
ISSN 1064-5624, Doklady Mathematics, 2024, Vol. 110, No. 2, pp. 373–378. © Pleiades Publishing, Ltd., 2024.
ISSN 1064-5624, Doklady Mathematics, 2024. © Pleiades Publishing, Ltd., 2024.

MATHEMATICS
An Exact Quadratic Algorithm
for the Shortest Tree Transformation

K. Yu. Gorbunova,* and V. A. Lyubetskya,b,**
Presented by Academician of the RAS A.L. Semenov

Received January 24, 2024; revised August 8, 2024; accepted August 8, 2024

Abstract—The article proposes a new exact algorithm of quadratic complexity that solves the problem of the
shortest transformation (“alignment”) of one weighted tree into another, taking into account arbitrary costs
of operations on trees. Three operations are considered: adding vertex deletions to an edge or root of a tree
and shifting a subtree with deletions.

Keywords: discrete optimization, shortest tree transformation, operations on a tree, operation cost, exact
algorithm, quadratic complexity algorithm, tree alignment
DOI: 10.1134/S1064562424702259
1. INTRODUCTION AND FORMULATION
OF THE PROBLEM

The Hamming distance between two words of
identical length in a fixed finite alphabet is widely
used. Often, words of not necessarily equal length, as
well as operations, specific to a certain application are
considered. Operations sequentially transform one
given word into another; the set of operations is pre-
liminarily chosen and fixed depending on the applica-
tion under consideration. The distance between two
words is defined as the length of the shortest sequence
of admissible operations transforming one word into
another. Moreover, every operation is usually assigned
a strictly positive rational number, which is called the
operation cost. Accordingly, the distance is defined as
the minimum of the sum of the costs of the operations
that sequentially transform one given word into
another. This distance is not necessarily symmetric
and is called the edit distance, or Levenshtein dis-
tance. The shortest transformation problem consists of
constructing an efficient algorithm for finding this
minimum and, most importantly, a sequence of oper-
ations on which the minimum is reached. This prob-
lem can be solved by numerous dynamic program-
ming algorithms with quadratic running time [1],
Chapter 11. A chain of operations that minimizes the
37

a Institute for Information Transmission Problems
of the Russian Academy of Sciences (Kharkevich Institute),
Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
*e-mail: gorbunov@iitp.ru
**e-mail: lyubetsk@iitp.ru
sum of operation costs is called the shortest. The effi-
ciency of an algorithm is understood as the proof of its
exactness (or a nontrivial upper bound for its error)
together with the proof of a low-degree polynomial
bound for its running time. In applications, the short-
est transformation problem often arises for finite
graphs defined by a fixed property, rather than by
words. Examples are the problem for weighted
directed chain-cycle graphs considered in [2] and the
problem for weighted rooted trees considered in this
paper. Of course, the set of graph-transforming oper-
ations depends on the application and graphs under
consideration.

In this paper, such an algorithm is constructed for
rooted trees all of whose vertices are labeled by letters
or a minus sign; these labels are called the type or dele-
tion, respectively, of the vertex to which they are
uniquely assigned. We are given weighted trees and a
matrix consisting of arbitrary rational numbers
expressing the similarity of two types (type–type cor-
respondence) and penalties for type–deletion (and
vice versa) and deletion–deletion correspondences.
The similarity of types can be expressed by any num-
ber, but penalties are usually specified by nonpositive
numbers. The penalty can depend on the type and
position of a vertex on a tree. In bioinformatics appli-
cations, such trees are often called cell lineage trees. In
[3] for the first two of the three operations considered
below, a computer program, called mDELTA [4], was
proposed, which solves the shortest transformation
problem. The lack of the third operation is essential:
for example, without it, a leaf is necessarily trans-
formed into a leaf, which is not always the case in
applications. In this paper, allowing all three opera-
3

374 GORBUNOV, LYUBETSKY

Fig. 1. (1) On the edge (x, y) a vertex deletion is added together with its leaf deletion. (2) Above the root r, a new root deletion is
added together with its leaf deletion. Nothing changes below r. (3) At a vertex (including the root or a leaf) labeled by x, the label
x is replaced by a deletion and incidently above it a new vertex with label x and a leaf deletion incident to it are added. Nothing
changes above the new position of x and below the corresponding new deletion.

(1) (2) (3)x x

x

x

r r

y

y

tions in the shortest transformation problem, we
describe an exact algorithm of quadratic complexity
that differs significantly from the mDELTA algorithm.
By analogy with algorithms for words, in the tree
transformation problem, we say that an algorithm
constructs an alignment of two original trees for given
operation costs.

2. DEFINITION OF OPERATIONS
ON ROOTED TREES

The following three operations on trees are
allowed; here, x and y denote any type or deletion (see
Fig. 1). Any chain G of operations isomorphically
embeds each tree into the subsequent one.

(1) On an edge (x, y), add a vertex deletion,
together with its leaf deletion, Fig. 1 (operation 1). It
should be emphasized that all operations expand the
original tree T by some number of new deletions
assigned to new vertices in T located above its root r,
below it, or incomparably with r (it is assumed that
trees grow downward from the root).

(2) Above the root r, add a new root deletion,
together with its leaf deletion, Fig. 1 (operation 2).
Nothing changes below r.

(3) At a vertex (including the root or a leaf) labeled
by x, replace x by a deletion and above incidently add
a new vertex with label x and a leaf deletion incident to
it. Nothing changes above the new label x and below
the corresponding new deletion, Fig. 1 (operation 3).

Thus, the tree transformation problem can be
reformulated as the following alignment problem.
Given two binary trees T1 and T2, use three operations
defined above to transform T1 and T2 into binary trees

 and , T1 ⊆ , T2 ⊆ , that are topologically
(i.e., without their labels) isomorphic to each other so
as to maximize the quality of the pair { , } or, in
other words, the quality of the isomorphism f: →

, which is denoted by H(T1, T2) = H(f). The quality

1
'T 2

'T 1
'T 2

'T

1
'T 2

'T

1
'T

2
'T
of { , } is defined as the sum (with respect to the
isomorphism of all vertices in and) of type–type
similarities plus penalties for type–deletion (or vice
versa) and deletion–deletion. In our algorithm, qual-
ity is computed by induction. These two chains of
operations, T1 → and T2 → , extending the orig-
inal trees T1 and T2 to and , together with the iso-
morphism f: → , are called an alignment of T1
and T2. The solution of the alignment problem trivially
implies the solution of the transformation problem: we
transform T1 into , pass to by applying f, and we
delete all new deletions and vertices added by the algo-
rithm, joining the corresponding edges.

3. ALIGNMENT ALGORITHM

Let us describe the algorithm assuming that dele-
tion–deletion has zero cost in the similarity matrix,
while type–deletion (and vice versa) have the same
cost independent of the type and arrangement on
trees. No generality of the algorithm or the proof is lost
under this assumption. The result of replacing the root
type by a deletion in a tree T is called a simplification of
T and is denoted by T–.

Thus, given two rooted binary trees T1 and T2, con-
sider the set D1 of trees consisting of all subtrees in T1
and their simplifications. The set D2 is defined in a
similar manner. Let R, S ∈ Di, i = 1 or 2; R is contained
in S (R ⊆ S) if R is a subtree in S or a simplification of
a subtree in S. For uniformity, it is convenient to
assume that each leaf of each tree in Di is supple-
mented with two empty child subtrees with empty
edges to a leaf (such empty extensions of leaves are not
shown in the figures). A tree of deletions is any tree in
which all labels are deletions, except for empty sub-
trees. We define a set P of (unordered) pairs consisting
of trees R1 ∈ D1 and R2 ∈ D2, together with the follow-
ing partial order on pairs: {R1, R2} ≤ {S1, S2} if R1 is con-

1
'T 2

'T

1
'T 2

'T

1
'T 2

'T

1
'T 2

'T

1
'T 2

'T

1
'T 2

'T
DOKLADY MATHEMATICS Vol. 110 No. 2 2024

AN EXACT QUADRATIC ALGORITHM 375

Fig. 2. Transformations R1 → and R2 → of the pair {R1, R2}, computations of the qualities H(R1, R2), and links to the trans-
formation at which the maximum of these qualities is reached.

A
A

x
R1

x

B

A

x

B

A'

x

B C '

A'

R1 '

R1 '

x

B ' C '

R2 '

R2 '

y

D ' A�'

x

�C �B

�B

�A

�A�B

A

x

R1
B

y

R2
A

x

x

A

x

B

y

x

B

y

C

y

A

x

B

x

C

R1

y

D B

y

C

A�'

x

B�'

y

y

A�' A�

y

B '

y

C A

x

B'

B

B

y

x

(a) (b) (c)

(d) (e) (f) (g)

1'R 2'R
tained in S1 ∈ D1 and R2 is contained in S2 ∈ D2. Fix
any linear order extending the partial order on pairs
{R1, R2}. The algorithm performs forward and back-
ward induction on this linear order.

Base of induction. Let k(R) denote the number of
type-labeled vertices in R multiplied by the type–dele-
tion penalty from the similarity matrix. If R1 and R2 are
both empty, then H(R1, R2) = 0 and , , and their
isomorphism f are empty as well. If either R1 or R2 (say
R1) is a deletion with two empty subtrees and their
incident edges being empty as well, while the other
(R2) is nonempty, then H(R1, R2) = k(R2), is a tree of
deletions topologically isomorphic to R2, and = R2. By
induction, in the forward part, only qualities are com-
puted and a link is given to the transformation at which
their maximum is reached (see the induction step
below), while the isomorphic extensions and are
constructed in the backward part.

Induction step. Let {R1, R2} be the current pair of
nonempty trees in P. The algorithm computes the
quality H(R1, R2) of each of the seven transformations
(R1, R2) → (,) listed in Fig. 2, and creates a link
to that of them (including its arguments) at which the
quality is maximal as long as R1 < T1 or R2 < T2. Then,
by backward induction from the pair (T1, T2) to the

1
'R 2

'R

1
'R

2
'R

1
'T 2

'T

1
'R 2

'R
DOKLADY MATHEMATICS Vol. 110 No. 2 2024
induction base, the algorithm computes the trees =
 and = and, if necessary, their isomorphism f.

Let x and y be the labels of the roots in R1 and R2.
In Fig. 2, the current trees {R1, R2} are shown in the
upper panels, and their transformations { , }, in
the lower panels. Denote by cxy the similarity of the
labels x and y in the similarity matrix, including pen-
alties. The result (⋅)′ is determined by induction by the
indicated linear order; The root of the tree (S–)′ is
labeled by deletion.

(a) In R1 and R2, the child subtrees are A and B, C
and D from the roots in R1 and R2, respectively (see
Fig. 2a); the subtrees A, B, C, D are all empty or all
nonempty (note that the case when, for example,
A and B are empty, while C and D are not is reduced to
case (b) below by applying operation 3 to x). Let
H({R1, R2}) = H({A, C}) + H({B, D}) +cxy. Similarly,
we compute H({A, D}) + H({B, C}) + cxy and, finally,
H({R1, R2}) is set equal to the maximum of these two
variants. The link indicates the transformation (out of
seven ones) and its arguments at which the maximum
is reached. By induction, {A′, C′} and {B′, D′} are
known, and they are attached as shown in Fig. 2a. The
isomorphism f: → is equal to the union of the
isomorphisms f1 and f2 supplemented with the corre-
spondence x → y. These data are not used in the for-

1
'R

1
'T 2

'R 2
'T

1
'R 2

'R

1
'R 2

'R

376 GORBUNOV, LYUBETSKY
ward part. All vertices of T1 are contained in with
the same labels. At vertices of below T1-leaves and
above the T1-root or incomparably with it, there are
only deletions; similarly, for T2 and all seven transfor-
mations. This is used in the proof of Theorem 1.

(b) For the trees R1 and R2, we set A = R1 and B and
C are child subtrees in R2 from its root y (see Fig. 2b);
the subtrees A, B, and C are nonempty. Let H({R1, R2}) =
H({A–, B}) + cxy + k(C). Similarly, we compute
H({A–, C}) + cxy + k(B) and two variants of the quality
H({R2, R1}). Here, we use the following notation: {R2,
R1} is a pair, where R2 is a new A attached to y and the
union of the previous B and C, while R1 is the previous
A with the root x divided into the new child subtrees B
and C. Finally, H({R1, R2}) is set equal to the maxi-
mum of these four variants. Here, operation 3 is
applied to x and (A–)′ and −C are attached to x, while
B′ and C are attached to y. The isomorphism f: →

 is defined as described above.
(c) For R1 and R2, we set A = R1 and B = R2 (see

Fig. 2c); the trees A and B are nonempty. Let H({R1,
R2}) = cxy + k(A–) + k(B–). Here, operation 3 is
applied to x and y and A–, −B, –A, and B– are attached
to them. The isomorphism f: → is trivial.

(d) Assume that at least one of the labels x and y is
not a deletion. For the trees R1 and R2, we set A = R1
and B = R2 (see Fig. 2d); the trees A and B are non-
empty. Let H({R1, R2}) = H({A–, B–}) + cxy. Here,
operation 3 is applied to x and y and (A–)′ and (B–)′ are
attached to them. The isomorphism f: → is
defined by induction.

(e) For the trees R1 and R2, we consider the child
subtrees A and B from the root x and set C = R2 with
the root y (see Fig. 2e); the subtrees A, B, and C are
nonempty. Let H({R1, R2}) = H({A, C}) + cx– +k(B).
Similarly, we compute H({B, C}) + cx– +k(A) and two
variants for H({R2, R1}). Here, as in (b), we use the fol-
lowing notation: {R2, R1} is a pair in which R2 is the
previous C with the root y divided into new child sub-
trees A and B, while R1 is a new C attached to x and the
union of the previous A and B. Here, operation 2 is
applied to y and A′, B, C′, and −C are attached to y.
Finally, H({R1, R2}) is set equal to the maximum of
these four variants. The isomorphism f: → is
defined by induction.

(f) Assume that x is not a deletion. For the trees R1
and R2, we set A = R1 and B = R2 (see Fig. 2f); the trees
A and B are nonempty. Let H({R1, R2}) = H({A–, B}) +
cx–. Similarly, we compute H({A, B–}) + cx–, and,
finally, H({R1, R2}) is set equal to the maximum of
these two variants. Here, operation 3 is applied to x,
while operation 2 is applied to y and (A–)′ and B′ are

1
'T

1
'T

1
'R

2
'R

1
'R 2

'R

1
'R 2

'R

1
'R 2

'R
attached to y. The isomorphism f: → is defined
by induction.

(g) For the trees R1 and R2, we set A = R1 and B =
R2 (see Fig. 2g); the trees A and B are nonempty. Let
H({R1, R2}) = k(A) + k(B). Here, operation 3 is applied
to x, while operation 2 is applied to y and A–, –B, –A,
and B are attached to it. The isomorphism f: →
is trivial.

After the forward part of the algorithm is com-
pleted, in the forward pass starting from {T1 = R1, T2 =
R2}, the algorithm forms = and = accord-
ing to the links placed in the forward part. □

Remark 1. Connected parts of the original trees
(not necessarily subtrees) are aligned as follows. In the
forward pass, any negative quality of a pair p ∈ P is
replaced by zero. After the backward pass, all f-iso-
morphic subtrees with a quality of 0 are deleted from
the resulting isomorphism f, and the quality of the
restriction of f to the connected parts of the original
trees is equal to the original quality.

4. ACCURACY OF THE ALGORITHM
AND EXAMPLE OF ITS WORK

Theorem 1. The algorithm produces alignments
and of two trees T1 and T2 with an isomorphism of
maximum quality. The trees and are isomorphic
extensions of T1 and T2. The running time of the algo-
rithm is quadratic in the size of the initial data.

Proof sketch. Using induction on pairs {R1, R2}, we
show that the algorithm constructs an isomorphism f0:

 → of maximum quality. Let f: → be an
isomorphism of maximum quality and G1, G2 be
sequences of operations extending R1 to and R2 to

. Let us show that H(f) = H(f0). If either R1 or R2 is
a deletion with two empty subtrees, then the equality is
obvious. Let r1 and r2 be the roots in R1 and R2 and ver-
tices in and for which f(r1) = r2. The subtrees
with roots r1 and r2 are isomorphic. Denote them again
by r1 and r2, respectively. The complements of the sub-
trees \r1 and \r2, which consist of only deletions,
are isomorphic as well. By convention, a deletion–
deletion correspondence has a penalty of 0, so H(f) =
H(f↾r1); the restriction f↾r1 is again denoted by f. Let u1
and u2, u3 and u4 denote the roots of child subtrees
from the vertices r1 and r2 and simultaneously these
subtrees themselves in and . In view the isomor-
phism, f(u1) = u3 and f(u2) = u4 or vice versa (say the
former case occurs). We obtain isomorphisms f1: �
u1 → � u3 and f2: � u2 → � u4, i.e., f is the
union of f1 and f2 together with r1 → r2.

1
'R 2

'R

1
'R 2

'R

1
'T 1

'R 2
'T 2

'R

1
'T

2
'T

1
'T 2

'T

1
'R 2

'R 1
''R 2

''R

1
''R

2
''R

1
''R 2

''R

1
''R 2

''R

1
''R 2

''R

1
''R

2
''R 1

''R 2
''R
DOKLADY MATHEMATICS Vol. 110 No. 2 2024

AN EXACT QUADRATIC ALGORITHM 377

Fig. 3. (a) Initial trees T1 and T2. (b) Similarity of types is 1 and penalty is –1. Deletions and (red) edges are added, after which

topologically isomorphic trees and are obtained. (c) Similarity of a type to itself is 4 and to another type is –3; penalty for
a deletion is –2. Deletions and (red) edges are added, after which topologically isomorphic trees and are obtained.

bT1: T1': T2': T2':T1':
T2:

d

d

d
d

d

d

d d

d

b

b b

b

b
b

b

b

b

b

b b
b

b b

f
f

f

f

f

f

f

f
f

f
f

e
e

e e

e

e

�
�

�

����� �

�

�

e

e e

e

ee

f
b b

a

a
a

a

a a
a

aa c
c

c

c c c

(a) (b) (c)

1'T 2'T

1'T 2'T
Let = (ui) and = (ui) (for i = 1 or 2 and
for i = 3 or 4). Let Si be subtrees in R1 and R2 from .
The sequence of operations Gi transforms Si into the
tree � ui. Therefore, pairs {S1, S3} and {S2, S4} that

are strictly less than {R1, R2} generate { � u1, � u3}

and { � u2, � u4} using the same Gi. The isomor-
phisms f1: |u1 → | u3 and f2: | u2 → | u4 are
of maximum quality; otherwise, S1 and S3 can be
replaced by other subtrees that generate isomorphic sub-
trees of higher quality instead of � u1 and � u3;
S2 and S4 are replaced in a similar fashion. By the
induction hypothesis, H(f1) and H(f2) are equal to the
qualities of the isomorphisms produced by the algo-
rithm on the pairs { |u1, |u3} and { |u2, |u4},
whence H(f) = H(f0).

Assume that f(r1) = d ≠ r2. The following three
cases are possible.

(1) The vertex d is above r2 and, hence, is a dele-
tion. Once again, ui denotes child vertices from r1 and

d. Then d in has exactly one child subtree D (say
with the root u4), which a tree of deletions isomorphic

to the child subtree R from r1 in . The quality of this
isomorphism f2 is k(R). Let u1 be a child vertex from r1
not lying in R, and let u3 be a child vertex from d not
lying in D. The trees from u1 and u3 are f1-isomorphic,
and f is the union of f1 and f2 together with r1 → d.
Repeating the arguments for the case f(r1) = r2 in the
case of u1, we obtain the corresponding S1 and S3 = R2.
Here, {S1, S3} is strictly less than {R1, R2}.

(2) The vertex d is incomparable with r2 and,
hence, is a deletion. Then the isomorphism f maps all
vertices from R1 to deletions and H(f) = k(R1) + k(R2),
as for transformation (g) in Fig. 2g. Since H(f0) ≥ k(R1) +
k(R2), we obtain H(f) = H(f0).

vi
−1

1G vi
−1
2G

vi

1
''R

1
''R 2

''R

1
''R 2

''R

1
''R 2

''R 1
''R 2

''R

1
''R 2

''R

1
'R 2

'R 1
'R 2

'R

2
''R

2
''R
DOKLADY MATHEMATICS Vol. 110 No. 2 2024
(3) The vertex d is below r2. The isomorphism f pre-
serves the order relation on the tree, so f–1(r2) is a dele-
tion lying above r1. This case is symmetric to case (1).

Thus, H(f) = H(f0), i.e., the algorithm is exact. Its
running time is quadratic in the size of the initial trees,
because so is the number of pairs in P and the process-
ing of each pair takes constant time. □

Example 1. Consider the trees T1 and T2 shown in
Fig. 3a, whose vertices are labeled by types a, b, c, d, e,
and f (empty subtrees in leaves are not shown). The
elements of the similarity matrix are equal to 1 (type–
type) and to –1 (type–deletion). The results and
produced by the algorithm are shown in Fig. 3b. The
quality of the isomorphism is 9 – 4 = 5.

Example 2. Consider the same trees T1 and T2.
Similarity of a type to itself is 4 and to another type is
–3; penalty for type–deletion (and vice versa) is –2.
The backward pass of the algorithm begins with the
pair {T1 = R1, T2 = R2} and the (previously obtained)
link a1 (subtrees A and C, B and D). At the second
step, for the first obtained pair {R1 = A, R2 = C}, there
was link b3 to the new pair {R1, R2}, where R1 = C
(new A) and R2 is a tree with the root a and leaves a and c
(new child B). For the second pair {R1 = B, R2 = D} of the
first step, there was link e4 to the new pair {R1, R2},
where R1 is a tree with the root f and leaves f and d (new
child B) and R2 = B (new C), which then coincides
with R1. The next step of the algorithm is trivial: there
was link a1 everywhere. The result produced by the
algorithm is shown in Fig. 3c: alignment (according to
the isomorphism) has six identical types, one unequal
type, and eight type–deletion correspondences. The
quality of the isomorphism is 24 – 3 – 16 = 5. □

Remark 2. For polytomic initial trees, the algo-
rithm is easy to modify so that it will output a pair of
their binary polytomy resolutions of maximum qual-
ity. For a pair of vertices {x, y} from T1 and T2, respec-
tively (ordered from the leaves to the root) we consider
a nonempty set X of child edges for x and Y for y. The
set X generates a subtree in T1 that lies below the edges
from X; if |X| > 1, then these edges with their upper ends

1
'T 2

'T

378 GORBUNOV, LYUBETSKY
are included as well. For Y, the situation is similar. By
a simplification of X we mean a simplification of this
subtree. If X or Y is a singleton, then the subtrees gen-
erated by X and Y have binary resolutions of maximum
quality, which are known by induction. Otherwise,
these two sets are divided into nonempty subsets M1
and M2, M3 and M4. Consider the restrictions of T1 and
T2 from the vertices x and y, respectively, to M1 and
M2, M3 and M4. The algorithm searches through pairs
of sets X, Y and their simplifications in ascending order
of cardinality of X, and, for X of fixed cardinality, in
ascending order of cardinality of Y. For fixed X and Y,
the search is performed in the following order: (X–, Y–),
(X–, Y), (X, Y–), and (X, Y). For each pair (X, Y), all
pairs of their partitions are searched through in any
order; the other three pairs are considered in a similar
manner. Let X* denote X or X–. By induction, we know
binary resolutions of maximum quality for pairs of
restrictions with roots x and y on (M1, M3), (M1, M4),
(M2, M3), (M2, M4), (M1, Y*), (M2, Y*), (X*, M3), (X*,
M4), (X–, Y*), and (X*, Y–), respectively. From all
pairs of partitions, for each of them searching through
the transformations described in the algorithm (Fig. 2),
we choose a partition of maximum quality and obtain
a pair of binary resolutions of maximum quality for the
subtrees generated by X and Y. Taking the largest X and
Y for {x, y}, we obtain a binary resolution of maximum
quality for subtrees from x and y, thus reaching the pair
of roots of the original trees T1 and T2.

Here, quadruples of subsets are searched through,
which yields the upper bound 24k for the time of pro-
cessing of a single vertex pair, where k is the maximum
number of child vertices for a tree vertex. The qua-
dratic running time of the algorithm in the binary case
is multiplied by a number of order 24k.

The problem of transforming polytomic ordered
trees (in our case, trees are unordered) has been exten-
sively studied. Numerous references can be found, for
example, in [5]. For this problem, there is an exact
solution algorithm with cubic running time. Under a
certain assumption, it was shown in [5] that this time
cannot be significantly improved.

FUNDING

This work was supported by the Russian Science Foun-
dation, project no. 24-44-00099, https://rscf.ru/en/proj-
ect/24-44-00099/.

CONFLICT OF INTEREST

The authors of this work declare that they have no con-
flicts of interest.

REFERENCES

1. D. Gusfield, Algorithms on Strings, Trees, and Sequenc-
es: Computer Science and Computational Biology (Cam-
bridge Univ. Press, Cambridge, 1997).

2. K. Yu. Gorbunov and V. A. Lyubetsky, “An almost ex-
act linear algorithm for transformation of chain-cycle
graphs with optimization of the sum of operation
costs,” Dokl. Math. 102 (2), 376–379 (2020).
https://doi.org/10.1134/S1064562420050324

3. M. Yuan, X. Yang, J. Lin, X. Cao, F. Chen, X. Zhang,
Z. Li, G. Zheng, X. Wang, X. Chen, and J.-R. Yang,
“Alignment of cell lineage trees elucidates genetic pro-
grams for the development and evolution of cell types,”
iScience 23, 101273 (2020).
https://doi.org/10.1016/j.isci.2020.101273

4. https://github.com/Chenjy0212/mdelta. Accessed
January 20, 2024.

5. K. Bringmann, P. Gawrychowski, Sh. Mozes, and
O. Weimann, “Tree edit distance cannot be computed
in strongly subcubic time (unless APSP can),” ACM
Trans. Algorithms 16 (4), 48 (2020).
https://doi.org/10.1145/3381878

Translated by I. Ruzanova

Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
AI tools may have been used in the translation or
editing of this article.
DOKLADY MATHEMATICS Vol. 110 No. 2 2024

	1. INTRODUCTION AND FORMULATION OF THE PROBLEM
	2. DEFINITION OF OPERATIONS ON ROOTED TREES
	3. ALIGNMENT ALGORITHM
	4. ACCURACY OF THE ALGORITHM AND EXAMPLE OF ITS WORK
	REFERENCES

