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Abstract. We demonstrate thata comprehensive nonstandard settheory can
be developed in the standardlanguage. As an illustration, a nonstandard
Law of Large Numbers is obtained.

Introduction

Nonstandard analysis was introduced by A. Robinson in the beginning of the
60s as a concept in foundations of mathematics which allowed to develop
such notions as an infinitesimal real or infinitely large natural number ade-
quately and with full mathematical rigor. Those new mathematical objects,
called “nonstandard”, brought some benefits to several branches of mathe-
matics. However it was soon discovered that this idea naturally led to more
and more complicated nonstandard mathematical objects, which could not
be effectively tackled in the framework of Robinson’s original approach.
Nonstandard set theories represent one of the two known ways of how to
develop “nonstandard” mathematics in unified way. (The other setup, called
themodel theoretiorersion of nonstandard analysis, employs nonstandard
extensions of mathematical structures in the “standard” Zermelo — Fraenkel
universe, see Lindstram [13], which is closer to Robinson’s approach.) Any
such theory arranges the set universe in such a way that the objects of or-
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dinary mathematics, called “standard”, coexist and interact with “nonstan-
dard” objects (e.qg., infinitesimal reals) within the same world of sets.

The best known (and perhaps the only one practically used in non-found-
ational studies) of those theoriediigernal set theoryST of Nelson [14].
Some other nonstandard set theories were invented bytekia, 6], Kawa
[10,11], and the authors [7,8]. They differ in the manner how the “nonstan-
dard” set universe is arranged, but have alotin common, in particular, each of
them considers the claSsof all standard setsdentified with the sets stud-
ied by “standard” mathematics, and distinguished by a special \gtany
dardness predicatst x (reads:x is standard). In other words, the known
nonstandard set theories are theories irsthe=-languagewhich contains
st and the membership as the only atomic predicates.

The aim of this paper is to present a nonstandard set theory in the
e-language, which is yet powerful enough for full scale development of
nonstandard analysis. We calkimplified Hrb&ek set theorySHST.

In principleSHSTis not the first set theory in the-language which sup-
ports “nonstandard” reasoning. Ballard and Hidda[2] demonstrated that
ZFBC, the Zermelo — Fraenkel — Boffa theory with glot@toice *, also
provides such a support. However our approach has the advantage of the ex-
istence of elementary extensions which areaturated for every (standard)
cardinalx while elementary extensions defined in [2] arsaturated only
for a previously fixed cardinal. (There is a disadvantage, td®ST does
not provide the axioms dPower Set and Choice, while ZFBC contains
ZFC))

Another (possible) advantage is that the theBHST admits a (Bool-
ean-valued) interpretation #FC such that the class of all standard sets of
the interpretation is isomorphic to the bagieC universe, a property so far
unknown forZFBC. (The consistency proof f&FBC in [1] seems to lead
to such an interpretation). It follows that the relation$sefSTto ZFC are
somewhat similar to those of complex numbers to the r&H#ST sets can
be adequately “coded” within théFC universe.

Our plan will be to start wittHrbacek set theorfHST, a more common
nonstandard set theory usisg in the language, and defirf®HST as a
“description” of thee-structure of theHST universe.

The key observation is that the cldsfias anc-definablec-isomorphic
copy, the clas¥ of all well-founded setd.The isomorphism allows us to re-
placeS, as a copy of sets used by “standard” mathematic3/ fgnd utilize
thee-definability of V. The clasd of all internal sets (a saturated elementary

1 The main feature aZFBC is that the axiom oRegularity is replaced by a strong form
of its negation, which implies, in particular, that any extensional binary relation is isomorphic
to the membership relation on a transitive set.

2 This phenomenon was first observed by Hidla [6], see also Kavigl11]. It is an
interesting problem to figure out wheth@iitself can bec-definable inHST.
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extension ofS in HST and many other nonstandard set theories) is not for-
mally defined inSHST, while Saturation, the main nonstandard principle,
takes the following form: any transitiv€ € V has an elementary extension
(*X'; €) (with the same relatior!), x-saturated for any/-cardinal.

The theonySHST, obtained in this way, provides full support for ordinary
“nonstandard” reasoning. Yet the non-uniqueness of saturated elementary
extensions is subject to criticistnln order to eliminate this problem, we
define an extensioSHST' of SHST, still a theory in thec-language,
strong enough to reasonably define the clag§internal set§ containing
saturated elementary extensions of structur&s,wwhich admits a uniquely
determined choice of a saturated elementary extension at least for definable
structures inv.

This plan was outlined in [8], 1.6; here we present the project in detail.

As an illustration, to show ho@HST works, we present a contribution
to mathematics in hyperfinite domains, namely, a hyperfinite version of the
Law of Large Numbers, which is based on “individual” random sequences
of hyperfinite length rather than on probability distributions.

1. Hrbacek set theory

The original version of this theory was introduced in Hibk [5] under
the nameMN&; (ZFC). An improved version was studied in detail in our
papers[7,8]. To make the paper self-contained, we present the list of axioms
of HST, the Hrbacek set theorywith some necessary comments.

Recall thatHST is a theory in thest -e-language. Thust z reads:
is standard, whil& = {z : st z} is the class of all standard sets.

Elements of standard sets are caliggrnal setsint x is the formula
Iy (z € y) (of being internal), and = {z : int z} is the class of all
internal sets. The quantifieBs* andv™™ below have the obvious meaning.

Axioms for the whole universe. all axioms ofZFC with the exception of
Regularity, Power Set, andChoice. Note that the schemata B&pa-
ration andReplacement apply to formulas in thet -€-language.

Transitivity of 1 V™zVy € z(int y) (the internal universe is transitive).

Regularityover L. VX #0 3z € X (xNX CI).

ZFC*'. all statements of the form#® (& relativized toS = {z : st x}),
where® is an axiom ofZFC.

Transfer. all statements of the formds! «—= @™ whered is a closed
e-formula with standard parameters.

8 See for instance Keisler [12].
4 As the class of all sets such that the relatios is, in a sense, not well-founded over
This reflects a property dfin HST, discovered in [8].
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Standardization. ¥V X F*'Y (X NS = Y N'S). In other words, for any set
X there is a standard s&twhich contains the same standard elements
asX.

These axioms suffice to define the classf all well-founded sefsand
an e-isomorphismz — *z : 'V onto S8. It follows that V interpretsZFC
and is a transitive class closed under subset formation. Moreover the map
x +— *r is an elementary embedding (in the sense ofgdHanguage) ofY
into T by Transfer. (See [8], Sect. 1, for details.)

Itis convenient to us®& as the domain for the basic set theoretic notions,
such asordinals, cardinals, natural numberdhus a natural number will
mean a set € V which is a natural number in the sense¥of(in brief,
V-natural number)w is the set of all natural numbers, as usual.

A finite setis a set equinumerous to= {0, 1, ...,n — 1}, wheren € w.

A set of standard sizis a set equinumerous to a setWnIn HST, sets
of standard size are exactly those which can be well-ordered.

These notions allow us to formulate the last three axionmt$%r.

Saturation of I if X C Iisasetof standard size such thak’ # () for any
nonempty finité(’ C X (the finite intersection property) thénX’ # (.

Standard Size Choice.Choice in the case when the domain of the choice
function postulated to exist is a set of standard size (or, which is the same
by the above, a well-orderable set).

Dependent Choice.in its usual formulation that allows arsequence of
successive picks in the case when the domain of every next pick depends
on the results of the previous picks.

Saturation of T is a source of various nonstandard sets, as usual (see
Sect. 5)Standard Size Choice andDependent Choice partially substi-
tute the absense of fuhoice in many important cases. (Fulhoice, as
well asPower Set and full Regularity would contradict the rest ¢iST.)

The main metamathematical propertiedH8T are summarized in the
following theorem proved by Kanovei and Reeken [7,8]. (The equiconsis-
tency part of this theorem is essentially proved in [5].)

Theorem 1. HSTand ZFC are equi-consistent theories. Moreover, there
is a Boolean-valued interpretation ST in ZFC the classS of which is
definablye-isomorphic to the basiZFC universe. O

® That is, elements of transitive se¥ssuch thate | X is a well-founded relation.
6z is defined to be that unique standard sethose standard elements are sets of the

form *y, y € =, and only those sets. The definition utiliz8B&ndardization.
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2. Natural nonstandard set theory

The theorySHST aims to reflect the-structure of thedST set universe. It
follows from the above the&BHST then must include:

Axioms for the whole universe. all ZFC axioms except foRegularity,
Power Set, and Choice. (Separation and Replacement in the -
language.)

This is enough to define the cla¥sof all well-founded sets and prove that
V is transitive andx) any setc C V belongs toV. We also addtandard
Size Choice, Dependent Choice — as in Sect. 1, and

ZFC™ . all statements of the forma™f (& relativized toV = {x : wf z}),
& being an axiom oZFC, wherewf = says: % is well-founded”.

In this setup, there is nothing analogoud ttherefore the axioms &fran-
sitivity of I andRegularity over T of Sect. 1 are abandoned. The role of
Standardization is played by(x) above.

The following axiom, the last iISHST, is the key point in the theory. It
simulates botAransfer andSaturation of 1. We say that a transitive s&{
is standard size saturateif any non-empty seft C *X of standard size,
satisfying the finite intersection property, has non-empty interseflian
(The notions involved in this definition are understood as in Sect. 1.)

Saturated Elementary Extensions.for any transitive setX € V there
exist a transitive standard size saturated’eand a mape — *z from
X to*X, which is an elementary embedding(0f ; €) into (*X ; €).

To see that this holds iKIST define*X and*z using thee-isomorphism

described in footnote 6. (In fact it needs some care to prove that we have an

elementary embedding in the model theoretic sense, see [8], Sect. 1.)
Thus, as a subtheory 6fST, SHST shares the content of Theorem 1.

3. Improvement of the theory

It is easy to see th&HST supports any sort of ordinary “nonstandard” ar-
guments$. HoweverSHST s an easy target for the same criticism which the
model theoretic version of nonstandard analysis faces: the non-uniqueness
of nonstandard versions of usual mathematical structures. (Indeed one can
prove inHST that, e.g., there are other than the “true standard size
saturated transitive elementary extensions Qf

This problem does not exist ST because the map— *z is definable
in this theory. However its definition involves the standardness predicate,

7 See Sect. 5 below.
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and still it is not known whether there is a definition in théanguage. Even
more, there is no clear way how to introduce internal seBHIST. Yet we

shall see that a reasonable (although partial) solution exists, and the first
step is toe-define internal sets.

3.1. Modeling internal sets

The next lemma (first observed in [8]) shows that the classc-definable
in HST, leading to a bettee-description oHST thanSHST is.

We say that a set is quasi-internaliff there is anw-sequencéx,, } ,c.
such thate € x,,+1 € z, foralln € w.

Lemma 1. (in HST) A setz belongs tdl iff it is quasi-internal.

Proof. Suppose that: is internal. Arguing inl, define, by induction on
k € *w, yr = yr—1 U {yk—1}, starting withyy = x. Now pick a number
v € 'w\wandletz, = y,_, foralln € w.

The converse easily follows froRegularity over L

3.2. The improved theory

Definition 1. Aslong as we work in the-environment] is the class of all
quasi-internal set$§. a

Now, let SHST" be the theory in the-language, containing all HST
as above except f@aturated Elementary Extensions (which will be a
corollary), together witlransitivity of I, Regularity over I, Saturation
of I — everything just as in Sect. 1, — and the following

“Natural” Transfer. All statements of the formp™! <= @™t where® is
a closed=-formula with parameters ia.

The last axiom needs some comments as it is not clear from the beginning
thatw C 1. Thus we first accepiNatural” Transfer in the parameter-free
version, which is enough to see tHais a transitivec-model ofZFC, so

that easilyw C 1. Now we accept the fuliNatural” Transfer.

We hardly can involve more parameters in the formulatiofiNaftural”
Transfer. Indeed,V N I equalsHw (hereditarily finite sets) itdST — but
parameters iflw are effectively coded by (and easily reducible to) those in
w.

Proposition 1. Every axiom ofSHST" is a theorem oHST.

8 According to Lemma 1, this is compatible with the definition of the clagsHST.
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Proof. To see thatNatural” Transfer holds inHST we first prove ilrHST
that*z = x for anyz € w by induction onz. Thus®"f <« &'t pecause
the mapr — *z is an elementary embedding ¥fin I in HST.

ThusSHST' is a subtheory of the-part of HST. It follows that it also
satisfies Theorem 1. To see that it exteB#ST we prove

Lemma 2. (SHST') We haveSaturated Elementary Extensions,
moreover, the sefX can always be chosen in

Proof. Let X € V be a transitive set. UsintNatural” Transfer and Sat-
uration of I, we can find a transitive séX € I such that the structures
(X; €) and(*X ; €) are elementarily equivalent.

Indeed, [elSATx () be the usuak-formula of satisfaction, saying that
pistrueinX. HereX is atransitive set andis ane-formula, with sets inX
as parameters, considered as afinite string of (natural numbers used as codes
for) logical symbols and sets (elementsofinvolved as parameters. Lét
be the set of all parameter-freeformulas (viewed irVV as finite strings, see
above). Defingy = {p € & : SATx(p)}, the set of alle-formulas true
in X. If ¥ C &y isfinite then the statemekity € ¥ SATx (p) istrue inV.
Thus the formula X V ¢ € ¥ SATx (), which we shall denote by(?),
is also true inV. Howevera(¥) is ane-formula which contains only as
parameter. Note that is a finite set of parameter-freeformulas; hence a
member ofHw (hereditarily finite sets), which can be effectively coded by
a natural number. It follows that we can applatural” Transfer, so that
a(¥) is true inl —for any finite? C & x. Applying theZFC Replacement
in I, we find a setV such that, for any s@t of any kind, ifa(?) is true then
this is witnessed by a séf’ € W. For any formulay € ¢, let us define,
inI, W, = {X’ € W : SATx/(¢)}. It follows from the reasoning above
that the collectiorl = {W,, : ¢ € &x} has the finite intersection property.
By Saturation of I, there is a setX € ﬂcp@x W,. By the construction,
(*X; €) and (X ; €) are elementarily equivalent. (Some extra care should
have been taken to provide the transitivity*&f, but this is easy.)

Note that(*X'; €) is standard size saturated Bgturation of I. Hence
it remains to define an elementary embeddingXt €) into (*X'; €).

By the choice ofX, for any (z1, ..., z,,) € X<“ thereis(z], ..., z]) €
*X <“ such thatx) for any e-formulayp(- - -) we haveip(zy, ..., z,) is true
in (X; €) iff p(x,...,2,) is true in(*X ; €).° By Standard Size Choice
thereis a — 1 length-preserving map : X <« — *X <“ such that*) holds
for (2, ...,x}) = f({x1, ..., z,)) fOrany (xy, ..., z,,) € X<v.

Note that it isnotasserted thaf((z1, ..., z,)) = (f((z1)), ..., f({zn)))-

Let Ry = {f({x)) : € X}, sothatRy C *X.

% In this proof,formulasare understood formally, that is, as certain finite sequences.



410 V. Kanovei, M. Reeken

For any finiteR C Ry and any finite sef’ of e-formulas, letlizr be
the (internal) set of all interndl — 1 mapsr : *X — *X such that for any
tuple (ri, ...,r,) € R<¥ and anye-formulag(- - -) in F' we have

e itistrueinl thaty(ry,...,7,) < »(r,...,r,), where
(rh,orty = f({z1, ..., x,)), and(x;) = f~1((x=1(r;))) for all i.

It quickly follows from the choice ofX and f that the family of set$/zr
is a standard size family of non-empty sets satisfying the finite intersection
property. (BasicallfIr, r, N I g, r, 2 IR, R, , F,uF,.) Therefore there is
an internall — 1 map~ : *X — *X which belongs to every relevant set
IIrF, so thate holds for all(r1, ..., r,) € Ro<“ and alle-formulas.

One easily sees thatxr) = 7 (r), where(r) = f((x))), is an elementary
embedding of X ; €) into (*X; €). 0

4. Uniqueness of the asterisks

Let us return to the problem of uniqueness of $&tsSuppose that a tran-
sitive setX € V is “mathematically unique” in the sense that there is an
e-formulay(-) so thatX is the only transitive set satisfying(X) in V.
(For instance this includes the sets likandV,,,.,.) It follows from“Natu-
ral” Transfer that there is a unique s&t < I satisfyingy(*X) in I. Using
“Natural” Transfer again, we conclude that then the structui&s <) and
(*X ; €) are elementarily equivalent. Now the proof of Lemma 2 yields an
elementary embedding of into *X.

Note that this construction results in a really unique standard size satu-
rated elementary extensidi of X!

Of course, the merits of this result are restricted by the assumption that
X is definable by are-formula in V. To show the difficulties connected
with this problem, let us demonstrate that, even in this case, the elementary
embedding itself may be not unique.

LetP = P(w) = {z: 2 Cw}, sothatP € V is e-definable inV.

Lemma 3. (HST) There exist two different elementary embeddings of the
structure(P; €) into (*P; €).10

Proof. Ascard P = 2% > X, in V, there is a sey € P which is not
definable inP by a parameter-free-formulal! This means that for any
e-formulay(-) thereis asey’ € P,y # y, such thatp(y) <= ¢(y/) in
(P;€).

10" Here and in the proof belotP etc. is understood in the sense of the embeddirg *=
defined in footnote 6.
11 See footnote 9.
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By Transfer, thisistrue in(*P; €),too, inthe sense thatfor agy-) there
isaset) € *P,y # *y, such thatp(*y) <= ¢(v) in (*P; €). Therefore,
by Saturation of I, there is one particulay’ € *P, 3/ # *y, such that
the equivalence(*y) <= ¢(y') holds in(*P; €) for any parameter-free
e-formulay(-). Now, using the same argument as in the proof of Lemma 2,
we can define an elementary embeddingP — *P such thap(y) = /;
hencep is different from the restrictiofw: — *z) | P just because’ # *y.

In fact, another kind of uniqueness is consistent BitST'. We gave in
[9] the following formulation of thésomorphism propertyfirst considered
by Henson in the study of nonstandard models inZR€ universe:

Isomorphism Property, IP. any two internally presented elementarily
equivalent structures of a first-order language containing (standard size)—
many symbols are isomorphic.

(A structure isinternally presentedff its universe and all of its relations
and functions are internal.) We proved in [9] thRtis consistent withtHST.
TherefordP is consistent wittBHST+ as well, by the above. But BHST"
pluslP all internally presented elementary extensions of any fixed structure
(X;€), X € V, are isomorphic (although not necessarily via an internal
isomorphism).

5. Towards applications

This section is written to explain how the theor8"IST andSHST" can
be used to formalize “nonstandard” reasoning.

First of all recall thatSHST is a theory in the=-language, containing
all of ZFC — except forRegularity, Power Set, andChoice, — with some
additional axioms which involve the cladé = {z : wf =} of all well-
founded sets, namelytandard Size Choice and Dependent Choice
as in Sect. 1 andFC*! as in Sect. 2, and finallgaturated Elementary
Extensions (Sect. 2) as the source of nonstandard sets.

SHST' extendsSHST (minus the axiom oSaturated Elementary
Extensions which becomes a corollary) by some axioms, related to the
classl of all quasi-internal sets (see Definition 1) viewed as a substitute for
internal sets. Those additional axioms inclddgensitivity of I, Regularity
over I, Saturation of I —asinHST, and“Natural” Transfer which says that
V andT are elementarily equivalent w. r. t. formulas with natural numbers
as parameters. (See Sect. 3.)

Let us outline the development of nonstandard analys&H®T. First
of all, we shall, informally, consideV as the “standard” mathematical uni-
verse. SincéSHST satisfies Theorem 1 (being a subtheoryHS8T), the
SHST universe can be viewed as an auxiliary (although well defined by
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means ofV) extension of the “true” set universé — in the same manner
asC (complex numbers) is an extension®f ThusSHST is not a merely
syntactical tool: there is a sound interpretation.

Itis known that the seX = V., defined inV, is an adequate domain
for a large part of mathematics. In particular the $8ts= w (the natural
numbers) andR (the reals) belong tX.

Applying Saturated Elementary Extensions, we obtain a transitive
standard size saturated &&t= *V,,,,, and an elementary embedding—
*z of (Vi €) into (*V,4y; €). (If we work in SHST* rather than in
SHST, it can be specified thal/, ., € I, see Lemma 2. In this cas®&/,
is just thel-analog ofX = V4, : formally, *V,,;+, = Vi,px, In 1)

One easily proves that if € N then*n = n € *N (for instance by
induction onn); henceN is an initial segment ofN. To see thalN is a
proper initial segment ofN, use the saturation property &f with respect
to the family of setsS,, = {k € *N : k > n}, n € N. Note that elements
of *N are justl-natural numbers, which could also be callggpernatural
numbersNumbers in*N \ N can be callednhfinitely large

As for the reals, we have botk € V., andR C V,,,; henceR €
“Vo+w and*z € *R have been defined for all € R. Elements ofR, i.e.
I-reals, can be calleldyperreals One now defines, in the ordinary manner,
the notions of being aimfinitesimal, infinitely large, limitedhyperreal, and
the relatiorr: of beinginfinitely close Let us prove

Lemma4. If z € *R is limited then there is € R such thatz ~ *z.

Proof. ThesetsA = {y e R: "y <z} andB = {y € R : *y > x} are
non-empty because is limited. Moreover they belong t& because this
class is closed under the subset formation. (See Sect. 2.) Therefore, arguing
in V, we obtain a reat which is either the greatest it or the least inB.

One easily sees thatis as required. O

This outline demonstrates that typical “nonstandard” reasoning is fully
supported irBHST. (As for more advanced examples, like the Loeb measure
or descriptive set theory in hyperfinite domains, see Kanovei and Reeken
[8], 2.2 and 2.3. We demonstrated there that the usual way of reasoning
goes through. The absenceRawer Set in the SHST universe in principle
causes some technical problems, which however can be eliminated.)

6. Randomness in hyperfinite domain

Following the setup of the previous section, we shall call setd/jn.,
internal and sets of the fornk, x € V.., standard Thus every standard
set is internal, and the embedding- *r isal — 1 map ofV,,,, onto the
set of all standard elements 6f, .
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Letw, y be internal sets. We defined in [8}o bew-standardiff there is
a standard functiorf such thatv € domf andy = f(w). If w is standard
then “w-standard” and “standard” is one and the same.

We also defined a realto be

— w-infinitesimaliff |z| < e for somew-standard infinitesimad;
— w-infinitely largeiff || > ¢ for somew-standard infinitely large.

This definition makes sense iff there really exisstandard infinitesimals
and infinitely large numbers. In particular it does not make sense (and will
not be used) in the case whenis standard.

Suppose thaty is any internal set whilé&l is a strictly hyperfinite (i.e.
hyperfinite but not finite) internal set, theyperfinite domainLet 1 be a
hyperprobability measuren X, i.e. a hyperfinitely additive internal measure
on X such thap(X) = 1.

We defined in [8] an element € X to bew-random inX w.r. t. y iff
x does not belong to anfw, X)-standard se C X such thatu(X) is
X-infinitesimal. (Herew may be standard and may be nonstandard.) Thus
nonstandard analysis allows to consistently consider the notion iofdan
vidual random element rather than a random variable as a function defined
on a probability space. The following lemma shows that, in agreement with
the intuition, non-random elements form a rare family.

Lemma5. If w, X, u are as above then the s€R of all elements: € X,
non<w-random inX w. r. t. 11, can be covered by an internal sBtC X such
that 1.(Z) is infinitesimal.

It is not asserted here that %) is, e.g.,w-infinitesimal. We cannot
demand thaf:(CR) is infinitesimal becausg is defined only for internal
subsets ofl while R is, generally speaking, external.

Proof. First of all, by Saturation, there is an infinitesimad > 0 such
thatd > e for any X-infinitesimale. Then anyx € CR is covered by a
(w, X)-standard seX such thaj(X) < ¢.

Let W be a standard set, containing baethand X, and such that any
internal subset oft also belongs téV. The setF” of all standard functions
f: W2 — W such thatf (w, X) is a subset of¢ satisfyingu(X) < § —is
a set of standard size. Thus there is an internaFé&ontaining< 1/v/6
elements, such thdt C F'. For anyf € F’ defineX; to be f(w, X) iff f
is a function, X = f(w, X) is defined and is a subset ®f andu(X) < 4,
while Xy = ) otherwise.

ThenCR C Z = Uyep Xy andu(Z) < 6/V6 = V6 is infinite-
simal. O

Letw be any internal set.
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Suppose thal andy are two strictly hyperfinite sets, whijeandv are
hyperprobability measures on respandy.

Lemma 6. (Fubini) Assume thav is (w, X, Y)-standard. Let(z,y) €
X x Y bew-randominX x Y w.r.t. 4 x v. Thenz is w-random inX w. r. t.
p whiley is (w, x)-random iny w.r.t. v.

Suppose that, in additiory is X-standard andX is Y-standard. Let
z € X bew-randominX w.r.t. p whiley € Y be (w, z)-randominy w. . t.
v. Then(z, y) isw-random inX x Y w.r.t. pu x v.

Proof. Let X C X be a(w, X)-standard set of measuig¢ X' ) < ¢, where
e is X-infinitesimal. Assume on the contrary that X. Then(z,y) € P,
whereP = X x Y is (w, X, Y)-standard and satisfiés x v)(P) < ¢,
which is a contradiction. (Note, in passing by, that ta/lee X, Y)-standard
and to be(w, X x Y)-standard is one and the same.)

LetY C Y be a{w, x, Y)-standard set of measuréY) < ¢, wheres is
Y-infinitesimal. Suppose on the contrary thyat Y. By definition we have
Y = f(w,z,Y), wheref is a standard function. Ld? be the set of all pairs
(',y') € X x Y suchthat,, = f(w,2’,Y) is a subset off satisfying the
inequalityr(Y,/) < e, andy’ € Y,.. Note thatP is (w, X, Y)-standard by
the assumptions above, aidx v)(P) < . On the other handz,y) € P
by definition, which is a contradiction.

To prove the converse, considefwa, X, Y)-standard seP C X x Y of
measure(y x v)(P) < e, wheree is a (X, Y)-infinitesimal; henceX-in-
finitesimal by the assumption. P&, = {y € Y : («/,y) € P} for any
' € X. The setX = {2/ € X : v(Py) > /e} is (w, X)-standard by
the assumption, and(X) < /e becausgn x v)(P) < e. Therefore
x ¢ X by the randomness af. Thus the(w, X, z)-standard (therefore
(w, Y, z)-standard) se¥’ = P, satisfiesv(Y) < /c. Howevery € Y,
which contradicts the randomnessyof O

7. Law of Large Numbers

In classical probability, this is a common name for several important theo-
rems saying that, under some conditions, the arithmetic rﬁi—f@:ﬁﬂ of
jointly independent random variablggends to the arithmetic mean of their
expectationg™+==+"u aspn, — co. (See [15], Sect. 2.)

Our aim will be to obtain a hyperfinite version.

Let X be a hyperfinite set and a hyperprobability measure dn, as
above. Assume, in addition, thatC *R. We define

e Ep=> " vu({r}), theexpectatiorof .,
o Varu=73 . (z— Ep)?u({z}), thevarianceof p.
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Note that the expectation and variance are functions of the neasuhe

probability distribution) rather than of random elements as we defined them.
Suppose thaff € *N \ N, and for anyn = 1,2,... H, we have a

hyperfinite setX,, C *R and a hyperprobability measufg, on X,,, SO

that the maps: — X,, andn — pu, are internal. Letn,, = Epu, and

v, = Var y,, for all n. Definex = [, x,, and lety = [["_, u,, be the

product hyperprobability measure an

Theorem 2. (HyperfiniteLaw of Large Numbers)

Assume that = H~! Zle v, IS a limited number. Suppose that the
measureu is X-standard. Then, for any sequence= {z,}L | random
(i.e.0-random)in X w.r.t. u, the difference

5U1+---+$H7m1+---+mH

Alz) = H H

is infinitesimal.

Proof. By Kolmogorov's inequality (see, e.g., [15], Theorem 12.2), applied
in the internal univers&/,, ., , for anys > 0 we have

(
ply € X Aly) 2 s}) < 775 -
By the assumptionys—2 is a limited number whenever> 0 is standard.
Thus the selX; = {y € X : A(y) > s} has anH-infinitesimal measure
u(Xs) whenevers > 0 is standard. On the other handsifs standard then
X, is(X, u)-standard; henc&-standard becauges X-standard. It follows,
by definition, thatr ¢ X, for any standard > 0, as required. O

AcknowledgementsThe authors thank the referee for corrections suggested to the original
version.
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