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Abstract. For a system of three linear equations in at least eight variables
modulo three, either there is a binary solution to the system, or one can
eliminate two variables so that the new system has a binary solution if and
only if the initial system has a binary solution. In this way, one can improve the
previously published algorithm, which had been implemented in Python by
Oleg Zverkov, for �nding some binary solution to a system of linear equations
modulo three.

Introduction

Let us denote by GF (3) the �eld of residues modulo three. Elements of the �eld
GF (3) are numbers {0, 1, 2}. Let us write −1 = 2 instead of −1 ≡ 2 (mod 3).

A solution to a system of equations in which the value of each variable belongs
to the set {0, 1} is called a (0, 1)-solution.

The recognition problem of deciding whether there is a (0, 1)-solution to a
system of linear equations over the �eld GF (3) is NP-complete. However, for a
single equation, this problem can be easily solved: only a linear equation of the
type xk = 2 does not have a (0, 1)-solution because each linear equation that
depends non-trivially on at least two variables has a (0, 1)-solution.

De�nition. Let a system of linear equations in variables x1, . . . , xn contain more
than one equation and some equation non-trivially depends on xk. A new system of
linear equations is obtained from the original system by eliminating the variable xk

when two conditions hold:

1. The new system does not depend on the variable xk;
2. The original system is equivalent to the union of the new system and exactly

one equation (depending on xk) equal to a linear combination of the equations
of the original system.

For a system Ax = b, if two columns in the matrix A are proportional to each
other, then corresponding variables can be eliminated so that the new system has
a (0, 1)-solution if and only if the initial system has a (0, 1)-solution, refer to [1].
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Example. Let us consider the system of two linear equations in four variables:{
x1 + x2 = 1
x1 − x2 + x3 + x4 = 0

.

Eliminating the variable x3 yields one equation x1 + x2 = 1 so that each of its
(0, 1)-solutions can be extended to a (0, 1)-solution to the system of two equations.
In fact, two variables are simultaneously eliminated.

In the same way, one can simplify any system of a few equations in su�ciently
many variables, refer to [1].

Theorem 1. There is a polynomial-time algorithm that takes as input a system of m
linear equations in n variables over the �eld GF (3) and, subject to the condition

m ≤ log3 log3(2n− 1),

accepts the input if and only if the system has a (0, 1)-solution.

Results

Next, let us consider systems of three equations overGF (3). How to decide whether
it has a (0, 1)-solution? It is easy.

Theorem 2. For all n ≥ 8, if an 3×n matrix A over GF (3) has no pair of columns

that are proportional to each other, then for all 3-dimensional columns b, there is

a (0, 1)-solution to the system Ax = b.

Proof. The proof of Theorem 2 is based on the classi�cation of matrices up to
column permutations and elementary row operations. For each class, checking
whether there is a (0, 1)-solution to the system Ax = b regardless of the choice
of column b can be reduced to calculating the Gröbner basis for some polynomial
ideal. The calculations have been performed with the Maple computer algebra
system. □

Remark. If the matrix A has two columns proportional to each other, then one can
eliminate two variables. For n ≥ 14, each 3×nmatrix over GF (3) has columns pro-
portional to each other. So, one can improve the former algorithm in the segment
8 ≤ n ≤ 13. For n = 7, there is a counter-example.

Theorem 3. Over GF (3), for all m ≥ 1, there is a system of m linear equations

in n = 3m − 2 variables that has no (0, 1)-solution and for which the matrix A
of coe�cients at the linear terms has no pair of columns that are proportional to

each other.

Proof. Let A consist of the m × m identity submatrix and other m × (2m − 2)
submatrix be so that in the �rst row, all entries except two are zero, and the last
two entries are 1. The following rows, except for the last one, are obtained from
the previous row by a cyclic permutation with a shift by two positions. In the last
row of the submatrix the entries 1 and 2 alternate. For example:

1× 1 : A = (1) ,
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2× 4 : A =

(
1 0 1 1
0 1 1 2

)
,

3× 7 : A =

 1 0 0 0 0 1 1
0 1 0 1 1 0 0
0 0 1 1 2 1 2

 ,

4× 10 : A =


1 0 0 0 0 0 0 0 1 1
0 1 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 1 0 0
0 0 0 1 1 2 1 2 1 2

 .

Let all entries in column b be equal to zero except for the last one, and let the last
entry be equal to 2. Then the system of equations Ax = b has no (0, 1)-solution.
The subsystem of equations, except for the last one, has two (0, 1)-solutions: either
all variables vanish, or all variables are equal to 1. But none of these solutions
extends to a (0, 1)-solution of the entire system. □

Discussion

In accordance with Theorem 2, for m ≥ 3 and n ≥ 8, if the m × n matrix A
contains an m × 8 submatrix of rank three, where is no pair of columns that are
proportional to each other, then one can simultaneously eliminate corresponding
eight variables so that the new system has a (0, 1)-solution if and only if the initial
system has a (0, 1)-solution. Unfortunately, looking for such a submatrix is hard
because the run time of exhaustive search is bounded as O(n8). However, using
the branch-and-bound method, one can signi�cantly reduce the time of such a
submatrix search. In the general case, almost all m × 4 submatrices have rank
four. So, the expected time seems to be O(n4). The author hopes that even such
weak results may be interesting because it is better to get closer to the truth than
to ignore it.

Method

Let us �x anm×n matrix A over GF (3). To verify the existence of a (0, 1)-solution
to the system Ax = b for all b, it is convenient to calculate the reduced Gröbner
basis for an ideal I generated by the forms in all variables xk and bj as well as by
all polynomials x2

k − xk. Eliminating the variables xk, we obtain an ideal in the
variables bj . If the elimination ideal is generated by the polynomials b3j − bj , then
the corresponding zero-dimensional variety contains all GF (3)-points, refer to [2].

For example, calculations with Maple use commands like

with(Groebner) : Basis(I, plex(x1, . . . , xn, b1, b2, b3), characteristic = 3);

after which the polynomials depending only on b1, b2, and b3 are selected.
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Remark. Using Gröbner bases, it is possible to perform the check faster than using
the exhaustive search. So, Theorem 2 is a truly computer assisted result that could
hardly be proved without computer algebra systems.

Conclusion

Our results allow us to improve the previously published algorithm (refer to [1]) for
�nding some (0, 1)-solution to a system of linear equations modulo three. Instead
of eliminating two variables, sometimes eight variables can simultaneously be elim-
inated. It requires that the rank of an eight-column submatrix equals three, but
there is no pair of columns that are proportional to each other. Unfortunately, the
computational complexity of looking for a set of variables to eliminate increases
dramatically, but it is bounded by a polynomial in the number of variables. On
the other hand, we illustrate the role of computer algebra systems for solving
combinatorial problems as well as for creating new algorithms.
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