
503

ISSN 1064-5624, Doklady Mathematics, 2017, Vol. 96, No. 2, pp. 503–505. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © K.Yu. Gorbunov, V.A. Lyubetsky, 2017, published in Doklady Akademii Nauk, 2017, Vol. 476, No. 6, pp. 614–616.

The Minimum-Cost Transformation of Graphs
K. Yu. Gorbunova* and V. A. Lyubetskya,b**

Presented by Academician of the Russian Academy of Sciences A. L. Semenov May 13, 2017

Received May 17, 2017

Abstract—A complete proof that algorithms proposed by the authors solve the problem of minimum-cost
transformation of a graph into another graph is given. The problem is solved both by a direct algorithm of lin-
ear complexity and by a reduction to quadratic integer linear programming.

DOI: 10.1134/S1064562417050313

1. STATEMENT OF TWO PROBLEMS
AND RESULTS

The first problem. Suppose given directed graphs a
and b and a list of operations over graphs. The opera-
tions are fixed and coincide with those proposed in [1]
(their description is also given in [2, p. 162]): these are
double, sesqui-fold, and single (cut and join) reglu-
ings, deletion, and insertion. Each operation is
assigned a cost, which is a strictly positive rational
number. It is required to find a sequence of operations
of minimum total cost which transforms a into b. In
this problem and the problem stated below, graphs are
understood as finite sets of disjoint chains and cycles;
each edge is assigned a name, which is positive integer.
In [1, 2], such graphs were called chromosomal struc-
tures. In the first problem, the names of edges in each
graph do not repeat.

We refer to the minimum total cost as the distance
between a and b, although it is not a usual metric. A
solution of the problem is called a shortest sequence.
The directions of edges in chains and cycles are not
assumed to be consistent.

The second problem. The data of this problem is the
same as in the first problem, except that the names of
edges in graphs are allowed to repeat, but, in return,
the costs of all operations are equal. It is required to
reduce this problem to quadratic integer linear pro-
gramming (ILP). “Quadratic” means that the number
of variables and constraints depends quadratically on
the total size of the initial graphs a and b, say on the

number of edges in these graphs. We denote the sets of
edges with name n in a and b by Х(n, a) and Х(n, b),
respectively. “Reduce” means that, for each n, it is
required to find a partial injective mapping of a smaller
(in size) set of elements of Х(n, a) and Х(n, b) to a
larger set such that the corresponding graphs a' and b',
in which the names of edges no longer repeat, have
minimum distance. To be more precise, those edges
which have coinciding names in a acquire unique
names in a' (for b and b', a similar condition holds),
and unique names are preserved by the mappings
under consideration. Unique names can be obtained,
e.g., simply by extending initial names by second posi-
tions invariant under the mappings; then a unique
name has the form n.k both in a and b, so that the new
names do not repeat in a (and, similarly, in b).

We do not assume that the sets of names in a and b
coincide, which fundamentally complicates both
problems.

In addition to Theorem 1 stated below, the authors
have obtained a rigorous solution of the first problem
for the case where the cost d of insertion lies in the
interval between c (equal to the costs of all other oper-
ations) and 2c (the solution is minimal up to the addi-
tive constant d – c) [2]. This case can be called nonsta-
tionary, and the case of Theorem 1a, stationary. This
immediately implies a solution of the problem for the
case of equal costs of operations.

The first problem was stated in [3, 4] and the sec-
ond (in simplified form), in [5, 6]. The first problem
has been extensively studied in solving various applied
problems; its setting was augmented by strong assump-
tions, and under these assumptions, heuristic solution
algorithms were proposed; detailed references can be
found, e.g., in [3, 4]. To the best knowledge of the
authors, mathematical results related to the first prob-
lem in the setting given above are contained only in [7,
8]. In [7], a solution of this problem for the special case

MATHEMATICS

a Kharkevich Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, 127051 Russia
b Mechanics and Mathematics Faculty, Moscow State
University, Moscow, 119991 Russia
*e-mail: gorbunov@iitp.ru
**e-mail: lyubetsk@iitp.ru

504

DOKLADY MATHEMATICS Vol. 96 No. 2 2017

GORBUNOV, LYUBETSKY

of equal costs of operations was suggested. In [8], a
plan for solving this problem under assumptions spec-
ified below in Theorem 1 was proposed. As far as we
know, the corresponding proof has not been published
so far; apparently, the proposed plan cannot be imple-
mented; the solution presented here is obtained in a
different way (see below). The algorithms of [7, 8] fun-
damentally differ from those suggested here. For the
second problem, mathematical results were obtained
only in [5, 6]. In [5], the special case of coinciding sets
of names in the graphs was considered; in [6], the
problem was solved for another peculiar special case,
where the graphs may have noncoinciding sets of edge
names, but after a bijection between Х(n, a) and Х(n, b)
is established, those edges which are encountered in
only one of the graphs are ignored under the reduction
of a to b.

For an equiaccessible address machine with uni-
form weight criterion, the first problem is to be solved
by a linear algorithm and the second, by a quadratic
algorithm.

By a component we mean a chain or a cycle. We
refer to a graph consisting of cycles as a cyclic graph. In
[9], for the case of coinciding sets of names in cyclic
graphs a and b and equal costs of operations, a passage
to the dual problem was proposed, namely, to the
problem of reducing a breakpoint graph defined in [9]
to the final form by means of dual operations. We
define such a graph for any graphs a and b with non-
coinciding sets of names; we denote it by a + b in what
follows. The definitions of these notions are given [2,
p. 163]. We also introduce the notion of a chain inter-
action, which includes the notions of the type and the
size of a component ([2, pp. 163–167]).

Theorem 1. There is a linear algorithm solving the
first problem for case where (a) the equal costs of inser-
tion and deletion do not exceed half the equal costs of the
other operations; (b) the initial graphs are cyclic, the
costs of insertion and deletion are equal, and the costs of
the other operations are equal to each other.

Theorem 2. There is a quadratic algorithm reducing
the second problem to quadratic ILP.

Solution algorithm for the first problem. For a + b,
we perform the following steps:

(i) delete all loops;
(ii) excise ([2, p. 164, Step 2]) all ordinary edges

except 2-cycles;
(iii) apply interactions 3.1, 3.2, 3.12, and 3.13,

beginning with the first possible one;
(iv) close the chains of strictly positive size ([2, p. 170,

item 4.21]) by edges so as to obtain cycles;
(v) divide ([2, p. 171, Step 5]) the cycles of size

strictly larger than two into 2-cycles;
(vi) delete ([2, Step 5]) the remaining singular ver-

tices.
Sketch of the proof of Theorem 1a. Let c(G) be the

least possible total cost of a sequence of operations

reducing the graph G = a + b to the final form, and let
Т(G) be the total cost of operations in the reduction
algorithm. We show that, for any G, we have

Т(G) ≤ c(G). (1)

The following important relation is also valid:

T(G) = (1 – w)(0.5d + 0.5f – c)
+ w(B + S + D) – Р(G), (2)

where w is the cost of the deletion and insertion oper-
ations; d, f, and c are, respectively, the total size of
components in the graph a + b and the numbers of odd
chains and cycles in this graph; B is the total number
of singular vertices in a + b; S is the sum of the integer
parts of half-lengths of maximal connected pieces (we
call them segments) composed of ordinary edges plus
the number of extreme odd segments minus the num-
ber of cyclic segments; D equals 1 in the case of a chain
of one of the types 1a, 1b, 3a, 3b, and 3 (and 0 other-
wise) [2]; and P(G) is difference of the total costs of
operations in the above algorithm including or not
including step (iii).

Inequality (1) follows directly from the inequality

, (3)

which holds for any operation o and any G. Inequality
(3) is verified by searching through all operations. Let
o be the deletion of a singular vertex. Under the pas-
sage from G to o(G), B decreases by 1. Let us consider
the possible cases.

Suppose that an isolated singular vertex is deleted.
Then, under the same passage, S, D, and c do not
change, d increases by 1, and f decreases by 1. The
value of P does not change or decreases by w; indeed,
this value cannot increase under the deletion of a
chain, and it cannot decrease by more than w either,
because all interactions containing arguments of types
2a and 2b preserve the cost w. As a result, the value of
T either does not change or decreases by w.

Suppose that a singular vertex is deleted from a
cycle or a loop. Then, under the same passage, S does
not change (if both segments adjacent to the vertex
being deleted are even or the vertex is unique in the
cycle) or increase by 1; the other values do not change.

If an interior singular vertex is deleted from a chain,
i.e., there are other singular vertices on both sides of
the vertex being removed, then the type of the chain
does not change: it is determined by the size of the
chain, by the type of the boundary (pendant or non-
pendant), and (in the case of nonpendant boundary)
by the length of the extreme segment. In this case, we
repeat the argument from the preceding paragraph.

The other operations are treated in a similar way.

≥ −() () (())c o T G T o G

DOKLADY MATHEMATICS Vol. 96 No. 2 2017

THE MINIMUM-COST TRANSFORMATION OF GRAPHS 505

2. ALGORITHMS AND SKETCH
OF THE PROOF OF THEOREM 1b

In a + b, all components are cycles or loops; the
algorithms presented below are applied to a + b. We
can discard all regluings except the double one. Sup-
pose that the costs w of insertion and deletion are the
same and the costs of the other operations equal 1. By
a singular operation, together with its arguments, we
mean an operation of merging two singular vertices
into a single vertex. We denote the special double
regluing by SDR and refer to it as the SDR-operation.

Suppose that 0 < w ≤ 1. In this case, the algorithm
and the proof are the same as above, and the cost T(G)
equals

(1 – w) ∙ (0.5d – c) + w ∙ (B + S).
Suppose that 1 < w ≤ 2. By an a-cycle in the break-

point graph we mean a cycle containing a-vertices and
not containing b-vertices; the definition of a b-cycle is
similar; an (a, b)-cycle contains both a- and b-vertices.

The algorithm is essentially close to that described
above:

(i) excise ordinary edges;
(ii) SDR-unite the vertex of a loop with a singular

vertex of any component having the same name;
(iii) delete loops;
(iv) SDR-divide an (a, b)-cycle of size strictly

larger than 4 into a 2-cycle and a smaller cycle; in the
latter, SDR-excise an ordinary edge;

(v) transform an (a, b)-cycle of size 4 into a cycle
with one ordinary edge by applying an SDR-inversion
and excise this edge;

(vi) SDR-unite two (a, b)-cycles in one cycle and
SDR-cut out an ordinary edge;

(vii) delete singular vertices.
Let Ca and Cb be the numbers of a- and b-cycles,

respectively, in the graph a + b.
The number of deletions of singular vertices in the

algorithm equals Ca + Cb + 2Iab + Ipa + Ipb; here, Iab =
1, if a + b contains an (a, b)-cycle (and Iab = 0 other-
wise), Ipa = 1 if a + b contains an a-loop but does not
contain a cycle with an a-vertex (and Ipa = 0 other-
wise), and Ipb is a similar quantity for a b-loop. All
operations, except those performed at step (i), are sin-
gular. Suppose that the number of singular operations
in the algorithm equals B and the number of nonsin-
gular operations equals S; then

We must search through all operations o applied to G.
Suppose that w > 2. Then we supplement the first

six steps of the algorithm described above by the fol-
lowing steps:

(vii) SDR-unite an (a, b)-cycle and an a-cycle and
excise any of the two ordinary edges; unite an (a, b)-
cycle and a b-cycle in a similar way;

(viii) SDR-unite two a-cycle and excise any of the
three ordinary edges; unite two b-cycles in a similar
way;

(ix) delete the singular vertices.

The total number of operations in the algorithm
equals B + S + Ca – Ica ∙ (1 – Iab) + Cb – Icb ∙ (1 – Iab) =
B + S + Ca + Cb – (Ica + Icb) ∙ (1 – Iab); here, Ica = 1
(Icb = 1) if a + b contains an a- cycle (respectively, a b-
cycle); otherwise, these quantities equal 0. These
operations include Ia + Ib deletion operations; here,
Ia = 1 (Ib = 1) if a + b contains an a-vertex (respec-
tively, b-vertex); otherwise, these quantities equal 0.
We have

Search through all operations.

REFERENCES

1. S. Yancopoulos, O. Attie, and R. Friedberg, Bioinfor-
matics, No. 21, 3340–3346 (2005).

2. K. Yu. Gorbunov and V. A. Lyubetsky, in CEUR Work-
shop Proceedings (CEUR-WS.Org): Selected Papers of
the First International Scientific Conference Convergent
Cognitive Information Technologies (Convergent 2016),
Moscow, Russia, 2016 (Moscow, 2016), Vol. 1763,
pp. 162–172.

3. M. D. V. Braga, E. Willing, and J. Stoye, J. Comput.
Biol. 18, 1167–1184 (2011).

4. P. H. da Silva, R. Machado, S. Dantas, and M. D. V. Braga,
Algorithms Molec. Biol. 8, 21.1–21.15 (2013).

5. M. Shao, Y. Lin, and B. Moret, in Research in Compu-
tational Molecular Biology: 18th Annual International
Conference RECOMB 2014, Pittsburgh, PA, USA, 2014
(Springer, New York, 2014), pp. 280–292.

6. F. V. Martinez, P. Feijão, M. D. V. Braga, and J. Stoye,
Algorithms Molec. Biol. 10, 21.1–21.15 (2015).

7. P. E. C. Compeau, Algorithms Molec. Biol. 8, 6.1–6.9
(2013).

8. P. E. C. Compeau, in Proceedings of 14th International
Workshop “Algorithms in Bioinformatics,” Wroclaw,
Poland, 2014 (Wroclaw, 2014), Vol. 8701, pp. 38–51.

9. M. A. Alekseyev and P. A. Pevzner, Theor. Comput.
Sci. 395 (2–3), 193–202 (2008).

Translated by O. Sipacheva

= ⋅ + + +
+ + − − − − −

= − ⋅ + + + + + +

() (2)
(2)

(1) (2) .

a b ab pb

a b ab pa pb

a b ab pa pb

T G w C C I I
B S C C I I I

w C C I I I B S

= ⋅ + + + + +
− + ⋅ − − −

= − ⋅ + + + + +
− + ⋅ −

() () (
() (1))

(1) ()
() (1).

a b a b

ca cb ab a b

a b a b

ca cb ab

T G w I I B S C C
I I I I I

w I I B S C C
I I I

