»π , #»ϙ ∈ #      »sMF[ #»

Π ��<n−2]. Then p forc #»π ϕ implies
q forc #»

ϙ ϕ, and if ϕ belongs to L (ΣΠ)11 then p wforc #»π ϕ implies q wforc #»
ϙ ϕ as well.

Proof. If ϕ is a L (ΣΠ)11 formula, p forc #»π ϕ, and this is witnessed by M, ϑ, p0 as in 1◦a, then the 
exactly same M, ϑ, p0 witness q forc #»ϙ ϕ.

The induction step ∃ , as in 2◦ , is elementary.
Now the induction step ∀ , as in 3◦ . Let ϕ be a closed LΠ1

n -formula, n ≥ 2, and p forc #»π ϕ. Assume 
to the contrary that q forc #»

ϙ ϕ fails. Then by 3◦ there exist: a multisequence #»
ϙ ′ ∈ #      »sMF[ #»

Π ��<n−2] and 
multitree q′ ∈ MT( #»

ϙ ′) such that #»
ϙ ⊆ #»

ϙ ′ , q′ � q , and q′ forc #»
ϙ ′ ϕ− . But then #»π ⊆ #»

ϙ ′ and q′ � p, hence 
p forc #»π ϕ fails by 3◦ , which is a contradiction.

The additional result for wforc and L (ΣΠ)11 formulas is entirely similar to the induction step ∀ as 
just above. �
16 If #»π does not belong to #    »sMF[ #»

Π ��<n−2] in 3◦ , then p forc #»π ϕ holds for any LΠ1
n formula ϕ by default as a multisequence not in 

#    »sMF[ #»
Π ��<n−2] is definitely not extendable to a multisequence in #    »sMF[ #»

Π ��<n−2]. This motivates the condition #»π ∈ #    »sMF[ #»
Π ��<n−2]

in 3◦ .
17 Thus, by 25.4, N |= ZFL– is the least CTM containing #»π�ϑ and (all parameters in) ϕ.
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Definition 26.5. If K is one of the classes L (ΣΠ)11 , LΣ1
n , LΠ1

n (n ≥ 2), then let FORC[K] consist of 
all triples 〈 #»π , p, ϕ〉 such that (1), (2), (3) of 26.1 hold, and in addition p forc #»π ϕ. Then FORC[K] is a 
subset of HC. �
Lemma 26.6 (definability, in L). FORC[L (ΣΠ)11] belongs to ΔHC

1 . If n ≥ 2 then FORC[LΣ1
n] belongs to

ΣHC
n−1 and FORC[LΠ1

n] belongs to ΠHC
n−1 .

Proof. The following is a semi-formal structure of the definition of 〈 #»π , p, ϕ〉 ∈ FORC[L (ΣΠ)11] by 1◦a, 
modified via Corollary 26.318:

#»π ∈ #      »sMF ∧ p ∈ MT( #»ρ) ∧ ϕ is a formula in L (ΣΠ)11 ∧ (1)

∧ ∃ϑ < dom #»π ∃p0 ∈ MT( #»π�ϑ) (2)(
ϑ, p0, and the model M = L(ϕ, #»π�ϑ) witness p forc #»π ϕ as in 1◦a

)
. (3)

Relations in line (1) are definable in HC by bounded formulas, hence ΔHC
1 . The quantifiers in line (2) 

are bounded. The quantifier ∃M in 1◦a is eliminated by an explicit reference to M = L(ϕ, #»π�ϑ) via 
Corollary 26.3, where 〈ϕ, #»π�ϑ〉 �→ M = L(ϕ, #»π�ϑ) is clearly a ΔHC

1 map (in L). Finally line (3) is ΔHC
1 as 

well because forcing over a CTM M is definable in M, hence is ΔHC
1 . This wraps up the ΔHC

1 estimation 
for L (ΣΠ)11 .

The inductive step by 2◦ is quite elementary.
Now the step by 3◦ . Assume that n ≥ 2, and it is already established that FORC[LΣ1

n] ∈ ΣHC
n−1 . Then 

〈 #»π , p, ϕ〉 ∈ FORC[LΠ1
n] iff #»π ∈ #      »sMF[ #»

Π ��<n−2], p ∈ MT, ϕ is a closed LΠ1
n formula in M( #»π), and, by 

3◦ , there exist no triple 〈 #»τ , p′, ψ〉 ∈ FORC[LΣ1
n] such that #»τ ∈ #      »sMF[ #»

Π ��<n−2], #»π ⊆ #»τ , p′ ∈ MT( #»τ ), 
p′ � p, and ψ is ϕ− . Evaluating the key term #»τ ∈ #      »sMF[ #»

Π ��<n−2] by Lemma 25.3 as ΔHC
n−1 , we get the 

required estimation ΠHC
n−1 of FORC[LΠ1

n]. �
27. Forcing simple formulas

We still argue in L. The following results are mainly related to the relation forc with respect to formulas 
in the class L (ΣΠ)11 .

Lemma 27.1 (in L). Assume that #»π ∈ #      »sMF, #»
ϙ ∈ #      »sMF ∪ #      »sMFω1 , #»π ⊆ #»

ϙ , p ∈ MT( #»π), ϕ is a formula in
L (ΣΠ)11 , N |= ZFL– is a TM containing #»

ϙ and ϕ, and p forc #»π ϕ. Then p MT( #»
ϙ )-forces ϕ[G] over

N.

Proof. By definition there is an ordinal ϑ < dom #»π , a multitree p0 ∈ MT( #»π�ϑ), and a CTM M |= ZFL–

containing ϕ and #»π�ϑ, such that #»π�ϑ ⊂M
#»π , p � p0 , and p0 MT( #»π�ϑ)-forces ϕ[G] over M. By Corol-

lary 26.3, we can w.l.o.g. assume that M = L(ϕ, #»π�ϑ) (the smallest CTM of ZFL– containing ϕ and #»π�ϑ, 
Definition 25.4). Then M ⊆ N.

Now suppose that G ⊆ MT( #»
ϙ ) is a set MT( #»

ϙ )-generic over N and p ∈ G — then p0 ∈ G, too. We have 
to prove that ϕ[G] is true in N[G].

We claim that the set G′ = G ∩ MT( #»π�ϑ) is MT( #»π�ϑ)-generic over M. Indeed, let a set D ∈ M, 
D ⊆ MT( #»π�ϑ), be open dense in MT( #»π�ϑ). Then, as #»π�ϑ ⊂M

#»
ϙ by Corollary 20.2(v)(c), D is pre-dense 

in MT( #»
ϙ ) by 20.2(c), and hence G ∩D �= ∅ by the choice of G. It follows that G′ ∩D �= ∅.

We claim that c[G] = c[G′] for any name c ∈ M, in particular, for any name in ϕ. Indeed, as G′ ⊆ G, 
the otherwise occurs by Definition 13.2 only if for some n, i and q′ ∈ Kc

ni there is q ∈ G satisfying q � q′ , 

18 See footnote 17.
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but there is no such q in G′ . Let D consist of all multitrees r ∈ MT( #»π�ϑ) either satisfying r � q′ or 
somewhere ad with q′ . Then D ∈ M and D is open dense in MT( #»π�ϑ). Therefore D ∩ G′ �= ∅ by the 
above, so let r ∈ D ∩G′ . If r � q′ then we get a contradiction with the choice of q′ . If r is somewhere ad

with q′ then we get a contradiction with the choice of q as both q, r belong to the generic filter G.
It follows that ϕ[G] coincides with ϕ[G′]. Note also that p0 ∈ G′ . We conclude that ϕ[G′] is true in M[G′]

as p0 forces ϕ[G] over M. The same formula ϕ[G] is true in N[G] by the Mostowski absoluteness. �
Lemma 27.2. Let #»π ∈ #      »sMF, p ∈ MT( #»π), ϕ be a formula in L (ΣΠ)11 . Then

(i) p forc #»π ϕ and p forc #»π ¬ ϕ cannot hold together;
(ii) if p forc #»π ϕ then p wforc #»π ϕ;
(iii) if p wforc #»π ϕ then there exists a multisequence #»

ϙ ∈ #      »sMF such that #»π ⊂L( #»π)
#»
ϙ and p forc #»

ϙ ϕ (see 
Definition 25.4 on models L(x)) ;

(iv) p wforc #»π ϕ and p wforc #»π ¬ ϕ cannot hold together.

Proof. (i) Otherwise p MT( #»π)-forces both ϕ[G] and ¬ ϕ[G] over a large enough CTM M, by Lemma 27.1, 
which cannot happen.

(ii) Assume that p wforc #»π ϕ fails, hence there is a multisequence #»
ϙ ∈ #      »sMF and a multitree q ∈ MT( #»

ϙ )
such that q � p and q forc #»π ¬ ϕ. But Lemma 26.4 implies q forc #»π ϕ, which contradicts to (i).

(iii) Let M = L( #»π). By Corollary 20.2(ii), there is a multisequence #»
ϙ ∈ #      »sMF satisfying #»π ⊂M

#»
ϙ . We 

claim that p MT( #»π)-forces ϕ[G] over M in the usual sense — then by definition p forc #»ϙ ϕ (via M, 
ϑ = dom #»π , and p0 = p), and we are done. To prove the claim suppose otherwise. Then there is a multitree 
q ∈ MT( #»π) such that q � p and q MT( #»π)-forces ¬ ϕ[G] over M, thus q forc #»

ϙ ¬ ϕ. But this contradicts 
to p wforc #»π ϕ.

(iv) There is a multisequence #»
ϙ ∈ #      »sMF by (iii), such that #»π ⊂ #»

ϙ and p forc #»
ϙ ϕ. Note that still 

p wforc #»
ϙ ¬ ϕ by Lemma 26.4. Extend #»

ϙ once again, getting a contradiction with (i). �
Corollary 27.3. Let n ≥ 2, #»π ∈ #      »sMF, p ∈ MT( #»π), ϕ be a formula in LΣ1

n . Then p forc #»π ϕ and
p forc #»π ϕ− cannot hold together.

Proof. If n = 1 then apply Lemma 27.2(i). If n ≥ 2 then the result immediately follows by definition (3◦

in Section 26). �
The following is similar to the case #»ρ = #»π in 27.1, but with wforc .

Corollary 27.4 (in L). Assume that #»π ∈ #      »sMF, p ∈ MT( #»π), ϕ is a formula in L (ΣΠ)11 , N |= ZFL– is a 
TM containing #»π and ϕ, and p wforc #»π ϕ. Then p MT( #»π)-forces ϕ[G] over N in the usual sense.

Proof. Otherwise there is a multitree q ∈ MT( #»π), q � p, which MT( #»π)-forces ¬ ϕ[G] over N. On the 
other hand, by Lemma 27.2(iii), there is a multisequence #»

ϙ ∈ #      »sMF such that #»π ⊂L( #»π)
#»
ϙ and p forc #»

ϙ ϕ, 
hence, q forc #»ϙ ϕ by Lemma 26.4. However we have q forc #»ϙ ¬ ϕ by definition (1◦a in Section 26 with 
ϑ = dom #»π ), which contradicts to Lemma 27.2(i). �
28. Forcing with subsequences of the key multisequence

The following Theorem 28.3 will show that the auxiliary relation forc #»π , considered with countable 
initial segments #»π = #»

Π �α of the key sequence #»
Π , essentially coincides with the true forcing relation of the 

key forcing notion PPP = MT( #»
Π ).

We argue in L.
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Recall that the key multisequence #»
Π = 〈Πα〉α<ω1 ∈ #      »sMFω1 , satisfying (i), (ii), (iii) of Theorem 23.1, 

was fixed by 23.4, and PPP = MT( #»
Π ) is our forcing notion. If γ < ω1 then the subsequence #»

Π �γ belongs to 
#      »sMF[ #»

Π ��<m], ∀m.

Definition 28.1. We write p forcα ϕ instead of p forc #»
Π �α ϕ, for the sake of brevity. Let p forc ϕ mean: 

p forcα ϕ for some α < ω1 . �
Lemma 28.2 (in L). Assume that p ∈ PPP, α < ω1 , and p forcα ϕ. Then:

(i) if α ≤ β < ω1 , q ∈ PPP<β = MT( #»
Π �β), and q � p, then q forcβ ϕ;

(ii) if q ∈ PPP, q � p, then q forcβ ϕ for some β ; α ≤ β < ω1 ;
(iii) if q ∈ PPP and q forc ϕ− then p, q are somewhere almost disjoint;
(iv) therefore, 1st, if p, q ∈ PPP, q � p, and p forc ϕ then q forc ϕ, and 2nd, p forc ϕ, p forc ϕ−

cannot hold together.

Proof. To prove (i) apply Lemma 26.4. To prove (ii) let β satisfy α < β < ω1 and q ∈ MT( #»
Π �β), and apply 

(i). Finally to prove (iii) note that p, q have to be incompatible in PPP, as otherwise (i) leads to contradiction, 
but the incompatibility in PPP implies being somewhere ad by Corollary 7.2. �
Theorem 28.3. If ϕ is a closed formula as in 26.1(2), and p ∈ PPP, then p PPP-forces ϕ[G] over L in the 
usual sense, if and only if p forc ϕ.

Proof. Let ‖− denote the usual PPP-forcing relation over L.
Part 1: ϕ is a formula in L (ΣΠ)11 . If p forc ϕ then p forc #»

Π �γ ϕ for some γ < ω1 , and then p ‖− ϕ[G]
by Lemma 27.1 with #»

ϙ = #»
Π and N = L.

Suppose now that p ‖− ϕ[G]. There is an ordinal γ0 < ω1 such that p ∈ PPPγ0 = MT( #»
Π �γ0) and ϕ belongs 

to L( #»
Π �γ0). The set U of all multisequences #»π ∈ #      »sMF such that γ0 < dom #»π and there is an ordinal ϑ, 

γ0 < ϑ < dom #»π , such that #»π�ϑ ⊂L( #»π�ϑ)
#»π , is dense in #»π by Corollary 20.2(ii), and is ΔHC

1 . Therefore by 
Corollary 23.5 there is an ordinal γ < ω1 such that #»π = #»

Π �γ ∈ U .
Let this be witnessed by an ordinal ϑ, γ0 < ϑ < γ = dom #»π and #»π�ϑ ⊂L( #»π�ϑ)

#»π . We claim that p
MT( #»π�ϑ)-forces ϕ[G] over L( #»π�ϑ) in the usual sense — then by definition p forc #»π ϕ, and we are done. 
To prove the claim, assume otherwise. Then there is a multitree q ∈ MT( #»

Π �ϑ), q � p, which MT( #»π�ϑ)-
forces ¬ ϕ[G] over L( #»π�ϑ). Then by definition q forc #»π ¬ ϕ holds, hence q forc ¬ ϕ, and then q ‖− ¬ ϕ[G]
(see above), with a contradiction to p ‖− ϕ[G].

Part 2: the step LΠ1
n → LΣ1

n+1 (n ≥ 1). Consider a LΠ1
n formula ϕ(x). Assume p forc ∃x ϕ(x). By 

definition there is a small real name c such that p forc ϕ(c). By inductive hypothesis, p ‖− ϕ(c)[G], that 
is, p ‖− ∃x ϕ(x)[G]. Conversely, assume that p ‖− ∃x ϕ(x)[G]. As PPP is CCC, there is a small real name c
(in L) such that p ‖− ϕ(c)[G]. We have p forc ϕ(c) by the inductive hypothesis, hence p forc ∃x ϕ(x).

Part 3: the step LΣ1
n → LΠ1

n (n ≥ 2). Consider a closed LΣ1
n formula ϕ. Assume that p forc ϕ− . 

By Lemma 28.2(iv), there is no multitree q ∈ PPP, q � p, with q forc ϕ. This implies p ‖− ϕ−[G] by the 
inductive hypothesis.

Conversely, suppose that p ‖− ϕ−[G]. There is an ordinal γ0 < ω1 such that p ∈ PPPγ0 = MT( #»
Π �γ0)

and ϕ belongs to L( #»
Π �γ0). Consider the set U of all multisequences of the form #»π��≥n−2 , where #»π ∈

#      »sMF[ #»
Π ��<n−2], dom #»π > γ0 , and there is a multitree q ∈ MT( #»π) satisfying q � p (q is stronger) and 

q forc #»π ϕ. It follows from Lemma 25.3 and Lemma 26.6 that U belongs to ΣHC
n−1 (with ϕ and p0 as 

parameters). Therefore by 23.4(ii) there is an ordinal γ < ω1 such that the subsequence #»
Π �γ (n− 2)-

decides U .
Case 1: ( #»

Π �γ)��≥n−2 ∈ U . Let this be witnessed by a multisequence #»π ∈ #      »sMF[ #»
Π ��<n−2] and a multitree 

q ∈ MT( #»π), so that in particular ( #»
Π �γ)��≥n−2 = #»π��≥n−2 and dom #»π = γ > γ0 . Then by definition 
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(Definition 25.2) we also have #»π��<n−2 = ( #»
Π �γ)��<n−2 , so that overall #»π = #»

Π �γ . Thus q ∈ MT( #»
Π �γ), 

q � p, and q forc #»
Π �γ ϕ, that is, q ‖− ϕ[G] by the inductive hypothesis, contrary to the choice of p. 

Therefore Case 1 cannot happen, and we have:
Case 2: negative decision, no multisequence in U extends ( #»

Π �γ)��≥n−2 . We can assume that γ > γ0 . 
(Otherwise replace γ by γ0+1.) We claim that p forcγ ϕ− . Indeed otherwise by 3◦ there is a multisequence 
#»π ∈ #      »sMF[ #»

Π ��<n−2] and a multitree q ∈ MT( #»π), such that #»
Π �γ ⊆ #»π , q � p, and q forc #»

ϙ ϕ. But then 
#»π and q witness that #»σ = #»π��≥n−2 belongs to U . On the other hand, #»σ obviously extends #»

Π �γ��≥n−2 , 
since #»

Π �γ ⊆ #»π , contrary to the Case 2 assumption. Thus indeed p forcγ ϕ− , as required. �
The next corollary provides a useful strengthening.

Corollary 28.4. If n < ω , Φ is a ΔHC
1 collection of closed LΠ1

n+2 formulas, p0 ∈ PPP, and p0 PPP-forces ϕ[G]
over L for each ϕ ∈ Φ, then there is an ordinal γ < ω1 such that if ϕ ∈ Φ then p0 forc #»

Π �γ ϕ. (Same γ
for all ϕ.)

Proof. Let U consist of all multisequences of the form #»π��≥n , where #»π ∈ #      »sMF[ #»
Π ��<n], and there is a 

formula ϕ ∈ Φ and p ∈ MT( #»π) such that p � p0 and p forc #»π ϕ− . It follows from Lemmas 25.3 and 26.6
that U is a ΣHC

n+1 set, so by 23.4(ii) there is an ordinal γ < ω1 such that #»
Π �γ n-decides U .

Case 1: ( #»
Π �γ)��≥n ∈ U , that is, the multisequence #»π = #»

Π �γ satisfies the condition that there exist 
ϕ ∈ Φ and a multitree p ∈ MT( #»π) such that p � p0 and p forc #»π ϕ− , and hence p PPP-forces ϕ−[G] over 
L by Theorem 28.3, contrary to the choice of p0 . Therefore Case 1 leads to a contradiction.

Case 2: no multisequence in U extends ( #»
Π �γ)��≥n . We can assume that γ > γ0 . (Otherwise replace γ

by γ0 + 1.) We claim that γ is as required. Indeed otherwise p0 forc #»
Π �γ ϕ fails for a formula ϕ ∈ Φ, thus 

(3◦ in Section 26), there is a multisequence #»π ∈ #      »sMF[ #»
Π ��<n] and p ∈ MT( #»π) such that #»

Π �γ ⊆ #»π , p � p0 , 
and p forc #»π ϕ− . It follows that #»π��≥n ∈ U . In addition, #»π��≥n extends ( #»

Π �γ)��≥n by construction. But 
this contradicts to the Case 2 assumption. �
29. Tail invariance

Various invariance theorems are very typical for all kinds of forcing. We prove two major invariance 
theorems on the auxiliary forcing. The first one shows its independence of formally unrelated tails of mul-
tisequences #»π involved, while the other one (Section 30) explores the permutational invariance.

If #»π = 〈πα〉α<λ ∈ #      »sMF and γ < λ = dom #»π then let the γ -tail #»π�≥γ be the restriction #»π�[γ, λ) to the 
ordinal semiinterval [γ, λ) = {α : γ ≤ α < λ}. Then the multiforcing MT( #»π�≥γ) =

⋃cw
γ≤α<λ

#»π(α) is open 
dense in MT( #»π) by Corollary 20.2(v)(a). Therefore it can be expected that if #»

ϙ is another multisequence 
of the same length λ = dom #»

ϙ , and #»
ϙ �≥γ = #»π�≥γ , then the relation forc #»π coincides with forc #»ϙ . And 

indeed this turns out to be the case (almost).

Theorem 29.1. Assume that #»π , #»ϙ are multisequences in #      »sMF, γ < λ = dom #»π = dom #»
ϙ , #»
ϙ �≥γ = #»π�≥γ , 

p ∈ MT, and ϕ is an L -formula. Then

(i) if ϕ ∈ L (ΣΠ)11 then p wforc #»π ϕ iff p wforc #»
ϙ ϕ;

(ii) if n ≥ 2, #»π , #»ϙ ∈ #      »sMF[ #»
Π ��<n−2], and ϕ ∈ LΠ1

n ∪ LΣ1
n+1 , then p forc #»π ϕ iff p forc #»

ϙ ϕ.

Proof. (i) Suppose to the contrary that p wforc #»π ϕ, but p wforc #»
ϙ ϕ fails, so there is a multisequence 

#»
ϙ ′ ∈ #      »sMF and p′ ∈ MT( #»

ϙ ′) such that #»
ϙ ⊂ #»

ϙ ′ , p′ � p, and p′ forc #»ϙ ′ ¬ ϕ. Let λ′ = dom #»
ϙ ′ . By 

Corollary 20.2(v)(a), there is a multitree r ∈ MT( #»
ϙ ′�≥γ), r � p′ . Then still r � p and r forc #»ϙ ′ ¬ ϕ, by 

Lemma 26.4.
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Define a multisequence #»π ′ so that dom #»π ′ = λ′ = dom #»
ϙ ′ , #»π ⊆ #»π ′ , and #»π ′�≥λ = #»

ϙ ′�≥λ . Then r ∈
MT( #»π ′), and r wforc #»π ′ ϕ by Lemma 26.4.

Consider any CTM N |= ZFL– containing ϕ, #»π ′ , #»
ϙ ′ . Then, by Corollary 27.1, one and the same multitree 

r MT( #»π ′)-forces ϕ[G] but MT( #»
ϙ ′)-forces ¬ ϕ[G] over N. But this contradicts to the fact that the forcing 

notions MT( #»π ′), MT( #»
ϙ ′) contain one and the same dense set MT( #»π ′�≥λ) = MT( #»

ϙ ′�≥λ).
(ii), the LΠ1

2 case. Let ϕ(x) be a LΣ1
1 formula, p forc #»π ∀x ϕ(x). Suppose to the contrary that 

p forc #»
ϙ ∀x ϕ(x) fails, so, by 3◦ (with n = 2) of § 26, there is a multisequence #»

ϙ ′ ∈ #      »sMF and a multitree 
p′ ∈ MT( #»

ϙ ′) such that #»
ϙ ⊆ #»

ϙ ′ , p′ � p, and p′ forc #»
ϙ ′ ∃x ϕ−(x). By definition there is a small real 

name c such that p′ forc #»
ϙ ′ ϕ−(c). There is a multitree r ∈ MT( #»

ϙ ′�≥γ), r � p′ . Then still r � p and 
r forc #»

ϙ ′ ϕ−(c), hence r wforc #»
ϙ ′ ϕ−(c) as well by Lemma 27.2(ii). As above there is a multisequence #»π ′

such that dom #»π ′ = λ′ = dom #»
ϙ ′ , #»π ⊆ #»π ′ , and #»π ′�≥λ = #»

ϙ ′�≥λ . Then r ∈ MT( #»π ′) and r wforc #»π ′ ϕ−(c)
by Claim (i) already established. By Lemma 27.2(iii), there is a multisequence #»σ such that #»π ′ ⊂ #»σ and 
r forc #»σ ϕ−(c), hence, r forc #»σ ∃x ϕ−(x). But this contradicts to p forc #»π ∀x ϕ(x) by 3◦of § 26, since 
r � p and π ⊂ π′ ⊂ σ .

(ii), the step LΠ1
n → LΣ1

n+1 , n ≥ 2. Let ϕ(x) be a formula in LΠ1
n . Assume that p forc #»π ∃x ϕ(x). 

By definition (see 2◦ in Section 26), there is a small real name c such that p forc #»π ϕ(c). Then we have 
p forc #»

ϙ ϕ(c) by the inductive assumption, thus p forc #»ϙ ∃x ψ(x).
(ii), the step LΣ1

n → LΠ1
n , n ≥ 3. Assume that ϕ is a LΠ1

n formula, p forc #»π ϕ, but to the 
contrary p forc #»

ϙ ϕ fails. Then by 3◦ of Section 26, as #»
ϙ ∈ #      »sMF[ #»

Π ��<n−2], there is a multisequence 
#»
ϙ ′ ∈ #      »sMF[ #»

Π ��<n−2] and a multitree p′ ∈ MT( #»
ϙ ′) such that #»

ϙ ⊆ #»
ϙ ′ , p′ � p, and p′ forc #»

ϙ ′ ϕ− . By 
Corollary 20.2(v)(a), there is a multitree r ∈ MT( #»

ϙ ′�≥γ), r � p′ . Then still r � p and r forc #»
ϙ ′ ϕ− . 

As above in the proof of (i), there is a multisequence #»π ′ such that dom #»π ′ = λ′ = dom #»
ϙ ′ , #»π ⊆ #»π ′ , and 

#»π ′�≥λ = #»
ϙ ′�≥λ .

We claim that #»π ′ ∈ #      »sMF[ #»
Π ��<n−2]. Indeed if α < dom #»π then #»π ′(α) = #»π(α) (as #»π ⊆ #»π ′), hence 

#»π ′(α)��<m−2 = #»π(α)��<m−2 = Πα��<m−2 (as #»π belongs to 
#      »sMF[ #»

Π ��<n−2]). If dom #»π ≤ α < dom #»π ′ then 
#»π ′(α) = #»

ϙ ′(α) (as #»π ′�≥λ = #»
ϙ ′�≥λ), hence #»π ′(α)��<m−2 = #»

ϙ ′(α)��<m−2 = Πα��<m−2 (as #»
ϙ ′ belongs 

to 
#      »sMF[ #»

Π ��<n−2]). Thus #»π ′(α)��<m−2 = Πα��<m−2 for all α, meaning that #»π ′��<m−2 ⊂ #»
Π ��<m−2 and 

#»π ′ ∈ #      »sMF[ #»
Π ��<n−2]. To conclude, #»π ′ ∈ #      »sMF[ #»

Π ��<n−2], #»π ⊆ #»π ′ , r ∈ MT( #»π ′�≥γ), r � p, and also 
r forc #»π ′ ϕ− by the inductive hypothesis. But this contradicts to the assumption p forc #»π ϕ. �
30. Permutations

Still arguing in L, we let PERM be the set of all bijections h : ω1 × ω
onto−→ ω1 × ω , such that the 

non-identity domain NID(h) = {〈ξ, k〉 : h(ξ, k) �= 〈ξ, k〉} is at most countable. Elements of PERM will 
be called permutations. If m < ω then let PERMm consist of those permutations h ∈ PERM satisfying 
NID(h) ⊆ ω1 × (ω �m), in other words, h(ξ, k) = 〈ξ, k〉 for all ξ < ω1 , k < m.

Let h ∈ PERM. We extend the action of h as follows.

• if p is a multitree then hp is a multitree, |hp| = h”p = {h(ξ, k) : 〈ξ, k〉 ∈ |p|}, and (hp)(h(ξ, k)) =
p(ξ, k) whenever 〈ξ, k〉 ∈ |p|, in other words, hp coincides with the superposition p ◦ (h−1);

• if π ∈ MT is a multiforcing then h · π = π◦(h−1) is a multiforcing, |h · π| = h”π and (h · π)(h(ξ, k)) =
π(ξ, k) whenever 〈ξ, k〉 ∈ |π|;

• if c ⊆ MT × (ω × ω) is a real name, then put hc = {〈hp, n, i〉 : 〈p, n, i〉 ∈ c}, thus easily hc is a real 
name as well;

• if #»π = 〈πα〉α<κ is a multisequence, then h #»π = 〈h · πα〉α<κ , still a multisequence.
• if ϕ := ϕ(c1, . . . , cn) is a L -formula (with all real names explicitly indicated), then hϕ is 

ϕ(hc1, . . . , hcn).
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Many notions and relations defined above are clearly PERM-invariant, e.g., p ∈ MT(π) iff hp ∈ MT(h ·
π), π � ϙ iff h · π � h · ϙ, et cetera. The invariance also takes place with respect to the relation forc , 
at least to some extent.

Theorem 30.1. Assume that #»π ∈ #      »sMF, p ∈ MT( #»π), ϕ is an L -formula, and h ∈ PERM. Then

(i) if ϕ belongs to L (ΣΠ)11 and p forc #»π ϕ, then (hp) wforch #»π (hϕ);
(ii) if n ≥ 2, h ∈ PERMn−2 , and ϕ belongs to LΠ1

n ∪ LΣ1
n+1 , then p forc #»π ϕ iff (hp) forch #»π (hϕ).

Proof. Let #»
ϙ = h #»π , q = hp, ψ := hϕ.

(i) Suppose to the contrary that p wforc #»π ϕ, but q wforc #»ϙ ψ fails, so that there is a multisequence 
#»
ϙ ′ ∈ #      »sMF and q′ ∈ MT( #»

ϙ ′) such that #»
ϙ ⊂ #»

ϙ ′ , q′ � q , and q′ forc #»
ϙ ′ ¬ ψ . The multisequence #»π ′ = h−1 #»

ϙ ′

then satisfies #»π ⊂ #»π ′ , and the multitree p′ = h−1q′ belongs to MT( #»π ′) and p′ � p, hence we have 
p′ wforc #»π ′ ϕ by Lemma 26.4.

Now let M |= ZFL– be an arbitrary CTM containing #»π ′, #»ϙ ′, ϕ, ψ, h�|h|. Then, by Corollary 27.4, p′

MT( #»π ′)-forces ϕ[G], but q′ MT( #»
ϙ ′)-forces ψ[G], over M. However the sets MT( #»π ′), MT( #»

ϙ ′) belong to 
the same model M, where they are order-isomorphic via the isomorphism induced by h�|h|. Therefore, 
and since q = hp and ψ = hϕ, it cannot happen that both p MT( #»π ′)-forces ϕ[G] and q MT( #»

ϙ ′)-forces 
¬ ψ[G]. But this contradicts to the above.

(ii), the LΠ1
2 case. Assume that ϕ(x) is a LΣ1

1 formula, ψ(x) := hϕ(x), p forc #»π ∀x ϕ(x), but to the 
contrary q forc #»

ϙ ∀x ψ(x) fails. Thus there is a multisequence #»
ϙ ′ ∈ #      »sMF and a multitree q′ ∈ MT( #»

ϙ ′)
such that #»

ϙ ⊂ #»
ϙ ′ , q′ � q , and q′ forc #»ϙ ′ ∃x ψ−(x). By definition there is a small real name d such that 

q′ forc #»
ϙ ′ ψ−(d). The multisequence #»π ′ = h−1 #»

ϙ ′ then satisfies #»π ⊂ #»
ϙ , the multitree p′ = h−1q′ belongs 

to MT( #»π ′) and p′ � p, c = h−1d is a small real name, and we have p′ wforc #»π ′ ϕ−(c) by (i). Then 
by Lemma 27.2 there is a longer multisequence #»σ ∈ #      »sMF satisfying #»π ′ ⊂ #»σ and p′ forc #»σ ϕ−(c), that 
is, we have p′ forc #»σ ∃x ϕ−(x). But by definition (3◦ in Section 26) this contradicts to the assumption 
p forc #»π ∀x ϕ(x).

(ii), the step LΠ1
n → LΣ1

n+1 , n ≥ 2. Let ϕ(x) be a formula in LΠ1
n , ψ(x) := hϕ(x), and h ∈

PERMn−2 . Assume that p forc #»π ∃x ϕ(x). By definition (see 2◦ in Section 26), there is a small real name 
c such that p forc #»π ϕ(c). Then we have q forc #»

ϙ ψ(d) by inductive assumption, where d = hc is a small 
real name itself. Thus q forc #»

ϙ ∃x ψ(x).
(ii), the step LΣ1

n → LΠ1
n , n ≥ 3. Let ϕ be a formula in LΠ1

n , and h ∈ PERMn−2 . Let p forc #»π ϕ, 
in particular #»π ∈ #      »sMF[ #»

Π ��<n−2], but, to the contrary, q forc #»
ϙ ψ fails, where q = hp, #»

ϙ = h #»π , and ψ is 
hϕ, as above. Then in our assumptions, #»

ϙ ��<n−2 = #»π��<n−2 , hence #»
ϙ ∈ #      »sMF[ #»

Π ��<n−2] as well. Therefore 
by definition (3◦ in Section 26) there is a multisequence #»

ϙ ′ ∈ #      »sMF[ #»
Π ��<n−2] and q′ ∈ MT( #»

ϙ ′) such that 
#»
ϙ ⊆ #»

ϙ ′ , q′ � q , and q′ forc #»ϙ ′ ψ− .
Now let p′ = h−1q′ and #»π ′ = h−1 #»

ϙ ′ , so that p′ � p, #»π ⊆ #»π ′ , and, that is most important, #»π ′ belongs 
to 

#      »sMF[ #»
Π ��<n−2] since so does #»

ϙ ′ and h−1 ∈ PERMn−2 . Moreover we have p′ forc #»π ′ ϕ− by inductive 
assumption. We conclude that p forc #»π ϕ fails, which is a contradiction. �

VI. The model

In this conclusive section we gather the results obtained above towards the proof of Theorem 1.1. We begin 
with the analysis of definability of key generic reals in PPP-generic extensions of L, which will lead to (I) and 
(II) of Theorem 1.1. Then we proceed to (III) (elementary equivalence) and (IV) (the non-wellorderability).
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31. Key generic extension and subextensions

Recall that the key multisequence #»
Π = 〈Πα〉α<ω1 of small multiforcings Πα is defined in L by 23.4, the 

componentwise union Π =
⋃cw

α<ω1
Πα is a multiforcing, |Π| = ω1×ω in L, and PPP = MT( #»

Π ) = MT(Π) ∈ L is 
our key forcing notion, equal to the finite-support product 

∏
ξ<ω1,k<ω Π(ξ, k) of perfect-tree forcings Π(ξ, k)

in L. See Section 24, where some properties of PPP are established, including CCC and definability of the 
factors Π(ξ, k) in L.

Remark 31.1. From now on, we’ll typically argue in L and in PPP-generic extensions of L, so by Lemma 24.6
it will always be true that ωL

1 = ω1 . This allows us to still think that |Π| = ω1×ω (rather than ωL
1 ×ω). �

Definition 31.2. Let a set G ⊆ PPP be generic over the constructible set universe L. If 〈ξ, k〉 ∈ ω1 × ω then 
following Remark 7.4, we

− define G(ξ, k) = {Tp
ξk : p ∈ G ∧ 〈ξ, k〉 ∈ |p|} ⊆ Π(ξ, k);

− let xξk = xξk[G] ∈ 2ω be the only real in 
⋂

T∈G(ξ,k)[T ].

Thus PPP adjoins an array X = X[G] = 〈xξk〉〈ξ,k〉∈ω1×ω of reals to L, where each xξk = xξk[G] ∈ 2ω ∩ L[G]
is a Π(ξ, k)-generic real over L, and L[G] = L[X].

Define a subarray Xm = Xm[G] = 〈xξk[G]〉ξ<ω1∧k<m for each m. �
Let G ⊆ PPP be a set (filter) PPP-generic over L. If m < ω then following the notation in Section 21 we 

define

G��<m = G ∩ MT��<m = {p��<m : p ∈ G} ,

so that the set G��<m is PPP��<m -generic over L, where accordingly

PPP��<m = PPP ∩ MT��<m = {p��<m : p ∈ PPP} .

Each subextension L[G��<m] ⊆ L[G] coincides with L[Xm]. Our goal will be to demonstrate that the model 
L[X] = L[G], proves Theorem 1.1.

32. Definability of generic reals

Recall that the factors Π(ξ, k) of the forcing notion Π are defined by Π(ξ, k) =
⋃

α(ξ,k)≤α<ω1
Πα(ξ, k), 

where α(ξ, k) < ω1 , and the sets Πα(ξ, k) are countable sets of perfect trees, whose definability in L is 
determined by Corollary 24.3. We’ll freely use the notation introduced by Definition 31.2.

Theorem 32.1. Assume that a set G ⊆ PPP is PPP-generic over L, ξ < ω1 , k < ω , and x ∈ L[G] ∩ 2ω . The 
following are equivalent:

(1) x = xξk[G];
(2) x is Π(ξ, k)-generic over L;
(3) x ∈

⋂
α(ξ,k)≤α<ω1

⋃
T∈Πα(ξ,k)[T ].

Proof. (1) =⇒ (2) is a routine (see Remark 7.4). To check (2) =⇒ (3) recall that each set Πα(ξ, k) is pre-
dense in Π(ξ, k) by Lemma 9.2(v). It remains to establish (3) =⇒ (1). Suppose towards the contrary that a 
real x ∈ L[G] ∩ 2ω satisfies (3) but x �= xξk[G]. By Theorem 18.2(i) there is a Π-real name c = 〈Cni〉n,i<ω , 
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non-principal over Π at ξ, k and such that x = c[G]. Being non-principal means that the following set is 
open dense in PPP = MT(Π):

DΠ
ξk(c) = {p ∈ PPP = MT(Π) : p directly forces c /∈ [Tp

ξk]} .

And as PPP = MT(Π) is a CCC forcing by Lemma 24.6, we can assume that the name c is small, that is, 
each set Cni ⊆ PPP is countable. Then there is an ordinal γ0 < ω1 such that Cni ⊆ PPP<γ0 for all n, i. Then c
is a Π<γ0 -real name. Moreover we can assume by Corollary 24.7 that DΠ

ξk(c) ∩PPP<γ0 is pre-dense in PPP.
Now consider the set W of all multisequences #»π = 〈πα〉α<dom( #»π) ∈

#      »sMF such that dom( #»π) > γ0 and

− either (I) #»
Π �γ0 �⊂ #»π ;

− or (II) #»
Π �γ0 ⊂ #»π and c is not non-principal over π =

⋃cw #»π at ξ, k ;
− or (III) #»

Π �γ0 ⊂ #»π , dom( #»π) = δ + 1 is a successor, and 
⋃cw

α<δ πα �c
ξk πδ .

We assert that W is dense in 
#      »sMF: any multisequence #»π ∈ #      »sMF can be extended to some #»

ϙ ∈ W . Indeed 
first extend #»π by Corollary 20.2 so that is has a length dom( #»π) = δ > γ0 . If now #»

Π �γ0 �⊂ #»π then immediately 
#»π ∈ W via (I), so we assume that #»

Π �γ0 ⊂ #»π . We can also assume that c is non-principal over π =
⋃cw #»π

at ξ, k by similar reasons related to (II). The multisequence #»π can be extended, by Corollary 20.2, by 
an extra term πδ , so that the extended multisequence #»π+ satisfies #»π ⊂{c}

#»π+ , that is, π ��{c} πδ . By 
Definition 19.1 and the nonprincipality of c, we get π �c

ξk πδ . Therefore #»π+ ∈ W via (III).
Since W is ΣHC

1 , by Definition 23.4(ii) there is an ordinal γ < ω1 such that the multisequence #»
Π �γ

0-decides W . However the negative decision is impossible by the density (see the proof of Lemma 24.2). 
We conclude that #»

Π �γ ∈ W ; hence, γ > γ0 . Option (I) for #»π = #»
Π �γ clearly fails, and (II) fails either 

because the set DΠ
ξk(c) ∩PPP<γ0 is pre-dense in PPP and γ > γ0 . Therefore #»

Π �γ belongs to W via (III), that 
is, γ = δ + 1 and Π<δ =

⋃cw
α<δ Πα �c

ξk Πδ . Then Π<δ �c
ξk Π≥δ =

⋃cw
δ≤α<ω1

Πδ by Lemma 16.3(iii).
Now Theorem 18.2(ii) with π = Π<δ and ϙ = Π≥δ (note that π ∪cw ϙ = Π) implies x = c[G] /∈⋃

Q∈Π≥δ(ξ,k)[Q], which contradicts to the Assumption (3). �
Corollary 32.2. Assume that k < ω and G ⊆ PPP is PPP-generic over L. Then

Wk = {〈ξ, xξk[G]〉 : ξ < ω1} ⊆ ω1 × 2ω

is a set of definability class ΠHC
k+2 in L[G] and in any transitive model M |= ZFC satisfying L ⊆ M ⊆ L[G]

and {xξk[G] : ξ < ω1} ⊆ M .

Proof. By the theorem, it is true in L[G] that 〈ξ, x〉 ∈ Wk iff

∀α < ω1 ∃T ∈ Πα(ξ, k)
(
α(ξ, k) ≤ α =⇒ x ∈ [T ]

)
,

which can be re-written as

∀α < ω1 ∀μ < ω1 ∀Y ∃T ∈ Y
(
μ = α(ξ, k) ∧ Y = Πα(ξ, k) ∧ μ ≤ α =⇒ x ∈ [T ]

)
.

Here the equality μ = α(ξ, k) (with a fixed k) is ΔHC
k+2 by Corollary 24.3, and so is the equality Y = Πα(ξ, k)

by Corollary 24.3. It follows that the whole relation is ΠHC
k+2 , since the quantifier ∃T ∈ Y is bounded. �

The next corollary is the first cornerstone in the proof of Theorem 1.1.
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Corollary 32.3 (= (I), (II) of Theorem 1.1). Assume that m < ω and a set G ⊆ PPP is PPP-generic over L. 
Then ωω ∩ L[G��<m] is a Σ1

m+3 set in L[G], and it holds in L[G��<m] that there is a Δ1
m+3 wellordering 

of ωω of length ω1 .

Proof. If γ < ω1 then let Xγm = 〈xξk[G]〉ξ<γ∧k<m . The equality Y = Xγm is a ΠHC
m+1 relation in L[G]

(with γ, Y as arguments) by Corollary 32.2. Therefore

ωω ∩ L[G��<m] = {x ∈ ωω : ∃ γ < ω1(x ∈ L[Xγm])}

is a set in ΣHC
m+2 , hence, a Σ1

m+3 set in L[G]. If x ∈ ωω∩L[G��<m] then let γ(x) be the least γ < ω1 such that 
x ∈ L[Xγm], and ν(x) < ω1 be the index of x in the canonical wellordering of ωω in L[Xγm]. We wellorder 
ωω ∩ L[G��<m] according to the lexicographical ordering of the triples 〈max{γ(x), ν(x)}, γ(x), ν(x)〉. �
33. Elementary equivalence

Here we prove the following elementary equivalence theorem for key generic extensions. The result is 
essentially (III) of Theorem 1.1.

Theorem 33.1. Assume that m < ω and a set G ⊆ PPP is PPP-generic over L. Then L[G��<m] is an elementary 
submodel of L[G] w.r.t. all Σ1

m+2 formulas with real parameters in L[G��<m].

Proof. Suppose that this is not the case. Then there is a Π1
m+1 formula ϕ(r, x) with r ∈ ωω∩L[G��<m] as the 

only parameter, and a real x0 ∈ ωω∩L[G] such that ϕ(r, x0) is true in L[G] but there is no x ∈ ωω∩L[G��<m]
such that ϕ(r, x) is true in L[G]. By a version of Proposition 18.1(ii), we have r = c0[G], where c0 is a small 
(PPP��<m)-real name. (See Section 31 on notation.) And there is a small PPP-real name c such that x0 = c[G].

By Theorem 28.3, there is a multitree p0 ∈ G such that

(1) p0 PPP-forces ‘ϕ(c0[G], c[G]) ∧ ¬ ∃x ∈ L[G��<m] ϕ(c0[G], x)’ over L;
(2) p0 forc ϕ(c0, c), that is, p0 forc #»

Π �γ0 ϕ(c0, c), where γ0 < ω1 — and we can assume that p0 ∈
MT( #»

Π �γ0) as well.

As c, c0 are small real names, there is an ordinal δ < ω1 satisfying

(3) |c0| ⊆ δ ×m, |c| ⊆ δ × ω , and |p0| ⊆ δ × ω ,

and we can enlarge γ0 , if necessary, using the equality | #»
Π | = ω1 × ω of Lemma 24.2, to make sure that

(4) δ × ω ⊆ | #»
Π �γ0|, that is, if η < δ and k < ω then 〈η, k〉 ∈ |Πα′ | for some α′ = α′(η, k) < γ0 .

We start from here towards a contradiction.
Let U consist of all multisequences of the form #»π��≥m , where

(A) #»π ∈ #      »sMF[ #»
Π ��<m], #»

Π �γ0 ⊂ #»π , and hence p0 ∈ MT( #»π) by (2);

and there is an ordinal ζ < ω1 and a transformation h ∈ PERMm−1 such that

(B) h = h−1 , NID(h) = D ∪ R, and h maps D onto R and R onto D , where D = δ × [m, ω), R =
{〈ξ,m− 1〉 : ν0 ≤ ξ < ν1}, and δ < ν0 < ν1 < ω1 ;
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(C) γ0 ≤ ζ < dom #»π and (h #»π)�≥ζ = #»π�≥ζ , or equivalently h( #»π(α)) = #»π(α) whenever ζ ≤ α < dom #»π .

It follows from Lemma 25.3 that U is a ΣHC
m+1 set (with #»

Π �γ0 , δ as parameters). Therefore by 23.4(ii) there 
is an ordinal γ < ω1 such that #»

Π �γ m-decides U .
Case 1: ( #»

Π �γ)��≥m ∈ U . Basically this means that there is a transformation h ∈ PERMm−1 such that 
(A), (B), (C) hold for h and #»π = #»

Π �γ , via ordinals δ < ν0 < ν1 and γ0 < ζ < γ as in (B), (C).
By Lemma 26.4 and (2), we have p0 forc #»

Π �γ ϕ(c0, c). We further get, by Theorem 30.1,
hp0 forch · ( #»

Π �γ) ϕ(hc0, hc), because ϕ is a LΠ1
n+1 formula and h belongs to PERMm−1 . However 

hc0 = c0 since |c0| ∩ NID(h) = ∅ by (B). Thus p′
0 forc #»

Π �γ ϕ(c0, c′) holds by Theorem 29.1 and (C), 
where c′ = hc, p′

0 = hp0 . Note that the common part |p0| ∩|p′
0| of the domains of p0, p

′
0 does not intersect 

NID(h) by (B) since |p0| ⊆ δ × ω by (3). It follows that p0, p
′
0 are compatible, basically p = p0 ∪ p′

0 is a 
multitree in MT( #»

Π �γ). Thus p � p′
0 and still p forc #»

Π �γ ϕ(c0, c′). It follows by Theorem 28.3 that

(5) p PPP-forces ϕ(c0[G], c′[G]) over L.

However |c′| ⊆ ω1 ×m by construction because |c| ⊆ δ × ω by (3), and hence c′[G] ∈ L[G��<m] is forced. 
Thus p PPP-forces ∃x ∈ L[G��<m] ϕ(c0[G], x) over L by (5), contrary to (1). The contradiction closes Case 1.

Case 2: negative decision, no multisequence in U extends ( #»
Π �γ)��≥m . We can assume that γ > γ0 . 

(Otherwise replace γ by γ0 +1.) Let ν0 be the lest ordinal, bigger than δ and satisfying | #»
Π �γ| ⊆ ν0×ω . Let 

ν1 = ν0 + ω . Then countable sets D = δ × [m, ∞) and R as in (B) are defined and D ∩R = ∅, so we can 
fix a transformation h ∈ PERMm−1 satisfying (B). Note that D ⊆ δ×ω ⊆ | #»

Π �γ| by (4) but R∩ | #»
Π �γ| = ∅

by the choice of ν0 .
Pick λ < ω1 such that λ > γ > γ0 . Then the multisequence #»

ϙ = #»
Π �λ clearly satisfies (A), (B) and 

extends #»
Π �γ . Our plan is now to slightly modify #»

ϙ in order to fulfill (C) as well, with ζ = γ . Such a minor 
modification consists in the replacement of the R-part of #»

ϙ above γ by the h-copy of its D-part.
To present this in detail, recall that #»

ϙ = #»
Π �λ = 〈Πα〉α<λ , where each Πα is a small multiforcing, whose 

domain dα = |Πα| ⊆ ω1 × ω is countable. If α < γ then put πα = Πα . Suppose that γ ≤ α < λ. Then 
D ⊆ |Πα| by (4). Define a modified multiforcing πα such that

(a) |πα| = dα ∪ R — note that D ⊆ dα ⊆ |πα| in this case because D ⊆ | #»
Π �γ| by (4) (as γ0 ≤ γ ), and 

hence D ⊆ dα = |Πα| (as α ≥ γ ),
(b) if 〈ξ, k〉 ∈ dα �R then πα(ξ, k) = Πα(ξ, k),
(c) if 〈ξ, k〉 ∈ D , so h(ξ, k) = 〈η, m − 1〉 ∈ R, then πα(η, m − 1) = Πα(ξ, k).

We claim that #»π = 〈πα〉α<λ is a multisequence, that is, if α < β < λ then πα � πβ . This amounts to 
the following: if 〈η, k〉 ∈ |πα| then πα(η, k) � πβ(η, k). Note that πα(η, k) = Πα(η, k) in case 〈η, k〉 /∈ R.

Thus it remains to check that πα(η, m − 1) � πβ(η, m − 1) whenever α < β < λ, 〈η, m − 1〉 =
h(ξ, k) ∈ R ∩ |πα|, and 〈ξ, k〉 ∈ D . If now α < γ then R ∩ |πα| = ∅ by the choice of ν0 , so it remains to 
consider the case when γ ≤ α. Then the pairs 〈ξ, k〉, 〈η, m − 1〉 belong to |πα| by construction, and we 
have πα(η, m − 1) = Πα(ξ, k) and πβ(η, m − 1) = Πβ(ξ, k). Therefore πα(ξ, m) � πβ(ξ, m) since #»

Π is a 
multisequence, and we are done.

Now we claim that the multisequence #»π = 〈πα〉α<λ satisfies (A), (B), (C). Indeed as the difference 
between each πα and the corresponding Πα is fully located in the domain R = {〈ξ,m− 1〉 : ν0 ≤ ξ < ν1}, 
we have #»π��<m−1 = #»

ϙ ��<m−1 , therefore #»π ∈ #      »sMF[ #»
Π ��<m]. We also note that #»π�γ = #»

ϙ �γ by construction, 
hence #»

Π �γ = #»
ϙ �γ ⊂ #»π . This implies (A).

We also have (B) by construction. We finally claim that (C) is satisfied with ζ = γ , that is, if γ ≤ α < λ

then h · πα = πα . Indeed we have D ∪R ⊆ |πα|, see (a). Now the invariance of πα under h holds by (b), 
(c).
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It follows that #»π��≥m ∈ U . In addition, #»π��≥m extends ( #»
Π �γ)��≥m , since #»

Π �γ ⊂ #»π . But this contradicts 
to the Case 2 assumption.

To conclude, either case leads to a contradiction, proving the theorem. �
34. Non-wellorderability

We finally prove that the reals are not wellorderable by a (lightface) analytically definable relation in 
PPP-generic extensions, that is, (IV) of Theorem 1.1.

Theorem 34.1. Assume that m < ω and a set G ⊆ PPP is PPP-generic over L. Then it is true in L[G] that the 
reals are not wellorderable by an analytically definable relation.

Proof. Suppose to the contrary that, in L[G], a Σ1
m+2 relation � strictly wellorders ωω , m ≥ 1. Let ψ(x, y)

be a parameter-free Σ1
m+2 formula, which defines �, so that x � y iff ψ(x, y) in L[G]. Note that � is 

essentially a Δ1
m+2 relation, since x � y ⇐⇒ y �� x ∧ x �= y .

Of all nonconstructible reals xξm[G], ξ < ω1 , there is a �-least one. We suppose that x0m[G] is such. (If 
it is some xξ0m[G], ξ0 �= 0, then the arguments suitably change in obvious way.) That is, x0m[G] � xξm[G]
whenever ξ > 0. Accordingly there is a multitree p0 ∈ G ⊆ PPP that PPP-forces, over L, that

(i) � (that is, the relation defined by ψ) is a wellordering of ωω , and
(ii) ∀ ξ > 0 (x0m[G] � xξm[G]).

Therefore, if ξ > 0 then p0 PPP-forces ( .
xξm[G] � .

x0m[G])− over L. (We make use of the real names .
xξk introduced by 13.6, 13.7.) By Corollary 28.4, there is an ordinal γ1 < ω1 , such that if ξ < ω1 then 
p0 forc #»

Π �γ1 ( .
xξm � .

x0m)− . We can enlarge γ1 , if necessary, using Lemma 24.2, to make sure that 1) 
〈0, m〉 ∈ | #»

Π �γ1|, that is, 〈0, m〉 ∈ |Πα′ | for some α′ < γ1 , and 2) p0 ∈ MT( #»
Π �γ1) = MT(Π<γ1); Π<γ1 =⋃cw

ξ<γ1
Πξ is a small multiforcing.

Let δ < ω1 be the least ordinal satisfying |Π<γ1 | ⊆ δ × ω ; then |p0| ⊆ δ × ω .
The remainder of the proof is somewhat similar to the proof of Theorem 33.1. If ξ < ω1 then let hξ ∈

PERMm be the permutation of 〈0, m〉 and 〈ξ, m〉, so that NID(hξ) = {〈0, m〉, 〈ξ, m〉}, hξ(0, m) = 〈ξ, m〉, 
hξ(ξ, m) = 〈0, m〉, hξ(η, n) = 〈η, n〉 for any pair 〈η, n〉 different from both 〈0, m〉 and 〈ξ, m〉. Let U consist 
of all multisequences of the form #»π��≥m , where

(A) #»π ∈ #      »sMF[ #»
Π ��<m], #»

Π �γ1 ⊂ #»π , and hence p0 ∈ MT( #»π) by construction;

and there exist ordinals ξ, ζ < ω1 such that

(B) δ < ξ < dom #»π ;
(C) γ1 ≤ ζ < dom #»π and (hξ

#»π)�≥ζ = #»π�≥ζ (a common tail!), or equivalently hξ · ( #»π(α)) = #»π(α) whenever 
ζ ≤ α < dom #»π .

It follows from Lemma 25.3 that U is a ΣHC
m+1 set (with #»

Π �γ1 as a parameter). Therefore by 23.4(ii) there 
is an ordinal γ < ω1 such that #»

Π �γ m-decides U .
Case 1: ( #»

Π �γ)��≥m ∈ U . Basically this means that γ > γ1 and there are ordinals ξ < ω1 and ζ < γ

such that (A), (B), (C) hold for ξ and the multisequence #»π = #»
Π �γ . By Lemma 26.4 and the choice 

of γ1 , p0 forc #»
Π �γ ( .

xξm � .
x0m)− . This implies p′

0 forchξ( #»
Π �γ) ( .

x0m � .
xξm)− by Theorem 30.1, where 

p′
0 = hξp0 , because ( .

x0m � .
xξm)− is a LΠ1

m+2 formula and hξ belongs to PERMm . We conclude that 
p′

0 forc #»
Π �γ ( .

x0m � .
xξm)− by (C) and Theorem 29.1.
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Note that 〈ξ, m〉 /∈ |p0| by (B). It follows by the definition of hξ that p0, p
′
0 are compatible, basically 

p = p0 ∪ p′
0 is a multitree in MT( #»

Π �γ) and p � p0 , p � p′
0 . Thus both p forc #»

Π �γ ( .
x0m � .

xξm)− and 
p forc #»

Π �γ ( .
xξm � .

x0m)− hold. Therefore p PPP-forces both (x0m[G] � xξm[G])− and (xξm[G] � x0m[G])−

over L by Theorem 28.3. This is a contradiction since p0 , a weaker condition, forces � to be a wellordering. 
The contradiction closes Case 1.

Case 2: negative decision, no multisequence in U extends ( #»
Π �γ)��≥m . We can assume that γ > γ1

(otherwise replace γ by γ1 + 1). The set d = | #»
Π �γ| =

⋃
α<γ |Πα| ⊆ ω1 × ω is countable, hence there is an 

ordinal ξ , δ < ξ < ω1 , such that 〈ξ, m〉 /∈ d. Finally pick an ordinal λ, γ < λ < ω1 . Then #»
ϙ = #»

Π �λ (as #»π ) 
and ξ clearly satisfy (A) and (B), and #»

ϙ extends #»
Π �γ . Let’s modify #»

ϙ a little bit, in order to fulfill (C) as 
well.

As above, #»
ϙ = #»

Π �λ = 〈Πα〉α<λ , each Πα is a small multiforcing, and its domain dα = |Πα| ⊆ ω1 × ω is 
countable. If α < γ then put πα = Πα . Suppose that γ ≤ α < λ. Then α ≥ γ1 , and hence 〈0, m〉 ∈ |Πα| by 
the choice of γ1 . Define a modified multiforcing πα such that |πα| = dα∪{〈ξ, m〉}, if 〈η, k〉 ∈ dα�{〈ξ, m〉}
then πα(η, k) = Πα(η, k), and finally πα(ξ, m) = Πα(0, m).

We claim that #»π = 〈πα〉α<λ is a multisequence, that is, if α < β < λ then πα � πβ . This amounts to the 
following: if 〈η, k〉 ∈ |πα| then πα(η, k) � πβ(η, k). Note that πα(η, k) = Πα(η, k) whenever 〈η, k〉 �= 〈ξ, m〉. 
Thus it remains to check that πα(ξ, m) � πβ(ξ, m) given α < β < λ such that 〈ξ, m〉 ∈ |πα|. If α < γ then 
|πα| = |Πα| = dα by construction, and hence 〈ξ, m〉 /∈ dα by the choice of ξ . It remains to consider the case 
γ ≤ α < λ. Then 〈0, m〉 ∈ dα (see above), hence the pairs 〈0, m〉, 〈ξ, m〉 belong to |πα| by construction, 
and then obviously belong to |πβ | as α < β . Now πα(ξ, m) = Πα(0, m) and πβ(ξ, m) = Πβ(0, m), and we 
have πα(ξ, m) � πβ(ξ, m) since #»

Π is a multisequence.
Now we claim that the multisequence #»π = 〈πα〉α<λ satisfies (A), (B), (C) with ζ = γ . If α < λ then the 

difference between Πα and πα is located in the one-element domain {〈ξ, m〉}, therefore πα��<m = Πα��<m . 
It follows that #»π��<m = ( #»

Π �λ)��<m , hence #»π ∈ #      »sMF[ #»
Π ��<m]. We further have #»π�γ = #»

Π �γ by construction. 
Thus #»

Π �γ ⊂ #»π , hence #»
Π �γ1 ⊂ #»π , and we have (A).

We also have (B) and (C) (with ζ = γ ) by construction.
Thus #»π��≥m ∈ U . In addition, #»π��≥m extends ( #»

Π �γ)��≥m , since even more #»
Π �γ ⊂ #»π by construction. 

But this contradicts to the Case 2 assumption.
To conclude, either case leads to a contradiction, proving the theorem. �

35. Proof of the main theorem

Proof (Theorem 1.1). We consider a PPP-generic extension L[G] of L and present it in the form L[G] = L[X]
as in Section 31, where X = 〈xξk〉〈ξ,k〉∈ω1×ω , and each xξk = xξk[G] is a real in 2ω ∩L[G]. We also consider 
the subextensions L[G��<m] = L[〈xξk〉ξ<ω1∧k<m] of L[G] = L[X]. Then (I) and (II) of Theorem 1.1 hold 
by Corollary 32.3, (III) holds by Theorem 33.1, and finally (IV) holds by Theorem 34.1. �
36. Problems

It would be interesting to prove that the model L[G] = L[X] admits no projective (= analytically 
definable with real parameters) wellorderings of the reals. The argument in Section 34 does not go through 
in this case.

Another problem emerges from the fact that the partial wellorderings defined in the proof of Corollary 32.3
can be glued in L[G] to form an OD (ordinal-definable) wellordering of the whole set ωω ∩ L[G]. Is there 
a generic extension of L, in which the full basis theorem (as in Theorem 1.1) holds, but there is no OD
wellordering of the reals?
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