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Let analytically definable mean lightface Σ1
n for some n.

Theorem 1 (with Vassily Lyubetsky, ArXived in [6]). In a suitable ccc generic
extension of L, it is true that every non-empty analytically definable set of
reals contains an analytically definable real (the full basis theorem), but there
is no analytically definable wellordering of the continuum.

To prove the theorem, we define, in L, a system of forcing notions Pξk,
ξ < ω1 and k < ω, whose finite-support product P =

∏
ξ,k Pξk adds an array

X = 〈xξk〉ξ<ω1∧k<ω of reals xξk ∈ 2ω to L, such that the following holds in
L[X]:

(1) if m < ω then the submodel L[Xm] admits a ∆1
m+3 wellordering of the

reals of length ω1, where Xm = 〈xξk〉ξ<ω1∧k<m ;

(2) if m < ω then 2ω ∩ L[Xm] is a Σ1
m+3 set in L[x] ;

(3) if m < ω then L[Xm] is an elementary submodel of L[x] with respect
to all Σ1

m+2 formulas with reals in L[Xm] as parameters;

(4) there is no analytically definable wellordering of 2ω.

Each factor Pξk of P is similar to the Jensen minimal Π1
2 singleton forcing

[3] to some extent, but corresponds to a definability level which depends on
k (rather than just Π1

2 for all k and ξ). See [2, 4, 5] on other results by the
same method.
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