
RESEARCH ARTICLE
www.advancedscience.com

Stereotyped Subclones Revealed by High-Density Single-Cell
Lineage Tracing Support Robust Development

Xiaoyu Zhang, Zizhang Li, Jingyu Chen, Wenjing Yang, Xingxing He, Peng Wu, Feng Chen,
Ziwei Zhou, Chenze Ren, Yuyan Shan, Xiewen Wen, Vassily A. Lyubetsky, Leonid Yu. Rusin,
Xiaoshu Chen, and Jian-Rong Yang*

Robust development is essential for multicellular organisms. While various
mechanisms contributing to developmental robustness are identified at the
subcellular level, those at the intercellular and tissue level remain
underexplored. This question is approached using a well-established in vitro
directed differentiation model recapitulating the in vivo development of lung
progenitor cells from human embryonic stem cells. An integrated analysis of
high-density cell lineage trees (CLTs) and single-cell transcriptomes of
differentiating colonies enabled the resolution of known cell types and
developmental hierarchies. This dataset showed little support for the
contribution of transcriptional memory to developmental robustness.
Nevertheless, stable terminal cell type compositions are observed among
many subclones, which enhances developmental robustness because the
colony can retain a relatively stable composition even if some subclones are
abolished by cell death. Furthermore, it is found that many subclones are
formed by sub-CLTs resembling each other in terms of both terminal cell type
compositions and topological structures. The presence of stereotyped
sub-CLTs constitutes a novel basis for developmental robustness. Moreover,
these results suggest a unique perspective on individual cells’ function in the
context of stereotyped sub-CLTs, which can bridge the knowledge of the atlas
of cell types and how they are organized into functional tissues.
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1. Introduction

Developmental robustness, also known as
canalization,[1] refers to the phenomenon
that biological development outcomes
remain largely unchanged despite envi-
ronmental or genetic perturbations.[2,3]

In addition to being an essential feature
of complex organisms, developmental
robustness also has profound implications
for evolution[4,5] and disease.[6] Decades
of studies have identified a variety of
mechanisms that contribute to develop-
mental robustness, including chaperone
proteins,[7] microRNAs,[8–10] morphology-
stabilizing genes,[11,12] feedback loops,[13]

molecular redundancies[14] and defect-
buffering cellular plasticity.[15] While
significant advances have been made at the
molecular/intracellular level, other mech-
anisms that ensure robust development
at the intercellular/tissue levels remain
poorly understood. A couple examples
include the nonlinear relationship between
key regulators’ gene expression and em-
bryonic structures,[16] and the robustness
to cell death observed for determinative
developmental cell lineages.[17]
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The developmental process encompasses both the history of
cell divisions and state transitions.[18,19] It is thus possible to ex-
amine development, as well as its robustness, from two perspec-
tives. In the first, cellular states, such as single-cell transcrip-
tomes, were recorded during various developmental stages and
used to construct a continuum of states known as an epigenetic
landscape[20,21] or state manifolds.[18] In the second, all cell divi-
sions since the zygote or some progenitor cells can be recorded
and used to construct a cell lineage tree (CLT).[22] This CLT-based
perspective, however, has been much less studied due to the dif-
ficulty in obtaining CLTs in complex organisms. Nonetheless,
recent technological advancements in CLT reconstruction, par-
ticularly those utilizing genomic barcoding,[19] have led to new
opportunities for joint analyses of these two perspectives. For
example, scGESTALT simultaneously determined cell states by
single-cell transcriptomics and the correspondingCLT via lineage
barcodes.[23] Similar methods[18,19] provide a combined view of
single-cell states and CLTs, enabling CLT-based analyses of ro-
bustness for different developmental models.
One of the main manifestations of developmental robust-

ness is the generation of adequate numbers of cells of var-
ious types in an appropriate cellular composition, especially
when they work together as a functional unit. For example,
the Drosophila peripheral nervous system contains thousands of
identical mechanosensory bristles,[24] each consisting of exactly
one hair cell, one socket cell, one sheath cell and one neuron.[25]

Another well-known example is the functional unit of the en-
docrine pancreas, the islet, which has been shown inmice to con-
sist predominantly (≈90%) of 𝛽 cells at the core and ɑ and 𝛿 cells
in the periphery.[26] In identifying potential mechanisms that
contribute to such a manifestation of developmental robustness,
two CLT-based studies are particularly relevant. In the first, it was
found that development of mammalian organs is preceded by
significant mixing of multipotent progenitor cells.[27] Therefore,
most organs have a polyclonal origin that ensures sufficient num-
ber of cells even some progenitors failed.[27] In the second, CLT
of cortical development revealed stereotyped development giving
rise to monophyletic clades of mixed cell types.[28] On the basis
of these observations, we hypothesized that the combination of
polyclonal origin and stereotyped development facilitates the ro-
bust development of adequate numbers of cells with an appropri-
ate cellular composition. It is imperative to note that as our hy-
pothesis revolves around the above-mentioned functional units,
CLTs with sufficient density (fraction of cells sampled) are essen-
tial, otherwise stereotyped development cannot be detected when
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only a very small fraction of cells was sampled from each func-
tional unit. In addition, a high resolution CLT would also reveal
how stereotyped development occurs, such as mitotic-coupling
versus population-coupling development[18] and whether epige-
netic memory[29] plays a role.
To this end, we obtained the single-cell transcriptomes and

high density (capturing > 10% cells in the colony) CLTs of three
in vitro cell cultures that mimic the in vivo development of hu-
man embryonic stem cells (hESCs) into lung progenitors.[30] Ac-
cording to a joint analysis with another in vitro culture that
retained stemness, single-cell transcriptomes were clearly sep-
arated into clusters of undifferentiated and various differenti-
ated cell types, and the CLTs showed significant signals of di-
vergence among subclones consistent with known sequential in-
volvement of Bmp/TGF-𝛽, Wnt and other endoderm differen-
tiation related pathways. Multiple monophyletic groups of cells
with stable cellular compositions were revealed by this CLT, di-
rectly supporting the existence of polyclonal stereotyped devel-
opment. Based on the assumption that cells work collectively as
functional units composed of similar compositions of various
cell types, the stereotyped polyclonal developmental programs
observed produce subpopulations with properly mixed cell types,
thereby ensuring the formation of more functional units in the
event of random cell deaths compared to non-stereotyped devel-
opment, and therefore enhances robustness. Furthermore, we
found that some sub-CLTs with similar topological structures and
terminal cell type compositions are significantly overrepresented,
suggesting that at least some stereotyped development is driven
by a mitotic-coupling process. Together, we demonstrate the ex-
istence of stereotyped lineage trees, a feature of CLTs that likely
contributes to stable cellular composition and therefore develop-
mental robustness.

2. Results

2.1. Reconstructing High-Density Cell Lineage Trees for Directed
Differentiation of Primordial Lung Progenitors

We aimed to determine the CLT of embryonic stem cells un-
dergoing in vitro directed differentiation toward lung progen-
itors according to a well-established protocol recapitulating in
vivo development.[30] This in vitro model of directed differenti-
ation was chosen for several reasons. First, cells cultured in a
small petri dish have a relatively homogenous environment, so
that transcriptome divergence caused by environmental factors,
or phylogeny-independent convergence due to niche-specific sig-
nals is unlikely. Second, the development trajectory of embry-
onic stem cells to the lung is well-known, such that the in vitro
cell culture can be monitored to ensure that they closely mimic
physiological situation. Indeed, our implementation of the pro-
tocol can reach the alveolar epithelial cells (AEC2s) fate after 20
days of directed differentiation (Figure S1A and Video S1, Sup-
porting Information). Third, in vitro culture allows us to induce
Cas9 expression and therefore initiate the editing of the lineage
barcode concurrently with the directed differentiation (Figure
S1B,C, Supporting Information). Last but not least, it allows bet-
ter control over the number of cells within the colony assayed for
single-cell transcriptomes and CLTs. In particular, our cell cul-
ture begins with ≈10 hESCs and ends with ≈5000 cells on day
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10 (Figure S1B, Supporting Information), of which a relatively
high percentage can be captured in downstream experimental
pipelines of 10x Chromium. The ten-day directed differentia-
tion covers three critical phases of lung development, including
definitive endoderm (DE), anterior foregut endoderm (AFE) and
NKX2-1+ primordial lung progenitor (PLP)[30] (Figure 1A; Figure
S1A,B, Supporting Information).
To assess the CLT of the cultured cells, we employed a modi-

fied scGESTALT method,[23,31] which combines inducible cumu-
lative editing of a lineage barcode array by CRISPR-Cas9 with
large-scale transcriptional profiling using droplet-based single-
cell RNA sequencing. Briefly, we initiated the editing of the lin-
eage barcode concurrently with the directed differentiation using
a Cas9 inducible by Doxycycline (Dox, Figure S1C, Supporting
Information). We used an EGFP-fused cell lineage barcode that
consists of 13 editing sites, each of which is targeted by one of
four mCherry-fused sgRNAs each containing 2 to 3 mismatches
in order to avoid large deletions resulting from excessive edit-
ing (Figure 1A; Figure S1D–F, Supporting Information). These
sgRNAs were designed to not target any part of the normal hu-
man genome other than the integrated lineage barcode (Table S1,
Supporting Information, see Experimental Section). The hESCs
carrying the lineage tracing system were subjected to the ten-
day directed differentiation, then the colonies were processed for
cDNA libraries using the standard 10x Chromium protocol. Each
cDNA library was split into two halves, with the first half sub-
jected to conventional RNA-seq for single-cell transcriptomes,
and the other half subjected to amplification of the lineage bar-
code followed by PacBio Sequel-basedHiFi sequencing of the lin-
eage barcode (Figure 1A).
We obtained single-cell transcriptomes of

3576/4400/1456/5659 cells respectively from three differen-
tiating colonies CBRAD5-A1/G11/G2 and one parallel non-
differentiating hESC colony, all of which appeared to have
good quality (Figure S2A,B and Table S1, Supporting Informa-
tion). The UMAP clustering of the single-cell transcriptomes
revealed a large fraction of cells from differentiating/CBRAD5
colonies separated with those from hESC colonies, clearly in-
dicating their differentiated cell states (Figure 1B). NKX2-1+

cells accounted for an average of 11.03% of the cells in each
differentiating sample, which is highly consistent with pre-
vious findings.[32] We identified 12 major functional clusters
within the sampled cells (Figure 1C,D and See Experimental
Section). According to the average expression of pluripotent
gene (NANOG, POU5F1), endoderm progenitor gene (GATA6)
and lung progenitor gene (NKX2-1, SHH, CD47), these clusters
were defined as NANOGhiPOU5F1hi (C1), NANOGlowPOU5F1hi

(C2), NANOGlowPOU5F1low (C3), NANOGhi/lowPOU5F1hi

(C4), CD47hi (C5), CD47low (C6), GATA6hiSHHhiCD47low (C7),
GATA6lowNKX2-1negSHHnegCD47neg (C8), GATA6hiNKX2-1hi

CD47hi (C9), GATA6hi (C10). Below, they are also more broadly
categorized into the less differentiated spontaneous state (R1
and R2) or pluripotent state (C1/C2/C3/C4), and the more
differentiated progenitor state (C5/C6/C7/C8/C9/C10). These
clusters displayed transcriptomic states largely compatible with
known cell types occurred during the directed differentiation[33]

(Figure 1D,E; Figure S2C,D, Supporting Information), and were
differentially distributed between hESC and CBRAD5 samples
(Figure 1F), thereby suggesting successfully induced differenti-

ation and accurate measurement of single-cell transcriptomes.
After confirming the sequencing quality of PacBio (Table S3 and
Figure S3A, Supporting Information), the CLT of each sample
was constructed based on the lineage barcode using maximum
likelihood method (Figure 1A,G; See also Experimental Section,
Figures S3 and S4 and Tables S4–S6, Supporting Information).
The hierarchical population structures of the colonies were
complex and intricate. In support of the accuracy of the CLT,
cells more closely related to one another displayed more sim-
ilar lineage barcode alleles (Figure 1H), and are more likely
to share yet-to-decay transcripts of ancestral lineage barcode
(Figure 1I). In conclusion, our experiment reliably captured the
coarse-grained phylogenetic relationship of the cells within each
colony.

2.2. The Cell Lineage Trees Recapitulate Key Features of the
Transcriptome Divergence

To better elucidate the divergence between the single-cell tran-
scriptomes in the context of the observed clusters, we identi-
fied differentially expressed genes (DEGs) in previously pub-
lished microarray-based transcriptome [32] data of samples from
six timepoints of directed differentiation toward PLP (Figure 2A).
Note here that despite being sampled on day12, the neural NKX2-
1+ transcriptome has been shown to be most similar to that of
day0 hESCs.[32] The Gene Ontology (GO) terms enriched with
these microarray-based stage-specific DEGs (Table S7, Support-
ing Information) were then individually examined for overall ac-
tivities in our single-cell transcriptomes by the member genes’
average expression levels in each cluster (Figure 2B and See Ex-
perimental Section). For pluripotent stage cells (C1/C2/C3/C4),
significantly enhanced activities were found among GO terms
enriched with DEGs of day 0/3 samples (including neural NKX2-
1+) (Figure 2B). The same observations weremade for progenitor
stage cells C6/C10 in GO terms related to day3 samples, as well
as C7/C9 cells in GO terms related to day6/day15 lung samples
(Figure 2B). These results indicate that the single-cell transcrip-
tomes recapitulated major differentiation stages of the in vitro
PLP differentiation.
Our data also permit us to resolve divergence among sub-CLTs.

It is commonly understood that the developmental process in-
volves an increase in transcriptional divergence among cells and
a reduction of developmental potentials in individual cells. An-
alyzing single-cell transcriptomes among sub-CLTs should re-
veal these patterns with fine resolution, especially when using
high-density CLTs as we obtained. As an initial assessment for
whether there is transcriptional divergence among sub-CLTs in
the differentiating samples, we calculated for each sub-CLT, the
CV (coefficient of variation) of the pseudotime estimates[34] (see
Experimental Section) of all its tips. When compared with their
null expectations generated by randomly shuffling all tips, ma-
jority of these CVs were significantly smaller (Figure 2C), sug-
gesting cells in the same sub-CLT are more similar than ex-
pected by the full range of transcriptional variation, an obser-
vation directly supports the transcriptional divergence among
sub-CLTs.
For a more detailed analyses, we quantified the developmen-

tal potential of an internal node by the multivariate variance
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Figure 1. Cell lineage tracing for directed differentiation of primordial lung progenitors A) Schematic diagram illustrating the overall experimental
process. The 10-day directed differentiation from several Lineage Tracer hESCs to primordial lung progenitors (PLP) was conducted along out with
simultaneous lineage tracing utilizing inducible CRISPR-Cas9 editing of an expressed lineage barcode (13 editable sites). The resulting colony was assayed
for single-cell transcriptomes by Nova-seq and lineage barcode by PacBio HiFi-seq, which were used to reconstruct CLTs with single-cell transcriptomes
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among its descendant single-cell transcriptomes, which then al-
lowed us to perform PERMANOVA-based statistical tests (PER-
mutational Multivariate Analysis Of VAriance, see Experimental
Section) for the transcriptomic divergence. Briefly, by subtract-
ing from the developmental potential of a focal node by the sum
of the potentials of all its daughter nodes, we estimated the de-
gree of divergence that occurred during the growth of the focal
node (Figure 2D). Using the degree of divergence seen in the
hESC sample as the null distribution, an average of ≈65% in-
ternal nodes of the CBRAD5 samples displayed significant diver-
gence (Figure 2E), whereas only≈5% internal nodes displayed di-
vergence in the HESC sample. When such degree of divergence
is depicted against normalized depths (see Figure S5A, Support-
ing Information and Experimental Section) of the correspond-
ing nodes, the CBRAD5 samples consistently showed rapid diver-
gence that is not seen in HESC samples (Figure 2E). Please note
that divergence here is not equivalent to differentiation, since two
sister cells differentiating into the same fate would not reveal any
divergence for their mother cell. In other words, divergence im-
plies asymmetric division creating daughter cells of different de-
velopmental potentials, whereas differentiation can occur during
symmetric division giving rise to a pair daughter cells that both
activate a particular function or differentiate in the same direc-
tion.
By applying the above analysis to gene subsets associated with

specific GO terms, it is possible to elucidate the progression of
divergence in the corresponding cellular functions. As shown
in several key GO terms including Wnt signaling (Figure 2B),
the cumulative growth in the fraction of internal nodes with sig-
nificant divergence at various normalized depths is also highly
reproducible among CBRAD5 samples, and it differs from the
hESC sample (Figure 2F; Figure S5B, Supporting Information).
Additionally, we examined whether our CLT data could resolve
the temporal order of divergence completion for different cellu-
lar functions. To this end, we traced all root-to-tip paths on the
CLTs and calculated the average depth of the last (furthest from
the root) internal node exhibiting significant divergence on a GO
term. As a result, the normalized depths of divergence comple-
tion appear consistent with known temporal orders of key devel-
opmental events (Figure 2G). Collectively, these results indicate
that our dataset of single-cell transcriptomes and CLTs allowed
the elucidation of cellular development with reasonable resolu-
tion.

2.3. Transcriptional Memory has Limited Contribution to
Developmental Canalization

Following confirmation of the CLT data’s resolution, we began
searching for contributors to developmental robustness using
CLTs. A first hypothesis is that transcriptional memory may
have constrained gene expression variation during development,
which would canalize transcriptomic state during development
and contribute to robustness. In this context, transcriptional
memory is the phenomenon of cells closely related on the CLT
displaying similar expression levels due to the inheritance of
the same cellular contents (proteins/transcripts) and/or epige-
netic states from recent common ancestors.[29,31,35,36] Neverthe-
less, gene expression can also be restricted by transcriptional
regulation that has nothing to do with cellular inheritance, such
as negative feedback[37] and denoising promoters.[38] If the tran-
scriptional memory dominates the experimented differentiation,
one would expect all cells of the same type would have been clus-
tered into an exclusive sub-CLT, which is clearly not the case
(Figure 1G). For a quantitative analysis, we reasoned that the CV
of single-cell expression levels within real sub-CLTs should reflect
the combined effect of transcriptional memory and inheritance-
independent regulation (Figure 3A top), whereas that of CLTs ran-
domized by shuffling cells of the same type at different lineage
positions should reflect only inheritance-independent regulation
but not transcriptional memory (Figure 3A bottom). It is there-
fore possible to isolate the contribution of transcriptional mem-
ory to the expression constraint by contrasting the CV of real CLTs
with that of randomized CLTs (Figure 3A and Experimental Sec-
tion), which is hereinafter referred to as the “memory index”. We
note that this definition of memory index is similar to that used
in previous transcriptional memory-related studies.[29,39]

For each cell type, we calculated an overall memory index for
each gene in each sub-CLT (Figure 3B; Figure S6A,B, Supporting
Information). The top (10%) memory indices (Figure 3C) were
found to be enriched in pluripotent cell types (C1/C2/C3/C4)
as compared to progenitor cell types (C6/C7/C9/C10) (t-test P
= 0.0039, Figure 3D), suggesting that transcriptional memory
is more important to maintaining pluripotency than differentia-
tion. Because transcriptionalmemory ismediated by cellular con-
tents inherited from mother to daughter cells, such as transcrip-
tion factors, we hypothesized that these genes with top mem-
ory indices should exhibit significant overlap with those regu-

assigned to tips. B) The variation among single-cell transcriptomes captured in the four samples (one non-differentiating “HESC” sample and three
differentiating samples) as shown by UMAP. A data point represents a cell, which is colored based on its source sample on the left panel and the
expression level of NKX2-1 (the marker for PLP) on the right panel. C) Major clusters of the single-cell transcriptomes are differentially colored and
labeled by their corresponding cell types. D) The average expression levels of NKX2-1 in each cell type. The error bars indicate the standard error among
single cells. E) In the 12 major cell types (y axis), differentially expressed genes (DEGs) found in bulk samples of specific developmental stages preceding
PLP (x axis) were examined for their average expression levels (dot color) and fraction of cells that expressed the gene (dot size). See also Figure S2C
(Supporting Information). F) For each of the four samples (x axis), the percentage of cells belonging to each type was shown. The cell types are colored
identically to those in panel C. G) Reconstructed CLTs are visualized as circle packing charts for the four samples. Circles represent sub-CLTs, whose
sizes indicate the number of terminal cells in the sub-CLTs, while the color (same as panel C) indicates the fraction of terminal cells belonging to each
cell type. See Figure S3B (Supporting Information) for their tree representation. H) A pair of cells’ normalized lineage distance (the number of internal
nodes on the path from one cell to the other, divided by the maximal lineage distance found in the sample) is highly correlated with the normalized allelic
distance of their lineage barcodes (the total number of target sites that differed from the reference, divided by the maximum value of 26). All cell pairs
were separated into five groups based on their normalized lineage distance (x axis), and the distribution of normalized allelic distances (y axis) within
each group is shown in the form of a standard boxplot, with the mean value indicated by the white point. On top, Spearman’s 𝜌 and P value for raw data
are indicated. I) The probability of finding a common ancestral allele (as yet-to-decay transcripts) between a pair of single-cell tips decreased as their
normalized lineage distance (x axis) increased. The error bars indicate the standard error estimated by bootstrapping the cell pairs for 1000 times.
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Figure 2. The transcriptome divergence among cell type clusters and among subclones A) Heatmap for expression levels of DEGs extracted from
microarray-based transcriptomes of specific developmental stages (color bars on top) of the directed differentiation.[32] B) Functional activities of GO
terms (x axis. Full list in Table S7, Supporting Information) enriched with stage-specific DEGs were shown for every cluster (y axis) identified in our
samples. Here functional activity as indicated by the color scale was estimated by the average Z-score-transformed expression of all genes annotated
with the GO term. Some important GO terms are boxed and labeled by dashed lines, and are further analyzed in panel (F) and Figure S5B (Supporting
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lated by some related transcription factors. Thus, we tested these
genes for enrichment in genes responsive to genetic perturba-
tion of individual transcription factors[40] (see Experimental Sec-
tion), and made three observations. First, some transcription fac-
tors with known involvement in the experimented differentia-
tion, such as NANOG/MYC/TFE3 in the pluripotent C1[41,42] and
MECOM/KLF5/GATA6 in progenitor C6/C7/C9,[32,43–46] indeed
exhibit significant enrichment of the genes with top memory in-
dex. This suggests that transcriptional memory contributed to
the regulatory role of these transcription factors, for instance,
the ability of NANOG/MYC/TFE3 tomaintain pluoripotency and
the ability of MECOM/KLF5/GATA6 to promote differentiation
into lung progenitors. Second, the union of the top ten transcrip-
tion factors from every cell types is significantly enriched in pluo-
ripotency or differentiation regulation-related GO terms (Figure
S6C, Supporting Information), again supporting the contribu-
tion of transcriptional memory to related pathways. Closer exam-
ination of specific transcription factors assists in resolving spe-
cific regulatory functions mediated by transcriptional memory,
such as Pyruvate metabolism[47–49] being regulated by NANOG
(Figure S6D, Supporting Information). Third, the enrichment
was generally stronger for pluripotent cell types than it was for
progenitor cell types (Figure 3E), a pattern again suggesting that
transcriptional memory only played a minor role in differen-
tiation, which is at least not as significant as in maintaining
pluripotency.

2.4. Stable Cell Type Compositions Across Sub-Clones

Observations above indicate that terminal cells within a sub-
CLT have restricted fates that are not dominated by transcrip-
tional memory from the common ancestor (root of the sub-CLT).
This observation automatically prompted an assessment of the
cell fate restriction imposed by inheritance-independent regu-
lation, as well as its contribution to the robustness of devel-
opmental processes. We reasoned that inheritance-independent
regulation should result in multiple similarly restricted sub-CLTs
dispersed across the entire CLT. Therefore, we calculated the
terminal cell type composition for each sub-CLT found in the
CBRAD5 samples and compared it with the overall composi-
tion of the corresponding full CLT (see Experimental Section).
Intriguingly, the cell type compositions of sub-CLTs are usually
more similar to those of the full CLTs than expected in random-
ized CLTs (Figure 4A–C). A closer examination of some sub-CLTs

reveals a highly stable terminal cell type composition. For exam-
ple, there are 35 sub-CLTs that generated subclones with highly
stable (<10% deviation) proportions of 0.13, 0.39, 0.13, and 0.18
respectively for C6, C7, C9, and C10 (the top four most abun-
dant progenitor cell types), which corresponds to the average pro-
portion of these cell types in the three differentiating samples
(Figure 4D). This observation suggests that a stereotyped devel-
opmental programmay exist that produces subclones with highly
similar compositions of cell types derived from multiple ances-
tral cells.
The observed polyclonal stereotypic development can be un-

derstood from two perspectives. On the one hand, the consis-
tent execution of such a developmental programacross subclones
may be by itself a manifestation of robust genetic and/or molec-
ular regulation. On the other hand, stable cell type compositions
across subclones might enhance developmental robustness. We
examined this latter perspective by simulating a CLT for the de-
velopment of a single cell into an “organoid” consisting of 1024
cells (i.e., 10 cell cycles) comprised of four types (namely 𝛼, 𝛽,
𝛾 , and 𝛿) of cells in a 1:1:2:4 ratio. These cells formed 128 func-
tional units each consisting of one 𝛼 cell, one 𝛽 cell, two 𝛾 cells,
and four 𝛿 cells. Normally developed organoid consisting of 128
functional units (assuming sufficient cellular migration) are con-
sidered 100% functional. Meanwhile, CLT perturbed by random
cell deaths (see below), which results in the loss of some ancestral
cells and all their descendants, has a functional capacity defined
as the fractional survival rate of functional units with proper cel-
lular composition. This design was inspired by the observation
that functional units in living tissues, such as mouse pancreatic
islets, display a highly stable cell type composition as the outcome
of normal development.[26] To generate the normal (death-free)
CLT with the predetermined number of cells of each type, two
models were used. The first “random” model assigns each cell
to a random tip of the CLT regardless of its cell type (Figure 4E
left). A second “stereotyped” model defines all eight-tip sub-CLTs
as strictly consisting of one 𝛼 cell, one 𝛽 cell, two 𝛾 cells, and
four 𝛿 cells, but different placements of these cells are allowed
on the tips (Figure 4E right). A total of 1000 normal CLTs were
generated under each model, and the functional capacity of each
CLT was determined by exposing all (internal or terminal) cells
to various rates of random death. When compared to the ran-
dom model, we found that CLTs generated with the stereotyped
models always formed more functional units, or in other words,
were more robust against cell deaths (Figure 4F). Such enhanced
developmental robustness is more evident at higher rate of cell
death (Figure 4F). Collectively, these results suggest that the ob-

Information). C) A coefficient of variation (CV) was calculated using pseudotime estimates of single-cell transcriptomes within a sub-CLT. These CVs
were plotted for all real sub-CLTs (y axis) and corresponding randomized sub-CLTs generated by shuffling all tips (x axis) in each differentiating sample
(name on top). As the dashed line indicates x = y, sub-CLTs with CVs lower than random expectation (i.e., restricted variation) will appear below it.
Each panel includes the number of CLTs above and below the dashed line, which was also tested against the binomial expectation (50% below the line)
and yielded the P values on top. D) Schematic diagram for the PERMANOVA-based estimation of transcriptome divergence for an internal node (see
Experimental Section). E) Cumulative fraction (y axis) of internal nodes exhibiting significant transcriptome divergence as the normalized depth (x axis)
considered increased. Results from different samples were shown with different colors, as indicated by the color legend. F) Same as panel E except that
the analyses were limited to specific GO terms indicated on top of each panel. G) We calculated the normalized depths (y axis) at which the divergence
of specific functions is completed. GO terms enriched of marker genes in representative developmental stages (x axis and colors) were examined. Dots
represent GO terms and triangles represent the average depth within the same-color group. Number of GO terms are 37 for day0 iPSC, 19 for day3/day6
endoderm, 71 for day12 neural NKX2-1+, and 52 for day15 lung NKX2-1+/−. Significant P values from between-groupWilcoxon Rank Sum test are labeled
on top.
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Figure 3. Limited contribution of transcriptionalmemory in differentiation A) Schematic diagram for the CLT-based estimation of transcriptionalmemory.
B) Expression variability in the real CLT (y axis) compared to that in the randomized CLT (y axis). Each dot represents a gene in a cell type. Dot color shows
the fraction of cells within the cell type that express the gene, as indicated by the color scale on top. C) A stacked histogram showing the distribution of
the memory indices calculated. A filled bar represents those estimated from pluripotent cell types and an empty bar represents those estimated from
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served stable cell type composition among subclones contributed
to developmental robustness.

2.5. Stereotyped Cell Lineage Trees Underlie Stable Cell Type
Compositions

We next seek further evidence for the existence of stereotyped
developmental programs based on the CLT data at hand. Specif-
ically, we hypothesized the existence of multiple sub-CLTs with
highly similar topology and terminal cell types. Note that the sim-
ilarity in sub-CLT topology is an additional requirement beyond
the similarity of cellular compositions observed above, and the
similarity in both topology and cellular composition is compat-
ible with previously proposed “mitotic coupling” mode of cell
state-lineage relationship.[18] As recurrent sub-sequences of bi-
ological sequences, such as transcription factor binding sites, are
usually referred to as “sequence motifs”, we call our target re-
current sub-CLTs “tree motifs” or simply “motifs”. In fact, some
tree motifs in development have been well characterized. For ex-
ample, the Drosophila peripheral nervous system contains thou-
sands of identical mechanosensory bristles.[24] Each of the bris-
tles is formed by a sub-CLT rooted at a sensory organ precursor
cell. This sub-CLT encompasses two cell cycles, the first of which
produces PIIa and PIIb cells. Then PIIa divides to yield one shaft
cell and one socket cell, followed by PIIb, which gives rise to one
neuron and one sheath cell.[24] Therefore, this specific tree motif
appears thousands of times in Drosophila’s developmental CLT.
Furthermore, themeiosis process, in which one germ cell divides
into four gametes, is another example of a tree motif in develop-
mental CLTs.
Just as sequencemotifs are identified by comparisons between

(sub-)sequences, tree motifs should also be identified through
comparisons between (sub-)CLTs. In order to identify potential
tree motifs in the CLT of the differentiating samples, we uti-
lized Multifuricating Developmental cEll Lineage Tree Align-
ment (mDELTA), an algorithmwe previously developed for quan-
titative comparisons and alignments betweenCLTs[50] (Figure 5A,
see Experimental Section and Text S1, Supporting Information).
Using a dynamic programming scheme analogous to that em-
ployed by classical algorithms looking for similarities between
biological sequences (e.g., the Smith-Waterman algorithm), the
mDELTA algorithm searches for pairs of homeomorphic sub-
CLTs[50] within two given full CLTs. As a result, mDELTA iden-
tified a large number of highly similar sub-CLT pairs between
and within differentiating samples (Figure 5B). Some of themost
frequently occurring sub-CLTs exhibited a consistent structure,
comprising multiple layers of internal cells, a stable composi-
tion of terminal cell types, and appeared 20 to 40 times in the
three differentiating samples, whose summed mDELTA align-
ment scores are significantly higher than expectation assessed in
1000 randomized trees (Figure 5C). Groups of such highly simi-

lar sub-CLTs represent strong candidates of tree motifs on the de-
velopmental CLT, and strongly supports the existence of a stereo-
typed developmental program that contributes to developmental
robustness.

3. Discussion

In the current study, we have reconstructed high density devel-
opmental CLTs for in vitro directed differentiation from hESC
to primordial lung progenitors. In comparison with CLTs of
non-differentiating hESC colonies, differentiation CLTs showed
a clear signal of transcriptomic divergence that recapitulates
known involvements of key developmental regulatory pathways.
Using CLTs, we investigated mechanisms that might have con-
tributed to developmental robustness at the intercellular level. Al-
though transcriptional memory appeared to have limited effects
on canalizing cell fates within subclones, we found that multi-
ple subclones exhibit stable compositions of terminal cell types,
which enables sufficient numbers of cells in proper composition
to be generated, and thus, a more robust development. By using
a CLT alignment algorithm, we further showed that the observed
stable cell type composition is underlied by stereotyped sub-CLTs
with similar topology and terminal cell fate. Our results demon-
strated the existence of stereotyped sub-CLTs, which support ro-
bust development.
During development, cell death in various forms is pervasive,

making robustness against cell death an essential aspect of the
developmental process. Cell death can be triggered by external
stimuli/stress such as in necrosis, or can occur autonomously
in response to internal signals that are more or less stochastic,
such as shown in the cell-to-cell random variations in Bcl-2 regu-
lated apoptosis.[51] We chose to model developmental robustness
against random cell death instead of cell deaths induced by spe-
cific external stimuli or stress, in part because the former is more
general than any environment specific stimuli. Furthermore, it
has previously been demonstrated, also by CLT-based analyses,
that robustness against random cell death should enhance ro-
bustness against specific types of cell deaths, including those
caused by genetic perturbations.[17] It would, however, be very
interesting to investigate the developmental robustness against
cell deaths or other adverse events triggered by specific types of
environmental stress.
As a preliminary assessment on how the stereotyped CLT oc-

curs, we treated the cell type composition of all descendent tips
as a quantitative trait of the ancestral cells (internal nodes of the
CLT) and regressed the difference of this trait between two an-
cestral nodes (that is not descendent of each other) onto their
relatedness on the cell lineage (see Experimental Section). This
method, known in the genetics literature as a Haseman–Elston
Regression,[52,53] is an unbiased estimator of heritability. In all of
our samples, cell type compositions displayed heritability to some

progenitor cell types. Genes exhibiting strong transcriptional memory, i.e., those with a memory index ranking among the top 10% (dashed line), were
red, while others were gray. The inset shows a zoomed-in view of the large memory index region. D) Among different cell types, the fraction (height of
bar) of genes exhibiting high memory indices was compared. The bars are colored similarly to those in panel C. E) Gene sets responsive to perturbation
of individual transcription factors (x axis) were tested for the enrichment of genes exhibiting strong signal of transcriptional memory (see Experimental
Section). The top ten transcription factors with the highest combined enrichment score (y axis) were shown for each cell type. The statistical significance
of enrichment according to Fisher’s exact test is indicated as *:P < 0.05; **:P < 0.01; ***:P < 0.001. See also Figure S6 (Supporting Information).
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Figure 4. Stable cell type composition across sub-clones supports robust development A–C) In each panel for each of the CBRAD5 samples (names
on top of the panel), the diversity of compositions of terminal cell types within sub-CLTs were estimated by a summed chi-square value (𝜒2) (see
Experimental Section) as indicated by the red arrows. The same summed 𝜒2 values were calculated for 1000 randomized CLTs, whose distribution was
shown as a blue histogram. The probability of a summed 𝜒2 value being smaller than the observation (red arrow) is indicated by the P values in the
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degree, with the heritability in the differentiating samples being
significantly greater than that in the non-differentiating sample
(Figure S7, Supporting Information). Furthermore, similarly es-
timated heritability of single-cell transcriptome for each sample
were lower than that of cell type composition (Figure S7, Sup-
porting Information). This result is unlikely to be explained by
the higher measurement accuracy of cell type composition com-
pared to single-cell transcriptomes for two reasons. First, the cell
type itself is inferred based on single-cell transcriptomes. Second,
the heritability of cell type composition in the non-differentiating
sample is almost equal to that of the single-cell transcriptome,
suggesting similar measurement accuracy for these two traits.
Thus, we concluded that descendent cell type composition is a
heritable trait of ancestral cells. This trait is likely inherited from
their earlier common ancestors by a mechanism independent of
transcriptional memory, and is therefore expected to be pervasive
in a CLT.
Beyond the specific mechanisms underlying developmental

robustness, our findings suggest a novel perspective regarding
cell types within the context of stereotyped sub-CLTs. In partic-
ular, just as letters can be better understood within the context
of words, and nucleotides/amino acids can be better understood
within the context of sequence motifs, stereotyped sub-CLTs can
potentially bridge our knowledge of the atlas of cell types and
their organization into functional tissues. Indeed, Elowitz and
colleagues[54] recently identified statistically overrepresented pat-
terns of cell fates on lineage trees as indicative of progenitor states
or extrinsic interactions. The analysis was done using their newly
proposed Lineage Motif Analysis, which differs from the method
presented here that examined cell type composition and topolog-
ical structure on incomplete CLTs, as their method uses the fully
resolved CLTs and only analyzes cell type composition. Neverthe-
less, similar to our proposition here, they considered lineage mo-
tifs as a way of breaking complex developmental processes down
into simpler components.[54]

3.1. Limitations of the Study

There are a couple limitations of our study that are worth dis-
cussing here. First, our study was based on an in vitro directed
differentiation model, which maintains cells in a low density 2D
monolayer. This choice is a compromise between the feasibility
for reconstruction of high density CLTs and a model that closely
reflects the in vivo development. We believe our experiment rea-
sonably recapitulates the in vivo situation because clear morphol-
ogy of alveolar can be achieved on the 20th day of the directed dif-
ferentiation (Figure S1A and Video S1, Supporting Information),
and it has previously been shown that 3D-conditions did not in-
crease gene expression in comparison to 2D for the differentia-
tion up to the NKX2-1+ PLP stage, particular for the NKX2-1.[55]

For development up to a later stage with more cells, organoid or
in vivo models should ideally be combined with single-cell tran-
scriptomes of a larger throughput (in terms of number of cells) in
order to assess the question at a broader scale. Nevertheless, our
main conclusion of polyclonal stereotyped development is most
likely NOT an artefact of in vitro development, because none of
the media components can create such pattern, and the number
of ancestor hESCs seeding the colony is not correlated with the
frequency of recurrence of lineagemotifs. Second, various antibi-
otic treatments were used during the construction of the cell lin-
eage and the directed differentiation, which may have an impact
on the pluripotency and differentiation of the cells. This possibil-
ity, however, should be largely negligible in our system because,
on the one hand, previous study[56] showed that antibiotics such
as doxycycline increase cell survival rate without apparent nega-
tive side effects, and on the other, our experiment produced a pro-
portion of NKX2-1+ cells that were comparable to those obtained
under a standard in vitro differention condition.[30,57] Third, we
used Dox-inducible Cas9 to switch the lineage tracing system on
and off, which could lead to unintended premature editing before
differentiation begins, or temporarily interrupted editing during
differentiation.However, the editing status of the lineage barcode
in most terminal cells (Figure S4, Supporting Information) seem
to provide adequate information capacity for the resolution of
their lineage relationship and thereby the stereotyped sub-CLTs,
as most (3525/4076 = 86.48%) unique barcodes still have at least
two intact editable sites. Additionally, we reasoned that the im-
precise induction of Cas9 would produce noisy lineage tracing
data that should obscure but not strengthen the biological signal.
As our current lineage tracing results already support our argu-
ment about stereotyped development, the underlying biological
signal should thus be even stronger. Fourth, we have not inferred
detailed molecular processes and/or trajectories of gene expres-
sion changes in the stereotyped sub-CLT, as can be done for the
nematode Caenorhabditis elegans,[50] whose temporal changes in
gene expression have been recorded by microscopic image.[58,59]

In the near future, this may be possible when the algorithms for
inferring ancestral states based on cell lineage trees become suf-
ficiently accurate.[19,60]

4. Experimental Section
Design of the Lineage Tracer hESC Cell Line: To design the lineage bar-

code and corresponding sgRNA, randomized 20-bp candidate sgRNA se-
quences with >3 substitutions relative to any human genome fragments
were first generated. Among these candidates, the spacer sequence 5′-
TATTCGCGACGGTTCGTACG-3′ was selected as sgRNA1. A total of 13
protospacer sequences were designed based on sgRNA1 according to
the following criteria: i) each protospacer contained 2–3 mismatches with
sgRNA1, ii) there was no recurrence of any sequence of 9 bp or longer,
and iii) consecutive repeats of the same nucleotide for more than 2 bp

panel. D) For 35 sub-CLTs in CBRAD5 samples, the normalized depths of their roots (y axis) and the sizes of the sub-CLTs (x axis) were plotted. These
sub-CLTs display highly similar terminal cell type compositions (less than 10% deviation from 0.13, 0.39, 0.13, and 0.18 respectively for C6, C7, C9, and
C10) E) A schematic diagram showing a simple model of the functional robustness of the random (left) versus stereotyped (right) development against
random cell deaths (indicated by “X”). The robustness is quantified by the number of functional units (with cell type compositions indicated in the
triangle) that can be formed by terminal cells surviving cell deaths, as exemplified at the bottom. F) Robustness (y axis) of the random (blue) versus
stereotyped (green) development under different rate of cell death (x axis), as estimated by the model in E. The statistical significance of student’s t-test
is indicated as ***:P < 0.001.
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Figure 5. Stereotyped subtrees underlying the stable cell type composition A) The input (top) for DELTA includes two CLTs (query and subject) and the
expression profiles of all terminal cells on these CLTs. DELTA uses a dynamic programming procedure (middle) to compare the two CLTs and identify
homeomorphic sub-CLTs. The procedure has three phases, including (i) a cell pair scoring stage, (ii) a forward stage that maximizes the alignment scores
by finding the best correspondence between terminal cells, and (iii) a backtracking stage for extracting the alignment behind the maximized scores.
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were completely absent. The 13 protospacers (along with PAM, or proto-
spacer adjacent motif) were organized according to decreasing CFD (cut-
ting frequency determination) scores into the full lineage barcode.[61,62]

The next three sgRNAs, sgRNA2, sgRNA3, and sgRNA4, were designed to
perfectly match the 9th, 12th, and 13th protospacers, but with lower CFD
scores (<0.55) for other protospacers, because these three protospacers
were rarely edited in preliminary experiments using only sgRNA1. To fa-
cilitate capture by poly-dT reverse transcription primers on 10x gel beads,
the full lineage barcode with a 20-nt poly-dA(A20) 3′ tail was inserted into
the 3′UTR of an EGFP driven by an EF1𝛼 promoter.

Lineage tracer hESC cell lines were constructed by genomic
integration of the lineage barcode, Doxycycline-inducible Tet-on
Cas9 and the sgRNAs. Briefly, the lineage barcode vector (pLV-
EF1A>EGFP:T2A:Bsd:V1(Barcode), VectorBuilder, no:VB1709 11–
1008qmt) was constructed by the Gateway system and then transfected
into H9 hESCs with MOI = 0.15. The EGFP-fused lineage barcode
was confirmed to exist as a single copy in the genome and to be
highly expressed after blasticidin selection (15 μg ml−1, InvivoGen,
no. ant-bl-1) and flow cytometry sorting. Then the Tet-on inducible
Cas9 vector (PB-Tet-ON-T8>Cas9:T2A:puro-PGK:rtTA, donated by
Professor Jichang Wang, Zhongshan School of Medicine, Sun Yat-
sen University) was co-transfected with hyPBase (VectorBuilder, no:
VB190515-1005nrp) in a ratio of 1 μg:100ng for 1 × 107/ml cells by
Neon transfection system (Life, MPK5000). In order to ensure adequate
Cas9 expression for efficient editing, double reinforced selection of
Puromycin (1.0 μg ml−1, InvivoGen, no. ant-pr-1) and Doxycycline (Dox,
1.0 μg ml−1, sigma, D9891-1G) was applied for 7 days. Lastly, the sgRNA
vector (pLV-U6>sgRNA1>U6>sgRNA2>U6>sgRNA3>U6>sgRNA4-
EF1𝛼>Mcherry:T2A:Neo, VB1912 11–3149jwe) was constructed by
Golden Gate ligation and transfected at MOI = 30. H9 hESC cells with
high expression of sgRNAs (fused with mCherry) were enriched by G418
selection (1000 μg ml−1, InvivoGen, ant-gn-1) for 11 days and flow
cytometry sorting. Expression levels of Cas9, lineage barcode and sgRNA1
transcripts were detected by RT-qPCR with primers listed in Table S8
(Supporting Information).

The editing efficiency of the lineage tracer hESC cell line was evaluated
by inducing Cas9 expression in mTesR media with 1.0 μg ml−1 Dox for five
days. gDNA was extracted from all cells using DNeasy Blood & Tissue Kits
(Qiagen, no.69504). Using primers gDNA-V1-F and gDNA-V1-R (Table S8,
Supporting Information), the lineage barcode was amplified from gDNA
using Phanta Max Super-Fidelity DNA Polymerase (Vazyme, No. P505),
which was then cloned into pCE-Zero vector (Vazyme, No. C115). The effi-
ciency of editing was then evaluated by colony PCR and Sanger sequencing
for 50 recombinant clones.

Additionally, editing efficiency was examined in the context of the di-
rected differentiation experiment, in which only a small number of initial
cells were used to form each colony. In 96-well dishes, matrigel (Corning,
No. 354277) was plated and each well was seeded with < 10 log-phased
lineage tracer hESC cells manually by micromanipulation. For 11 days, the
cells were cultured in 100 μl of mTesR media, to which 10 μl of cloneR

(Stemcell, No.05888) were added on day0 and day2, and 1.0 μgml−1 Dox+
mTesR media was added and refreshed every 48 h since day2. Normally
surviving colonies after the 11-day culture were harvested by GCDR (Stem-
cell, No.07174). Next, 50 ng of genomic DNA was extracted from each
colony using the QIAamp DNA Micro Kit (Qiagen, No.56304) and PCR
amplified for the lineage barcode. The Cas9-induced mutations accumu-
lated during colony formation were then identified by Sanger sequencing,
TA cloning-based sequencing or IlluminaHiSeq PE250 sequencing. Specif-
ically, the raw HiSeq data were trimmed by fqtrim (https://ccb.jhu.edu/
software/fqtrim/) with default parameters. The paired reads were merged
by FLASH[63] using 30 bp of overlapping sequence and 2% mismatches.
Sequences alignable to the human reference genome by Bowtie2 with de-
fault parameters,[64] or to primer sequences of gDNA-V1-F and gDNA-
V1-R with two mismatches, were removed as they likely represented non-
specifically amplified sequences. MUSCLE[65] aligned the sequenced lin-
eage barcode to the wild-type lineage barcode using default parameters.
The editing events of each sequence were identified according to a previ-
ous method.[61]

Validating Directed Differentiation from hESC to Lung Progenitor and
Alveolosphere: Using the BU3 NGST (NKX2-1-GFP; SFTPCtdTomato)
iPS cell line (donated by Professor Darrell N. Kotton, Department of
Medicine, Boston University), the protocol of directed differentiation was
tested toward lung progenitor and alveolosphere published by Kotton and
colleagues.[30] Briefly, in six-well dishes pre-coated with Matrigel (Stem-
cell, No.356230), 2 × 106 cells maintained in mTESR1 media were dif-
ferentiated into definitive endoderm using the STEMdiff Definitive Endo-
derm Kit (StemCell, No.05110), adding supplements A and B on day 0,
and supplements B only on day 1 to day 3. Flow cytometry was used to
evaluate the efficiency of differentiation to definitive endoderm at day 3
using the endoderm markers CXCR4 and c-KIT (Anti-human CXCR4 PE
conjugate, Thermo Fisher, MHCXCR404,1:20; Anti-human c-kit APC con-
jugate, Thermo Fisher, CD11705, 1:20; PE Mouse IgG2a isotype, Thermo
Fisher, MG2A04,1:20; APC Mouse IgG1 isotype, Thermo Fisher, MG105,
1:20) based on themethod of Sahabian andOlmer.[66] After the endoderm-
induction stage, cells were dissociated for 1–2 min at room temperature
with GCDR and passaged at a ratio between 1:3 to 1:6 into 6 well plates
pre-coated with growth factor reduced matrigel (Stemcell, No.356230) in
“‘DS/SB”’ anteriorization media, which consists of complete serum-free
differentiation medium (cSFDM) base, including IMDM (Thermo Fisher,
No.12440053) and Ham’s F12 (Corning, No. 10-080-CV) with B27 Supple-
ment with retinoic acid (Gibco, No.17504044), N2 Supplement (Gibco,
No.17502048), 0.1% bovine serum albumin Fraction V (Sigma, A1933-
5G), monothioglycerol (Sigma, No. M6145), Glutamax (ThermoFisher,
No. 35050–061), ascorbic acid (Sigma,A4544), and primocin with sup-
plements of 10 μm SB431542 (“‘SB”’; Tocris, No.1614) and 2 μm Dor-
somorphin (“‘DS”’; Sigma, No. P5499). In the first 24 h following pas-
sage, 10 μmY-27632 was added to the media. After anteriorization in
DS/SB media for three days (72 h, from day 3 to day 6, refreshed every
48 h), cells were cultured in “CBRa” lung progenitor-induction media for
nine days (from day 6 to day 15, refreshed every 48 h). This CBRa me-

The output (lower right) is one or more aligned sub-CLTs ordered by decreasing alignment scores. See Experimental Section and Text S1 (Supporting
Information) for more details. B) A circular plot of the top 100 sub-CLT pairs found by mDELTA in each of the six pairwise comparisons among the
CLTs from the three differentiating samples. In the outer circle, each sub-CLT is represented by a dot, with the color indicating its source sample. Each
pair of homeomorphic sub-CLTs identified by mDELTA is shown by curved links between two corresponding dots, where inter-sample pairs/links are
colored the same as the sample used as the query CLT, and intra-sample pairs/links are colored purple. A dot’s size indicates how many links it has.
Only sub-CLTs with at least one link are included. C) Two highly recurrent tree motifs found in the three samples are shown by “densitree” plots. For
each motif, all sub-CLTs homeomorphic to a specific reference sub-CLT (the focal motif) are extracted from mDELTA results in panel B. In each plot,
the mDELTA-aligned topological structure of each sub-CLT (including the reference sub-CLT) is drawn with transparency on the left so that common
topologies can be seen as darker lines. Each column of tiles on the right shows the mDELTA-aligned terminal cell types (colored as the label on top)
on one of the homeomorphic sub-CLTs. The x axis on top indicates the number of sub-CLTs hit as homeomorphic to the reference sub-CLT, which is
displayed at x = 0. The hits were separated by their source sample as indicated by color block below the densitree plot. To obtain permutation test-based
statistical significance (P value) for a motif’s hits within a sample, the summed mDELTA alignment scores across these hits of the focal motif were
compared with its expectation as assessed by 1000 random trees of the sample (terminal cells shuffled). The six results for the hits of the two motifs in
the three samples were shown respectively for each color block below the densitree plot. The probability of a summed alignment score from a ranomized
tree being larger than the observation (black arrow) is indicated by the P values in the panel.
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dia consists of cSFDM containing 3 μm CHIR99021 (Tocris, No.4423),
10 ng mL−1 rhBMP4 (R&D, 314-BP-010), and 100 nm retinoic acid (RA,
Sigma, No. R2625). At day 15 of differentiation, single-cell suspensions
were prepared by incubating the cells at 37 °C in 0.05% trypsin-EDTA
(Gibco, 25200056) for 7—15 min. The cells were then washed in media
containing 10% fetal bovine serum (FBS, ThermoFisher), centrifuged at
300 g for 5 min, and resuspended in sort buffer containing Hank’s Bal-
anced Salt Solution (ThermoFisher), 2% FBS, and 10 μm Y-27632. The
efficiency of differentiation into NKX2-1+ lung progenitors was evaluated
either by flow cytometry for NKX2-1-GFP reporter expression, or expres-
sion of surrogate cell surface markers CD47hi/CD26lo. Cells were sub-
sequently stained with CD47-PerCPCy5.5 and CD26-PE antibodies (Anti-
human CD47 PerCP/Cy5.5 conjugate, Biolegend, Cat#323110, 1:200; Anti-
human CD26 PE conjugate, Biolegend, Cat#302705, 1:200; PE mouse
IgG1 isotype, Biolegend, Cat#400113, 1:200, PerCP/Cy5-5 mouse IgG1
isotype, Biolegend, Cat#400149, 1:200) for 30 min at 4 °C, washed with
PBS, and resuspended in sort buffer based on the method of Hawkins
and Kotton.[66] Cells were filtered through a 40 μm strainer (Falcon) prior
to sorting. The CD47hi/CD26lo cell population was sorted on a high-
speed cell sorter (MoFlo Astrios EQs) and resuspended in undiluted
growth factor-reduced 3D matrigel (Corning 356230) at a dilution of 20–
50 cells μl−1, with droplets ranging in size from 20 μl (in 96 well plate)
to 1 ml (in 10 cm dish). Cells in 3D matrigel suspension were incu-
bated at 37 °C for 20–30 min, followed by the addition of warm media.
The differentiation into distal/alveolar cells after day 15 was performed in
“‘CK+DCI”’ medium, consisting of cSFDM base, with 3 μm CHIR (Tocris,
No.4423), 10 ngmL−1 rhKGF(R&D, No.251-KG-010) (CK), and 50 nm dex-
amethasone(Sigma, No. D4902), 0.1 mm 8-Bromoadenosine 3′,5′-cyclic
monophosphate sodium salt (Sigma, No.B7880) and 0.1 mm 3-Isobutyl-
1-methylxanthine (IBMX; Sigma, No.I5879) (DCI). Immediately after re-
plating cells on day 15, 10 μm Y-27632 was added to the medium for 24 h.
Upon replating on day 15, alveolospheres developed in 3D Matrigel cul-
ture outgrowth within 3–7 days, and were maintained in CK+DCI media
for weeks. These spheres were analyzed by Z stack live images of alveolo-
spheres taken and processed on the Leica DMi8 fluorescence microscope.

Directed Differentiation Followed by Simultaneous Assessment of Single-
Cell Transcriptomes and Cell Lineage Tree: Based on the results from the
full directed differentiation experiment above, it is aimed to evaluate
single-cell transcriptomes and CLTs simultaneously for directed differen-
tiation from hESCs to PLP, a stage at which the colony had <10000 cells,
allowing to sample a large proportion of cells. To prepare suitable ances-
tor hESCs, the cell colonies outgrowth after 5–7 days, plated in 96-well
dishes with microscopic selection for GFP+ mCherry+, were digested with
GCDR to form ≈50 μm aggregates, and cultured in mTesR media until
day 5. Combining selection and induction by Dox (1.0 μg ml−1) and puro
(1.0 μg ml−1) from day 5 to day 7, the normally survived GFP+ mCherry+

colonies were capable of Cas9 expression and marked by primary editing
events (to distinguish ancestor cells), as confirmed by DNA extraction and
barcode PCR and sanger sequencing. The cell colonies with primary edit-
ing events were digested by GCDR for cell counting (≈4000 cells) and re-
suspended at a density of 10 cells μl−1. One microliters cell suspension
was added into each well of 96-well dishes plated with 1:10 diluted Ma-
trigel (Corning, No.354277) for culture in mTesR media with ClonR (10:1)
(Stemcell, No.05888) added in the first 48 h to promote the survival of
very few stem cell. Directed differentiation was then initiated by applying
both Dox (1.0 μg ml−1, for editing the lineage barcode) and the STEMd-
iff Definitive Endoderm Kit to the normally survived colonies. Later stages
of directed differentiation followed the differentiation protocols described
above, with the exception that it was stopped on the tenth day after its ini-
tiation (Figure S1B, Supporting Information). Finally, colonies with inter-
mediate size (≈5000 cells as approximated by colony size and cell counts)
and ≥50% GFP+ Mcherry+ cells were digested with 0.05% trypsin-EDTA
for 1min at 37 °C, washed in PBS containing 10% fetal bovine serum (FBS,
ThermoFisher), centrifuged at 500 g for 5 min, and resuspended in single
cell resuspension buffer containing PBS and 0.04% BSA. Using the stan-
dard 10x Chromium protocol, cDNA libraries were prepared from these
single cell suspensions. Each cDNA library was split into two halves, with
the first half subjected to conventional RNA-seq for single-cell transcrip-

tomes, and the other half subjected to amplification of the lineage barcode
followed by PacBio Sequel-based HiFi sequencing of the lineage barcode
(Figure 1A).

Analysis of scRNA-seq: Following the 10x Genomics official guidelines,
the Cell Ranger[67] pipeline was used to map raw reads to the human ref-
erence genome (GRCh38) by STAR[68] and obtained the read counts for
each gene. Using Seurat v3.2.1,[69] cells with <10% mitochondrial reads
and >200 expressing unique features detected were retained. Then highly
variable genes were detected by Single-cell Orientation Tracing (SOT),[70]

which were then subjected to Principle Component Analysis, followed by
batch effect correction by Harmony.[71] Then cells were clustered based on
the cell-cell distance calculated by FindNeighbors and FindClusters using
the Harmony-normalized matrix of gene expression. Then, runUMAP (de-
fault parameters except for “resolution” set to 0.6) was used for visualiza-
tion and FindAllMarkers to obtain differentially expressed genes (DEGs)
among clusters. To identify cell types, microarray data were downloaded
from Gene Expression Omnibus (GEO),[32,72] and DEGs (Wilcoxon Rank
Sum test, P < 0.01) were detected for different stages of differentiation
toward PLP. The clusters were scored based on the average expression
and numbers of expressed stage-specific DEGs. Finally, 12 cell clusters
were named based on the inferred order of appearance in the differentia-
tion progress. To confirm these cell clusters were not biased by the cho-
sen clusteringmethod, another algorithm called PHATE was applied using
its default parameters.[73] Nine of the ten PHATE clusters were uniquely
matched (i.e., the majority of the cells) to one of the currently defined cell
clusters in Figure 1C, suggesting that these results are robust to the choice
of cell clustering method.

Construction of Cell Lineage Trees: Based on the PacBio HiFi sequenc-
ing results, the CLTs were built and assessed for quality using PacBio HiFi
reads following the previous pipeline.[31] Briefly, using HiFi-seq raw se-
quences, consensus sequences were called separately from positive and
negative strand subreads from each zero-mode waveguide (ZMW). Only
consensus sequences with at least three subreads and identifiable bar-
code primers (Table S8, Supporting Information, allowing up to two mis-
matches) were reserved. From the consensus sequences, 10x cell barcodes
and UMIs were extracted andmatched to those from scRNA-seq, with one
mismatch allowed. Lineage barcode sequences were then extracted from
the consensus sequences, grouped by identical cell barcode and UMI,
then merged by MUSCLE alignment followed by selecting the nucleotide
with the highest frequency at each site. After MUSCLE alignment of the
merged sequence to the reference lineage barcode, the editing events were
called.[61] Then, for each lineage barcode allele from the same cell, the fre-
quency was calculated as the total number of UMIs of the allele and its
ancestral allele. Here, the ancestral allele of a specific allele was defined
as any allele in which the observed editing events were a subset of the
editing events in the focal allele. Finally, the lineage barcode allele of a cell
was defined as the allele with the highest frequency, prioritizing the alleles
with more editing events if the frequencies were equal. For each sample,
all cells with a lineage barcode and a single-cell transcriptome were used
to construct a multifurcating lineage tree based on the lineage barcode us-
ing the maximum likelihood (ML) method implemented by the IQ-TREE
LG model.[74]

Transcriptome Divergence Among Cell Type Clusters: To elucidate the
transcriptomic divergence among the observed clusters in the context
of the directed differentiation toward PLP, stage-specific DEGs were ex-
tracted with the top 10%most extreme fold-change relative to other stages
(Figure 2A, usingmicroarray data[32] mentioned above), and identified the
Gene Ontology terms enriched (BH-adjusted P < 0.05, Fisher’s exact test)
with these stage-specific DEGs. After eliminating GO terms that had very
few expressed genes, 179 GO terms (Table S7, Supporting Information)
were focused on. For each cell, the activities of the specific cellular func-
tions represented by these GO terms were estimated by the AddModule-
Score function of Seurat, which basically calculated the average Z-score
transformed expression levels of all genes annotated by the GO term. All
cells within a cluster were then combined to determine the average activity
of the GO term for the cluster (Figure 2B).

Transcriptome Divergence Among Sub-CLTs: As for the divergence
among sub-CLTs, estimation of pseudotime was conducted via
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Monocle[34] with all cells on differentiating CLTs pooled together. Af-
ter Principal Component Analysis of all cells from all samples combined,
the transcriptomic divergence (DT) between any two cells was quantified
by one minus Pearson’s Correlation Coefficient of the top 100 principal
components. The developmental potential of an ancestor cell (an internal
node on the CLT) was then calculated by the summed squared DT of all
pairs of its descendant cells. The reduction of developmental potential
(ΔDP) during the growth of an internal node to its daughter nodes was
calculated by the focal internal node’s ΔDP subtracted by the summed
ΔDP of all its daughter nodes (Figure 2D). The statistical significance of
an observed ΔDP was estimated by contrasting the observation with its
null distribution generated by random assignment of single-cell transcrip-
tomes from hESC samples to the focal CLT (Figure 2D). It is emphasized
here that the null distribution should be estimated by the single-cell
transcriptomes from the non-differentiating hESC sample, since using
those from the differentiating CBRAD5 samples would introduce actual
divergence into the null and thus lead to an underestimated statistical
significance. It was also worth noting that this method was very similar
to the commonly used nonparametric method of permutational mul-
tivariate analysis of variance (PERMANOVA[75]), except that Pearson’s
correlation-based divergence replaces the distance-based divergence
used in canonical PERMANOVA, as the correlation-based metric had
consistently been shown to result in superior performance for single-cell
transcriptomes.[76,77] This PERMANOVA-based method was also applied
to subsets of genes within the transcriptome. For example, only genes
annotated with a specific GO term (Table S7, Supporting Information)
were used. A significant divergence for a specific GO term did not
necessarily indicate a significant divergence in the whole transcriptome,
since genes annotated with the GO term might had a small effect on the
transcriptome as a whole. As a result, internal nodes with transcriptomic
divergence did not necessarily represent a larger fraction than nodes with
divergence on a specific GO term.

In order to perform a retrospective analysis of divergence progression,
a normalized temporal scale was needed that was comparable across sam-
ples. In theory, this scale could be derived from the mutation rate of the
lineage barcode and/or the topological depth of a node (i.e., the number
of nodes between the root and the focal node). Considering the variability
in Cas9 editing efficiency over barcodes, as well as long inter-site dele-
tions, the mutation rate-based scale was discarded. For the topological
depth scale, due to both biological and experimental stochasticity, the re-
constructed CLTs and their nodes had very different depths, despite the
fact that they were supposed to correspond to the ten-day directed differ-
entiation. Assuming that the internal nodes were evenly sampled on all
root-to-tip paths throughout the CLT, the actual depth of a node should be
reflected equally by its depth from the root and (indirectly) by the depth
from the focal node to its descendent tips. Based on this logic, the normal-
ized depth of a node was defined as d = (dr/dt + (1 − ds/dt)) /2, where dr
is the focal node’s depth from root, dt is the max depth found in the CLT,
and the ds is the max depth from the focal node to its descendent tips
(Figure S5A, Supporting Information). Here, via division by dt, all depths
were scaled from 0 to 1, with 0 being the root and 1 being the tips with
maximal raw depth within the CLT.

Transcriptional Memory Index: Previously proposed methods[29,39]

were followed to calculate transcriptional memory index. In each cell type
and for each gene expressed in >10% of cells of this type, the CV of the ex-
pression levels was calculated among all terminal cells of this type within
a sub-CLT (containing at least two cells of this type). The minimal CV
among all sub-CLTs, i.e., min(CV), was then used to represent the expres-
sion variability of the focal gene in this cell type. It was also calculated
for each of 1000 randomized CLTs created by reassigning all cells of the
same type to a new lineage position that was originally occupied by the
same cell type. These 1000min(CVRandom) from randomized CLTs were av-
eraged, i.e., mean (min (CVRandom)), to yield a null expectation for the ob-
servedmin(CV). Finally, the memory index was defined asM= (min(CV) –
mean(min(CVRandom))) / min(CV). Note that the final division by min(CV)
was different from the previously defined memory index,[29,39] but allows
comparisons between genes with very different baseline CVs or expression
levels.

To test the hypothesized role of transcription factors in
mediating transcriptional memory, lists of gene sets re-
sponsive to perturbations of individual transcription factors
(“TF_Perturbations_Followed_By_Expression” in Enrichr[40]) were
obtained. The genes with highest memory indices (top 10% across all cell
types) were assessed for enrichment in each of these TF-responsive gene
sets using Enrichr.[40] The “combined score” (Figure 3E) was calculated
by Enrichr, which takes into account both the statistical significance and
the magnitude of enrichment (combined score of enrichment c = log(p)
* o, where p is the P value from Fisher’s exact test and o is the odds ratio
of the enrichment[40]). Similar analyses were conducted on other gene
sets (Figure S6C,D, Supporting Information) to detect enrichment for GO
terms.

Composition of Terminal Cell Types Compared Among Sub-CLTs and the
Full CLTs: To compare the terminal cell type composition of one sub-
CLT with its expectation, a 2-by-n contingency table was constructed for
the n cell types appearing in the entire CLT. The first row of the contin-
gency table lists the observed count of terminal cells for each cell type
within the focal sub-CLT. The second row of the table lists the expected
count of each cell type as determined by the fractional cell type compo-
sition of the entire CLT multiplied by the size of the focal sub-CLT. Then
𝜒2 =

∑n
i=1 (Oi − Ei)

2∕Ei was calculated for the focal sub-CLT, where Oi
and Ei are the observed and expected count for cell type i. Then 𝜒2 val-
ues from all sub-CLTs with roots of normalized depth < 0.7 (because in-
ternal nodes closer to terminal cells produce sub-CLTs that are too small
for meaningful statistics) were summed up to represent the diversity of
cell type compositions among sub-CLTs (x axis of Figure 4A–C). In other
words, a small summed 𝜒2 indicates uniform/stereotyped composition of
cell types among sub-CLTs. To assess the null distribution of the summed
𝜒2, 1000 control CLTs were created by randomly reassigning all cells on
the tree to a different terminal node, while keeping the topology of the tree
unchanged.

Robustness of Random versus Stereotyped Development: Without loss
of generality, a functional unit was defined as consisting of four cell types,
namely 𝛼, 𝛽, 𝛾 , and 𝛿, in a 1:1:2:4 ratio. 1000 binary CLTs were simulated,
each consisting of 1024 terminal cells (128 𝛼 cells, 128 𝛽 cells, 256 𝛾 cells,
512 𝛿 cells) generated through ten cell cycles, under two developmental
models. The first “random”model randomly assigns the four types of cells
onto the tips of the tree. A second “stereotyped” model strictly assigns 𝛼,
𝛽, 𝛾 , and 𝛿 cells in a 1:1:2:4 ratio onto each sub-CLT consisting of eight tips
(three cell cycles). A predefined fraction (0.001, 0.005, 0.01, 0.05, or 0.1, as
on x axis of Figure 4F) of the 2047 (1024 terminal and 1023 internal) cells
were chosen and removed along with all their descendent cells to mimic
random cell deaths. Assuming sufficient cell migration to allow formation
of the functional unit as long as there are enough terminal cells of the
proper type, the robustness is thus quantified by the number of functional
units that could be formed by all terminal cells surviving cell deaths. A
simple example shown in Figure 4E.

Comparison and Alignment of Sub-CLTs by mDELTA: Let vectors/nodes
be denoted as V and edges connecting nodes as E. Given a query tree
Q = (V, E) and a subject tree S = (V′, E′) , an isomorphic alignment is a
bijection A: V↔V′, such that for every pair of nodes with v, u ∈ V, it have (v,
u) ∈ E⇔(A(v), A(u)) ∈ E′. Based on two types of biologically informed tree
editing operations, namely pruning and merging (see Text S1, Supporting
Information), a homeomorphic subtree alignment A between Q and S is
defined as an isomorphic alignment between Q′ and S′’, where Q′ is the
result of zero or more pruning and merging in Q, and S′ is the result of
zero or more prunin and merging in S. Here all the pruning inQ and S are
collectively denoted as 𝜋(A), and all merging in Q and S are collectively
denoted as 𝜇(A). If the alignment score between two nodes v ∈ V and
v′ ∈ V′ is further denoted as a(v, v′), the cost for pruning a subtree T̂ as
p(T̂), the cost for merging an internal node v̂with its mother node asm(v̂).
The score of a homeomorphic subtree alignment A between Q and S can
then be expressed as

w (Q, S, A) =
∑

(v,v′)∈A
a
(
v, v′

)
−
∑

T̂∈𝜋(A)
p
(
T̂
)
−
∑

v̂∈𝜇(A)
m (v̂) (1)
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The algorithm ofmDELTA find the optimal A (with optimal/highest pos-
sible w) given Q, S, a, p, and m by a dynamic programming procedure.
a was defined based on similarity of single-cell transcriptomes, p based
on the number of pruned terminal cells, and m based on the number of
merged internal nodes. Detailed computational procedures of mDELTA
can be found in Text S1 (Supporting Information).

Heritability of Quantitative Traits in the CLT: In order to gauge the her-
itability of quantitative traits on the CLT, the correlation between the relat-
edness and the phenotypic divergence of a pair of nodes was calculated.
When the relatedness was defined by genomic relatedness like DNA se-
quence identity, this analysis was the same as the classic statistical ge-
netics method called Haseman-Elston Regression.[52] Thus, the correla-
tion coefficient from this analysis was considered a proxy for phenotypic
heritability among nodes on the CLT. However, it should be emphasized
that since the DNA sequences of all cells in this dataset were presum-
ably nearly identical, the relatedness between nodes was therefore defined
by their distance on the CLT instead (see below), and the resulting cor-
relation coefficients could not be interpreted as traditional heritability as
they are in Haseman-Elston Regression. Specifically, the relatedness be-
tween any two nodes on the CLT inversely was defined by the number of
cell divisions separating them, which was then estimated by contrasting
the number of their descendent cells with the number of descendent cells
of their latest common ancestor. Following previous Haseman-Elston Re-
gression applications,[53] the relatedness between nodes was then scaled
so that the mean relatedness between any pair of nodes was 0 and the
maximal relatedness was 1. As such scaling is equivalent to calculating
relatedness relative to a different population,[53] comparing the heritabil-
ity of one trait relative to that of another trait would not be affected as
long as both traits were analyzed in the same focal population (the fo-
cal CLT). On the phenotype side, two quantitative traits were examined,
the single-cell transcriptomes of terminal nodes and the descendent cell
type compositions of internal nodes. Here, the single-cell transcriptomes
of terminal nodes were first processed by Principle Component Analyses,
then all principle components of a cell were used to represent its transcrip-
tome. As for the descendant cell type compositions of an internal node,
each internal node was represented by a vector comprising M elements,
where M is the total number of cell types identified in the dataset, and
each element represents the percentage of descendent cells of that type.
The phenotypic divergence between two nodes was calculated as the Eu-
clidian distance between the multidimensional quantitative traits. Lastly,
the Spearman’s Correlation Coefficient were reported between the relat-
edness and the phenotypic divergence between all relevant node pairs in
FigureS7 (Supporting Information) as a proxy for the heritability of quan-
titative traits.

Ethical Approval: All experiments were conducted in vitro using previ-
ously established human embryonic stem cell line H9. There were, there-
fore, no ethical concerns related to the use of human or animal sub-
jects in this study. The research conducted adheres to the highest stan-
dards of scientific ethics and was in compliance with all relevant reg-
ulations and guidelines regarding the use of human embryonic stem
cells.

Statistical Analysis: Due to the computational complexity and di-
versity of the presented analyses, methods of statistical analysis, in-
cluding preprocessing and presenting data, as well as statistical meth-
ods used, had been described in-context in Experimental Section, figure
legends and Text S1 (Supporting Information). These analyses were
conducted using custom codes developed in R and Python, available
at https://github.com/Chenjy0212/mdelta_full (the mDELTA algorithm)
and https://github.com/ZhangxyOk/Stereotyped-CLT (all other custom
codes).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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