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In a paper published in 1970, Grattan-Guinness argued that Cauchy, in his 1821 Cours
d’Analyse, may have plagiarized Bolzano’s Rein analytischer Beweis (RB), first published in
1817. That paper was subsequently discredited in several works, but some of its assumptions
still prevail today. In particular, it is usually considered that Cauchy did not develop his
notion of the continuity of a function before Bolzano developed his in RB and that both
notions are essentially the same. We argue that both assumptions are incorrect, and that it is
implausible that Cauchy’s initial insight into that notion, which eventually evolved to an
approach using infinitesimals, could have been borrowed from Bolzano’s work. Furthermore,
we account for Bolzano’s interest in that notion and focus on his discussion of a definition by
Kästner (in Section 183 of his 1766 book), which the former seems to have misrepresented at
least partially.

1. Introduction

The issue of priority for the definition of the continuity of a function was
raised in (Grattan-Guinness 1970) in a way that provoked controversy.
With regard to this issue, Grabiner sough to shift the focus of attention

away from the Bolzano/Cauchy priority debate and broaden the discussion to
include an analysis of their common predecessors, particularly Lagrange. She
detected an ‘immediate source of the independent Bolzano–Cauchy definitions’
both in Lagrange’s 1798 Traité de la résolution des équations numériques de
tous les degrés and in his Théorie des fonctions analytiques (see Grabiner 1984,
113). Grabiner concluded that ‘these two books are the most likely sources for
both Cauchy’s and Bolzano’s definitions of continuous function’ (op. cit., 114).
Grabiner’s analysis challenged Grattan-Guinness’ claim that ‘[Bolzano’s and

British Journal for the History of Mathematics, 2020
Vol. 35, No. 3, 207–224, https://doi.org/10.1080/26375451.2020.1770015

© 2020 British Journal for the History of Mathematics

http://orcid.org/0000-0002-3501-3480
http://orcid.org/0000-0001-8722-5090
http://orcid.org/0000-0001-7415-9784
http://orcid.org/0000-0002-3489-0158
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/26375451.2020.1770015&domain=pdf&date_stamp=2020-09-19


Cauchy’s] new foundations, based on limit avoidance, certainly swept away the
old foundations, founded largely on faith in the formal techniques’ (Grattan-
Guinness 1970, 382). For sources of Bolzano’s notion of continuity in Lagrange,
see also Rusnock (1999, 422).

Schubring similarly ruled out Grattan-Guinness’ hypothesis, and furthermore
challenged a common assumption that Bolzano’s work was virtually unknown in
the mathematical community during the first half of the nineteenth century (Schubring
1993). He reported on a (formerly) unknown review of Bolzano’s three important
papers from 1816 and 1817, written by a mathematician named J Hoffmann in 1821
and published in 1823.

As for the Bolzano–Cauchy continuity, Grattan-Guinness investigated the possi-
bility of its antecedents, focusing on the following three sources: (1) Cauchy’s work
prior to 1821, (2) Legendre, and (3) Fourier; see Grattan-Guinness (1970, 286). His
search reportedly did not turn up any reasonable antecedents: ‘of the new ideas that
were to achieve that aim – of them, to my great surprise, I could find nothing’
(ibid.). His investigation led him to his well-known controversial conclusions. What
he missed were the following sources: (1) Cauchy’s earlier course summaries that
were only discovered over a decade after Grattan-Guinness’ article (see Section 2);
(2) Lagrange (as argued by Grabiner); and (3) other eighteenth-century authors,
such as Kästner and Karsten (see Section 4).

Some mathematicians and historians of mathematics assume that Bolzano’s defi-
nition of the continuity of a function in his 1817 Rein analytischer Beweis preceded
Cauchy’s and that the latter first gave one in his 1821 textbook the Cours d’Analyse.
Both assumptions turn out to be incorrect. Scholars commonly assume the following
claims to be true:

(Cl 1) Bolzano and Cauchy gave essentially the same definition of continuity, and
(Cl 2) Bolzano gave it earlier.

We give some examples below.

. Jarník: ‘Bolzano defines continuity essentially in the same way as Cauchy does a
little later’ (Jarník 1981, 36).

. Segre: ‘This led [Bolzano], in his Rein analytischer Beweis (written in 1817, four
years before Cauchy published his Cours d’analyse), to give a definition of con-
tinuity and derivative very similar to Cauchy’s, etc.’ (Segre 1994, 236).

. Ewald: ‘[Bolzano’s] definition is essentially the same as that given by Cauchy in
his Cours d’analyse in 1821; whether Cauchy knew of Bolzano’s work is uncer-
tain’ (Ewald 1996, 226).

. Heuser: ‘Cauchy defines continuity substantially in the same way as Bolzano:…’1

Now claim (Cl 1) is problematic since, as noted by Lützen,

Bolzano did not use infinitesimals2 in his definition of continuity. Cauchy did
(Lützen 2003, 175).

1In the original German: ‘Stetigkeit definiert Cauchy inhaltlich so wie Bolzano’ (Heuser 1991, 691). Heuser
goes on to present Cauchy’s first 1821 definition in terms of f (x+ a) − f (x) (see Section 2.2) but fails to
mention the fact that Cauchy describes α as an infinitely small increment.
2Note, however, that Bolzano did exploit infinitesimals in his later writings; see for example, Grattan-Guin-
ness (1970, note 29, 379), Trlifajová (2018) and Fila (2020).
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Lützen’s claim that Cauchy used infinitesimals in his definition of continuity is not
entirely uncontroversial. While Cauchy indisputably used the term infiniment petit,
the meaning of Cauchy’s term is subject to debate. Grabiner (1981), Gray (2015,
36), and some other historians feel that a Cauchyan infinitesimal is a sequence
tending to zero. Others argue that there is a difference between null sequences and
infinitesimals in Cauchy (see for example, Bair et al. 2019).

In sum, Cauchy’s 1821 definitions exploited infinitesimals (and/or sequences),
whereas Bolzano’s definition in the Rein analytischer Beweis exploited the clause ‘pro-
vided ω can be taken as small as we please’ in a way that can be interpreted as an inci-
pient form of an e, d definition relying on implied alternations of quantifiers. Such
manifest differences make it difficult to claim that the definitions were ‘essentially
the same.’

To determine the status of claim (Cl 2), we will examine the primary sources in
Bolzano and Cauchy and compare their dates.

2. Evolution of Cauchy’s ideas documented by Guitard

Primary sources published in the 1980s suggest that an evolution took place in
Cauchy’s ideas concerning continuity. On 4 March 1817, Cauchy presented an infini-
tesimal-free treatment of continuity in terms of variables which is procedurally identi-
cal with the modern definition of continuous functions via commutation of taking limit
and evaluating the function, as we discuss in Section 2.1.

2.1. Continuity in 1817

In modern mathematics, a real function f is continuous at c [ R if and only if for each
sequence (xn) converging to c, one has f (limn�1 xn) = limn�1 f (xn), or briefly
f ◦ lim = lim ◦ f at c.3

In 1817, Cauchy wrote (see Figure 1):

La limite d’une fonction continue de plusieurs variables est la même fonction
de leur limite. Conséquence de ce Théorème relativement à la continuité des
fonctions composées qui ne dépendent que d’une seule variable.4 (Cauchy
as quoted in Guitard 1986, 34; emphasis added; cf. Belhoste 1991, 255,
note 6 and 309)

The Intermediate Value Theorem was proved in the same lecture. Cauchy’s treatment
of continuity in 18175 contrasts with his definitions based on infinitesimals given four
years later in the Cours d’Analyse (CdA).

3The equivalence of such a definition with the e, d one requires the axiom of choice.
4Translation: ‘The limit of a continuous function of several variables is [equal to] the same function of their
limit. Consequences of this Theorem with regard to the continuity of composite functions dependent on a
single variable.’ The reference for this particular lesson in the Archives of the Ecole Polytechnique is as
follows: Le 4 Mars 1817, la leçon 20. Archives E. P., X II C7, Registre d’instruction 1816–1817.
5Belhoste places it even earlier, in 1816: ‘according to the Registres, Cauchy knew the modern concept of
continuity as far back as March 1817, but the “invention” was anterior, as shown by the instructional
program of December 1816’ Belhoste (1991, 255, note 6).
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2.2. Continuity in the Cours d’Analyse

In CdA, Cauchy defined continuity as follows (see Figure 2):

Among the objects related to the study of infinitely small quantities, we ought to
include ideas about the continuity and the discontinuity of functions. In view of
this, let us first consider functions of a single variable. Let f (x) be a function of
the variable x and suppose that for each value of x between two given limits, the
function always takes a unique finite value. If, beginning with a value of x con-
tained between these limits, we add to the variable x an infinitely small increment
α, the function itself is incremented by the difference f (x+ a) − f (x), which
depends both on the new variable α and on the value of x. Given this, the function
f (x) is a continuous function of x between the assigned limits if, for each value of x
between these limits, the numerical value of the difference f (x+ a) − f (x)
decreases indefinitely with the numerical value of α. (Cauchy as translated in
(Bradley and Sandifer 2009, 26);6 emphasis on ‘continuous’ in the original; empha-
sis on ‘infinitely small increment’ added).

This definition can be thought of as an intermediate one between the March 1817 defi-
nition purely in terms of variables and containing no mention of the infinitely small
and his second 1821 definition stated purely in terms of the infinitely small (see
Section 2.3).

2.3. Second definition of continuity in CdA

Cauchy went on to summarize the definition given above as follows (see Figure 3):

In other words, the function f (x) is continuous with respect to x between the given
limits if, between these limits, an infinitely small increment in the variable always pro-
duces an infinitely small increment in the function itself.7 (ibid.; emphasis in the
original).

Since Cauchy prefaced his second definition with the words en d’autres
termes (‘in other words’), he appears to have viewed the pair of 1821 definitions

Figure 1. Cauchy’s treatment of continuity dating from 4 March 1817 in the Gregorian calendar (which
was a Tuesday). The ‘Mar.’ in the figure stands for mardi, Tuesday. The glyph resembling ∂ to the right of
the date seems to be shorthand for ditto, referring to the month of March mentioned on earlier lines in
this Registre de l’Instruction for 1817.

6Siegmund-Schultze (2009) writes: ‘By and large, with few exceptions to be noted below, the translation is
fine’.
7In the original: ‘En d’autres termes, la fonction f (x) restera continue par rapport à x entre les limites données,
si, entre ces limites, un accroissement infiniment petit de la variable produit toujours un accroissement infiniment
petit de la fonction elle-même’ (Cauchy 1821, 34–35).
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as being equivalent. Cauchy summed up his discussion of continuity in CdA as
follows:

We also say that the function f (x) is a continuous function of the variable x in a
neighborhood of a particular value of the variable x whenever it is continuous
between two limits of x that enclose that particular value, even if they are very
close together. Finally, whenever the function f (x) ceases to be continuous in the
neighborhood of a particular value of x, we say that it becomes discontinuous,

Figure 2. Cauchy’s first 1821 definition of continuity.

Figure 3. Cauchy’s second 1821 definition of continuity.
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and that there is solution8 of continuity for this particular value. (ibid.; emphasis in
the original).

Note that none of the 1821 definitions exploited the notion of limit. We therefore find it
puzzling to discover the contrary claim in a recent historical collection:

Cauchy gave a faultless definition of continuous function, using the notion of ‘limit’
for the first time. Following Cauchy’s idea, Weierstrass popularized the ε–δ argu-
ment in the 1870s (Dani and Papadopoulos 2019, 283).

In a related vein, Väth opines that ‘formulat[ing] properties which hold for infini-
tesimals (which have been use by Leibniz) in an ε–δ-type manner … was first pro-
pagated by Cauchy’ (Väth 2007, 74). Similarly, Goldbring and Walsh claim the
following:

[T]he mathematical status of [infinitesimals] was viewed as suspect and the entirety
of calculus was put on firm foundations in the nineteenth century by the likes of
Cauchy and Weierstrass, to name a few of the more significant figures in this
well-studied part of the history of mathematics. The innovations of their ‘ε–δ
method’ … allowed one to give rigor to the naïve arguments of their predecessors
(Goldbring and Walsh 2019, 843).

Presentist views of this type are, alas, not the exception, and much work is required to
counter them. Recent work on Cauchy’s stance on the infinitely small and their appli-
cations includes Bair et al. (2017a), Błaszczyk et al. (2017), Bascelli et al. (2018), and
Bair et al. (2020).

To summarize, in 1817, Cauchy gave a characterization of continuity in terms of
variables, whereas his second 1821 definition involved only infinitesimals. Meanwhile,
the first 1821 definition exploited both variables and infinitesimals.

3. Bolzano’s Rein analytischer Beweis

Could Bolzano’s Rein analytischer Beweis (RB) (Bolzano 1817) have influenced
Cauchy’s definition of continuity? Grattan-Guinness wrote:

Bolzano had given his paper [RB] two opportunities for publication, for not only
did he issue it as a pamphlet in 1817, but – with the same printing – inserted it
into the 1818 volume of the Prague Academy Abhandlungen. That journal was
available in Paris: indeed, the Bibliothèque Impériale (now the Bibliothèque Natio-
nale) began to take it with precisely the volume containing Bolzano’s pamphlet.
(Grattan-Guinness 1970, 396) (emphasis in the original).

Of particular interest to us is Grattan-Guinness’ reliance on the availability of RB in
the Paris Imperial Library in 1818; see Section 3.1. The papers Freudenthal (1971)
and Sinaceur (1973) provided evidence against Grattan-Guinness’ hypothesis.
However, as noted by Jan Sebestik, their work does not rule out the possibility that

8Meaning dissolution, that is, absence (of continuity).
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‘Cauchy could have read Bolzano’s Rein analytischer Beweis (or heard about it) and
could have been inspired by it’ (Sebestik 1992, 109, 111). Thirty years after the
Benis-Sinaceur paper, Russ wrote:

There has been discussion in the literature on the possibility that Cauchy might
have plagiarized from Bolzano. See Grattan-Guinness (1970), Freudenthal
(1971) and Sinaceur (1973). (Russ 2004, 149; emphasis added).

It is our understanding that referring to the issue as a ‘discussion’ tends to imply that
the hypothesis of plagiarism has not been definitively refuted.9 Arguably, therefore, the
issue continues to have relevance.

3.1. Grattan-Guinness’ hypothesis

Having summarized the historical background, Grattan-Guinness proceeds to state his
hypothesis:

So here is at least one plausible possibility for Cauchy to have found a copy of Bol-
zano’s paper, quite apart from the book-trade: he could have noticed a new journal
in the library’s stock and examined it as a possible course10 of interesting research.
(Grattan-Guinness 1970, 396).

Grattan-Guinness specifically includes the concept of continuity in his hypothesis
(op. cit., 374).

It is our understanding that, while the evidence provided in the articles Freudenthal
(1971) and Sinaceur (1973) shows clear and profound differences between Cauchy and
Bolzano’s stance, it does not entirely refute the aforementioned hypothesis. We will
provide a refutation of a key component of Grattan-Guinness’ hypothesis concerning
the concept of continuity. Our refutation is based on the facts of the chronology of the
relevant works. Namely, we will show that Cauchy possessed a concept of continuity

(1) earlier than the date of the acquisition of a journal version of RB by the Imper-
ial Library in Paris, and

(2) even earlier than, or at least contemporaneously with, the date of the Leipzig
fair where RB was first marketed.

Note that, according to Grattan-Guinness, the Bibliothèque Impériale started to take
the journal where RB appeared in the year 1818. Reading the 1818 journal version of
RB could not therefore have influenced Cauchy’s treatment of continuity in 1817 11 (see
Section 2). This refutes a key component of the plagiarism hypothesis as proposed in
Grattan-Guinness (1970) with regard to the concept of continuity. The comparison of

9Similarly, in a recently published book, Rusnock and Šebestík mention that ‘there has been speculation that
Cauchy may have learned a thing or two from Bolzano’ (Rusnock and Šebestík 2019, 49); see also note 3
there.
10Grattan-Guinness apparently means ‘source.’
11Cauchy had discussed continuity even earlier, in an 1814 article on complex functions (see Freudenthal
1971, 380). However, that discussion stayed at the intuitive level and cannot be described as reasonably
precise.
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dates establishes that Cauchy’s initial insight into continuity could not have been bor-
rowed from Bolzano’s RB, though it does not rule out the possibility that Cauchy may
have been acquainted with Bolzano’s work before formulating the later, 1821 defi-
nitions in CdA.

Grattan-Guinness also brought broader plagiarism charges against Cauchy, which
are not refuted by our comparison of dates. Notice, however, that it is implausible that
Cauchy could have seen Bolzano’s 1816 text Der binomische Lehrsatz (Bolzano 1816),
where the latter also gave a definition of continuity, since there is no evidence that this
text was available in France. It seems that this is why Grattan-Guinness found it
necessary to speculate specifically concerning the version of Bolzano’s RB available
in a Paris library in 1818, so as to bolster the plausibility of the plagiarism claim.
Grattan-Guinness may have had more of a point with regard to E G Björling. Appar-
ently, in the 1850s, Cauchy may not have been transparent about the possible influence
of Björling’s ideas related to uniform convergence. The issue was studied in Bråting
(2007). For an analysis of Cauchy’s 1853 approach to uniform convergence see Bas-
celli et al. (2018).

3.2. Bolzano’s definition in the Rein analytischer Beweis

In his RB, Bolzano criticized some proofs of the IVT for polynomials that from his
stance were ‘based on an incorrect concept of continuity,’ given for example their
use of ‘a truth borrowed from geometry’ or ‘the introduction of the concepts of time
and motion (Bolzano 1817, 6, 8–9, 11). Instead, he defined continuity as follows:

According to a correct definition, the expression that a function fx varies according
to the law of continuity for all values of x inside or outside certain limits means only
that, if x is any such value the difference f (x+ v) − fx can be made smaller than
any given quantity, provided ω can be taken as small as we please or (in the notation
we introduced in § 14 of Der binomische Lehrsatz etc., Prague, 1816)
f (x+ v) = fx+V. (Bolzano as translated in Russ 2004, 149, 256.)

The dating of RB will be discussed in Section 3.3. Bolzano’s definition is reasonably
precise, as is Cauchy’s approach. Here ‘reasonably precise’ means ‘easily transcribable
as a modern definition’ (rather than merely an intuitive notion of continuity).12 A
modern formalization of Bolzano’s 1817 definition would involve alternating quanti-
fiers, whereas a modern formalisation of Cauchy’s 1817 definition would retain
almost verbatim the commutation of (a) evaluating f and (b) taking lim (see Section
2.1). Apparently neither Jarník nor Ewald (see Section 1) was aware of Cauchy’s treat-
ment of both continuity and the IVT dating from 4 March 1817.

3.3. The dating of Bolzano’s RB

The earliest known written record of Bolzano’s RB is in a catalogue of the Easter book
fair at Leipzig.

12Note that we take no position with regard to which definition was closer to a modern one, Bolzano’s or
Cauchy’s (Bolzano’s was arguably closer to the modern Epsilontik standard). The point we are arguing is
that both were reasonably precise in the sense specified.
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According to Evenhuis (2014, 4), both the catalogue (Olms 1817, 30) and the fair
itself date from 27 April 1817, over a month later than the earliest written record of
Cauchy’s treatment of continuity. It should be noted, however, that Bolzano also
gave a definition of continuity in an 1816 publication (Bolzano 1816) (see Figure 4):

For a function is called continuous if the change which occurs for a certain change
in its argument, can become smaller than any given quantity, provided that the
change in the argument is taken small enough.13 (Bolzano as translated in Russ
(2004, 184).)

This definition was immediately followed by an attempted proof of an erroneous
assertion. Namely, Bolzano claimed to prove that if a function F is differentiable
then its derivative, f, is continuous. This indicates that Bolzano’s definition of continu-
ity was still sufficiently ambiguous to accomodate errors, as was his v/V notation.
Recently (Fuentes Guillén and Martínez Adame 2020, abstract) have argued in His-
toria Mathematica that ‘those quantities [that is, Bolzano’s ω] are not clearly “proto-
Weierstrassian”.’

It is worth noting that an even earlier mention of ideas in the direction of Bolzano’s
definition of continuity occurs in Bolzano’s mathematical diaries of early 1815: ‘if
therefore ξ is taken smaller than any given quantity, that is, = v, the value of
f (x+ v) − fx must be able to become as small as desired’ (see op. cit., note 86).
Insofar as Cauchy had no access either to Bolzano’s diaries or the latter’s 1816
work, and the former would have formulated his first definition of continuity shortly
before or in any case at about the same time as the 1817 Easter book fair at
Leipzig, it is implausible that Cauchy’s 1817 definition could have been borrowed
from Bolzano’s work.

4. Antecedents in Kästner, Karsten, and others

There exists a historiographic controversy with regard to the issue of continuity in the
historical development of mathematics. Unguru and his disciples adopt a radical
posture against such continuity. Other scholars endorse continuity at various levels
and to varying extent. We adopt the latter view, to the extent that we detect continuity
between, for example, the work of Kästner, on the one hand, and that of Bolzano and
Cauchy, on the other. For more details see Katz (2020).

The mathematical diaries of Bolzano written during 1814–1815 also contain cri-
ticism of, for example, Carnot (1797) and Crelle (1813) because of their assumption
of the law of continuity: in the first case, he stated that in such a law ‘[lay] the key for
the resolution of the whole riddle of infinitesimal calculus’ (Bolzano 1995, 152); in
the latter case, he pointed out that Kästner had ‘already drawn attention to the sur-
reptitious acceptance of this law’ (Bolzano 1997, 144). As we already mentioned, the
first published record of a definition of continuity given by Bolzano dates from the

13In the original: ‘Stetig heißt nähmlich eine Function, wenn die Veränderung, die sie bey einer gewissen
Veränderung ihrer Wurzel erfährt, kleiner als jede gegebene Größe zu werden vermag, wenn man nur jene
klein genug nimmt’ Bolzano (1816, 34). Note that Bolzano repeatedly usesWurzel in the sense of ‘input to
a function’; see for example, footnote on page 11 of Bolzano (1817). The issue is discussed in Russ (2004,
256, note f).
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following year, after which he published his reasonably precise definition included in
RB.

As his later works and mathematical diaries show, Bolzano continued to be inter-
ested in that issue. Thus, in his Theory of Functions, written in the 1830s, he would
have ‘sharpened’ his 1817 definition (Rusnock and Kerr-Lawson 2005, 306).
Rusnock and Kerr-Lawson argue that, as early as the 1830s, Bolzano not only
grasped the distinction between pointwise continuity and uniform continuity but
also presented a pair of key theorems concerning the latter. Moreover, in that
work Bolzano acknowledged that ‘[t]he concept of continuity has already been
defined essentially as I do here by [other contemporary authors]’ such as Cauchy
and Ohm (Russ 2004, 449). However, at the same time, in that work he criticized
certain specific definitions, including one by A. G. Kästner in 1766. On the one
hand, Bolzano’s definition surely constituted an improvement upon the definition
of local continuity by Kästner in 1760 (see Figure 5). On the other hand, Bolzano
seems to have misrepresented, at least partially, the relevant passage from Kästner’s
work of 1766.

4.1. Kästner’s 1760 definition

Kästner’s definition, included in his volume on the analysis of finite quantities (Analy-
sis endlicher Grössen), or letter-algebra, and which can be found in a section entitled
‘On curved lines,’ runs as follows:

In a sequence14 of magnitudes, their increase or decrease takes place in accordance
with the law of continuity (lege continui), if after each term of the sequence,
another one follows or precedes the given term that differs from it [that is, from
the given term] by as little as one wishes; as a consequence,15 the difference of
two consecutive terms16 can amount to less than any given magnitude.17

(Kästner 1760, paragraph 322, 180).

Figure 4. Bolzano’s definition of continuity.

14We translate Reihe as ‘sequence’, even though it is often translated as ‘series’, since ‘series’ nowadays is a
standard technical term which is not appropriate here, andmoreover the German termReihe canmean either
‘sequence’ or ‘series’.
15The German conjunction so dass, especially in Kästner’s (now obsolete) spelling as two separate words,
resembles the English ‘such that’; in the present case, however, this is a false friend. In fact ‘as a consequence’
is one of several standard translations of the German conjunction sodass.
16Kästner’s phrasing nach einander folgender could possibly be interpreted as the statement that the terms
mentioned here are immediate successor elements, in particular since the standard technical translation
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4.2. Kästner’s influence on Bolzano

Russ notes Kästner’s influence on Bolzano in the following terms:

[T]here were two authors, Wolff and Kästner, whose work, between them, domi-
nated the century in the German-speaking regions.… [T]hey were both committed
to education and wrote highly systematic and comprehensive multivolume text-
books on mathematics that went through many editions and were very influential.
Not surprisingly, they were both authors to whom Bolzano makes frequent refer-
ence in his early works. (Russ 2004, 14).

Indeed, in Bolzano’s mathematical diaries there is a note from the early 1820s, entitled
“On the law of continuity.” Bolzano’s note includes a reference to paragraph 183 of
Kästner’s work on mechanics (Kästner 1766) and to paragraph 235 of W J GKarsten’s
work on mechanics (Karsten 1769); see Bolzano (2005, 63). The formulation of both
authors ultimately relied on the notion of continuity according to which ‘[a] continuous
quantity (continuum) is that [quantity] whose parts are all connected together in such a
way that where one ceases, another immediately begins, and between the end of one
and the beginning of another there is nothing that does not belong to this quantity’
(Russ 2004, 17); see Karsten (1767, 209): but only that of Karsten would be equivalent
to IVT (Karsten 1769, 223). Interestingly, as we already mentioned, in a later work

Figure 5. Kästner’s 1760 definition of continuity.

for ‘immediate sucessor element’ isNachfolger. This, however, could not be what Kästner meant to say. Käst-
ner’s phrasing (note that he does not say Nachfolger outright) is sufficiently vague to allow for an interpret-
ation where he means to speak of two terms which follow shortly one after another, though there are other
terms in between.
17In the original: ‘In einer Reihe von Grössen, erfolgt das Wachsthum oder das Abnehmen derselben, nach
dem Gesetze der Stetigkeit (lege continui) wenn nach jedem Gliede der Reihe eines folget, oder vor ihm vor-
hergehen kann, das so wenig als man nur will von dem angenommenen Gliede unterschieden ist, so daß der
Unterschied zweyer nach einander folgender Glieder, weniger als jede gegebene Grösse betragen kann.’ This
was quoted in Spalt (2015, 283). In our translation, we try to strike a balance between literalness and read-
ability in line with the approach taken in Blåsjö and Hogendijk (2018).
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Bolzano went back to discuss the notion of continuity in that paragraph of Kästner’s
work. We will analyse such a reception of the latter’s ideas in Section 4.3.

4.3. Bolzano misattributes a definition to Kästner

We reviewed Kästner’s 1760 definition in Section 4.1. In his Theory of Functions,
Bolzano seems to have mistakenly attributed a different definition to Kästner in
1766, which he (Bolzano) considered to be ‘too broad’:

Some very respected mathematicians like Kästner (höhere Mechanik, Auflage 2, §§
183 ff.) and Fries (Naturphilosophie, § 50) define the continuity of a function Fx as
that property of it by virtue of which it does not go from a certain value Fa, to
another value Fb, without first having taken all the values lying in between.
However, it will be seen subsequently that this definition is too wide18 if in fact
the concept intended is to be equivalent to the one above. (Bolzano as translated
in Russ (2004, 449); emphasis on Kästner and Fries in the original; emphasis on
‘having taken all the values lying in between’ and ‘too wide’ added.)

As we already noted, Kästner’s formulation to which Bolzano refers here ultimately
relied on the former’s geometric notion of continuity. So, while Kästner’s paragraph
183 is part of a section ‘On the law of continuity’ (which in turn is part of a chapter
‘On the movement of solid bodies with determined magnitude and shape’), he expli-
citly referred to the note in definition 6 (straight and curved lines) of his book on geo-
metry. In that note Kästner pointed out that before the curved line that goes from A to
B reaches B, ‘all the minor changes in between must occur’ (Kästner 1758, 161).

Bolzano would seem to attribute a different definition (via the satisfaction of the
Intermediate Value Theorem) to Kästner (as well as to Fries) in the particular case
of that paragraph. Nonetheless, Bolzano’s attribution appears to be incorrect.

In fact, Kästner’s discussion of the law of continuity in his section 183 resembles, to
some extent, Cauchy’s definition of continuity based on infinitesimals given in Section
2.3 above (though of course Kästner’s viewpoint was geometric rather than analytic):

On the Law of Continuity. 183. In the investigation which we now present, it is
assumed that the speed of a body does not change instantaneously, but rather by
infinitely small gradations. Just the same can be said of the direction. If one
views the matter from that perspective, then a body which is being reflected does
not change its direction instantaneously to the opposite direction: its speed
becomes smaller and smaller in the previous direction, finally vanishes, and then
transforms into a velocity having the opposite direction. This is the Law of Conti-
nuity (applied to these matters). To wit, by the latter law one claims that generally,
no change happens suddenly, but that every change always moves through infinitely
small gradations (of which already the movement of a point along a curve is an
example; [cf. Kästner’s] Geom. 6. Erkl. Anm.). (Kästner 1766, 350, § 183;19 empha-
sis on ‘law of continuity’ on the original; emphasis on ‘every change, etc.’ added.)

18Perhaps a better translation is ‘too broad’.
19According to Kröger (2014, Abbildung 10), there were two edititions of this treatise. These are Kästner
(1766, 1793). In the 1793 edition of Kästner’s treatise referred to by Bolzano as Auflage 2, Section 183
appears on page 543.
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What may have led Bolzano to claim that Kästner defined continuity based on the sat-
isfaction of the IVT? Note that Kästner’s text contains the following three sentences:

(K1) If one views the matter from that perspective, then a body which is being
reflected does not change its direction instantaneously to the opposite direc-
tion: its speed becomes smaller and smaller in the previous direction, finally
vanishes, and then transforms into a velocity having the opposite direction.

(K2) This is the Law of Continuity (applied to these matters).
(K3) To wit, by the latter law one claims that generally, no change happens

suddenly, but that every change always moves through infinitely small
gradations.

Possibly, Bolzano interpreted sentence (K1) as the definition of the law of continuity
mentioned in sentence (K2). Now sentence (K1) does sound like (a physical interpret-
ation of) the IVT.

However, reading the three sentences together, it is clear that Kästner meant sen-
tence (K3) to be the detailed formulation of the law of continuity. Meanwhile, in sen-
tence (K2), Kästner specifically used the verb applied. This indicates that Kästner
thought of sentence (K1) as an application of the law of continuity, rather than the for-
mulation thereof. Now, in modern mathematics, it is certainly true that continuity
implies the IVT: though the converse is incorrect, as Bolzano himself argued (see
Russ 2004, § 84, 471–472). In his Theory of Functions, Bolzano outlined an idea for
a function that takes every intermediate value without being continuous, as follows.

Bolzano started with an everywhere discontinuous function W (x) described in § 37,
defined only on a collection of rational points, and built out of a pair of linear functions
of different slope. In § 39, Bolzano asserted that the remaining infinitely many points
could be used to assign the values of the function so as to ‘fill in’ whatever values were
missing. Bolzano’s argument is mentioned in Sebestik (1992, 395)20 and Smoryński
(2017) (see 52 and note 49 there). For a study of counterexamples to the implication ‘if f
satisfies IVT then f is continuous’seeOman (2014),Radcliffe (2016), andDeMarco (2018).

In conclusion, Bolzano may have interpreted sentence (K1) as the formulation of
continuity (rather than an application thereof). Unlike Cauchy, Bolzano seems never
to have formulated a definition of continuity in terms of infinitesimals. It is possible
that Kästner’s sentence (K3) made no sense to Bolzano, who was therefore led to
take sentence (K1) to be the formulation of continuity. Thus, while Fries may
perhaps have given a different definition of continuity via the satisfaction of the IVT
(as Bolzano claimed), Kästner apparently did not.

4.4. Continuity in Leibniz

An even earlier source for local continuity may have influenced Kästner and other
eighteenth-century authors. Such a source is in Leibniz’s 1687 formulation of the prin-
ciple of continuity:

When the difference between two instances in a given series or that which is presup-
posed can be diminished until it becomes smaller than any given quantity whatever,

20Sebestik also points out that Bolzano and Cauchy’s definitions of continuity could have been ‘the result of a
critical reflection on the texts by Euler and Lagrange’ (Sebestik (1992), 110, 81, 83).
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the corresponding difference in what is sought or in their results must of necessity
also be diminished or become less than any given quantity whatever. (Leibniz as
translated by Loemker in Leibniz (1989, 351); emphasis added.)

In modern terminology, Leibnizian ‘what is sought’ is the dependent variable, while
‘that which is presupposed’ is the independent variable. What Leibniz referred to as
the principle of continuity21 involves, in modern terminology, the condition that a con-
vergent sequence in the domain should get mapped to a convergent sequence in the
range.22

Cauchy’s approach dating from 4 March 1817 is not the final word on continu-
ity, but it can be described as reasonably precise (in the sense explained in Section
3.2). This is unlike many intuitive definitions given earlier23 that cannot be so
formalized.

Notice that Bolzano’s definition is, similarly, reasonably precise but also not
without its problems. Thus, the Ω appearing there seems to be defined as the difference
f (x+ v) − f (x), whereas the corresponding ε in the modern definition is a ∀-quanti-
fied variable entirely unrelated to f. It is possible that this was also Bolzano’s intention,
but it must be admitted that such an intention was only imperfectly expressed by Bol-
zano’s formula f (x+ v) = fx+V and accompanying comments; see (Fuentes Guillén
and Martínez Adame 2020) for a fuller discussion.

5. Conclusion

We have re-examined the priority issue with regard to the concept of continuity. Course
notes available at the Ecole Polytechnique indicate that Cauchy had a reasonably
precise concept of continuity of a function earlier than is generally thought. In particu-
lar, Cauchy’s concept was earlier than or at least contemporaneous with, the first
written record of Bolzano’s 1817 Rein analytischer Beweis.

In 1970, Grattan-Guinness speculated that Cauchy may have read aversion of Bol-
zano’s Rein analytischer Beweis found in a Paris library in 1818, and subsequently pla-
giarized some of Bolzano’s insights, including continuity, when writing the 1821 Cours
d’Analyse. Such a hypothesis is refuted by awritten record of a reasonably precise treat-
ment of continuity by Cauchy dating fromMarch 1817, and hence anterior to the Paris
library acquisition, on which, among other things, Grattan-Guinness based his
hypothesis.

The proximity of the dates indicates an independence of Cauchy’s and Bolzano’s
scientific insight and should contribute not only to end speculations as to possible pla-
giarism (with regard to the notion of continuity) on either side but also to improve our
understanding of their respective developments of such a notion.

The prototypes of both Bolzano’s and Cauchy’s definitions of continuity in formu-
lations found in eighteenth-century and early nineteenth-century works, such as those
of Kästner, are yet to be explored fully.

21Not to be confused with his law of continuity. For a detailed discussion see Katz and Sherry (2013), Sherry
and Katz (2012), Bascelli et al. (2016), Bair et al. (2017b), and Bair et al. (2018).
22In modern analysis, the sequence-condition is equivalent to continuity for first-countable spaces.
23Including Cauchy’s own definition in 1814, in an article on complex functions quoted by Freudenthal; cf.
note 11.
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