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Let us denote by GF(3) the field of residues modulo three.

Elements of the field GF(3) are numbers {0,1,2}.

For example, let us write −1 = 2 instead of −1 ≡ 2 (mod 3).

A solution to a system of equations in which the value of each variable

belongs to the set {0,1} is called a (0,1)-solution.

The recognition problem of deciding whether there is a (0,1)-solution

to a system of linear equations over the field GF(3) is NP-complete.

However, for a single equation, this problem can be easily solved:

only a linear equation of the type xk = 2 does not have a (0,1)-solution

because each linear equation that depends non-trivially on two or more

variables has a (0,1)-solution.

x y x+ y x+2y

0 0 0 0
0 1 1 2
1 0 1 1
1 1 2 0



Let a system of linear equations in variables x1, . . . , xn contain more

than one equation and some equation non-trivially depends on xk.

Definition. A new system of linear equations is obtained from the

original system by eliminating the variable xk if two conditions hold:

(1) the new system does not depend on the variable xk and

(2) the original system is equivalent to the union of the new system

and exactly one equation (depending on xk) equal to a linear combi-

nation of the equations of the original system.

{

x1 + x2 = 1
x1 − x2 + x3 + x4 = 0

Eliminating the variable x3 yields one equation:

x1 + x2 = 1

and each of its (0,1)-solutions can be extended to a (0,1)-solution to

the system of two equations.

Eliminating a variable can result in a system having a larger number

of (0,1)-solutions than the original system had.



Proposition. Given an m× n matrix A over the field GF(3).

If m ≤ log3(2n− 1), then there are two linearly dependent columns.

These columns can be found in polynomial time.

For example,

any 3× 14 matrix over GF(3) has linearly dependent columns.

For a system Ax = b, if two columns in the matrix A are proportional

to each other, then corresponding variables can be eliminated so that

the new system has a (0,1)-solution if and only if the initial system

has a (0,1)-solution.

In the same way, one can simplify any system of a few equations in

sufficiently many variables.



Theorem 1. There is a polynomial-time algorithm that takes as input

a system of m linear equations in n variables over the field GF(3) and,

subject to the condition

m ≤ log3 log3(2n− 1),

accepts the input if and only if the system has a (0,1)-solution.

Remark. For m = 3, the algorithm from Theorem 1 is applicable for

n ≥ 3,812,798,742,494
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Results

Next, let us consider systems of three equations over GF(3). How to

decide whether it has a (0,1)-solution? It is easy.

Theorem 2. For all n ≥ 8, if an 3 × n matrix A over GF(3) has

no pair of columns that are proportional to each other, then for all 3-

dimensional columns b, there is a (0,1)-solution to the system Ax = b.

Proof. The proof of Theorem 2 is based on the classification of ma-

trices up to column permutations and elementary row operations. For

each class, checking whether there is a (0,1)-solution to the system

Ax = b regardless of the choice of column b can be reduced to calcu-

lating the Gröbner basis for some polynomial ideal. The calculations

have been performed with the Maple computer algebra system.

Remark. If the matrix A has two columns proportional to each other,

then one can eliminate two variables.



Theorem 3. Over GF(3), for all m ≥ 1, there is a system of m linear

equations in n = 3m − 2 variables that has no (0,1)-solution and for

which the matrix A of coefficients at the linear terms has no pair of

columns that are proportional to each other.

Proof. Let A consist of the m × m identity submatrix and other m ×

(2m−2) submatrix be so that in the first row, all entries except two are

zero, and the last two entries are 1. The following rows, except for the

last one, are obtained from the previous row by a cyclic permutation

with a shift by two positions. In the last row of the submatrix the

entries 1 and 2 alternate. For example:

1× 1 : A = (1) ,

2× 4 : A =

(

1 0 1 1
0 1 1 2

)

,

3× 7 : A =







1 0 0 0 0 1 1
0 1 0 1 1 0 0
0 0 1 1 2 1 2





 ,













x1 +x6 +x7 = 0
x2 +x4 +x5 = 0

x3 +x4 −x5 +x6 −x7 = 2
.

Let all entries in column b be equal to zero except for the last one,

and let the last entry be equal to 2. Then the system of equations

Ax = b has no (0,1)-solution. The subsystem of equations, except

for the last one, has two (0,1)-solutions: either all variables vanish, or

all variables are equal to 1. But none of these solutions extends to a

(0,1)-solution of the entire system.



Discussion

In accordance with Theorem 2, for m ≥ 3 and n ≥ 8, if the m × n

matrix A contains an m × 8 submatrix of rank three, where is no pair

of columns that are proportional to each other, then one can simulta-

neously eliminate corresponding eight variables so that the new system

has a (0,1)-solution if and only if the initial system has a (0,1)-solution.

Unfortunately, looking for such a submatrix is hard because the run

time of exhaustive search is bounded as O(n8). However, using the

branch-and-bound method, one can significantly reduce the time of

such a submatrix search. In the general case, almost all m× 4 subma-

trices have rank four. So, the expected time seems to be O(n4). The

author hopes that even such weak results may be interesting because

it is better to get closer to the truth than to ignore it.



Method

Let us fix an m × n matrix A over GF(3). To verify the existence of

a (0,1)-solution to the system Ax = b for all b, it is convenient to

calculate the reduced Gröbner basis for an ideal I generated by the

forms in all variables xk and bj as well as by all polynomials x2k − xk.

Eliminating the variables xk, we obtain an ideal in the variables bj. If

the elimination ideal is generated by the polynomials b3j − bj, then the

corresponding zero-dimensional variety contains all GF(3)-points.

For example, calculations with Maple use commands like

with(Groebner) : Basis(I, plex(x1, . . . , xn, b1, b2, b3), characteristic = 3);

after which the polynomials depending only on b1, b2, and b3 are se-

lected.

Remark. Using Gröbner bases, it is possible to perform the check

faster than using the exhaustive search. So, Theorem 2 is a truly

computer assisted result that could hardly be proved without computer

algebra systems.



Conclusion

Our results allow us to improve the previously published algorithm

(Zverkov & S. 2025) for finding some (0,1)-solution to a system of

linear equations modulo three. Instead of eliminating two variables,

sometimes eight variables can simultaneously be eliminated. It re-

quires that the rank of an eight-column submatrix equals three, but

there is no pair of columns that are proportional to each other. Unfor-

tunately, the computational complexity of looking for a set of variables

to eliminate increases dramatically, but it is bounded by a polynomial

in the number of variables. On the other hand, we illustrate the role of

computer algebra systems for solving combinatorial problems as well

as for creating new algorithms.

Thank you!


