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Chromosome structures: reduction of
certain problems with unequal gene
content and gene paralogs to integer linear
programming
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Abstract

Background: Chromosome structure is a very limited model of the genome including the information about its
chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a
gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such
structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny,
regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all
assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum
number of operations required to transform one chromosome structure into another and the corresponding
transformation itself including the identification of paralogs in two structures. We use the DCJ model which is
one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well
as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut
and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is
necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures
of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the
distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the
insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem
to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of
paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes
the mutual identification of paralogs.

Results: We proved that these problems can be reduced to integer linear programming formulations, which allows an
algorithm to redefine the problems to implement a very special case of the integer linear programming tool. The results
were tested on synthetic and biological samples.

Conclusions: Three well-known problems were reduced to a very special case of integer linear programming, which is
a new method of their solutions. Integer linear programming is clearly among the main computational methods and, as
generally accepted, is fast on average; in particular, computation systems specifically targeted at it are available. The
challenges are to reduce the size of the corresponding integer linear programming formulations and to incorporate a
more detailed biological concept in our model of the reconstruction.

(Continued on next page)

* Correspondence: gorbunov@iitp.ru
1Institute for Information Transmission Problems of the Russian Academy of
Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, build.1, Moscow
127051, Russia
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lyubetsky et al. BMC Bioinformatics  (2017) 18:537 
DOI 10.1186/s12859-017-1944-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1944-x&domain=pdf
mailto:gorbunov@iitp.ru
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Keywords: Chromosome structure, Chromosomal rearrangement, Ancestral genome, Evolution along the tree,
Reconstruction of ancestral genomes, Transformation of chromosome structures, Parsimony principle, Integer linear
programming, Efficient algorithms

Background
Introduction
Chromosome structure is a large-scale view on the gen-
ome; it can be considered as a very limited model of the
genome taking into account only the mutual arrangement
of genes (ignoring their length and nucleotide compos-
ition) on both DNA strands as well as the chromosome
type (linear or circular), including gene names (identifiers)
[1, 2]. Instead of the term “chromosome structure”, the
terms “genome” or even “genotype” are used sometimes
[3–5].We prefer the term “chromosome structure”, [6], to
outline the distinction between the genome as a biological
notion and the considered model. Below we consider the
DCJ model widely used in studies of this kind, e.g., [3, 7].
The model includes standard DCJ operations: double-,
sesqui-, and single-operations; the last ones comprise cut
and join operations. They were proposed in [7] and later
studied in dozens of publications, for example, in [8–10]
where a detailed review of the results and further refer-
ences are given. The biological mechanisms of the opera-
tions are described, e.g., in ([10], chapter 5). Two structures
have equal gene content if they have no paralogs and con-
tain the same set of names. In the case of unequal gene
content, structures can have paralogs, and supplementary
operations are considered: deletion and insertion of a
chromosome connected region [4, 11]; these operations
were actively studied, e.g., in [4, 8, 12] where further refer-
ences are given. The popularity of this model stems from
the simplicity and elegance of the underlying mathematical
constructs as well as from the ability to model many types
of genomic rearrangements. Although highly incomplete,
such model can be used in many cases, e.g., to reconstruct
phylogeny and evolutionary events, to identify gene syn-
teny, regulatory elements and promoters (considering
highly conserved elements), etc.; e.g., ref. to [10, 13].
Remind that paralogs are duplicated genes in the same
genome, and the problem of their identification in different
genomes is hard and important. The role of the structures
with paralogs were described in detail, e.g., in [5, 14, 15].
In the context of chromosome structures, three well-

known problems are considered. They are formally de-
scribed in sections 1.3 and 4.1; here their concepts are
introduced together with the corresponding references.
The distance problem determines the distance between
two chromosome structures, i.e., the minimum number
of operations required to transform one chromosome
structure into another, and the corresponding minimum
transformation. Paralogs should be identified so that the

resulting structures considered as structures without
paralogs have the minimum distance. It is easy to prove
that the allowance for paralogs makes the distance
problem NP-hard.
A linear-time algorithm was proposed for the distance

problem in the absence of paralogs for both equal [3]
and unequal [4, 16] gene content. This problem is re-
duced to integer linear programming formulation (ILP)
in [5, 14, 15], where its definition was considerably
simplified; specifically, balanced gene content in [5],
structure reduction to equal gene content by elimination
of unwanted regions with paralogs in [14], and ignoring
paralogous genes in [15]. More precisely, in [15] such
structures can have paralogs, but after the identification
of paralogs, the genes present in one out of both struc-
tures (which is a real-life situation) are eliminated and
not considered later, which does not seem to be justified
in any way. Balanced gene content means the same set
of names but with possible paralogs.
In the reconstruction problem a phylogenetic tree with

chromosome structures in the leaves is given. It is re-
quired to assign structures to inner nodes of the tree to
minimize the total distance between terminal structures
of each edge. Thus it can be called a small phylogeny
problem; the term “reconstruction” is widely used, e.g.,
in [13]. As previously, unequal gene content and para-
logs in all nodes are allowed. Paralogs should be identi-
fied such that the total distance for all resulting
structures without paralogs is minimum. It is easy to
prove that this problem is NP-hard even in the absence
of paralogs. Only heuristic algorithms are known for the
problem, among which the algorithms in [6, 13, 17]
should be noted. These as well as other publications
mentioned above present numerous relevant references;
it allows us to avoid detailed historical review here due
to publication size limitations.
Thus, exact algorithms presented here solve two above

problems by reducing them to ILPs. Let us recall that an
algorithm is called exact if it is mathematically proved
that it always results in a global minimum (hereafter,
minimum point) of the minimized function involved in
the problem statement. The significance of this reduc-
tion stems from the appearance of fast methods solving
ILP tasks in recent 20 years (e.g., [18, 19]). Note, many
combinatorial problems (possibly including ILP) have
low complexity on average but can be pretty hard in
some special cases. For example, hard inputs are rare for
the simplex algorithm for linear programming [20, 21].
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Another example, a simple algorithm for solving almost
all instances of the famous set partition problem, that is
NP-hard, is also proposed in [22].
Finally, the computation of the distance between two

chromosome structures with paralogs was reduced to
ILP for circular chromosomes in [17]. Here, we define
such reduction for arbitrary structures with unequal
gene content and paralogs as well as for the reconstruc-
tion of such structures along the phylogenetic tree. The
computation of a sequence of operations (for the mini-
mum transformation) was also considered previously,
e.g., in [16, 17, 23, 24]. An algorithm with a linear com-
plexity solving the distance problem without paralogs
and with preset weights of operations (which minimizes
the total weight of sequence of operations) that is not
based on reduction to ILP was obtained in [23, 24] as
well as in our study prepared for publication.
The statement of the contig problem is given separately

in section 4.1 after the first two problems are clarified.

Definitions of notions
The definitions relevant to the distance problem can be
found in publications in different modifications or the
problem can have no strict definition at all. Accordingly,
we will briefly review the relevant definitions.
Chromosome structure is defined as a directed graph

composed of non-intersecting paths (of nonzero length)
and cycles (including loops). Loops correspond to circu-
lar chromosomes comprising a single gene. Each graph
edge represents a gene with no account of its length,
and the edge is given the name of this gene. The edge
direction shows the gene transcription direction. Two
extremities of neighboring genes are combined (or
merged) into a graph node.
In this context, an edge with an assigned name is re-

ferred to as a gene, while a path or cycle is referred to as
a chromosome. Repeated names can occur in a structure,
they correspond to paralogous genes distinguished by
the index j: paralogous genes with name k get full names
of the form k.j. Full names are unique; a structure with
full names only has no paralogs.
Let adjacency denote a pair of merged gene extremities,

a node of degree 2 in a structure. Here, the extremity is a
5′- or 3′-end of a gene considering that the term “end” is
linked to ends of graph edges.
Hereafter, a and b denote two chromosome structures;

a is meant to be transformed into b. A gene present in
both a and b is referred to as a common gene; a gene
present in only one structure a or b, a special gene; ac-
cordingly, there are a- and b-special genes. In the case
of unequal gene content, two supplementary operations
can be applied to a structure in addition to the standard
ones mentioned above: deletion and insertion. The
former is the removal of a connected region of a-special

genes together with its extremities. Such region can be
removed from a circular or linear chromosome (cycle or
path); the whole chromosome can be removed as well. If
the removed region has neighboring genes on both sides,
their extremities are merged. The latter operation,
inversely, inserts a connected region of b-special genes; in
this case, a chromosome is cut in a node and pairs of the
new free ends are merged. More precisely, the region can
be inserted into or to a boundary of a chromosome or
form a new circular or linear chromosome (cycle or path).
Let us recall the notion of common graph a + b for two

structures a and b given in [17] for unequal gene content
without paralogs. For equal gene content, such graph was
first defined in [25] as the breakpoint graph. For unequal
gene content without paralogs, a similar graph was first
defined in [12] under the same name. Following [12, 25],
a + b will be referred as the breakpoint graph here. Thus, it
is an undirected graph without loops whose nodes are
conventional, i.e., the extremities of common genes with
their names (e.g., 3h or 3t), and special, i.e., any maximal by
inclusion connected regions of a-special or b-special genes.
The latter are referred to as blocks. A block belongs to one
of the structures a or b, and the special node correspond-
ing to it is called an a- or a b-node, and a set (more pre-
cisely, a sequence) of gene names corresponding the block
is assigned to it; the latter serves as the special node name.
The breakpoint graph edges are as follows. A conventional
edge connects two conventional nodes if the extremities
corresponding to them are merged in a or b; a special edge
connects a conventional node to a special one if the ex-
tremity corresponding to a conventional node is merged in
a or b with the boundary of the block corresponding to
the special node. Double conventional edges are also pos-
sible here. A loop in a + b corresponds to a cycle that is a
block; stated differently, a special node of this block is con-
nected to itself. A special edge incident to a special node
of degree 1 is referred to as a hanging edge.
In any case, the breakpoint graph is undirected and

includes non-intersecting connected components: paths
including isolated nodes and cycles including loops. Non-
hanging special edges occur in it in pairs as edges incident
to the same special node; it is convenient to consider such
pairs as a double edge; subject to this provision, the alter-
nation of a- and b-edges is preserved. Accordingly, the
component size is the quantity of conventional edges in it
plus half the quantity of special non-hanging edges. The
size of isolated conventional nodes and loops equals 0,
while that for isolated special nodes equals −1.
A breakpoint graph is considered final (or of the final

form) if all its components are conventional nodes, or
cycles without special edges of size (or length) 2, one
edge from a and the other from b. If the a, b, c marks
are neglected, the final graph a + b has the form c + c for
a certain structure c.
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Four standard operations are allowed on a breakpoint
graph, they correspond to the standard operations on a
structure. Let us describe them in brief (for details see
[16, 17, 23]). Double-cut-and-paste is the removal of two
edges with the same label (e.g., a) and joining four
resulting free ends in a new way by two edges with the
same label. If this gives rise to an edge with two special
nodes (both of which pertaining to either a or b), it is re-
placed with one special node to which the concatenated
sequence of the sequences of two initial special nodes is
assigned (Fig. 1a). Hereafter, for the breakpoint graph,
an edge removal indicates the removal of only its
internal part. Sesqui-cut-and-paste is the removal of an
edge and joining in a new way with an edge with the
same label of one of its free ends with a conventional
free node non-incident to an edge with this label or with
a special node of degree not exceeding 1 with the same
label (which can be followed by a similar replacement of
two special nodes). Join is inserting an edge (say with
the label a) between free nodes, where each node is
either conventional non-incident to an edge labeled a or
special of degree not exceeding 1 with the same label
(which can also be followed by the subsequent replace-
ment of the special nodes if any). Cut is the removal of
any edge.
In addition, only one supplementary operation on

breakpoint graphs is allowed (it corresponds to the dele-
tion operation on a structure): the removal of a special
node (i.e., a block). Specifically, if this node s has the de-
gree 2, it is removed and the edges incident to it are
combined into one edge labeled as the neighbors of
node s (Fig. 1b); if the node has degree 1, it is removed
together with the edge incident to it (the conventional
node is preserved); and if the node has degree 0 or has a
loop, the isolated node and the loop are removed.
In [16, 23], we have reduced the problem of structure

a transformation into structure b using the above six op-
erations with allowed unequal gene content (without
paralogs) to the problem of their breakpoint graph a + b
transformation into the final form using these five

operations. For equal gene contents, such transform-
ation was proposed in [25]; for unequal gene contents
without paralogs, this idea was implemented in [12].

Statements of two problems
Hereafter, the structures can always have unequal gene
content and include paralogs. The identification of paralogs
(e.g., paralogs of a gene with the name k) means that they
are given unique new names k.1, k.2, …. This form of para-
log identification will be referred to as numbering of para-
logs, and new names of the form k.j will be referred to as
full names (of paralogs of gene k). The numbering makes
it possible to establish a partial bijection between two sets
of paralogs of gene k that belong to structures a and b, re-
spectively. It is only partial since paralogs can disappear
and emerge in the course of transformation (a to b) or
evolution. If a gene has no paralogs, we can take that it has
no index j or, better, assign it the same fixed index, e.g., 1.
It is important that the definitions of the common and

special genes depend on the numbering of all paralogs of
all genes, i.e., on the index j. Different paralog numberings
in structures a and b can substantially change the break-
point graph and its transformation to the final form.
At first, we define two problems to solve; the former is

the distance problem. We are given two structures a and
b with different gene content and paralogs. It is required
to number paralogs of all genes in the structures to
minimize the distance between the resulting structures
without paralogs as well as to calculate this distance and
to find the minimum sequence of operations.
The latter is the reconstruction problem. We are given

a root and, generally speaking, non-binary tree T. Struc-
tures a1, …, an with different gene content and paralogs
are defined in the tree leaves (their quantity is n). It is
required to number all paralogs in the leaves and to
identify mutually coherent numbered structures (in the
inner nodes) with the minimum total distance calculated
as the sum of distances for all edges of the tree, as well
as to calculate the total distance. Only the names k
present in the leaves are allowed in the inner nodes, and
the upper limit s(k) of the index j is fixed for each k in
these a priori unknown structures. Clearly, the appear-
ance of new names in the inner nodes will not decrease
the total distance. The distance on each edge is calcu-
lated as in the former problem. Arrangement is the as-
signment of a numbered structure to each node of the
tree so that the leaves are assigned the initial predefined
structures. Given the arrangement, the node and its
structure are not distinguished. The minimum point of
the specified function of the total distance in the latter
problem is called the minimum arrangement, which is
wanted; if there are several minimum points, we con-
sider any one of them. Let F*(A) be the total distance at
any arrangement A.

iu jvs1 s2

a a a

iu jvs1s2

a a

iu jvs
a a

iu jv
a

a

b

Fig. 1 a Concatenation of any two neighboring special nodes s1 and
s2(both from a). The nodes s1 and s2 are replaced with one special node
s1s2 (the concatenated sequence of the sequences of two initial special
nodes). Similarly for (b). b Removal of a special node. Large point is an
a-special node s and the resulting combined edge is marked (a).
Similarly for (b)
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Section 2 presents an exact algorithm to solve the dis-
tance problem through its reduction to ILP. Section 3
presents an exact algorithm to solve the reconstruction
problem by the same reduction if there is a minimum
point (a minimum arrangement) for objective function F′,
such that at the point, for any tree edge and for any circu-
lar chromosome at one of the edge ends, there is a gene
from this chromosome present at the other end of the
edge. This condition is applicable only to the problem of
reconstruction and is marked by (*). Without this con-
dition, our algorithm gives only an approximation F′ to
the minimum value F*; the difference between F′ and
F* is majorized.
The more general statement of the distance problem,

which was considered, in particular, in [17, 23, 24],
assigned each operation a weight, a strictly positive ra-
tional number, and the sequence transforming a into b
with the minimum total weight of operations is sought.
This generalization of the reconstruction problem is
considered in [23, 24] on the basis of a direct algorithm
and also can be reduced to ILP in a similar way as here.
The latter more general consideration is omitted here
for brevity. We have demonstrated that the problem of
finding such total weight and the corresponding
sequence of operations in this setup of the problem is
reduced to the problem of breakpoint graph transform-
ation to the final form if the weights of all standard
operations are equal or obeyed some other constraints
[16, 23].
The problem of contigs is to find the optimal concate-

nations of each given set of contigs providing their un-
equal gene content and identification of paralogs (see
Section 4.1).

Method and results
Solution of the distance problem
Linear minimized function and its linear constraints
Below a reduction algorithm for the distance problem to
integer linear programming (ILP) is described. We for-
mulate the objective function F, variables and constraints
of the ILP task, and also prove the key equality (1) in the
Theorem 1.
Let a and b are given chromosome structures with un-

equal gene content and paralogs. Let us do arbitrarily
numberings for gene paralogs as well as for genes with-
out paralogs; the resulting numbered structures will be
denoted as a′ and b′. The numberings are called initial.
We will deal only with numbered structures below. Let
adjacency denote a pair of merged gene extremities that
is a node of degree 2 in a′ or b′.
Let us introduce Boolean variables zkij to indicate

whether genes k.i in a′ and k.j in b′ correspond to each
other in terms of a partial bijection of paralogs in a′ and
b′; thus zkij = 1 if i corresponds to j, otherwise zkij = 0.

Specifically,
P
i
zkij≤1 for any fixed indexes k and j; and

analogously for the sum over index j. Based on biological
considerations, lower bounds can be set on this sum,
e.g., 1≤

P
i;j

zkij for certain values of k.

A gene is called common if it becomes common after
paralogs in b′ are renumbered according to the zkij
values. Specifically, if zkij = 1, the gene k.j in b′ is
renamed to k.i and becomes synonymous to k.i in a′,
after which the genes out of the z-bijection are arbitrar-
ily numbered to keep the structures numbered. Similarly,
a gene is called special if it becomes special after renum-
bering. The structures resulting from such renumbering
in b′ will be referred to as a′(z) and b′(z). A circular
chromosome composed of only special genes will be
called special. Circular chromosome will be referred to
as 1-circular if it composed of a single gene; otherwise it
is m-circular. For each circular chromosome d in a′, let

us define o d; að Þ ¼ P
k:i∈d;k:j∈b′

zkij

 !
=nd where nd is the

quantity of genes in d. For a linear chromosome d, we
set o(d) = 1; 0 ≤ o(d) ≤ 1. It holds that d is special if and
only if o(d,a) = 0. The value of o(d,a) indicates the pro-
portion of genes in d that are in z-bijection with genes
in b′. The proportion o(d,b) for a chromosome d in b′ is
defined similarly. References to a or b are usually
omitted.
Let us equalize the gene contents in a′(z) and b′(z)

just by adding to a′(z) special b′(z)-genes except the
genes from special b′(z)-chromosomes; a similar
addition is made to b′(z). All added genes are combined
into circular chromosomes, some from a′(z) and some
from b′(z). The resulting chromosomes as well as their
genes and gene adjacencies will be referred to as new.
New adjacencies are defined by a new variable t, which
is formally described below. Thus obtained structures re-
ferred to as a−(z,t) and b−(z,t) released from special
chromosomes (if any) are denoted as a″(z,t) and b″(z,t).
Let us introduce the breakpoint graph

G′ðz; tÞ ¼ a′′ðz; tÞ þ b′′ðz; tÞ

It is proved as in [12] that the distance between a−(z,t)
and b−(z,t) equals Φ(z, t) for any z and t. It follows that,
for a fixed z, the minimum by t distance between a−(z,t)
and b−(z,t) equals mintΦ(z, t); for any z, t0 = t0(z) defines
the value of t corresponding to this minimum. Here

Φðz; tÞ ¼ ðC0 þ nþ sa þ sbÞ−C1−0:5C2;

where C0 is the total number of special chromosomes in
a′(z) and b′(z), C1 is the number of cycles in G′, C2 is
the number of even paths in G′, n is the number of
common genes in a′(z) and b′(z) counted once, and sa,
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sb are the quantities of new genes in a−(z,t) and b−(z,t).
Even (odd) path is a path of even (odd) length. Notice
that natural constraints are imposed on z and t in the
definition of Φ. Following [12], it is easy to verify that
the distance between a−(z,t0) and b−(z,t0) equals the dis-
tance between a′(z) and b′(z) for any z. There is no z
variable in [12] since paralogs are not considered there;
the t variable is not used either. Thus, solving the dis-
tance problem requires finding minzmintΦ(z, t). By def-
inition, a new adjacency corresponds to the new edge in
G′(z); the remaining edges in G′ are called old.
Now let us define the variable t which describes new

adjacencies. For each pair s = (g,g′) of different gene ex-
tremities in a′, we define a Boolean variable tbs to indi-
cate whether g and g′ form a new adjacency in b″(z,t).
Specifically, tbs≤1−

P
j
zkij , tbs ≤ ng ⋅ o(dg),

P
g′
tbgg′≤1, andP

g′
tbgg′≥o dg

� �
−
P
j
zkij , where k.i is a gene with the ex-

tremity g, dg is the chromosome containing k.i, ng is
quantity of genes in dg. Similar variable tas and con-
straints are defined for extremities in b′. Often we will
omit the indexes a and b near t.
Items 1–3 below describe the summands of the func-

tion Φ by means of equivalent ILP formulation (of
minimization). To this end, let us sequentially describe
the summands C1, C2, and C0 + n + sa + sb in Φ. Thus,
the objective function will be equal to

F ¼
X
d

nd þ
X
d

1−ndð Þod−
X
k;i;j

zkij

 !
−
X
s

ps−0:5
X
g

rg−
X
g

lg

 !

where d runs over all chromosomes in a′ or b′ and nd is
the quantity of genes in chromosome d. The summandP
d
nd is a constant and has no effect on the minimum

value. The variables od, ps, rp, lp and their linear con-
straints will be defined in items 1–3 below. The critical
point is the equality

min
z;t

Φðz; tÞ ¼ minFðo; z; p; r; lÞ: ð1Þ

1) Here we use the counting cycles idea from [5]. Let us
describe the quantity C1 of cycles in the breakpoint
graph G′. Let us do numbering of all adjacencies (g,g′)
in a′ and b′ starting from one; and ms is the number
of an adjacency s. Let us for each s introduce an
integer (non-Boolean) variable us with the constraint
0 ≤ us ≤ms. We require that us = 0 for all adjacencies s
in a′ from special chromosomes d in a′(z); with regard
to other constraints, it is expressed as the inequality us
≤ms

P
k:i∈d

P
j
zkij for any circular chromosome d. And

symmetrically for adjacencies in b′.

Two extremities of two genes are defined to be of the
same type if both of them are either 5′-ends or 3′-ends
and belong to paralogs in different structures. We re-
quire that us = 0 for any adjacency s in a′ such that one
of its extremities belongs to a common gene and is a
boundary of a path in G′. Specifically, let g be an extremity
of gene k. i ∈ a′ adjacent to any extremity in s. For each
gene k.j in b′ with an extremity of the same type as g that
is a boundary of a path in b′, the constraint us ≤ms(1 −
zkij) is imposed. The constraints are symmetrical for b′.
Further, we require that us = 0 for any adjacency s in a′

such that one of its extremities belongs to a special a-gene
and is not a boundary of a path through the end of a
terminal new edge of a path in G′. Specifically, for each
extremity g1 in a′ that is a boundary of a path in a′, we
impose that us ≤ms(1 − tg1g) where s includes g. The
constraints are symmetrical for b′.
We require that us is constant at all edges in a cycle

or path in G′. Specifically, for each pair of adjacencies
s1 = (g,g1) and s2 = (g′,g2) in a′ and b′, respectively, with
g and g′ being of the same type, we impose

us1≤us2 þms1ð1−zkjj′Þ; us2≤us1 þms2ð1−zkjj′Þ

where k.j and k.j′ are genes with the extremities g and g′.
These two constraints ensure that us1 = us2 for two neigh-
boring edges s1 and s2 in G′ that are both old edges.
For each pair of different adjacencies s1 = (g1,g2) and
s2 = (g3,g4) of extremities both in a′ or b′, we impose
that us1 ≤ us2 +ms1(1 − tg2g3), us2 ≤ us1 +ms2(1 − tg2g3).
These constraints ensure that us1 = us2 for two edges
in G′ that are both old edges and spaced by exactly
one new edge.
For each adjacency s, we define the Boolean variable ps

to indicate whether us is equal to its upper bound ms at
the minimum point of the function F. Specifically, ps∙ms ≤
us. Indeed, if us <ms, then ps = 0. Otherwise, ps can take
any of two values, but since variables ps are summands of
F with negative coefficients, we have ps = 1.
Since us has a constant value on all edges in a cycle

and all upper bounds are unequal, there is exactly one
edge at the minimum point whose us equals its upper
bound. Indeed, exactly one of ps equals 1 in a cycle at
the minimum point. In a path, the constraints imply that
us = 0 so that neither of them can reach the maximum;
hence, ps = 0 in a path. Considering that any cycle con-
tains at least one old edge, the quantity of variables us
that reaches its maximum is equal to the quantity of cy-
cles, thus C1 ¼

P
s
ps at the minimum point of F.

2) Let us describe the quantity C2 of even paths in the
graph G′. Let us introduce three-valued (0, 1 or −1)
integer variables rag1 and rbg2 for any gene extremity
g1 and g2 in a′ and b′ such that, at the minimum
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point of F, the sum of the variables (if g1 and g2 are
in z-bijection and have the same type, rbg2 is omit-
ted) by the nodes of a path or a cycle in G′ equals 1
if it is an even path; otherwise it equals 0. At the
minimum point of F, it follows from the constraint
that the values of r at adjacent nodes in G′ are not
equal to 1 and 1 or 0 and 1. Specifically, for each
adjacency (g1,g2) in a′ or b′, we impose that rag1 +
rag2 ≤ 0 or rbg1 + rbg2 ≤ 0, respectively. For each pair
of different extremities g1 and g2 from a′ which do
not form an adjacency, we impose that rag1 + rag2 ≤
2(1 − tag1g2). Similar constraints are imposed for b′.
For each pair (g,g′) of extremities of the same type
from a′ and b′, respectively, we impose that −2
1−zkjj′
� �

≤rg−rg′≤2 1−zkjj′
� �

, where k.j and k.j′ are
genes with extremities g and g′. These constraints
ensure that rg + rg' ≤ 0 if (g,g′) is an edge in G′; also if
g and g′ are in z-bijection, then rag = rbg′. Consider-
ing that the variables rg are summands of F with
some negative coefficients, they equal 1 at the
minimum point at isolated nodes in G′. The
lengths of cycles in G′ are even, and the values of
rg in their nodes either alternate between 1 and
−1 or constantly equal 0. Therefore, the above sum
along a cycle equals 0. The rg values alternate on non-
zero even paths being equal to 1 at the path boundar-
ies; accordingly, the sum along an even path equals 1.
On an odd path, such alternation can be interrupted
by zero values, but again the sum along its nodes
equals 0. Hence, it follows that the sum indicates each
even path. For a special chromosome d,

P
g∈d

rg ¼ 0 at

the point of minimum of F since this sum is clearly
not greater than 0.

Let us define the sum described in the beginning of
item 2. For each extremity g of a gene in a′, we define
an integer variable lg, which equals rag if g is an extrem-
ity of a common gene, or equals 0 otherwise. This is
provided by the constraints −

P
j
zkij≤lg≤

P
j
zkij , lg≤rag

þ2 1−
P
j
zkij

 !
, rag≤lg þ 2 1−

P
j
zkij

 !
, where k.i is a

gene with extremity g. Thus, the node g in G′, an ex-
tremity of a common gene, corresponds to three vari-
ables rag, rbg, and lg, which take equal values. This
allows us to cancel the summands rag and –lg when
summing up all rag, rbg, and –lg. The node g, an ex-
tremity of a special gene in a′(z), corresponds to two
variables rag and lag, the latter equals 0. The node g,

an extremity of a special gene in b′(z), corresponds

to one variable rbg. Therefore, C2 ¼
P
g
rg−
P
g
lg in a

minimum point of F.

3) Let us describe the summand C0 + n + sa + sb. For
each chromosome d in a′ or b′, we define a Boolean
variable od to indicate whether this chromosome is
special m-circular at the minimum point of F.
Specifically, if d is m-circular then od ≤ 1 − o(d); if d
is a 1-circular or a linear chromosome, then od = 0.
Indeed, od = 0 follows from the above constraint if d is
not special or is special and 1-circular. For a special
m-circular chromosome od = 1 at the minimum point
of F considering that variables od are summands of F
with negative coefficients.

Let us show that in a minimum point of F we have

C0 þ nþ sa þ sb ¼
X
d

nd þ
X
d

1−ndð Þod−
X
k;i;j

zkij;

where d runs over all chromosomes in the first sum and
over all m-circular chromosomes in the second sum,
and nd is the quantity of genes in d. The number n is
equal to the sum of all zkij values, while the numbers sa
and sb are equal by the definition as follows: sa = nb – n
and sb = na – n, where na and nb are quantities of genes in
structures a′(z) and b′(z), respectively, not in special
chromosomes. Thus, n + sa + sb = na + nb – n. Considering

that C0 ¼
P
d

od þU , n ¼P
kij

zkij , and na þ nb ¼
P
d

nd

1−odð Þ−U , where U is the quantity of 1-circular chro-

mosomes, the desired equality is readily derived from the
previous equality.

Theorem 1 For given a and b, the minimum paralog
numbering and minimum value of the distance are
defined by the minimum point of F.

Proof Let the function F reaches the minimum at the
point x0. It follows from items 1–3 that the function
Φ(z, t) calculated at the point y0 = (z0,t0), which is a part
of x0 coordinates, equals F(x0). Such y0 is the minimum
for Φ(z, t). Indeed, if there is (z,t), for which the value of
Φ(z, t) is strictly lower, then (z,t) can be extended to the
point where F is equal to Φ, which is impossible. The
extension is as follow. The point (z,t) together with given
a′ and b′ uniquely define G′; p, r, l are defined by G′;
and od is defined by a′(z) and b′(z). □.
Clearly, the number of variables and constraints in it

quadratically depends on the data size of the initial
problem.

Note 1 After solving the ILP task, one can use (as in
[16]) the obtained z and the structures a′(z) and b′(z) to
find the minimum sequence of operations transforming
a′(z) into b′(z).
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Examples for the distance problem based on synthetic
data
Example 1
Let the structure a include three circular chromosomes
with unidirectional genes: (1, 3); (1, 2, 2); (3, 5, 2, 4) and
the structure b also include three circular chromosomes:
(4, 2); (1, 2, 1); (4, 5, 5, 3) with unidirectional genes. Let
us introduce the initial numbering; for a′, it is (1.1, 3.1);
(1.2, 2.1, 2.2); (3.2, 5.1, 2.3, 4.1); for b′, it is (4.1, 2.1);
(1.1, 2.2, 1.2); (4.2, 5.1, 5.2, 3.1). The ILP program of the
Pulp python package returned the following solution:
the number of operations transforming a′ into b′ equals
4. At the minimum point, the paralogs in b′ are renum-
bered as follows: 1.1 to 1.2, 1.2 to 1.1, 2.1 to 2.3, 2.2 to
2.1, 3.1 to 3.2, 5.1 to 5.2, 5.2 to 5.1. The program execu-
tion time was about 1.5 h.

Example 2
We are given two structures with the following arrange-
ment of genes on the chromosomes; a: (1, 2, −3, 4, 5, 6),
(3), [10], [−7, 8, 9] and b: (1), (2), (9), (4, 6, −3, 5), [8],
[−7, 10, 3]. Here minus sign indicates the complemen-
tary strand, while round and square brackets indicate
circular and linear chromosomes, respectively. The ini-
tial numberings are as follows; a′, the gene 3 is 3.1 and
3.2 in the large and small cycles, respectively; b′, the
gene 3 is 3.1 and 3.2 in the path and cycle, respectively.
The ILP program of the Pulp python package returned
the following solution: the number of operations trans-
forming a′ into b′ equals 7. At the minimum point the
paralogs in b′ are renumbered as follows: 3.1 to 3.2, 3.2
to 3.1. The program execution time was about 3 h.

Solution of the reconstruction problem
Below a reduction of the algorithm for the reconstruction
problem to integer linear programming (ILP) is described.
We formulate the objective function F′, variables and con-
straints of the ILP task, while the Theorem 2 proves that
ILP can solve the problem. Let T be a fixed rooted pos-
sibly non-binary tree. Recall that leaf edge link to a tree
leaf and inner edge means a non-leaf tree edge. T-Edge
and G″-edge emphasize that this edge belongs to T and G
″, respectively, but not to any structure. The structure in
a node x is usually denoted by x; in this sense we do not
distinguish a node and its structure.

Linear minimized function and its linear constraints
The argumentation is largely the same as in the distance
problem fully described in Section 2 above, and it will
not be reproduced in detail here. The specialties distin-
guishing the solution of the reconstruction problem
from that of the distance one will be emphasized. Here-
after, a and b are nodes and, at the same time, structures
in the beginning and end of a T-edge, respectively; an

edge is often designated as e = (a,b). Let us fix the initial
paralog numberings in all given structures assigned to
the leaves; they are called initial. For a leaf b, the given
initially numbered structure is designated as b′, while
any numbered structure is designated as u′, a′, and like-
wise. Let M denote a set of all full names k.i, where 1 ≤
i ≤ s(k). Recall that circular chromosomes composed
solely of special genes are called special.
We define the variable zukij for each leaf u and each

gene k.i from u′ and k.j from M; it equals 1 if k.i is
renamed to k.j; otherwise zukij = 0. The existence and
uniqueness of k.j is ensured by the following constraints:

for fixed k and i;
X
j

zukij ¼ 1; for fixed k and j;
X
i

zukij≤1:

The index u is usually omitted.
We define the variable yvk.i for each inner node v and

each gene k.i from M; it equals 1 if k.i is missing from v;
otherwise it equals 0. For each inner node v and each
pair (g,g′) of different extremities from M, we define the
variable xvgg′; it equals 1 if g and g′ are present and
merged in the node v; otherwise it equals 0. The vari-
ables xvgg′ are not specified in leaves since their values
are fixed there. Specifically,

P
g′≠g

xvgg′≤1−yvk:i implies that

any extremity g of any gene k. i ∈M missing in v is not
merged, where g′ runs over all extremities from M; and
the constraint implies that

P
g′

xvgg′≤1 for any fixed v and

g. The index v is usually omitted.
In order to avoid degenerate scenarios with empty an-

cestral structures, we lay the condition that if a gene is
absent from an inner node v, it is absent from at least a
half of its direct descendants. Specifically, the following
constraint is imposed on each name k.j from M:

yvk:j≤1:5−
1
nv

X
v′

1−yv′k:j
� �

þ
X
v′

X
i

zv′kij

" #
;

where nv is the total number of direct descendants v′ of
v; in the first and second sums, v′ runs over the inner
nodes and leaves, respectively. This constraint can be
simplified for a binary tree:

yvk:j≤w v′
� �þ w v″

� �
;

where v′ and v″ are direct descendants of the node v,
and w vαð Þ ¼ yvαk:j if vα is not a leaf or w vαð Þ ¼ 1−

P
izvαkij otherwise.

As in Section 2 we equalize the gene contents in a′(z)
and b′(z) where the variable z defines identical bijections
for inner edges. But now we add to a′(z) all special b′(z)
genes; respectively, to b′(z) all special a′(z) genes; we de-
note obtained structures a+(z,t) and b+(z,t). Thus, special
chromosomes are not removed. Therefore the
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breakpoint graph G″ of a+(z,t) and b+(z,t) may be differ-
ent from the graph G′ defined in Section 2.
For each edge e = (a,b) and each pair s = (g,g′) of differ-

ent gene extremities from M we define the Boolean vari-
able tebs to make sure that if tebs = 1, then g and g′ form
a new adjacency in b+(z,t). Similar variable teas is intro-
duced for a, but if b is a leaf, teas is defined only for the
extremities present in b′. The index e can be omitted.
Let k.j be a gene with extremity g. For a leaf edge e, the
constraints are as follows:

tebs≤1−yak:j ; tebs≤1−
X
i

zbkij;
X
g1∈M

tebgg1≤1;
X
g1∈b′

teagg1≤1;X
g1∈M

tebgg1≥1−yak:j−
X
i

zbkij; teas≤1

þyak:α−zbkjα;
X
g1∈b′

teagg1≥yak:α þ zbkjα−1:

Actually, the last two constraints assume the systems
of inequalities for each value of α, such that 1 ≤ α ≤ s(k).
For an inner edge e, we impose that:

tebs≤1−yak:j; tebs≤ybk:j;
X
g1∈M

tebgg1≤1;
X
g1∈M

tbgg1≥ybk:j−yak:j:

Similar constraints are imposed for teas.
For any leaf edge e ∈ T, let |M| be the quantity of ele-

ments in M, and ce be |M| plus the quantity of genes in
b. The objective function F′ (for the task of
minimization) equals the sum of two expressions. The
first one is the sum

ce−
X
k:i∈M

yak:i−
X
k:j∈M

f k:j

 !
−
X
s

ps−0:5
X
g

rg−
X
g

lg

 !

calculated over all leaf T-edges e. The second one is the
sum

2⋅jMj−
X
k:i

yak:i−
X
k:i

ybk:i−
X
k;j

f k:j

 !
−
X
s

ps−0:5
X
g

rg−
X
g

lg

 !

calculated over all inner T-edges e. The variables except
y and corresponding constrains are defined in the fol-
lowing items 1–3. They correspond to items 1–3 in Sec-
tion 2, which described the algorithm of reduction for
the distance problem.

1) Let e = (a,b) be a T-edge and G″(e) = a+(z,t) + b+(z,t).
Let us define the variables ues and pes as well as the
constraints ensuring that the number C1′ of cycles
in the graph G″(e) at the minimum point of F′
equals

P
s
pes. Specifically, for each pair s = (g,g′) of

different extremities from M for an inner edge e = (a,b),
we define the integer non-negative variables ueas and
uebs and Boolean variables peas and pebs. For a leaf edge
e and its b′, we define the integer non-negative variable

uebs and Boolean variable pebs, where s is any adjacency
in b′. Both variables ueas and uebs obey us ≤ms. Here,
ms is the number of the mentioned pair s, where s runs
over all pairs where the variables ueas and uebs are de-
fined for any fixed e∈T. For Boolean variable pes, we
impose that pes∙ms ≤ us.

Let e = (a,b) be a leaf edge. We impose that uas ≤mas ⋅
xas ensuring that uas = 0 for any pair s of non-merged ex-
tremities from M. For a, let s include g which is an ex-
tremity of a gene k.j from M. Each variable uas and each
extremity of a gene k. j′ ∈ b′ of the same type as g and a

boundary of a path in b′ are imposed that uas≤mas

1−zkj′j
� �

. These constraints ensure that us = 0 if the ex-

tremity g belongs to a common gene of a′(z) and b′(z),
and in G″(e) we have: g is a boundary of a path and, at
the same time, is an extremity of an G″-edge marked a.
For b, let an adjacency s ∈ b′ and includes g ∈ k. j. Each
variable ubs and each i (1 ≤ i ≤ s(k)) are imposed that ubs≤

mbsð1−zkji þ
P
g1∈M

xag′g1Þ , where g′ is the extremity of a

gene k. i ∈M of the same type as g. These constraints
ensure that us = 0 if g belongs to a common gene of a
′(z) and b′(z), and in G″(e) we have: g is a boundary of a
path and, at the same time, an extremity of a G″-edge
marked b. Each extremity g1 from M is imposed that uas

≤mas 1−tbg1g þ
P
g2

xag1g2

� �
, which ensures that us = 0 if

g ∈ s, g belongs to a special gene in a′(z) and g in G″(e)
is not a boundary of a path but the end of a terminal
new G″-edge of the path. Each extremity g1 in b′ that is
a boundary of a path in b′ is imposed the constraint
ubs ≤mas(1 − tag1g), ensuring that ubs = 0 if the extremity
g ∈ b′, g belongs to a special gene in b′(z) and g in G″(e)
is not a boundary of a path but the end of a terminal
new G″-edge of the path.
Recall that now we consider a leaf edge e = (a,b). Each

pair (s1,s2), where s1 = (g,g1) is a pair of extremities from

M and s2 = (g′,g2) is an adjacency from b′ where g and g′

are of the same type and belongs to paralogs k.j and k.j′,

is imposed the constraints:

uas1≤ubs2 þmas1 1−zkj′j
� �

; ubs2≤uas1 þmbs2 2−zkj′j−xagg1
� �

:

It follows that us1 = us2 for neighboring old G″-edges

s1 and s2 of G″(e). Each pair (s1,s2), where s1 = (g1,g2)

and s2 = (g3,g4) are pairs of extremities from M, is im-

posed that
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uas1≤uas2 þmas1 2−tbg2g3−xag3g4
� �

; uas2≤uas1

þmas2 2−tbg2g3−xag1g2
� �

;

all g1, g2, g3, g4 are pairwise different. These constraints

ensure that us1 = us2 for two old G″-edges (marked a) of

G″(e) spaced by exactly one new G″-edge. Each pair

(s1,s2) where s1 = (g1,g2) and s2 = (g3,g4) are different ad-

jacencies from b′ are imposed that

us1≤us2 þms1 1−tag2g3
� �

; us2≤us1 þms2 1−tag2g3
� �

:

These constraints ensure that us1 = us2 for two old G
″-edges (marked b) of the graph G″(e) spaced by exactly
one new G″-edge.
For an inner edge e = (a,b), let us impose that uas ≤

masxas, ubs ≤mbsxbs, ensuring that uas = 0 or ubs = 0 for
non-merged s = (g,g′). Each variable uas is imposed that

uas≤mas ybk:j þ
P
g1

xbgg1

� �
where s includes g ∈ k. j. Simi-

lar constraints are imposed for ubs. It ensures that us = 0
if g belongs to a common gene and is a boundary of a
path in G″(e). The equality us = 0 (for uas and ubs) in the
case when the extremity g belongs to a special gene (in a
′(z) or b′(z)) and a boundary edge of a path (in G″(e)) is
provided in the same manner as for uas on a leaf edge.
Each pair (s1,s2), where s1 = (g,g1) and s2 = (g,g2) are dif-
ferent pairs of extremities from M, is imposed that

uas1≤ubs2 þms1 1−xbgg2
� �

; ubs2≤uas1 þms2 1−xagg1
� �

:

These constraints ensure that us1 = us2 for old neigh-
boring G″-edges s1 and s2 in G″(e). Each pair (s1,s2),
where s1 = (g1,g2) and s2 = (g3,g4) are pairs of extremities
from M, is imposed that

uas1 ≤uas2 þmas1 2−tbg2g3−xag3g4
� �

; uas2≤uas1
þmas2 2−tbg2g3−xag1g2

� �
; ubs1≤ubs2

þmbs1 2−tag2g3−xbg3g4
� �

; ubs2≤ubs1
þmbs2 2−tag2g3−xbg1g2

� �
(all g1, g2, g3, g4 are pairwise different). These con-

straints ensure that us1 = us2 for two old G″-edges of the
graph G″(e) spaced by exactly one new G″-edge.
The statement that C1

′ ¼P
s
ps at the minimum point,

for any e ∈ T, is proved in the same way as in Section 2.

2) Let us define the variables and constraints ensuring
that the quantity C2′ of even paths in G″(e) on
an edge e = (a,b) at the minimum point of F′
equals

P
g
rg−
P
g
lg . Let us define for each extremity g

from M an integer variable reag that runs over the
values 0, +1, −1. And similarly for b if b is inner;
otherwise only for each extremity g in b′.

The constraint −2(1 − yak. i) ≤ reag ≤ 2(1 − yak. i) implies
that reag = 0 for any extremity g of any gene k. i ∈M
missing in v. And similarly for b if b is inner.
Each pair of different extremities g1 and g2 from M is

imposed that reag1 + reag2 ≤ 2(1 − xag1g2), ensuring that
reag1 + reag2 ≤ 0 if these extremities are merged. For an
inner edge e, similar constraints are imposed with the
index a replaced by b; otherwise, they are imposed only
for each adjacency (g1,g2) from b′ with zero in the right
part. It is also imposed that reag1 + reag2 ≤ 2(1 − tebg1g2),
ensuring that reag1 + reag2 ≤ 0 if g1 and g2 form a new ad-
jacency. For an inner edge e, similar constraints are im-
posed with the index a replaced by b and vice versa;
otherwise this constraint is imposed only for pairs (g1,g2)
of extremities from b′ that do not form an adjacency.
For a leaf edge e, each pair (g,g′), where extremities g (of
k.j) and g′ (of k.j′) are of the same type, g is from M, and
g′ is from b′, the constraint is imposed that

−2 1−zbkj′j þ yak:j
� �

≤reag−rebg′≤2 1−zbkj′j þ yak:j
� �

;

ensuring that rebg ¼ reag′ for z-bijection extremities g
and g′ of the same type if g is present in a. For an inner
edge e and each extremity g ∈M of k.i, we impose that
reag ≤ rebg + 2(yak. i + ybk. i), rebg ≤ reag + 2(yak. i + ybk. i).
These constraints ensure that reag = rebg for a gene g
common for a′(z) and b′(z).
For each edge e and gene k.j from M, we define the

Boolean variable fek.j to indicate whether the gene k.j is
common for a′(z) and b′(z). Specifically, for an inner
edge e we impose that

f ek:j≥1−yak:j−ybk:j; f ek:j≤1−yak:j; f ek:j≤1−ybk:j;

while for a leaf edge, the variable ybk.j is replaced with 1−P
i zbkij yielding:

f ek:j≥
X
i

zbkij−yak:j; f ek:j≤
X
i

zbkij:

For each extremity g of gene k.i from M, we define the
integer variable leg, which equals reag if g is an extremity
of a common gene in a′(z) and b′(z), or equals 0 other-
wise. The corresponding constraints are as follows:

−f ek:i≤leg≤f ek:i; leg≤reag þ 2 1−f ek:i
� �

; reag≤leg þ 2 1−f ek:i
� �

:

Now the statement that C2
′ ¼P

g
rg−
P
g
lg for any e ∈

T is proved in the same manner as in the distance
problem.

3) On each edge e∈ T, where e = (a,b), each of the
first two parentheses in the definition F′ equals the
number of common genes in a′(z) and b′(z)
counted once plus the total number of special genes
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in the same structures; this sum will be referred to
as X. Indeed, the values of ce−

P
k;i

yak:i and 2⋅∣M∣−P
k;i

yak:i−
P
k;i

ybk:i equal to the total number of all

genes in a and b. These values minus
P
k;j

f k:j, the

number of common genes counted once, gives X.

Let Ψ(e, x, y, z) be equal to C0 + n + sa + sb in Φ from
Section 2. Here, Ψ is actually considered on the edge e
= (a,b), and the summands are defined as in Section 2.
We obtain X −Ψ =С3 −C0, where С3 is the total number
of genes in special chromosomes in a′(z) and b′(z), and
C0 is the total number of special chromosomes in a′(z)
and b′(z). We define that E ¼P

e∈T

С3−C0ð Þ eð Þ. For any ar-
rangement A and the initial numberings, E(A) is defined
analogously.
Theorem 2 states that our reduction algorithm upon

the condition (*) is exact. To this end, let us introduce
the definitions. Assumed that the arguments (x,y,z,t,-
f,u,p,r,l) of the function F′ extend the arguments (x,y,z)
of the function F*, if the variable t for each e defines
new adjacencies in a+(z,t) and b+(z,t) such that the dis-
tance between the structures is minimum, and other var-
iables are defined through a′(z), b′(z), and G″ such that
the above constraints as well as the equalities C1

′ ¼P
s
ps

and C2
′ ¼P

g
rg−
P
g
lg are satisfied for each edge e.

Clearly, there is an extension for each arrangement
A = (x,y,z); any of them is denoted as A+. Recall that
an arrangement A defines structures a and b at the
ends of the edge e = (a,b).

Theorem 2
Upon (*), the minimum values of functions F*(A) and
F′(x,y,z,t,f,u,p,r,l) are equal. Otherwise, the difference
between the minimum values is not greater than the
total quantity of special chromosomes in the mini-
mum point of F′.

Lemma
For any structures a′(z) and b′(z) we have Q2 =Q1 +C3

where Q1 and Q2 are the maximal values of C1 + 0.5 ⋅C2

and C1
′ + 0.5 ⋅C2

′ , respectively.

Proof of lemma
Let the maximums of Q1 and Q2 be reached at the
points t0 and t′0, respectively. We can add to the struc-
tures a″(z,t0) and b″(z,t0) the removed special chromo-
somes and new chromosomes that are identical to these
special chromosomes. Respectively, C3 cycles of length 2
are added to the breakpoint graph a″(z,t0) + b″(z,t0).
Thus, Q2 ≥Q1 + C3.

To prove the inverse relation let us consider the
distance d between a′(z) and b′(z). As we know d =C0 +
n + sa + sb −Q1. On the other hand, following [12] it is
easy to verify that d≤C′

0 þ nþ sa þ sb þ C3−Q2 where
C′

0 is the quantity of new chromosomes that remain un-
changed under a transformation of aþ z; t′0

� �
into bþ

z; t′0
� �

. Evidently C′
0≤C0. Thus, Q2 ≤Q1 +C3. □.

Proof of theorem 2
For any arrangement A and edge e = (a, b) ∈ T, it is valid
that F� Аð Þ ¼P

e∈T

Φ e; t0ð Þ , where Φ(a, b, t) = C0 + n + sa +

sb −C1 − 0.5 ⋅C2 and C0, n, sa, sb, C1, C2 are defined as in
Section 2; t0 is also defined there. By the Lemma we
have on each T-edge e that C1

′ + 0.5 ⋅C2
′ =C1 + 0.5 ⋅C2 +

C3. This and item 3 imply that

F ′ðAþÞ ¼ F�ðAÞ þ EðAÞ−C3ðAÞ ¼ F�ðAÞ−C0ðAÞ:
It follows from items 1–2 that any minimum point of

the function F′ is an extension of its coordinates x,y,z.
Let A+ be a minimum point of the F′. If the condition
(*) is satisfied for it, then E(A) = 0; A is the minimum ar-
rangement since C0(A) ≥ 0 for any A. If (*) is not satis-
fied, let A+ be the point of minimum of F′, A* be a
minimum arrangement. Then

F ′ Aþð Þ ¼ F� Að Þ−C0 Að Þ≥F� A�ð Þ
−C0 Að Þ; F ′ Aþð Þ≤F ′ A�þð Þ≤F� A�ð Þ:□

The constants 2∙|M| and ce can be omitted in the
minimization.
Notice that the condition (*) limits special (broadly

speaking, circular) chromosomes in the structures, i.e.,
limits the relationship between the parental structure
and its direct descendants. Our computer experiments
(data not shown) have demonstrated that the solution of
the second problem with F* using a heuristic algorithm
(described in [17]) differed little from that with F′ using
ILP. Indeed, the evolutionary scenario for mitochondrial
chromosome structures generated by the heuristic algo-
rithm in [17] included no special chromosomes.
Clearly, the number of variables and constraints in it

cubically depend on the size of the initial data.

Examples for the reconstruction problem on synthetic
data
Example 1
Let us consider a tree ((c, d),(e, f )) with four leaf struc-
tures and three genes in each structure distributed
among circular chromosomes: structure c, (1, 2, −1); d,
(1, 1, −2); e, (2, 1, −1); f, (1, 1, 2). Other designations in
all examples are as in Section 2.2.
The initial numberings are as follows: c, (1.1, 2, −1.2);

d, (1.1, 1.2, −2); e, (2, 1.1, −1.2); f, (1.1, 1.2, 2).
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The ILP program of the Pulp python package returned
the solution with the total number of operations being 3,
one in each edge. The result swaps 1.1 and 1.2 in the
leaves e and f; the chromosome (1.1, 1.2, 2) appears in
the root; (1.1, 2, −1.2) is ancestral for the nodes c and d
and (1.1, 2, 1.2) is ancestral for the nodes e and f. The
program execution time was about 13 h.

Example 2
Let us consider the same tree with five genes in each leaf
structure distributed among linear chromosomes: struc-
ture c, [2, 3, −4, 1], [1]; d, [3, −4, 1], [1, 2]; e, [1, −2, 3],
[1, 4]; and f, [1, −2, 3, 4], [1].
The initial numberings is as follows: the paralogs of

gene 1 in each structure have the name 1.1 in the first
chromosome and 1.2 in the second chromosome.
The ILP program of the Pulp python package returned

the solution with the total number of operations being 6,
one in each edge. The result swaps 1.1 and 1.2 in the
leaves c and d; the chromosome [1.1, 2, 3, 4, 1.2] appears
in the root; [1.1, 2, 3, −4, 1.2] is ancestral for the nodes c
and d and [1.1, −2, 3, 4, 1.2] is ancestral for the nodes e
and f. The program execution time was about 20 h.

Examples for the reconstruction problem on biological
data
The orthologs of plastid and mitochondrial proteins
were obtained using our algorithm and databases avail-
able at http://lab6.iitp.ru/ppc/ and http://lab6.iitp.ru/
mpc/. The mitochondrial, plastid, and bacterial chromo-
some structures were extracted from genome annota-
tions in GenBank by our script.

Example 1
Let us consider the example from [17], specifically, the
tree given in ([17], Figure 4) and the mitochondrial
chromosome structures in its leaves listed in ([17],
Table 3); which are also given in Table 1 where they are
marked by (l) after the species name. The mitochondrial
chromosomes belong to the sporozoan class Aconoida-
sida. The ILP program of the package of Joint Super-
computer Center of the Russian Academy of Sciences
(http://www.jscc.ru/eng/index.shtml) returned the solu-
tion specified in other lines of Table 1. The program
execution time was about 2 days. The resulting recon-
struction of the mitochondrial chromosome structures is
slightly different from that obtained in ([17], Table 3)
using the heuristic algorithm in [17]. The result is close
to those obtained in [17]. Specifically, the gene ls2 en-
coding a fragment of the large subunit ribosomal RNA
becomes in the inner nodes the separate linear chromo-
some which likely reflects frequent relocations of the
fragment. Although ribosomal RNA genes are rarely
fragmented, it is arguable that the small fragments can

be highly mobile in this case. The tree generated using
protein alignments in apicomplexan parasites [26] is in
good agreement with the chromosome structure tree.

Example 2
Let us exemplify the reconstruction for plastid chromo-
some structures with paralogs in brown algae. They are
also given in Table 2 marked by (l) after the species
name. The following chromosome structure tree was
built: (Ectocarpus_siliculosus, (Fucus_vesiculosus, Sac-
charina_japonica)). The tree that was generated using
highly conserved elements identified in the complete
plastid genomes of all considered species [27] is in good
agreement with the chromosome structure one. The re-
construction result is presented in Table 2. The program
execution time was about 5 days.

Example 3
Let us exemplify the reconstruction for chromosome
structures with paralogs from Rhizobium spp. The corre-
sponding tree generated here using chromosome struc-
tures is given in Table 3 in the lines marked by (l) is
shown in Fig. 2. The reconstruction result is presented
in other lines of Table 3. The program execution time
was about 11 days.

Solution of the problem of optimal arrangement
of contigs
Let us apply the developed approach to the contig prob-
lem, optimal genome assembly from contigs. The bio-
logical significance of the problem is discussed in [28].

Contig problem statement
Sequencing results in a set a of contigs (or scaffolds, or
sequences of a higher level, etc.), each of which includes
several genes with their own direction of transcription.
Here, a contig is considered as a path of genes each with
a name not necessarily unique (paralogs) and a direction
(Fig. 3a). Therefore, a is a structure comprised of paths.
Two contigs can be concatenated in four ways consider-
ing that a contig is a double-stranded DNA region with
undefined beginning and end. A set of contigs can be
concatenated into a long path or cycle; these variants are
essentially equivalent, and we will consider the second
one as in [28]. It is convenient to consider that each
contig ends with an extremity of one of its genes.
The contig problem is as follows. We are given two

sets a and b of contigs, and it is required to concatenate
contigs from a into one cycle and contigs from b into
another cycle, and simultaneously find paralog number-
ings (see Section 1.3) with the minimum distance be-
tween the cycles without paralogs (Fig. 3b). Naturally,
these cycles are considered as structures comprised of
sole cycle each. Similarly to the solution below, a more
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general case is considered when contigs from a and,
similarly, from b are concatenated into structures of an-
other fixed shape.
An almost linear (to be precise, n ⋅ f(n), where f(n) is

the inverse Ackermann′s function) algorithm was pro-
posed in [28]; it exactly solves the contig problem on the
condition of equal gene content of two sets of contigs (n
genes in each) and without paralogs. Below is the

solution of the problem with this condition released
based on its reduction to ILP. The presence of paralogs
makes the problem NP-hard. In addition, the solution in
[28] relies on the algebraic theory of permutation
groups, which absolutely differs from our approach and
relies on a different distance. Specifically, in the case
of equal gene content, our distance (in the terms spe-
cified in Sections 1–2) equals n − C1 − 0.5C2, where C1

Table 1 Reconstruction obtained by reduction to ILP for mitochondrial chromosome structures in sporozoan class Aconoidasida.
The data in the tree leaves are in the lines marked by (l) after the species name. It was obtained from genomes represented in
GenBank

Plasmodium fragile – Babesia bovis *ls5 ls6 ls2 (L) ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 (C)

Theileria annulata – Babesia bovis cox1 *cox3 ls1 *ls3 *cytb *ls5 ls4 (L)

Theileria annulata – Theileria parva cox1 *cox3 ls1 *ls3 *cytb *ls5 ls4 (L)

Theileria annulata (l) cox1 *cox3 ls1 *ls3 *cytb *ls5 ls4 (L)

Theileria parva (l) cox1 *cox3 ls1 *ls3 *ls2 *cytb *ls5 ls4 (L)

Babesia bovis (l) cox1 *cox3 ls1 *ls2 *ls3 *cytb *ls4 ls5 (L)

Plasmodium fragile – Plasmodium berghei ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 (C) ls2 (L)

Plasmodium juxtanucleare – Plasmodium berghei ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium juxtanucleare – Leucocytozoon sabrazesi ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium juxtanucleare – Plasmodium gallinaceum ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium juxtanucleare (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium gallinaceum (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Leucocytozoon sabrazesi (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium berghei (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium fragile – Plasmodium relictum ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 (C) ls2 (L)

Plasmodium reichenowi – Plasmodium relictum ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 (C) ls2 (L)

Plasmodium floridense – Plasmodium relictum ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 (C)

Plasmodium floridense (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium relictum (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (C)

Plasmodium reichenowi – Plasmodium mexicanum ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium reichenowi – Plasmodium falciparum ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium reichenowi (l) ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium falciparum (l) ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium mexicanum (l) ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium fragile – Plasmodium simium ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 (C)

Plasmodium fragile – Leucocytozoon fringillinarum ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium fragile – Plasmodium vivax ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Plasmodium fragile – Plasmodium knowlesi ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Plasmodium fragile – Leucocytozoon majoris ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Plasmodium fragile (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Leucocytozoon majoris (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 ls7 (C)

Plasmodium knowlesi (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Plasmodium vivax (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Leucocytozoon fringillinarum (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 ls7 ss4 (C)

Plasmodium simium (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 cox1 cytb ls8 ss5 ss1 (C)

If a structure has two chromosomes, they are given on separate lines. Circular and linear chromosomes are marked by (C) and (L), respectively. The symbol *
means the complementary chain
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is the quantity of cycles and C2 is the quantity of even
paths in the breakpoint graph; while the distance used
in [28] can be calculated using the same expression
but with C2 being the quantity of all paths. We fix ar-
bitrary initial numberings of paralogs, and the struc-
tures a and b with fixed numberings are denoted as a′
and b′.
In the next section the reduction of the contig prob-

lem to ILP is presented, which simultaneously deter-
mines the numberings and the above mentioned two
cycles with the minimum distance between them. The
resulting cycles will be referred to as minimum. Our so-
lution for two sets of contigs can be similarly extended
to an arbitrary number of sets. In this problem, it is im-
portant to discriminate between outer and inner adja-
cencies. The former merge the extremities of contigs,
while the latter merge the extremities of genes within
contigs. The contig problem concerns the selection of
outer adjacencies that transform two given sets of con-
tigs into two cycles with the minimum distance between
them while the inner adjacencies remain unaltered.
However, calculation of the distance between cycles in-
cludes the variation of inner adjacencies. The distance
calculation allows all six operations mentioned in Sec-
tion 1. Thus, both adjacency types are used altogether.

Solution of the contig problem
A reduction algorithm for the contig problem to ILP is
described below.
For each pair s = (g1,g2) of extremities of different con-

tigs in a′, we define the Boolean variable tas. It equals 1
if g1 and g2 form the outer adjacency; otherwise tas = 0.
Similarly for b′. The usual constraints ensure that each
contig extremity is merged with exactly one contig
extremity.
For each ordered pair d = (c1,c2) of different contigs

from either given set a′ or b′, we define the Boolean
variable vd to indicate whether the contig c2 is

concatenated with c1 and is placed after it; the set of all
values vd = 1 consistently determines the clockwise order
on a required cycle. First, the usual constraints ensure
that each contig is concatenated with exactly one contig
on either side. The constraint vd ≤ ts1 + ts2 + ts3 + ts4 (for
pairs s1, s2, s3, s4 of extremities of the contigs c1 and c2)
provides the relation between the order and the outer
adjacencies. Let us define the integer (non-Boolean) vari-
ables wac and wbc, where c runs over all contigs in a′ or
b′ and 1 ≤wc ≤N (N is the quantity of contigs in the cor-
responding set). The variable wac numbers all contigs in
strictly increasing order according to their position in
the cycle, this order is violated only in the last contig.
Similarly for wbc. For each ordered pair d = (c1,c2) of dif-
ferent contigs from either set a′ or b′, we define the
Boolean variable rd to indicate the contig where this
order is violated. It equals 1 if vd = 1 and wc2 ≤wc1, or 0
otherwise. The corresponding constraints are as follows:
rd ≤ vd, Nrd ≤N − (wc2 −wc1), Nrd ≥wc1 − wc2 + 1. Finally,P
d

rd ¼ 1 ensures that all contigs of the set are

concatenated into a single circular chromosome, where
they are numbered by the variable w in strictly increas-
ing order.
The further reduction of the contig problem to ILP cor-

responds to the layout in [17] (or the general case of such
reduction was considered in Section 2 above). Namely, let
us introduce the Boolean variable zkij, where zkij = 1 if the
gene k.i in a′ corresponds to the gene k.j in b′; otherwise
zkij = 0. The standard constraints ensure that zkij defines a
partial bijection of k-paralogs. If zkij = 1, the gene k.j in b′ is
renamed to k.i and becomes synonymous to k.i in a′, after
which the genes in the z-bijection are arbitrarily numbered
to keep the structures numbered. Structures resulting from
such renumbering in b′, are denoted as a′(z) and b′(z).
Adjacencies of the contigs in the cycle are defined by the
variable t as in Section 2. The resulting two cycles will be
referred to as a′(z,t) and b′(z,t). Notice that these structures

Table 2 Reconstruction obtained by reduction to ILP for plastid chromosome structures with paralogs in brown algae

Ectocarpus
siliculosus (l)

rpl32_1 rpl21_1 *rps4 *rps16 *rps1 rpl9 rpl11 rpl1 rpl12 *rps10 *tufa *rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoa *rps11 *rps13 *rpl36
*rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14 *rps17 *rpl29 *rpl16 *rps3 *rpl22 *rps19 *rpl2 *rpl23 *rpl4 *rpl3 *rpl21_2 *rpl32_2
*rpl35 rpl20 *rpl19 rpl27 rpl34 rps20 rpob rpoc1 rpoc2 rps2 rps14 *rps18 *rpl33 clpc rbcl (C)

Fucus vesiculosus (l) *rpl19 rpl27 rpl34 rps20 rpob rpoc1 rpoc2 rps2 rpl35 rpl20 rbcl rps14 *clpc rpl33 rps18 *rpl32_2 rps16 rps4 rps1 rpl9 rpl11 rpl1
rpl12 *rps10 *tufa *rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoa *rps11 *rps13 *rpl36 *rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14 *rps17
*rpl29 *rpl16 *rps3 *rpl22 *rps19 *rpl2 *rpl23 *rpl4 *rpl3 *rpl21_2 (C)

Saccharina japonica
(l)

*rps2 *rpoc2 *rpoc1 *rpob *rps20 *rpl34 *rpl27 rpl19 rpl35 rpl20 rbcl rps14 *rps18 *rpl33 clpc rpl32_1 rpl21_1 rpl3 rpl4 rpl23 rpl2
rps19 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24 rpl5 rps8 rpl6 rpl18 rps5 rpl36 rps13 rps11 rpoa rpl13 rps9 rpl31 rps12 rps7 tufa
rps10 *rpl12 *rpl1 *rpl11 *rpl9 rps1 *rps4 *rps16 (C)

Inner non-root
node

*rpl19 rpl27 rpl34 rps20 rpob rpoc1 rpoc2 rps2 rpl35 rpl20 rbcl rps14 rpl32_2 *rps18 *rpl33 clpc rpl32_1 rpl21_1 *rps4 *rps16
*rps1 rpl9 rpl11 rpl1 rpl12 *rps10 *tufa *rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoa *rps11 *rps13 *rpl36 *rps5 *rpl18 *rpl6 *rps8 *rpl5
*rpl24 *rpl14 *rps17 *rpl29 *rpl16 *rps3 *rpl22 *rps19 *rpl2 *rpl23 *rpl4 *rpl3 *rpl21_2 (C)

Tree root rpl32_1 rpl21_1 *rps4 *rps16 *rps1 rpl9 rpl11 rpl1 rpl12 *rps10 *tufa *rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoa *rps11 *rps13 *rpl36
*rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14 *rps17 *rpl29 *rpl16 *rps3 *rpl22 *rps19 *rpl2 *rpl23 *rpl4 *rpl3 *rpl21_2 *rpl19 rpl27
rpl34 rps20 rpob rpoc1 rpoc2 rps2 rps14 rpl32_2 *rps18 *rpl33 clpc rpl35 rpl20 rbcl (C)

Paralog numbers are given after the underscore. For other designations, see Table 1
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Table 3 Reconstruction obtained by reduction to ILP for chromosome structures in Rhizobium spp.

Rhizobium_N324_CP013630 (l) *rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE_2 rplY rpoH_1 rpsU_2 rpoE_3 rpsP rplS *rpoH_2 rplU (C)

Rhizobium_phaseoli_straiNN261_CP013580 (l) *rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE2 rplY rpoH_1 rpsU_2 rpoE_3 rpsP rplS rpoH_2 rplU (C)

Rhizobium_N324_CP013630 –
Rhizobium_phaseoli_N261_CP013580

*rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE2 rplY rpoH_1 rpsU_2 rpoE_3 rpsP rplS rpoH_2 rplU (C)

Rhizobium_etli_CP001074 (l) *rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE2 rplY rpoE_3 *rpoE_4 rpoH_1 rpsU_2 rpsP rplS rpoH_2 rplU
(C)

Rhizobium_etli_CP001074 –
Rhizobium_phaseoli_N261_CP013580

*rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE_2 rplY rpoH_1 rpsU_2 rpoE_3 rpsP rplS rpoH_2 rplU (C)

Rhizobium_gallicum_CP006877 (l) *rpsA rpsO rplT rpsT rpoN rpoE_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB rpoC rpsL
rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM
rpsK rpoA rplQ rpsB *rpsD rpoE_2 rplY rpoH_1 *rpsU_1 rpsU_2 rpsP rplS *rpoH_2 rplU (C)

Rhizobium_etli_CP001074 –
Rhizobium_gallicum_CP006877

*rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE2 rplY rpoH_1 rpsU_2 rpsP rplS rpoH_2 rplU (C)

Rhizobium_NXC14_CP021030 (l) *rpsA *rpsO rplT rpsT rpoN rpoE_1 rpoE_3 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL
rpoB rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR
rpsE rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE_2 rplY rpoH_1 rpsU_2 rpsP rplS rpoH_2 rplU (C)

Rhizobium_etli_CP001074 –
Rhizobium_NXC14_CP021030

*rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoE_2 rplY rpoH_1 rpsU_2 rpsP rplS rpoH_2 rplU (C)

Rhizobium_leguminosarum_AM236080 (l) *rpsA *rpsO rplT rpsT rpoN rpsU_1 *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB rpoC rpsL rpsG
rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM rpsK
rpoA rplQ rpsB *rpsD *rpoD *rpoZ rpoH_1 rpsU_2 rpoE_3 rplU (C)

Rhizobium_etli_CP001074 –
Rhizobium_leguminosarum_AM236080

*rpsA *rpsO rplT rpsT rpoN rpoE_1 rpsU_1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB
rpoC rpsL rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE
rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoH_1 rpsU_2 rpoH_2 rplU (C)

Rhizobium_tropici_CIAT_899_CP004015 (l) *rpsA *rpsO rplT rpsT *rpoN *rplI *rpsR *rpsI *rplM rplK rplA rplL rpoB rpoC rpsL rpsG rpsJ rplC rplD
rplW rplB rplV rpsC rplP rpsQ rplN rplX rpsH rplF rplR rpsE rplO rpsM rpsK rpoA rplQ rpsB *rpsD rpoH_1
*rpoH_2 rplU (C)

Rhizobium_etli_CP001074 –
Rhizobium_tropici_CIAT_899_CP004015

*rpsA *rpsO rplT rpsT rpoN rpsU1 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB rpoC rpsL
rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM
rpsK rpoA rplQ rpsB *rpsD rpoH_1 rpsU_2 rpoH_2 rplU (C)

Rhizobium_IRBG74_HG518322 (l) *rpsO rplT rpsT *rpoN rpoZ *rpsR *rpsF *rpsI *rplM rpsB *rpsD *rplQ *rpoA *rpsK *rpsM *rplO *rpsE
*rplR *rplF *rpsH *rpsN *rplE *rplX *rplN *rplP *rpsC *rplV *rpsS *rplB *rplW *rplD *rplC *rpsJ *rpsG
*rpsL *rpoC *rpoB *rplL *rplJ *rplA *rplK *rpoD rplY rpoH_1 rpsP rplS *rplU (C) rpsU_1 *rpsU_2 rpsA (L)

Rhizobium_LPU83_HG916852 (l) rpsO rpsA rplT rpsT rpoN rpoZ *rplI *rpsR *rpsF rplK rplA rplJ rplL rpoB rpoC rpsL rpsG rpsJ rplC rplD
rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM rpsK rpoA rplQ
*rpsI *rplM rpsD *rpsB *rpoD rplY rpoH_1 rpsU_1 *rpsU_2 rpsU_3 rpsP rplS rpoH2 *rplU (C)

Rhizobium_IRBG74_HG518322 –
Rhizobium_LPU83_HG916852

rpsO rpsA rplT rpsT rpoN rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB rpoC rpsL rpsG rpsJ
rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM rpsK rpoA
rplQ rpsD *rpsB *rpoD rplY rpoH_1 rpsU_1 *rpsU_2 rpsU_3 rpsP rplS rpoH_2 *rplU (C)

Rhizobium_NT26_FO082820 (l) rpsO rpsA rplT *rpoN rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB rpoC rpsL rpsG rpsJ rplC
rplD rplW rplB rpsS rplV rpsC rplP rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM rpsK rpoA rplQ rpsB
rpsU_2 *rpsD *rpoD rplY rpoH_1 rpsU_1 rplU rpsP rplS *rpoH_2 (C)

Rhizobium_IRBG74_HG518322 –
Rhizobium_NT26_FO082820

rpsO rpsA rplT rpsT rpoN rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB rpoC rpsL rpsG rpsJ
rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM rpsK rpoA
rplQ rpsB *rpsD *rpoD rplY rpoH_1 rpsU_1 rpsP rplS rpoH_2 *rplU (C)

Tree root rpsO rpsA rplT rpsT rpoN rpsU_2 rpoZ *rplI *rpsR *rpsF *rpsI *rplM rplK rplA rplJ rplL rpoB rpoC rpsL
rpsG rpsJ rplC rplD rplW rplB rpsS rplV rpsC rplP rpsQ rplN rplX rplE rpsN rpsH rplF rplR rpsE rplO rpsM
rpsK rpoA rplQ rpsB *rpsD *rpoD rplY rpoH_1 rpsU_1 rpsP rplS rpoH_2 rplU (C)

For other designations, see Tables 1 and 2
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have unequal gene content. Let us define G = a′(z,t) + b
′(z,t); this breakpoint graph is composed of cycles. It is
close to G′ in Section 2, although equal gene contents were
considered there. Let us focus on the differences of the
current procedure from that in [17] remembering the pres-
ence of outer adjacencies.

1) The quantity B of blocks in G is expressed by the
variable xas for each s, where s is an inner adjacency
or a pair of contigs extremities in a′. It equals 1 if s
is a boundary of a block in a′(z,t), and 0 otherwise.
Similarly for xbs and b′(z,t). Specifically, each s in a′, is
imposed the constraint xas≥

P
j
zki1j−

P
j
zli2j þ ts−1ð Þ,

where k.i1 and l.i2 are genes in a′ with these
extremities. Similarly for s in b′. For an inner
adjacency s, the summand ts – 1 is omitted. Let
the objective function be

H ¼ 0:5⋅
X
s

xs þ
X
s

ys−
X
s

ps:

Thus, B ¼ 0:5⋅
P
s
xs at the minimum point of H.

2) The sum S1 of integer parts of half-lengths of the
maximal connected regions of conventional edges in
G is expressed through the Boolean variables yas and
ybs for all s as in subsection (1). It equals 0 if s is a
boundary or within a block in a′(z,t) or b′(z,t); while
for the adjacencies of common genes, yas and ybs on
the edges of G alternate within each such region and
equal to zero at the ends of odd regions. Specifically,
for each pair s1 in a′ and s2 in b′, where gene k.i is
adjacent to gene k1.i1 in s1 and gene k.j is adjacent to
gene k2.i2 in s2 we impose that

yas1 þ ybs2≥zkij þ
X
j

zk1i1j þ
X
j

zk2ji2−2þ tas1−1ð Þ þ tbs2−1ð Þ;

where the summands tas1–1 and tbs2–1 are omitted for
inner adjacencies s1 and s2, respectively. It implies that
ys cannot equal 0 at both neighboring conventional
edges. Consequently, it implies that the minimum quan-
tity of unities on the region is reached for the arrange-
ment where zeros alternate with unities starting with
zero. Thus, S1 ¼

P
s
ys.

1.0

Rhizobium_IRBG74_HG518322

Rhizobium_etli_CP001074

Rhizobium_phaseoli_N261_CP013580

Rhizobium_leguminosarum_AM236080

Rhizobium_N324_CP013630

Rhizobium_NT26_FO082820

Rhizobium_gallicum_CP006877

Rhizobium_NXC14_CP021030

Rhizobium_LPU83_HG916852

Rhizobium_tropici_CIAT_899_CP004015

Fig. 2 Tree of chromosomal structures of Rhizobium spp. generated using the chromosome structures given in Table 3 in the lines marked by (l)
after the species name. The reconstruction result is presented in the other lines of the same Table 3

1 21 3 3 2

2 1 2 31 31 2.2

3.2

1.2

2.1

3.1

1.1

2.2

3.2

1.2

2.1

3.1

1.1

1.3

a b

Fig. 3 a Given sets a and b composed of three contigs each. b Problem solution: the minimum cycles for (a) (left) and (b) (right)
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3) The quantity S2 of cycles in G composed of
conventional edges is expressed in the variables us and
ps for s as in subsection (1) (see also section 2 and
[17]). For each s, we impose that us≤ms

P
j
zkij (for s

from a′) or us≤ms
P
j
zkji (for s from b′), where k.i is a

gene with an extremity from s. For each pair s of contig
extremities, we impose that us ≤msts. In addition, for
each pair s1 and s2 that include extremities of genes k.i
from a′ and k.j from b′, we impose that

us1≤us2 þms1ð1−zkijÞ þms1ð1−ts2Þ; us2≤us1
þms2ð1−zkijÞ þms2ð1−ts1Þ;

where, the summand ms2 (1 – ts1) and ms1 (1 – ts2) are
omitted for inner adjacencies s1 and s2, respectively.
Then S2 ¼

P
s
ps at the minimum point. The proof is

similar to the proof that the quantity C1 of cycles in G′
equals

P
s
ps in Section 2.

Therefore, the minimum value of function H equals
B + S1 − S2, which equals the distance between the de-
sired cycles [16]. Indeed, lemma 5 and theorem 6 in
[16] suggest that the distance equals B + S + D–P where
B is the quantity of special nodes (that is, blocks) in G;
S equals S1 plus the quantity S3 of such odd regions at
a boundary of any path minus S2; D is the sum of de-
fects of components in the graph G; P is the quantity of
operations, optimized through the interaction of chains
in the graph G, [16, item 3.4]. Circular G has no paths,
hence, D, S3, and P equal zero.
Clearly, the number of variables and constraints in it

quadratically depend on the size of the data.

Examples for the contig problem on synthetic data
Example 1
We are given two sets, a (upper) and b (lower), each
composed of three contigs (Fig. 3a). The initial number-
ings are as follows (left to right): a′, [1.1, 3.1], [1.2, 2.1],
and [3.2, 2.2]; b′, [1.1, 2.1, 1.2], [1.3, 3.1], and [2.2, 3.2].
Other designations in all examples are as in Section 2.2.
The ILP program of the Pulp python package returned
the desired minimum cycles for a′ and b′ (on the left
and on the right in Fig. 3b, respectively). The program
execution time was about 6 h.

Example 2
We are given two sets, a: [−2,1,3], [5,2,–3], [−2,–4,3],
[−5,–4,1], [−1,4] and b: [3,–2,–4], [3,–1,4,5], [−1,1],
[2,–3,–5], [3,–1,–5], [−4,2]. The ILP program of the
Pulp python package returned the following minimum
cycles for a and b (outer adjacencies are indicated by the
symbol “|”): a, (1.2, 3.2 | –2.3, −4.2, 3.1 | –1.3, 4.3 | 5.1,
2.1, −3.3 | –5.2, −4.1, 1.1 | –2.2) and b, (1.2 | 3.2, −2.3,

−4.2 | 3.1, −1.3, −5.3 | 3.4, −1.4, 4.3, 5.1 | 2.1, −3.3, −5.2 |
–4.1, 2.2 | –1.1). The program execution time was
about 11 h.

Conclusions
Three problems are considered; all assume unequal gene
content and the presence of gene paralogs. These prob-
lems are: (1) to determine the minimum number of opera-
tions required to transform one chromosome structure
into another and the corresponding transformation itself
including the paralog identification; (2) to reconstruct
along a tree the chromosome structures given in its leaves;
(3) to find the optimal arrangements for each given set of
contigs, which also includes the paralog identification.
We proved that these problems can be reduced to

integer linear programming, which allows an efficient al-
gorithm to redefine the problems to implement integer
linear programming tools. The results were tested on
synthetic and biological samples.
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