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Abstract—There exists a large set of real symmetric matrices whose entries are linear functions in sev-
eral variables such that each matrix in this set is definite at some point, that is, the matrix is definite
after substituting some numbers for variables. In particular, this property holds for almost all such
matrices of order two with entries depending on two variables. The same property holds for almost all
matrices of order two with entries depending on a larger number of variables when this number exceeds
the order of the matrix. Some examples are discussed in detail. Some asymmetric matrices are also
considered. In particular, for almost every matrix whose entries are linear functions in several vari-
ables, the determinant of the matrix is positive at some point and negative at another point.
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1. INTRODUCTION
We consider real matrices whose entries are linear functions in several variables. Generally speaking,

these functions are not homogeneous. The most interesting case is when a matrix is symmetric and the
number of independent variables is equal to the order of the matrix. An example is the Hessian matrix
(matrix of second-order partial derivatives) of a polynomial of third degree in several variables. In partic-
ular, the Hessian matrix is useful in searching for a minimum of such a polynomial on a compact set [1].
However, not every symmetric  matrix with entries depending on  variables can be obtained in this
way. For example, a diagonal  matrix  with a reverse order of variables fails to be the Hes-
sian matrix of a polynomial in two variables  and .

The matrices under consideration are closely related to 3-tensors whose coordinates are numerical
coefficients from the matrix entries. However, this paper deals with properties of matrices obtained when
some numbers are substituted for variables. In particular, is such a matrix definite at some point? These
problems are reduced to the solvability of a system of nonlinear inequalities. The latter problem has been
considered in numerous publications (see, e.g., [2–4]). However, in the generic case, this problem has a
high computational complexity. On the other hand, the relation between these matrices and 3-tensors is
also useful for estimating computational complexity; many problems of this type are -hard [5].

If the Hessian matrix of a polynomial in two variables is definite at some point, then the graph of this
polynomial has an elliptic point, in particular, this graph is not a ruled surface. This explains the particular
interest in the properties of Hessian matrices of polynomials in the simulation of surfaces of complex
geometry in computer graphics and computer-aided design systems [6].

The search for a point at which a matrix is definite is closely related to semidefinite programming prob-
lems, which are a special case of cone programming [7–10]. Graph theory is related to the close problem
of symmetric positive semidefinite matrix completion in the case when the matrix entries on the main
diagonal and some other entries are fixed [11]. Semidefinite programming can also be used in other com-
binatorial problems [12], although it is well known that an algorithmically difficult problem cannot be
approximated by a low-dimensional semidefinite programming problem [13].

Special matrices whose entries are linear functions over various fields have been studied by numerous
authors. Asymmetric matrices with variable (possibly coinciding) entries were considered in [14–16],
where the normality property and the rank of such matrices were studied. Matrices with affinely indepen-
dent columns whose entries are linear functions such that no variable occurs in two different columns were
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SYMMETRIC MATRICES WHOSE ENTRIES 103
considered in [17–19] under the condition that this constraint on the rank holds for any values of the vari-
ables.

Properties that hold everywhere, except for a subset of small (e.g., zero) measure, play an important
role in the development of heuristic algorithms [20–22].

In discussing the computational complexity, it can be assumed that the considered linear functions are
defined over a finite extension of the field of rational numbers embedded in the field of real numbers.
Then computations can be performed in computer algebra systems [23]. The definiteness of a symmetric
numerical matrix can be checked using LDU decomposition produced by the corresponding routine in
MathPartner. Alternatively, the check can be based on straightforward calculations of corner minors.
According to the Sylvester criterion, a symmetric matrix  is positive definite if and only if its corner
minors  are all positive. Then  is a negative definite matrix and its corner minors have alternating
signs: the corner minors  of even order are positive, while the corner minors  of odd order are neg-
ative. The determinant of the matrix can be computed in polynomial time and its upper bound depends
on the complexity of the matrix multiplication. Upper bounds for multiplication complexity were consid-
ered, for example, in the recently published works [24–27]. On the other hand, the computational com-
plexity of multiplication and division operations over a finite extension of the ground field is connected
with the complexity of the algorithm used for computing the greatest common divisor of polynomials [28].

Given a set of matrices with entries depending on parameters , …, , some property 
holds for almost every matrix of this set if there exists a polynomial  not identically zero such
that, for each set of values of , …, , if the property  does not hold, then the polynomial
vanishes: . A property that holds for almost every set of parameter values does not hold
only on a nowhere dense set of measure zero. For example, for symmetric  matrices

with three entries being independent parameters , , and , almost every matrix is nonsingular, since
the polynomial  vanishes on singular matrices. However, in the general case, the set
of collections of values for which the property  does not hold can be a proper subset of the zero set of the
polynomial .

For matrices whose entries are linear functions in  variables, the set of parameters is the set of numer-
ical coefficients of all these functions. In the general case, an  matrix of this kind depends on 
independent parameters. If this matrix is additionally assumed to be symmetric, then it depends only on

 independent parameters.

Let  denote a diagonal matrix whose entries on the main diagonal are , …,  in the
indicated order. For example, almost every  matrix of the form  is not iden-
tically zero, since this is equivalent to the fact that the value of the polynomial  in the
parameters , , , and  is nonzero. However, almost every matrix of this type is equal to a zero matrix
at some point, since, if the value of the polynomial  is nonzero, then the coordinates of this point
are the numbers  and .

2. RESULTS
Theorem 1. For almost every  matrix  whose entries are linear functions in  variables, there exists a

point at which the determinant of  is positive and there exists another point at which the determinant of  is
negative. The same is true for almost every symmetric  matrix of the considered form.

Proof. In the general case, the determinant  does not vanish identically, but vanishes at some
point. To find this point, it suffices to indicate a point  at which all entries of the first row are simulta-
neously zero. The point  solves a system of  inhomogeneous linear algebraic equations with  unknowns.
In the general case, this system is nondegenerate and has a unique solution. Indeed, for this to be true, it
is sufficient that the determinant of an auxiliary  matrix made up of the coefficients of the linear terms
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104 SELIVERSTOV
of those functions that are the entries of the first row of the original matrix  be nonzero. This determinant
is equal to a polynomial in the numerical parameters determining the matrix . Therefore, it is nonzero
for almost every matrix . Since we consider only one row, this argument does not change in the case of
symmetric matrices of this type.

A similar argument shows that, for almost every matrix , there exists a straight line  passing through
the point  such that the entries of the first row of  at each point of  vanish identically, except for the
first entry of the first row. Let  denote the value of this entry. In the general case, when  is not identically
zero, the value  determines a point on . In particular, the zero value  corresponds to the point P.
The value of the determinant of  at points on  is equal to , where the  matrix 
is obtained from  by deleting the first row and the first column. Since  is independent of the entries of
the first row of , it is independent of the choice of the point  and the straight line . Therefore, for
almost every matrix  with a fixed first row, the submatrix  is nonsingular at the point . Therefore, in
a sufficiently small neighborhood of  on the straight line , the determinant  is nonzero and does
not change its sign. However, in this neighborhood, the determinant  changes its sign
depending on the sign of . Therefore, in the neighborhood of P, the determinant of  takes both positive
and negative values. The same argument holds in the case of symmetric matrices of this type.

Theorem 2. For almost all sets of linear functions , …,  in  variables , …,  and for any 
matrix  the matrix

is definite at some point. In particular, almost every symmetric  matrix whose entries are linear functions
in two variables is definite at some point.

Proof. Without loss of generality, we may assume that none of the linear functions , …,  is a linear
combination of the others. Otherwise, the  matrix of their coefficients is singular, i.e., its
determinant—a polynomial of degree  in these coefficients—is zero. Moreover, it may be assumed
that these linear functions are , …, , and some  that does not vanish at the origin.
Since the hyperplane  is not incident to the origin, it contains a point of the first orthant, all of
whose coordinates are positive, or a point of the opposite orthant, all of whose coordinates are negative.
At this point, the matrix  is diagonal and definite.

Each symmetric  matrix can be decomposed into the sum , where  denotes the
exchange matrix

The following example shows that determining whether there exists a point at which the matrix from The-
orem 2 is definite is not always a trivial task.

Example. Consider a matrix depending on a numerical parameter , namely,

Its determinant is equal to the polynomial . If  and the values of both 
and  are equal to a positive number ( ), then the matrix is positive definite. However, if

, then the determinant is . In this case, there is no point at which the matrix
is definite.

Remark 1. Under the conditions of Theorem 2, if the linear functions , …,  are linearly indepen-
dent (i.e., none of them is an identically linear combination of the other functions with numerical coeffi-
cients), then the explicit computation of a point at which the matrix is definite is reduced to solving a lin-
ear programming problem. If the functions , …,  are defined over a finite extension of the rational
number field, then all necessary computations, including the check of linear independence of the func-
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SYMMETRIC MATRICES WHOSE ENTRIES 105
tions, can be executed in polynomial time. Theorem 2 is also valid for matrices whose entries are linear
functions in variables whose number is larger than the matrix order.

Theorem 3. For almost all sets of linear functions , …,  in  variables , …,  and for any numerical
 matrix , the matrix  is positive definite at some point and negative definite at

another point.
Proof. By analogy with the proof of Theorem 2, in the general case for any number , the system of

linear equations , …,  has a solution. For sufficiently large values of  at the point corre-
sponding to the solution, we obtain a diagonally dominant matrix. Therefore, it is positive definite.
For negative  with a sufficiently large absolute value, the corresponding numerical matrix is negative
definite.

Theorem 4. For all triples of linear functions , , and  in two variables  and , if , then
the symmetric  matrix

is definite at some point.

Proof. Let us show that there exist values of  and  for which the second corner minor 
is positive. The following two cases are possible. If  is not identically constant, then the system of two
equations ,  has a nontrivial solution, since . For these values of the variables, the
minor  is positive. If  is identically constant, then  is positive for all sufficiently large values of 
and .

If the values of  and  thus chosen are both positive, then, for sufficiently large values of , the
determinant of the matrix is positive as well. According to the Sylvester criterion, the matrix is positive
definite. Similarly, if the values of  and  are both negative, then, for negative  (sufficiently large in
absolute value), the determinant of the matrix is negative; the matrix is negative definite.

Remark 2. In Theorem 4, the inhomogeneity of the linear function  is an essential condition.
Example 1. At any point, the symmetric  matrix

is not definite, since the second corner minor  is never positive. However, at points
of the straight line defined by the equations , this matrix is semidefinite. It is positive semidef-
inite for  and negative semidefinite for . For any matrix whose entries are homogeneous linear
functions, all entries vanish at the origin, i.e., the matrix is semidefinite.

The linear independence of the entries on the main diagonal of the matrix also simplifies the search for a
point at which the matrix of semidefinite. Otherwise, such a point may not exist even for diagonal matrices.

Example 2. The diagonal  matrix , whose entries depend only on one vari-
able , is not semidefinite at any point. Therefore, for any functions , , and  in any number of vari-
ables, the symmetric  matrix

is also not semidefinite at any point.
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On the other hand, the diagonal matrix  is the limit, as , of the sequence
of diagonal matrices

each of which is positive definite at the point  and negative definite at the point .
Similarly, any constant matrix  is the limit, as , of the sequence of matrices

 with entries depending on a single variable such that each matrix is positive definite
at some point and negative definite at another point.

3. DISCUSSION
The semidefinite programming problem is to optimize a linear functional at the intersection of an

affine space and the convex cone of positive semidefinite matrices. The interior point method is often effi-
cient as applied to this problem, but requires knowledge of an initial point from the feasible domain. The
above results allow us to establish the existence of such a point for some cases. Moreover, the proofs of
Theorems 2 and 3 are constructive, i.e., under the generality assumption, from the conditions of these the-
orems, a point at which the matrix is definite can easily be computed using a polynomial number of arith-
metic operations. On the other hand, in the general case, Theorem 2 does not guarantee the existence of
a point at which the matrix is positive semidefinite.

Theorem 1 implies that almost every matrix whose entries are linear functions with a sufficiently large
number of variables fails to be definite at each point. In particular, if such a matrix is positive definite at
some point, then there exists another point at which it is positive semidefinite, but not definite.

Consider Hessian matrices of third-degree polynomials. For polynomials in two variables, these are
symmetric  matrices to which Theorem 2 can be applied, i.e., for almost every polynomial of this
kind, there exists a point at which its Hessian matrix is definite. Therefore, for almost every polynomial
of third degree in two variables, its graph contains an elliptic point. In particular, this graph is not a ruled
surface. Note that ruled surfaces play an important role in modeling surfaces of complex geometry. If the
graph of a polynomial is a ruled surface, then the Hessian matrix of this polynomial is semidefinite at each
point. On the other hand, the monkey saddle is an example of the graph of a third-degree polynomial that
does not have an elliptic point and is not a ruled surface. In this case, the Hessian matrix of the corre-
sponding polynomial vanishes at some point.

In the general case, for polynomials of third degree in three variables, a linear change of variables brings
the Hessian matrix to the form

where  is a linear function and  and  are symmetric numerical  matrices. This state-
ment follows from the fact that a cubic form in three variables can be decomposed into a sum of at most
four cubes of linear forms [29]. If the matrix  is diagonal, then the existence of a point at which the matrix
is definite can be proved by applying Theorem 2. If the matrix  is diagonal, then Theorem 3 is applica-
ble. If the function  depends only on the values of  and , then Theorem 4 is applicable.

For almost all polynomials of the form

where each of the linear functions , …,  depends on  variables, while  and  are numbers, a nonde-
generate linear transformation of coordinates yields a polynomial with a Hessian matrix satisfying the
conditions of Theorem 2 or 3. However, if the number  of variables is greater than two, then there are
polynomials of third degree that cannot be represented in such a form [29].
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For notational simplicity, we consider polynomials of the form

There exists a linear function  for which the second partial derivatives of  are

where  and  if . If  is a nonzero constant, then Theorem 3 is applicable. Otherwise,
if , then Theorem 2 is applicable. In these cases, the Hessian matrix is definite at some point.
Only if , such a point may not exist. However, if , then all entries of the Hessian
matrix vanish at the origin. Therefore, for any polynomial of the considered form, the Hessian matrix is
semidefinite at some point.
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