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Abstract. Wedemonstrate that a comprehensive nonstandard set theory can
be developed in the standard∈-language. As an illustration, a nonstandard
Law of Large Numbers is obtained.

Introduction

Nonstandard analysiswas introduced byA.Robinson in the beginning of the
60s as a concept in foundations of mathematics which allowed to develop
such notions as an infinitesimal real or infinitely large natural number ade-
quately and with full mathematical rigor. Those new mathematical objects,
called “nonstandard”, brought some benefits to several branches of mathe-
matics. However it was soon discovered that this idea naturally led to more
and more complicated nonstandard mathematical objects, which could not
be effectively tackled in the framework of Robinson’s original approach.
Nonstandard set theories represent one of the two known ways of how to

develop “nonstandard” mathematics in unified way. (The other setup, called
themodel theoreticversion of nonstandard analysis, employs nonstandard
extensions of mathematical structures in the “standard” Zermelo – Fraenkel
universe, see Lindstrøm [13], which is closer to Robinson’s approach.) Any
such theory arranges the set universe in such a way that the objects of or-
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dinary mathematics, called “standard”, coexist and interact with “nonstan-
dard” objects (e.g., infinitesimal reals) within the same world of sets.
The best known (and perhaps the only one practically used in non-found-

ational studies) of those theories isinternal set theoryIST of Nelson [14].
Some other nonstandard set theories were invented byHrbaček [5,6], Kawäı
[10,11], and the authors [7,8]. They differ in the manner how the “nonstan-
dard” set universe is arranged, but havea lot in common, in particular, eachof
them considers the classS of all standard sets, identified with the sets stud-
ied by “standard” mathematics, and distinguished by a special unarystan-
dardness predicatest x (reads:x is standard). In other words, the known
nonstandard set theories are theories in thest -∈-languagewhich contains
st and the membership∈ as the only atomic predicates.
The aim of this paper is to present a nonstandard set theory in the

∈-language, which is yet powerful enough for full scale development of
nonstandard analysis. We call itsimplified Hrbǎcek set theory, SHST.
In principleSHST is not the first set theory in the∈-languagewhich sup-

ports “nonstandard” reasoning. Ballard and Hrbaček [2] demonstrated that
ZFBC, the Zermelo – Fraenkel – Boffa theory with globalChoice 1, also
provides such a support. However our approach has the advantage of the ex-
istence of elementary extensions which areκ-saturated for every (standard)
cardinalκ while elementary extensions defined in [2] areκ-saturated only
for a previously fixed cardinalκ. (There is a disadvantage, too:SHSTdoes
not provide the axioms ofPower Set andChoice, while ZFBC contains
ZFC.)
Another (possible) advantage is that the theorySHST admits a (Bool-

ean–valued) interpretation inZFC such that the class of all standard sets of
the interpretation is isomorphic to the basicZFC universe, a property so far
unknown forZFBC. (The consistency proof forZFBC in [1] seems to lead
to such an interpretation). It follows that the relations ofSHST to ZFC are
somewhat similar to those of complex numbers to the reals:SHSTsets can
be adequately “coded” within theZFC universe.
Our plan will be to start withHrbaček set theoryHST, a more common

nonstandard set theory usingst in the language, and defineSHST as a
“description” of the∈-structure of theHST universe.
The key observation is that the classS has an∈-definable∈-isomorphic

copy, the classV of all well-founded sets.2 The isomorphismallows us to re-
placeS, as a copy of sets used by “standard” mathematics, byV, and utilize
the∈-definability ofV.TheclassI of all internal sets (a saturatedelementary
1 The main feature ofZFBC is that the axiom ofRegularity is replaced by a strong form
of its negation, which implies, in particular, that any extensional binary relation is isomorphic
to the membership relation on a transitive set.
2 This phenomenon was first observed by Hrbaček [6], see also Kawaı̈ [11]. It is an
interesting problem to figure out whetherS itself can be∈-definable inHST.
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extension ofS in HST and many other nonstandard set theories) is not for-
mally defined inSHST, whileSaturation, the main nonstandard principle,
takes the following form: any transitiveX ∈ V has an elementary extension
〈∗X ; ∈〉 (with the same relation∈!), κ-saturated for anyV-cardinalκ.
The theorySHST,obtained in thisway, provides full support for ordinary

“nonstandard” reasoning. Yet the non-uniqueness of saturated elementary
extensions is subject to criticism.3 In order to eliminate this problem, we
define an extensionSHST+ of SHST, still a theory in the∈-language,
strong enough to reasonably define the classI of internal sets4, containing
saturated elementary extensions of structures inV,which admits a uniquely
determined choice of a saturated elementary extension at least for definable
structures inV.
This plan was outlined in [8], 1.6; here we present the project in detail.
As an illustration, to show howSHSTworks, we present a contribution

to mathematics in hyperfinite domains, namely, a hyperfinite version of the
Law of Large Numbers, which is based on “individual” random sequences
of hyperfinite length rather than on probability distributions.

1. Hrbaček set theory

The original version of this theory was introduced in Hrbaček [5] under
the name:NS1(ZFC). An improved version was studied in detail in our
papers [7,8]. Tomake the paper self-contained, we present the list of axioms
of HST, theHrbaček set theory, with some necessary comments.
Recall thatHST is a theory in thest -∈-language. Thusst x reads:x

is standard, whileS = {x : st x} is the class of all standard sets.
Elements of standard sets are calledinternal sets, int x is the formula

∃sty (x ∈ y) (of being internal), andI = {x : int x} is the class of all
internal sets. The quantifiers∃st and∀int below have the obvious meaning.

Axioms for the whole universe. all axioms ofZFC with the exception of
Regularity, Power Set, andChoice. Note that the schemata ofSepa-
ration andReplacement apply to formulas in thest -∈-language.

Transitivity of I. ∀intx∀ y ∈ x(int y) (the internal universe is transitive).
Regularity over I. ∀X �= ∅ ∃x ∈ X (x ∩X ⊆ I).
ZFCst . all statements of the formΦst (Φ relativized toS = {x : st x}),
whereΦ is an axiom ofZFC.

Transfer. all statements of the formΦst ⇐⇒ Φint, whereΦ is a closed
∈-formula with standard parameters.

3 See for instance Keisler [12].
4 As the class of all setsx such that the relation∈ is, in a sense, not well-founded overx.
This reflects a property ofI in HST, discovered in [8].
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Standardization. ∀X ∃stY (X ∩ S = Y ∩ S). In other words, for any set
X there is a standard setY which contains the same standard elements
asX.

These axioms suffice to define the classV of all well-founded sets5 and
an∈-isomorphismx �→ ∗x : V onto S

6. It follows thatV interpretsZFC
and is a transitive class closed under subset formation. Moreover the map
x �→ ∗x is an elementary embedding (in the sense of the∈-language) ofV
into I by Transfer. (See [8], Sect. 1, for details.)
It is convenient to useV as the domain for the basic set theoretic notions,

such asordinals, cardinals, natural numbers. Thus a natural number will
mean a setn ∈ V which is a natural number in the sense ofV (in brief,
V-natural number).ω is the set of all natural numbers, as usual.
A finite setis a set equinumerous ton = {0, 1, ..., n− 1}, wheren ∈ ω.
A set of standard sizeis a set equinumerous to a set inV. In HST, sets

of standard size are exactly those which can be well-ordered.
These notions allow us to formulate the last three axioms ofHST.

Saturation of I. if X ⊆ I is a set of standard size such that
⋂

X′ �= ∅ for any
nonempty finiteX′ ⊆ X (the finite intersection property) then

⋂
X′ �= ∅.

Standard Size Choice.Choice in the case when the domain of the choice
function postulated to exist is a set of standard size (or, which is the same
by the above, a well-orderable set).

Dependent Choice.in its usual formulation that allows anω-sequence of
successive picks in the case when the domain of every next pick depends
on the results of the previous picks.

Saturation of I is a source of various nonstandard sets, as usual (see
Sect. 5).Standard Size Choice andDependent Choice partially substi-
tute the absense of fullChoice in many important cases. (FullChoice, as
well asPower Set and fullRegularity would contradict the rest ofHST.)
The main metamathematical properties ofHST are summarized in the

following theorem proved by Kanovei and Reeken [7,8]. (The equiconsis-
tency part of this theorem is essentially proved in [5].)

Theorem 1. HSTandZFC are equi-consistent theories. Moreover, there
is a Boolean-valued interpretation ofHST in ZFC the classS of which is
definably∈-isomorphic to the basicZFC universe. ��

5 That is, elements of transitive setsX such that∈ � X is a well-founded relation.
6 ∗x is defined to be that unique standard setu whose standard elements are sets of the
form ∗y, y ∈ x, and only those sets. The definition utilizesStandardization.
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2. Natural nonstandard set theory

The theorySHSTaims to reflect the∈-structure of theHST set universe. It
follows from the above thatSHST then must include:

Axioms for the whole universe. all ZFC axioms except forRegularity,
Power Set, andChoice. (Separation andReplacement in the ∈-
language.)

This is enough to define the classV of all well-founded sets and prove that
V is transitive and(�) any setx ⊆ V belongs toV.We also addStandard
Size Choice, Dependent Choice – as in Sect. 1, and

ZFCwf . all statements of the formΦwf (Φ relativized toV = {x : wf x}),
Φ being an axiom ofZFC, wherewf x says: “x is well-founded”.

In this setup, there is nothing analogous toI, therefore the axioms ofTran-
sitivity of I andRegularity over I of Sect. 1 are abandoned. The role of
Standardization is played by(�) above.
The following axiom, the last inSHST, is the key point in the theory. It

simulates bothTransfer andSaturation of I. We say that a transitive set∗X
is standard size saturatediff any non-empty setX ⊆ ∗X of standard size,
satisfying the finite intersection property, has non-empty intersection

⋂
X.

(The notions involved in this definition are understood as in Sect. 1.)

Saturated Elementary Extensions.for any transitive setX ∈ V there
exist a transitive standard size saturated set∗X and a mapx �→ ∗x from
X to ∗X, which is an elementary embedding of〈X ; ∈〉 into 〈∗X ; ∈〉.

To see that this holds inHST define∗X and∗x using the∈-isomorphism
described in footnote 6. (In fact it needs some care to prove that we have an
elementary embedding in the model theoretic sense, see [8], Sect. 1.)
Thus, as a subtheory ofHST, SHSTshares the content of Theorem 1.

3. Improvement of the theory

It is easy to see thatSHSTsupports any sort of ordinary “nonstandard” ar-
guments7. HoweverSHST is an easy target for the same criticismwhich the
model theoretic version of nonstandard analysis faces: the non-uniqueness
of nonstandard versions of usual mathematical structures. (Indeed one can
prove inHST that, e.g., there are other than the “true”∗ω standard size
saturated transitive elementary extensions ofω.)
This problem does not exist inHST because themapx �→ ∗x is definable

in this theory. However its definition involves the standardness predicate,

7 See Sect. 5 below.
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and still it is not knownwhether there is a definition in the∈-language. Even
more, there is no clear way how to introduce internal sets inSHST. Yet we
shall see that a reasonable (although partial) solution exists, and the first
step is to∈-define internal sets.

3.1. Modeling internal sets

The next lemma (first observed in [8]) shows that the classI is∈-definable
in HST, leading to a better∈-description ofHST thanSHST is.
We say that a setx is quasi-internaliff there is anω-sequence{xn}n∈ω

such thatx ∈ xn+1 ∈ xn for all n ∈ ω.
Lemma 1. (in HST) A setx belongs toI iff it is quasi-internal.

Proof. Suppose thatx is internal. Arguing inI, define, by induction on
k ∈ ∗ω, yk = yk−1 ∪ {yk−1}, starting withy0 = x. Now pick a number
ν ∈ ∗ω \ ω and letxn = yν−n for all n ∈ ω.
The converse easily follows fromRegularity over I.

3.2. The improved theory

Definition 1. As long as we work in the∈-environment,I is the class of all
quasi-internal sets.8 ��
Now, letSHST+ be the theory in the∈-language, containing all ofSHST
as above except forSaturated Elementary Extensions (which will be a
corollary), together withTransitivity of I, Regularity over I, Saturation
of I – everything just as in Sect. 1, – and the following

“Natural” Transfer. All statements of the formΦwf ⇐⇒ Φint, whereΦ is
a closed∈-formula with parameters inω.

The last axiom needs some comments as it is not clear from the beginning
thatω ⊆ I. Thus we first accept“Natural” Transfer in the parameter-free
version, which is enough to see thatI is a transitive∈-model ofZFC, so
that easilyω ⊆ I. Now we accept the full“Natural” Transfer.
We hardly can involve more parameters in the formulation of“Natural”

Transfer. Indeed,V ∩ I equalsHω (hereditarily finite sets) inHST – but
parameters inHω are effectively coded by (and easily reducible to) those in
ω.

Proposition 1. Every axiom ofSHST+ is a theorem ofHST.

8 According to Lemma 1, this is compatible with the definition of the classI in HST.
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Proof. To see that“Natural” Transfer holds inHST we first prove inHST
that ∗x = x for anyx ∈ ω by induction onx. ThusΦwf ⇐⇒ Φint because
the mapx �→ ∗x is an elementary embedding ofV in I in HST.

ThusSHST+ is a subtheory of the∈-part ofHST. It follows that it also
satisfies Theorem 1. To see that it extendsSHSTwe prove

Lemma 2. (SHST+) We haveSaturated Elementary Extensions,
moreover, the set∗X can always be chosen inI.

Proof. LetX ∈ V be a transitive set. Using“Natural” Transfer andSat-
uration of I, we can find a transitive set∗X ∈ I such that the structures
〈X ; ∈〉 and〈∗X ; ∈〉 are elementarily equivalent.
Indeed, letSATX(ϕ) be the usual∈-formula of satisfaction, saying that

ϕ is true inX.HereX is a transitive set andϕ is an∈-formula, with sets inX
as parameters, considered as a finite string of (natural numbers used as codes
for) logical symbols and sets (elements ofX) involved as parameters. LetΦ
be the set of all parameter-free∈-formulas (viewed inV as finite strings, see
above). DefineΦX = {ϕ ∈ Φ : SATX(ϕ)}, the set of all∈-formulas true
inX. If Ψ ⊆ ΦX is finite then the statement∀ϕ ∈ Ψ SATX(ϕ) is true inV.
Thus the formula∃X ∀ϕ ∈ Ψ SATX(ϕ), which we shall denote bya(Ψ),
is also true inV. Howevera(Ψ) is an∈-formula which contains onlyΨ as
parameter. Note thatΨ is a finite set of parameter-free∈-formulas; hence a
member ofHω (hereditarily finite sets), which can be effectively coded by
a natural number. It follows that we can apply“Natural” Transfer, so that
a(Ψ) is true inI – for any finiteΨ ⊆ ΦX .Applying theZFC Replacement
in I,we find a setW such that, for any setΨ of any kind, ifa(Ψ) is true then
this is witnessed by a setX ′ ∈ W. For any formulaϕ ∈ ΦX , let us define,
in I, Wϕ = {X ′ ∈ W : SATX′(ϕ)}. It follows from the reasoning above
that the collectionX = {Wϕ : ϕ ∈ ΦX} has the finite intersection property.
By Saturation of I, there is a set∗X ∈ ⋂

ϕ∈ΦX
Wφ. By the construction,

〈∗X ; ∈〉 and〈X ; ∈〉 are elementarily equivalent. (Some extra care should
have been taken to provide the transitivity of∗X, but this is easy.)
Note that〈∗X ; ∈〉 is standard size saturated bySaturation of I. Hence

it remains to define an elementary embedding of〈X ; ∈〉 into 〈∗X ; ∈〉.
By the choice of∗X, for any〈x1, ..., xn〉 ∈ X<ω there is〈x′

1, ..., x
′
n〉 ∈∗X<ω such that(∗) for any∈-formulaϕ(· · ·) we have:ϕ(x1, ..., xn) is true

in 〈X ; ∈〉 iff ϕ(x′
1, ..., x

′
n) is true in〈∗X ; ∈〉.9 By Standard Size Choice

there is a1−1 length-preservingmapf : X<ω → ∗X<ω such that(∗) holds
for 〈x′

1, ..., x
′
n〉 = f(〈x1, ..., xn〉) for any〈x1, ..., xn〉 ∈ X<ω.

Note that it isnotasserted thatf(〈x1, ..., xn〉)=〈f(〈x1〉), ..., f(〈xn〉)〉.
LetR0 = {f(〈x〉) : x ∈ X}, so thatR0 ⊆ ∗X.

9 In this proof,formulasare understood formally, that is, as certain finite sequences.
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For any finiteR ⊆ R0 and any finite setF of ∈-formulas, letΠRF be
the (internal) set of all internal1 − 1 mapsπ : ∗X → ∗X such that for any
tuple〈r1, ..., rn〉 ∈ R<ω and any∈-formulaϕ(· · ·) in F we have
• it is true in I thatϕ(r1, ..., rn) ⇐⇒ ϕ(r′1, ..., r′n), where
〈r′1, ..., r′n〉 = f(〈x1, ..., xn〉), and〈xi〉 = f−1(〈π−1(ri)〉) for all i.

It quickly follows from the choice of∗X andf that the family of setsΠRF

is a standard size family of non-empty sets satisfying the finite intersection
property. (BasicallyΠR1F1 ∩ΠR2F2 ⊇ ΠR1∪R2 , F1∪F2 .) Therefore there is
an internal1 − 1 mapπ : ∗X → ∗X which belongs to every relevant set
ΠRF , so that• holds for all〈r1, ..., rn〉 ∈ R0

<ω and all∈-formulasϕ.
One easily sees thatp(x) = π(r),where〈r〉 = f(〈x〉)), is an elementary

embedding of〈X ; ∈〉 into 〈∗X ; ∈〉. ��

4. Uniqueness of the asterisks

Let us return to the problem of uniqueness of sets∗X. Suppose that a tran-
sitive setX ∈ V is “mathematically unique” in the sense that there is an
∈-formulaϕ(·) so thatX is the only transitive set satisfyingϕ(X) in V.
(For instance this includes the sets likeω andVω+ω.) It follows from “Natu-
ral” Transfer that there is a unique set∗X ∈ I satisfyingϕ(∗X) in I. Using
“Natural” Transfer again, we conclude that then the structures〈X ; ∈〉 and
〈∗X ; ∈〉 are elementarily equivalent. Now the proof of Lemma 2 yields an
elementary embedding ofX into ∗X.
Note that this construction results in a really unique standard size satu-

rated elementary extension∗X of X!
Of course, the merits of this result are restricted by the assumption that

X is definable by an∈-formula inV. To show the difficulties connected
with this problem, let us demonstrate that, even in this case, the elementary
embedding itself may be not unique.
Let P = P(ω) = {x : x ⊆ ω}, so thatP ∈ V is∈-definable inV.

Lemma 3. (HST) There exist two different elementary embeddings of the
structure〈P ; ∈〉 into 〈∗P ; ∈〉.10

Proof. As card P = 2ℵ0 > ℵ0 in V, there is a sety ∈ P which is not
definable inP by a parameter-free∈-formula.11 This means that for any
∈-formulaϕ(·) there is a sety′ ∈ P, y′ �= y, such thatϕ(y) ⇐⇒ ϕ(y′) in
〈P ; ∈〉.
10 Here and in the proof below∗P etc. is understood in the sense of the embeddingx �→ ∗x
defined in footnote 6.
11 See footnote 9.
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ByTransfer, this is true in〈∗P ; ∈〉, too, in thesense that for anyϕ(·) there
is a sety′ ∈ ∗P , y′ �= ∗y, such thatϕ(∗y)⇐⇒ ϕ(y′) in 〈∗P ; ∈〉. Therefore,
by Saturation of I, there is one particulary′ ∈ ∗P , y′ �= ∗y, such that
the equivalenceϕ(∗y) ⇐⇒ ϕ(y′) holds in〈∗P ; ∈〉 for any parameter-free
∈-formulaϕ(·).Now, using the same argument as in the proof of Lemma 2,
we can define an elementary embeddingp : P → ∗P such thatp(y) = y′;
hencep is different from the restriction(x �→ ∗x) � P just becausey′ �= ∗y.

In fact, another kind of uniqueness is consistentwithSHST+.Wegave in
[9] the following formulation of theisomorphism property, first considered
by Henson in the study of nonstandard models in theZFC universe:

Isomorphism Property, IP. any two internally presented elementarily
equivalent structures of a first-order language containing (standard size)–
many symbols are isomorphic.

(A structure isinternally presentediff its universe and all of its relations
and functions are internal.) We proved in [9] thatIP is consistent withHST.
ThereforeIP is consistent withSHST+ aswell, by the above. But inSHST+

plusIP all internally presented elementary extensions of any fixed structure
〈X ; ∈〉, X ∈ V, are isomorphic (although not necessarily via an internal
isomorphism).

5. Towards applications

This section is written to explain how the theoriesSHST andSHST+ can
be used to formalize “nonstandard” reasoning.
First of all recall thatSHST is a theory in the∈-language, containing

all of ZFC – except forRegularity, Power Set, andChoice, – with some
additional axioms which involve the classV = {x : wf x} of all well-
founded sets, namely,Standard Size Choice andDependent Choice
as in Sect. 1 andZFCwf as in Sect. 2, and finallySaturated Elementary
Extensions (Sect. 2) as the source of nonstandard sets.

SHST+ extendsSHST (minus the axiom ofSaturated Elementary
Extensions which becomes a corollary) by some axioms, related to the
classI of all quasi-internal sets (see Definition 1) viewed as a substitute for
internal sets. Those additional axioms includeTransitivity of I,Regularity
over I,Saturation of I –as inHST,and“Natural” Transferwhich says that
V andI are elementarily equivalent w. r. t. formulas with natural numbers
as parameters. (See Sect. 3.)
Let us outline the development of nonstandard analysis inSHST. First

of all, we shall, informally, considerV as the “standard” mathematical uni-
verse. SinceSHST satisfies Theorem 1 (being a subtheory ofHST), the
SHST universe can be viewed as an auxiliary (although well defined by
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means ofV) extension of the “true” set universeV – in the same manner
asC (complex numbers) is an extension ofR. ThusSHST is not a merely
syntactical tool: there is a sound interpretation.
It is known that the setX = Vω+ω, defined inV, is an adequate domain

for a large part of mathematics. In particular the setsN = ω (the natural
numbers) andR (the reals) belong toX.
Applying Saturated Elementary Extensions, we obtain a transitive

standard size saturated set∗X = ∗Vω+ω and an elementary embeddingx �→
∗x of 〈Vω+ω ; ∈〉 into 〈∗Vω+ω ; ∈〉. (If we work in SHST+ rather than in
SHST, it can be specified that∗Vω+ω ∈ I, see Lemma 2. In this case,∗Vω+ω

is just theI-analog ofX = Vω+ω : formally, ∗Vω+ω = V∗ω+∗ω in I.)
One easily proves that ifn ∈ N then ∗n = n ∈ ∗

N (for instance by
induction onn); henceN is an initial segment of∗N. To see thatN is a
proper initial segment of∗N, use the saturation property ofX with respect
to the family of setsSn = {k ∈ ∗

N : k > n}, n ∈ N. Note that elements
of ∗

N are justI-natural numbers, which could also be calledhypernatural
numbers. Numbers in∗N \ N can be calledinfinitely large.
As for the reals, we have bothR ∈ Vω+ω andR ⊆ Vω+ω; hence∗R ∈

∗Vω+ω and∗x ∈ ∗
R have been defined for allx ∈ R. Elements of∗R, i.e.

I-reals, can be calledhyperreals. One now defines, in the ordinary manner,
the notions of being aninfinitesimal, infinitely large, limitedhyperreal, and
the relation≈ of beinginfinitely close. Let us prove

Lemma 4. If x ∈ ∗
R is limited then there isz ∈ R such thatx ≈ ∗z.

Proof. The setsA = {y ∈ R : ∗y ≤ x} andB = {y ∈ R : ∗y > x} are
non-empty becausex is limited. Moreover they belong toV because this
class is closed under the subset formation. (See Sect. 2.) Therefore, arguing
in V, we obtain a realz which is either the greatest inA or the least inB.
One easily sees thatz is as required. ��
This outline demonstrates that typical “nonstandard” reasoning is fully

supported inSHST. (As formore advancedexamples, like the Loebmeasure
or descriptive set theory in hyperfinite domains, see Kanovei and Reeken
[8], 2.2 and 2.3. We demonstrated there that the usual way of reasoning
goes through. The absence ofPower Set in theSHSTuniverse in principle
causes some technical problems, which however can be eliminated.)

6. Randomness in hyperfinite domain

Following the setup of the previous section, we shall call sets in∗Vω+ω

internal and sets of the form∗x, x ∈ Vω+ω, standard. Thus every standard
set is internal, and the embeddingx �→ ∗x is a1− 1 map ofVω+ω onto the
set of all standard elements of∗Vω+ω.
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Letw, y be internal sets.We defined in [8]y to bew-standardiff there is
a standard functionf such thatw ∈ domf andy = f(w). If w is standard
then “w-standard” and “standard” is one and the same.
We also defined a realx to be

− w-infinitesimaliff |x| < ε for somew-standard infinitesimalε;
− w-infinitely largeiff |x| > c for somew-standard infinitely largec.
This definition makes sense iff there really existw-standard infinitesimals
and infinitely large numbers. In particular it does not make sense (and will
not be used) in the case whenw is standard.
Suppose thatw is any internal set whileX is a strictly hyperfinite (i.e.

hyperfinite but not finite) internal set, thehyperfinite domain. Let µ be a
hyperprobability measureonX, i.e. a hyperfinitely additive internalmeasure
onX such thatµ(X) = 1.
We defined in [8] an elementx ∈ X to bew-random inX w. r. t.µ iff

x does not belong to any〈w, X〉-standard setX ⊆ X such thatµ(X) is
X-infinitesimal. (Herew may be standard and may be nonstandard.) Thus
nonstandard analysis allows to consistently consider the notion of anindi-
vidual random element rather than a random variable as a function defined
on a probability space. The following lemma shows that, in agreement with
the intuition, non-random elements form a rare family.

Lemma 5. If w, X, µ are as above then the setCR of all elementsx ∈ X,
non-w-random inX w. r. t.µ, can be covered by an internal setZ ⊆ X such
that µ(Z) is infinitesimal.

It is not asserted here thatµ(Z) is, e.g.,w-infinitesimal. We cannot
demand thatµ(CR) is infinitesimal becauseµ is defined only for internal
subsets ofX whileR is, generally speaking, external.

Proof. First of all, bySaturation, there is an infinitesimalδ > 0 such
that δ > ε for any X-infinitesimalε. Then anyx ∈ CR is covered by a
〈w, X〉-standard setX such thatµ(X) < δ.
LetW be a standard set, containing bothw andX, and such that any

internal subset ofX also belongs toW. The setF of all standard functions
f : W 2 → W such thatf(w, X) is a subset ofX satisfyingµ(X) < δ – is
a set of standard size. Thus there is an internal setF ′ containing< 1/

√
δ

elements, such thatF ⊆ F ′. For anyf ∈ F ′ defineXf to bef(w, X) iff f
is a function,X = f(w, X) is defined and is a subset ofX, andµ(X) < δ,
whileXf = ∅ otherwise.
ThenCR ⊆ Z =

⋃
f∈F ′ Xf andµ(Z) ≤ δ/

√
δ =

√
δ is infinite-

simal. ��
Letw be any internal set.
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Suppose thatX andY are two strictly hyperfinite sets, whileµ andν are
hyperprobability measures on resp.X andY.

Lemma 6. (Fubini) Assume thatν is 〈w, X, Y〉-standard. Let〈x, y〉 ∈
X× Y bew-random inX× Y w. r. t.µ× ν. Thenx isw-random inX w. r. t.
µ whiley is 〈w, x〉-random inY w. r. t. ν.

Suppose that, in addition,Y is X-standard andX is Y-standard. Let
x ∈ X bew-random inX w. r. t.µwhiley ∈ Y be〈w, x〉-random inY w. r. t.
ν. Then〈x, y〉 isw-random inX × Y w. r. t.µ× ν.

Proof. LetX ⊆ X be a〈w, X〉-standard set of measureµ(X) < ε, where
ε is X-infinitesimal. Assume on the contrary thatx ∈ X. Then〈x, y〉 ∈ P,
whereP = X × Y is 〈w, X, Y〉-standard and satisfies(µ × ν)(P ) < ε,
which is a contradiction. (Note, in passing by, that to be〈w, X, Y〉-standard
and to be〈w, X × Y〉-standard is one and the same.)
Let Y ⊆ Y be a〈w, x, Y〉-standard set of measureν(Y ) < ε, whereε is

Y-infinitesimal. Suppose on the contrary thaty ∈ Y. By definition we have
Y = f(w, x, Y),wheref is a standard function. LetP be the set of all pairs
〈x′, y′〉 ∈ X × Y such thatYx′ = f(w, x′, Y) is a subset ofY satisfying the
inequalityν(Yx′) < ε, andy′ ∈ Yx′ . Note thatP is 〈w, X, Y〉-standard by
the assumptions above, and(µ× ν)(P ) ≤ ε.On the other hand,〈x, y〉 ∈ P
by definition, which is a contradiction.
To prove the converse, consider a〈w, X, Y〉-standard setP ⊆ X × Y of

measure(µ × ν)(P ) < ε, whereε is a 〈X, Y〉-infinitesimal; henceX-in-
finitesimal by the assumption. PutPx′ = {y ∈ Y : 〈x′, y〉 ∈ P } for any
x′ ∈ X. The setX = {x′ ∈ X : ν(Px′) ≥ √ε} is 〈w, X〉-standard by
the assumption, andµ(X) ≤ √ε because(µ × ν)(P ) < ε. Therefore
x �∈ X by the randomness ofx. Thus the〈w, X, x〉-standard (therefore
〈w, Y, x〉-standard) setY = Px satisfiesν(Y ) <

√
ε. Howevery ∈ Y,

which contradicts the randomness ofy. ��

7. Law of Large Numbers

In classical probability, this is a common name for several important theo-
rems saying that, under some conditions, the arithmetic meanξ1+...+ξn

n of
jointly independent random variablesξi tends to the arithmeticmean of their
expectationsm1+...+mn

n asn→∞. (See [15], Sect. 2.)
Our aim will be to obtain a hyperfinite version.
Let X be a hyperfinite set andµ a hyperprobability measure onX, as

above. Assume, in addition, thatX ⊆ ∗
R.We define

• Eµ =
∑

x∈X xµ({x}), theexpectationof µ;
• Var µ =

∑
x∈X (x− Eµ)2 µ({x}), thevarianceof µ.
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Note that the expectation and variance are functions of the measure ( = the
probability distribution) rather than of randomelements as we defined them.
Suppose thatH ∈ ∗

N \ N, and for anyn = 1, 2, . . . H, we have a
hyperfinite setXn ⊆ ∗

R and a hyperprobability measureµn on Xn, so
that the mapsn �→ Xn andn �→ µn are internal. Letmn = Eµn and
vn = Var µn for all n. DefineX =

∏H
n=1 Xn and letµ =

∏H
n=1 µn be the

product hyperprobability measure onX.

Theorem 2. (HyperfiniteLaw of Large Numbers)
Assume thatv = H−1 ∑H

n=1 vn is a limited number. Suppose that the
measureµ is X-standard. Then, for any sequencex = {xn}Hn=1, random
(i.e.0-random)in X w. r. t.µ, the difference

∆(x) =
x1 + . . .+ xH

H
− m1 + . . .+mH

H

is infinitesimal.

Proof. By Kolmogorov’s inequality (see, e.g., [15], Theorem 12.2), applied
in the internal universe∗Vω+ω , for anys > 0 we have

µ({y ∈ X : ∆(y) ≥ s}) ≤ v

Hs2
.

By the assumption,vs−2 is a limited number whenevers > 0 is standard.
Thus the setXs = {y ∈ X : ∆(y) ≥ s} has anH-infinitesimal measure
µ(Xs) whenevers > 0 is standard. On the other hand, ifs is standard then
Xs is〈X, µ〉-standard; henceX-standard becauseµ isX-standard. It follows,
by definition, thatx �∈ Xs for any standards > 0, as required. ��
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