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Abstract Abraham Robinson’s framework for modern infinitesimals was developed half a

century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical

analysis. Their procedures have been often viewed through the lens of the success of the

Weierstrassian foundations. We propose a view without passing through the lens, by means

of proxies for such procedures in the modern theory of infinitesimals. The real accom-

plishments of calculus and analysis had been based primarily on the elaboration of novel

techniques for solving problems rather than a quest for ultimate foundations. It may be

hopeless to interpret historical foundations in terms of a punctiform continuum, but

arguably it is possible to interpret historical techniques and procedures in terms of modern

ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and
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Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more

helpful in understanding their procedures than a Weierstrassian framework.

1 Introduction

We propose an approach to the history of mathematics as organic part of the history of

science, based on a clearer distinction between practice/procedure and ontology than has

been typically the custom of historians of mathematics, somewhat taken in with the success

of the Weierstrassian foundations as developed starting around 1870. Today a grounding in

such foundations is no longer viewed as a sine-qua-non of mathematics, with category

theory playing an increasingly important foundational role.

The distinction between procedure and ontology was explored by philosophers

Benacerraf (1965), Quine (1968), and Wartofsky (1976) but has been customarily paid

scant attention to by historians of mathematics. We diverge from such custom already in

the case of Stevin; see Sect. 3.

2 Methodological Issues

Interpreting historical mathematicians involves a recognition of the fact that most of them

viewed the continuum as not being made out of points. Rather they viewed points as

marking locations on a continuum. The latter was taken more or less as a primitive notion.

Modern foundational theories starting around 1870 are based on a continuum made out of

points and therefore cannot serve as a basis for interpreting the thinking of the earlier

mathematicians as far as the foundations are concerned.

2.1 Procedures Versus Foundations

What one can however seek to interpret are the techniques and procedures (rather than

foundations) of the earlier authors, using techniques and procedures available in modern

frameworks. In short, it may be hopeless to interpret historical foundations in terms of a

punctiform continuum, but arguably it is possible to interpret historical techniques and

procedures in terms of modern techniques and procedures.

In the case of analysis, the modern frameworks available are those developed by

K. Weierstrass and his followers around 1870 and based on an Archimedean continuum, as

well as more recently those developed starting around 1960 by A. Robinson and his

followers, and based on a continuum containing infinitesimals.1 Additional frameworks

were developed by W. Lawvere, A. Kock, and others.

1 Some historians are fond of recycling the claim that Robinson used model theory to develop his system
with infinitesimals. What they tend to overlook is not merely the fact that an alternative construction of the
hyperreals via an ultrapower requires nothing more than a serious undergraduate course in algebra (covering
the existence of a maximal ideal), but more significantly the distinction between procedures and founda-
tions, as discussed in this Sect. 2.1, which highlights the point that whether one uses Weierstrass’s foun-
dations or Robinson’s is of little import, procedurally speaking.
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2.2 Parsimonious and Profligate

J. Gray responds to the challenge of the shifting foundations as follows:

Recently there have been attempts to argue that Leibniz, Euler, and even Cauchy

could have been thinking in some informal version of rigorous modern non-standard

analysis, in which infinite and infinitesimal quantities do exist. However, a historical

interpretation such as the one sketched above that aims to understand Leibniz on his

own terms, and that confers upon him both insight and consistency, has a lot to

recommend it over an interpretation that has only been possible to defend in the last

few decades. (Gray 2015, p. 11)

To what he apparently feels are profligate interpretations published in Historia

Mathematica Laugwitz (1987), Archive for History of Exact Sciences Laugwitz (1989),

and elsewhere, Gray opposes his own, which he defends on the grounds that it is

parsimonious and requires no expert defence for which modern concepts seem

essential and therefore create more problems than they solve (e.g. with infinite

series). The same can be said of non-standard readings of Euler; ... (ibid.)

Is this historian choosing one foundational framework over another in interpreting the

techniques and procedures of the historical authors? We will examine the issue in detail in

this section.

2.3 Our Assumptions

Our assumptions as to the nature of responsible historiography of mathematics are as follows.

(1) Like other exact sciences, mathematics evolves through a continual clarification of

the issues, procedures, and concepts involved, resulting in particular in the

correction of earlier errors.

(2) In mathematics as in the other sciences, it is inappropriate to select any particular

moment in its evolution as a moment of supreme clarification above all other such

moments.

(3) The best one can do in any science is to state intuitions related to a given scientific

problem as clearly as possible, hoping to convince one’s colleagues or perhaps even

all of one’s colleagues of the scientific insight thus provided.

Unlike many historians of the natural sciences, historians of mathematical analysis often

attribute a kind of supreme status to the clarification of the foundations that occurred

around 1870. Some of the received scholarship on the history of analysis is based on the

dual pillar of the Triumvirate Agenda (TA) and Limit Fetishism (LF); see Sect. 2.4.

2.4 Triumvirate and Limit

Historian C. Boyer described Cantor, Dedekind, and Weierstrass as the great triumvirate in

(Boyer 1949, p. 298); the term serves as a humorous characterisation of both traditional

scholars focused on the heroic 1870s and their objects of adulation.

Newton already was aware of, and explicitly mentioned, the fact that what he referred to as

the ultimate ratio was not a ratio at all. Following his insight, later mathematicians may have

easily introduced the notation ‘‘ult’’ for what we today denote ‘‘lim’’ following Cauchy’s

progression
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limite,lim:, lim

later assorted with subscripts like x!c by other authors. In such alternative notation, we

might be working today with definitions of the following type:

a function f is continuous at c if ultx!c f ðxÞ ¼ f ðcÞ
and similarly for the definitions of other concepts like the derivative:

f 0ðxÞ ¼ ult
h!0

f ðxþ hÞ � f ðxÞ
h

:

The point we wish to make is that the occurrence of the term limit itself (in whatever

natural language) is of little significance if not accompanied by genuine mathematical

innovation, reflected in mathematical practice in due course.

We therefore feel that searching the eighteenth century literature for occurrences of the

term limit (in authors like d’Alembert or L’Huilier) so as to attribute to its author visionary

insight into the magical limit concept, conveniently conflated by the triumvirate historian

with the Weierstrassian Epsilontik, amounts to a kind of limit fetishism (LF) and constitutes

an unhelpful approach to historiography.

2.5 Adequately Say Why

The influence of the TA?LF mindset can be traced in recent publications like Gray (2015).

Already on the first page we find the following comment concerning an attempt to provide

a foundational account for the calculus:

It is due to Joseph-Louis Lagrange, and its failure opened the way for the radically

different accounts that followed. (Gray 2015, p. 1) (emphasis added)

However, attributing failure to Lagrange’s program of expressing each function by its

Taylor series is symptomatic of viewing history of mathematics as inevitable progress

toward the triumvirate triumph. In reality Lagrange’s program was successful when

considered in the context of what are referred to today as analytic functions. That it is not

general enough to handle future applications is not a failure though it is certainly a

limitation. Reading on, we find the following comment on the infinitesimal calculus:

At its core stood a painful paradox. The simple and invariably correct rules for

differentiation and integration were established by arguments that invoked: the

vanishing of negligible quantities; arguments about infinitesimal quantities; plausible

limit arguments that nonetheless seemed close to giving rules for evaluating 0/0. In

short, the calculus worked–but no-one could adequately say why. (Gray 2015, p. 2)

(emphasis added)

This passage is problematic on a number of counts:

(1) it involves a confusion of the logical and the metaphysical criticism of the calculus;2

2 Sherry (1987) argued that Berkeley’s criticism of the calculus actually consisted of two separate com-
ponents that should not be conflated, namely a logical and a metaphysical one:

(a) logical criticism: how can dx be simultaneously zero and nonzero?
(b) metaphysical criticism: what are these infinitesimal things anyway that we can’t possibly have any

perceptual access to or empirical verification of?
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(2) it fails to appreciate the distinction between discarding a negligible quantity and

setting it equal to zero;

(3) it is explicit in its assumption that infinitesimals are necessarily mired in paradox;

(4) it reveals an ignorance of Leibniz’s transcendental law of homogeneity and the

generalized relation of equality ‘‘up to’’ something negligible;

(5) it it based on an assumption that today we are able adequately to say why it all

works.3

At the level appropriate for his historical period, Leibniz did ‘‘adequately say why’’ (to

borrow Gray’s phrase) when he developed his theoretical strategy for dealing with

infinitesimals; see Sect. 6.

2.6 Euler’s Intuitions

On the same page in Gray we find the following surprising comment concerning Euler’s

attempts to justify the calculus:

This was not for the want of trying. Euler wrote at length on this, as on everything

else, but his view was that the naı̈ve intuitions could be trusted if they were stated as

clearly as they could be. (ibid.)

As noted in Sect. 2.3, the best a scientist can strive for is, ultimately, ‘‘intuitions stated as

clearly as could be.’’ Assuming otherwise amounts to bowing down to the triumvirate.

Gray’s comment rests on a questionable assumption that there is a sharp dividing line

between intuitive arguments and rigorous ones, based on the idea of inevitable progress

toward triumvirate rigor. As noted in Sect. 2.3, such naiveté is generally not shared by

historians of science, who would question the assumption that there is a defining moment

in the history of mathematics when mere intuition was finally transcended.

On page 3 we find the following quote from Euler:

‘‘§ 86 Hence, if we introduce into the infinitesimal calculus a symbolism in which we

denote dx an infinitely small quantity, then dx ¼ 0 as well as a dx ¼ 0 (a an arbitrary

finite quantity). Notwithstanding this, the geometric ratio a dx : dx will be finite,

namely a:1, and this is the reason that these two infinitely small quantities dx

and a dx (though both ¼ 0) cannot be confused with each other when their ratio is

investigated. Similarly, when different infinitely small quantities dx and dy occur,

their ratio is not fixed though each of them ¼ 0.’’ (Gray quoting Euler)

Comments Gray:

Whatever this may mean, it cannot be said to do more than gesture at what might be

involved in rigorising the calculus,4 (Gray 2015) (emphasis added)

3 Note that the modern Zermelo–Fraenkel (ZFC) framework definitely works as a foundational system, but
no-one can adequately say why, for instance, ZFC is consistent to begin with (moreover, in a precise sense
discovered by Goedel, this cannot even be answered in the positive).
4 In point of fact, Euler is not seeking to ‘rigorise’ the calculus here, contrary to what Gray implies.
Moreover, there is little indication that Euler found it problematic. He merely goes on to develop the
calculus, e.g., by expanding trigonometric functions into series. It was the task of later generations to
reshape his theses in a different setting.
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(the comma is in the original). Now ‘‘whatever this may mean’’ is apriori an odd thing for a

historian to say about a master of Euler’s caliber. The natural reaction of a lay reader when

reading a historical text is usually one of dismissal stemming from a predictable failure to

understand a historical work using different language from what the reader is accustomed

to. As a rule, a historian’s job is to dispel a lay reader’s prejudices and misconceptions,

rather than to reinforce them. But apparently such a rule applies to everything except...

infinitesimals.

U. Bottazzini and Gray make a poetic proposal in the following terms: ‘‘The best policy

is to read on in a spirit of dialogue with the earlier authors. (Bottazzini and Gray 2013).’’

The proposal of such a conversation with, say, Euler sounds intriguing. Consider, however,

Gray’s comment to the effect that

Euler’s attempts at explaining the foundations of calculus in terms of differentials,

which are and are not zero, are dreadfully weak. (Gray 2008, p. 6) (emphasis added)

Isn’t such a comment as an opening line in a conversation likely to be a conversation-

stopper? Such comments border on disdain for the great masters of the past; cf. Sect. 2.9.

It may indeed be that, as per Bottazzini–Gray, ‘‘the best policy is to read on in a spirit of

dialogue with the earlier authors.’’ However, the policy as stated does not clarify what the

content of such a dialogue would be. For example, if Gray is interested in confronting Euler on

allegedly ‘‘dreadfully weak’’ foundations, the dialogue is not likely to be productive. Once

Bottazzini and Gray commit themselves to resolving issues through dialogue, the question

still remains: what is on the agenda? Is it foundations (as Gray’s 2008 comment seems to

suggest) or procedures? Bottazzini and Gray leave this crucial issue unresolved.

Euler’s profound insights here, including the distinction between the geometric and the

arithmetic modes of comparison, were analyzed in Bair et al. (2016); see Sect. 7 on the

two modes of comparison and their relation to Leibnizian laws. That’s a lot more than a

gesture (to borrow Gray’s term). Gray’s myopism arguably stems from ideological tri-

umvirate commitment and a Berkeley–Cantor tradition of anti-infinitesimal prejudice.

After singing praises of d’Alembert with respect to his allegedly visionary comments on

limits, on page 4 Gray goes on to admit that d’Alembert was himself ‘‘confused at crucial

points.’’ Therefore it is unclear why Gray wishes to attribute visionary status to d’Alem-

bert’s confused remarks on limits, which, as Gray himself acknowledges, are derivative

from Newton; see our comments on LF in Sect. 2.4.

2.7 Gray Parsimoniousness Toward Leibniz

On page 9, Gray cites a famously cryptic passage opening Leibniz’s first publication on the

calculus dating from 1684, where Leibniz introduces differentials like dx and dv without

much explanation. Gray goes on to quote an additional passage from Leibniz’s paper as

follows:

‘‘We have only to keep in mind that to find a tangent means to draw a line that

connects two points of the curve at an infinitely small distance, or the continued side

of a polygon with an infinite number of angles, which for us takes the place of the

curve. This infinitely small distance can always be expressed by a known differential

like dv, or by a relation to it, that is, by some known tangent.’’ (ibid., quoting

Leibniz)

At this point, without much ado Gray cuts to the chase, namely an allegation of

contradiction attributed to Leibniz:
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Now it is presented as an infinitely small distance. Could it be that Leibniz did indeed think

of there being infinitely small distances, or was that more a way of speaking, a useful

fiction? It is already clear that they have contradictory properties, and why should d(xv) not

be written as ðxþ dxÞðvþ dvÞ � xv ¼ xdvþ vdxþ dxdv? (Gray 2015, p. 10)

What Gray seems to find contradictory is Leibniz’s maneuver of replac-

ing xdvþ vdxþ dxdv by xdvþ vdx. However contradictions are there only for those

who wish to detect them. A relation of the form

xdv + vdx+ dxdv xdv + vdx

is a reasonably valid one if interpreted in the context of Leibniz’s TLH (see Sect. 6).

On page 10, Gray trips right over one of the familiar faux amis de traducteur when he

translates Leibniz’s à la rigueur by means of the English term rigour and claims that

Leibniz ‘‘said that the infinite need not be taken rigorously.’’ However, Gray’s translation

is inaccurate. The correct translation for this expression is not rigorously but rather lit-

erally, as in the following passage:

Et c’est pour cet effect que j’ay donné un jour des lemmes des incomparables dans

les Actes de Leipzic, qu’on peut entendre comme on vent [sic], soit des infinis à la

rigueur, soit des grandeurs seulement, qui n’entrent point en ligne de compte les unes

au prix des autres. (Leibniz 1702, p. 92) (emphasis added)

Leibniz’s pair of ‘‘soit’’s in this remark indicates that there is a pair of distinct

methodologies involved, a duality acknowledged by Leibniz scholars H. Bos and

D. Jesseph (see Sect. 6). In a chapter 5 added to the second edition of her book, Ishiguro

(1990) argued otherwise, and claimed that Leibnizian infinitesimals are logical fictions à la

Russell. The stated impetus for Ishiguro’s (arguably flawed) reading was a desire to defend

Leibniz’s honor as an unconfused and consistent logician by means of her syncategore-

matic reading; see Bascelli et al. (2016) for details. With Gray’s latest book, the argument

has come full circle, as he seeks both to attribute contradiction to Leibniz and to toe the

line on R. Arthur’s endorsement of Ishiguro’s logical fiction reading. Arthur’s own errors

are analyzed in Sect. 6.2. Gray goes on to the parsimonious passage (already cited in

Sect. 2.2), of which we reproduce an extension:

It is parsimonious and requires no expert defence for which modern concepts seem

essential and therefore create more problems than they solve (e.g., with infinite

series). The same can be said of non-standard readings of Euler; for a detailed

discussion of Euler’s ideas in this connection, see Schubring (2005). (Gray

2015, p. 11) (emphasis added)

A distinction between procedure and ontology is apparently not one that interests Gray. For

a detailed analysis of Schubring’s errors see Błaszczyk et al. (2016b).

Gray’s ‘‘parsimonious’’ argument could be termed the Gray sword (analogously to the

Occam razor), and if applied in the context of a proper focus on procedures would in fact

yield the opposite result of the one Gray seeks.

Consider for example Cauchy’s definition of continuity, namely an infinitesimal change

a in the variable x always produces an infinitesimal change f ðxþ aÞ � f ðxÞ in the function.

In a modern infinitesimal framework one copies this over almost verbatim to get a precise

definition of continuity.
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Meanwhile, if one wishes to work in a traditional Weierstrassian framework, one needs

to interpret Cauchy’s definition as ‘‘really’’ saying that, for example, for every epsilon

there is a delta such that for every x, etc.

Such logical complexity involving multiple alternations of quantifiers will surely fall by

the (Gray) sword. Alternatively, one could seek to interpret Cauchy by means of

sequences, which is not much better because Cauchy explicitly says in defining an

infinitesimal that a sequence becomes an infinitesimal (rather than an infinitesimal being a

sequence). So apparently Gray should be saying the following, instead:

Since Boyer (at least) there have been attempts to argue that Leibniz, Euler, and even

Cauchy could have been thinking in some informal version of rigorous modern

Weierstrassian analysis. However, a historical interpretation such as the one sketched

above that aims to understand Leibniz on his own terms, and that confers upon him

both insight and consistency, has a lot to recommend it over an interpretation that has

only been possible to defend since Weierstrass came along. It is parsimonious and

requires no expert defence for which modern alternating quantifiers seem essential

and therefore create more problems than they solve.

2.8 The Truth in Mind

Most recently, we came across the following comment concerning Euler:

...Euler (1768–1770, 1: § 5) did not condemn ‘‘the common talk’’ (locutiones communes)

about differentials as if they were absolute quantities: this common talk could be tolerated,

provided one had always the truth in the mind; namely, we could write dy ¼ 2x dx and use

this formula in calculations, but we had to have in the mind that the true meaning of

dy ¼ 2x dx was dy=dx ¼ 2x. (Capobianco et al. 2016) (emphasis added)

The idea seems to be that something called a true meaning resides not in a relation between

Leibniz–Euler differentials but rather in a formula for what is called today the derivative.

Such an idea seems to stem from a vision of inevitable progress in analysis toward its

familiar post-Weierstrassian form. Such a vision suffers from latent realist tendencies

(cf. Błaszczyk et al. 2016a) and ignores repeated warnings (Bos 1974) that Leibnizian

calculus relying as it did on analysis of differentials looked very different from the

conceptual structure of analysis today which was not its inevitable outcome. It also ignores

Hacking’s seminal writings on a possible Latin rival to a butterfly model of scientific

development; see Hacking (2014).

2.9 Did Euler Prove Theorems by Example?

In his 2014 book, G. Ferraro writes at beginning of chapter 1, section 1 on page 7:

Capitolo I

Esempi e metodi dimostrativi

1. Introduzione

In The Calculus as Algebraic Analysis, Craig Fraser, riferendosi all’opera di Eulero e

Lagrange, osserva:

A theorem is often regarded as demonstrated if verified for several examples, the

assumption being that the reasoning in question could be adapted to any other

example one chose to consider (Fraser 1989, p. 328]).
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Le parole di Fraser colgono un aspetto poco indagato della matematica dell’illu-

minismo. (Ferraro 2014, p. 7)

The last sentence indicates that Ferraro endorses Fraser’s position as expressed in the

passage cited in the original English without Italian translation. The following longer

passage places Fraser’s comment in context:

The calculus of Euler and Lagrange differs from later analysis in its assumptions about

mathematical existence. The relation of this calculus to geometry or arithmetic is one of

correspondence rather than representation. Its objects are formulas constructed from

variables and constants using elementary and transcendental operations and the com-

position of functions. When Euler and Lagrange use the term ‘‘continuous’’ function

they are referring to a function given by a single analytical expression; ‘‘continuity’’

means continuity of algebraic form. A theorem is often regarded as demonstrated if

verified for several examples, the assumption being that the reasoning in question could

be adapted to any other example one chose to consider. (Fraser 1989, p. 328)

Fraser’s hypothesis that in Euler and Lagrange, allegedly ‘‘a theorem is often regarded as

demonstrated if verified for several examples’’ is at variance with much that we know

about Euler’s mathematics. Thus, (Pólya 1941, p. 454) illustrates how Euler checked no

fewer than 40 coefficients of an identity involving infinite products and sums:

Y1

m¼1

ð1 � xmÞ ¼
Xm¼þ1

m¼�1
ð�1Þmxð3m2þmÞ=2

while clearly acknowledging that he had no proof of the identity.5

Euler’s proof of the infinite product formula for the sine function may rely on hidden

lemmas, but it is a sophisticated argument that is a far cry from anything that could be

described as ‘‘verification for several examples;’’ see Bair et al. (2016) for details.

Speaking of Euler in dismissive terms chosen by Fraser and endorsed by Ferraro borders on

disdain for the great masters of the past; cf. Sect. 2.6. In a similar vein, Ferraro claims that

‘‘for eighteenth-century mathematicians, there was no difference between finite and infinite

sums.’’ (Ferraro 1998, footnote 8, p. 294). Far from being a side comment, the claim is

emphasized a decade later in the Preface to his 2008 book: ‘‘a distinction between finite

and infinite sums was lacking, and this gave rise to formal procedures consisting of the

infinite extension of finite procedures.’’ (Ferraro 2008, p. viii).

We hope to have given sufficient indication of the kind of historical scholarship we wish

to distance ourselves from in the present work.

3 Simon Stevin

Simon Stevin (1548–1620) developed an adequate system for representing ordinary

numbers, including all the ones that were used in his time, whether rational or not.

Moreover his scheme for representing numbers by unending decimals works well for all of

them, as is well known.

Stevin developed specific notation for decimals (more complicated than the one we use

today) and did actual technical work with them rather than merely envisioning their

possibility, unlike some of his predecessors like E. Bonfils in 1350. Bonfils wrote that ‘‘the

5 At http://mathoverflow.net/questions/242379 the reader will find many other examples.

Toward a History of Mathematics Focused on Procedures 771

123

http://mathoverflow.net/questions/242379


unit is divided into ten parts which are called Primes, and each Prime is divided into ten

parts which are called Seconds, and so on into infinity’’ (Gandz 1936, p. 39) but his ideas

remained in the realm of the potential and he did not develop any notation to ground them.

Even earlier, the Greeks developed techniques for solving problems that today we may

solve using more advanced number systems. But to Euclid and Eudoxus, only 2,3,4,...were

numbers: everything else was proportion. The idea of attributing algebraic techniques in

disguise to the Greeks is known as Geometric Algebra and is considered a controversial

thesis. Our paper in no way depends on this thesis.

Stevin dealt with unending decimals in his book l’Arithmetique rather than the more

practically-oriented De Thiende meant to teach students to work with decimals (of course,

finite ones).

As far as using the term real to describe the numbers Stevin was concerned with, the

first one to describe the common numbers as real may have been Descartes. Representing

common numbers (including both rational and not rational) by unending decimals was to

Stevin not merely a matter of speculation, but the background of, for example, his work on

proving the intermediate value theorem for polynomials using subdivision into ten

subintervals of equal length.

Stevin’s accomplishment seems all the more remarkable if one recalls that it dates from

before Vieta, meaning that Stevin had no notation beyond the tool inherited from the

Greeks namely that of proportions a:b::c:d. He indeed proceeds to write down a cubic

equation as a proportion, which can be puzzling to an unpreared modern reader. The idea

of an equation that we take for granted was in the process of emerging at the time. Stevin

presented a divide-and-conquer algorithm for finding the root, which is essentially the one

reproduced by Cauchy 250 years later in Cours d’Analyse.

In this sense, Stevin deserves the credit for developing a representation for the real

numbers to a considerable extent, as indeed one way of introducing the real number field R

is via unending decimals. He was obviously unaware of the existence of what we call today

the transcendental numbers but then again Cantor and Dedekind were obviously unaware

of modern developments in real analysis.

Cantor, as well as Méray and Heine, sought to characterize the real numbers

axiomatically by means of Cauchy Completeness (CC). This property however is insuf-

ficient to characterize the real numbers; one needs to require the Archimedean property in

addition to CC. Can we then claim that they (i.e., Cantor, Heine, and Méray) really knew

what the real numbers are? Apparently, not any more than Stevin, if a sufficient axiom

system is a prerequisite for knowing the real numbers.

Dedekind (1872) was convinced he had a proof of the existence of an infinite set;6 see

(Ferreirós 2007, p. 111 and section 5.2, p. 244). Thus, Joyce comments on Dedekind’s

concept of things being objects of our thought and concludes:

That’s an innocent concept, but in paragraph 66 it’s used to justify the astounding

theorem that infinite sets exist. (Joyce 2005)

6 The proof exploits the assumption that there exists a set S of all things, and that a mathematical thing is an
object of our thought. Then if s is such a thing, then the thought, denoted s0, that ‘‘s can be an object of my
thought’’ is a mathematical object is a thing distinct from s. Denoting the passage from s to s0 by /,
Dedekind gets a self-map / of S which is some kind of blend of the successor function and the brace-
forming operation. From this Dedekind derives that S is infinite, QED.
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Do such aspects of the work of Cantor and Dedekind invalidate their constructions of the

real number system? Surely not. Similarly, Stevin’s proposed construction should not be

judged by the yardstick of awareness of future mathematical developments.

In the approach to the real numbers via decimals, one needs to identify each terminating

decimal with the corresponding string with an infinite tail of 9 s, as in 1.0 = 0.999... The

more common approaches to R are (1) via Dedekind cuts, or (2) via equivalence classes of

Cauchy sequences, an approach usually attributed, rather whimsically, to Georg Cantor,

even though the concept of an equivalence relation did not exist yet at the time. The

publication of Cantor (1872) was preceded by Heine (1872) by a few months but Heine

explicitly attributes the idea of Fundamentalrheine to Cantor.

Even earlier, Charles Méray published his ‘‘Remarques sur la nature des quantités

définies par la condition de servir de limites à des variables données’’ (Méray 1869); see

Dugac (1970) for a detailed analysis. However, Méray’s paper seems to have been

unknown among German mathematicians.

While Stevin had no idea of the set-theoretic underpinnings of the received ontology of

modern mathematics, procedurally speaking his approach to arithmetic was close to the

modern one, meaning that he envisioned a certain homogeneity among all numbers with no

preferential status for the rationals; see Malet (2006), Katz and Katz (2012b), and

Błaszczyk et al. (2013) for further details.

Stevin’s decimals cannot be placed on equal footing with the 1872 constructions, when

both representations and algebraic operations were developed as well as the continuity

axioms, while Stevin only gave the representation.

In 1923, A. Hoborski, a mathematician involved, like Stevin, in applied rather than pure

mathematics, developed an arithmetic of real numbers based upon unending decimal

representations Hoborski (1923).

4 Pierre de Fermat

Pierre de Fermat (1601/1607–1665) developed a procedure known as adequality for

finding maxima and minima of algebraic expressions, tangents to curves, etc. The name of

the procedure derives from the paqir�osg1 of Diophantus. Some of its applications amount

to variational techniques exploiting a small variation E. Fermat’s treatment of geometric

and physical applications suggests that an aspect of approximation is inherent in ade-

quality, as well as an aspect of smallness on the part of E. Fermat relied on Bachet’s

reading of Diophantus, who coined the term paqir�osg1 for mathematical purposes and

used it to refer to the way in which 1321 / 711 is approximately equal to 11 / 6. In

translating Diophantus, Bachet performed a semantic calque, passing from parisoō to

adaequo, which is the source for Fermat’s term rendered in English as adequality.

To give a summary of Fermat’s algorithm for finding the maximum or minimum value

of an algebraic expression in a variable A, we will write such an expression in modern

functional notation as f(A). One version of the algorithm can be broken up into five steps in

the following way:

(1) Introduce an auxiliary symbol E, and form f ðAþ EÞ;
(2) Set adequal the two expressions
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f(A+E) f(A)

(the notation ‘‘ ’’ for adequality is ours, not Fermat’s);

(3) Cancel the common terms on the two sides of the adequality. The remaining terms

all contain a factor of E;

(4) Divide by E (in a parenthetical comment, Fermat adds: ‘‘or by the highest common

factor of E’’);

(5) Among the remaining terms, suppress all terms which still contain a factor

of E. Solving the resulting equation for A yields the desired extremum of f.

In simplified modern form, the algorithm entails expanding the difference quo-

tient
f ðAþEÞ�f ðAÞ

E
in powers of E and taking the constant term.

There are two crucial points in trying to understand Fermat’s reasoning: first, the

meaning of ‘‘adequality’’ in step (2); and second, the justification for suppressing the terms

involving positive powers of E in step (5). As an example consider Fermat’s determination

of the tangent line to the parabola. To simplify Fermat’s notation, we will work with the

parabola y ¼ x2 thought of as the level curve

x2

y
¼ 1

of the two-variable function x2

y
. Given a point (x, y) on the parabola, Fermat seeks the

tangent line through the point, exploiting the geometric fact that by convexity, a

point (p, q) on the tangent line lies outside the parabola. He therefore obtains an inequality

equivalent in our notation to p2

q
[ 1, or p2 [ q. Here q ¼ y� E, and E is Fermat’s magic

symbol we wish to understand. Thus, we obtain

p2

y� E
[ 1: ð4:1Þ

At this point Fermat proceeds as follows:

(i) he writes down the inequality p2

y�E
[ 1, or p2 [ y� E;

(ii) he invites the reader to adégaler (to ‘‘adequate’’);

(iii) he writes down the adequality
x2

p2
y

y−E

(iv) he uses an identity involving similar triangles to substitute x
p
¼ yþr

yþr�E
where r is

the distance from the vertex of the parabola to the point of intersection of the

tangent to the parabola at y with the axis of symmetry,

(v) he cross multiplies and cancels identical terms on right and left, then divides out

by E, discards the remaining terms containing E, and obtains y ¼ r as the

solution.

What interests us are steps (i) and (ii). How does Fermat pass from an inequality to an

adequality? Giusti observes: ‘‘Comme d’habitude, Fermat est autant détaillé dans les

exemples qu’il est réticent dans les explications. On ne trouvera donc presque jamais des

justifications de sa règle des tangentes.’’ (Giusti 2009, p. 80) In fact, Fermat provides no

explicit explanation for this step. However, what he does is to apply the defining relation

for a curve to points on the tangent line to the curve. Note that here the quantity E, as
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in q ¼ y� E, is positive: Fermat did not have the facility we do of assigning negative

values to variables.

Fermat says nothing about considering points yþ E ‘‘on the other side’’, i.e., further

away from the vertex of the parabola, as he does in the context of applying a related but

different method, for instance in his two letters to Mersenne (see Strømholm 1968, p. 51),

and in his letter to Brûlart Fermat (1643). Now for positive values of E, Fermat’s

inequality (4.1) would be satisfied by a transverse ray (i.e., secant ray) starting

at (x, y) and lying outside the parabola, just as much as it is satisfied by a tangent ray

starting at (x, y). Fermat’s method therefore presupposes an additional piece of informa-

tion, privileging the tangent ray over transverse rays. The additional piece of information is

geometric in origin: he applies the defining relation (of the curve itself) to a point on the

tangent ray to the curve. Such a procedure is only meaningful when the increment E is

small.

In modern terms, we would speak of the tangent line being a ‘‘best approximation’’ to

the curve for a small variation E; however, Fermat does not explicitly discuss the size of E.

The procedure of ‘‘discarding the remaining terms’’ in step (v) admits of a proxy in the

hyperreal context in terms of the standard part principle (every finite hyperreal number is

infinitely close to a real number). Fermat does not elaborate on the justification of this step,

but he is always careful to speak of the suppressing or deleting the remaining term in E,

rather than setting it equal to zero. Perhaps his rationale for suppressing terms in E consists

in ignoring terms that don’t correspond to a possible measurement, prefiguring Leibniz’s

inassignable quantities. Fermat’s inferential moves in the context of his adequality are akin

to Leibniz’s in the context of his calculus.

While Fermat never spoke of his E as being infinitely small, the technique based on

what eventually came to be known as infinitesimals was known both to Fermat’s con-

temporaries like Galileo (see Bascelli 2014a, b) and Wallis (see (Katz and Katz

2012a, Section 13)) as well as Fermat himself, as his correspondence with Wallis makes

clear; see (Katz et al. 2013, Section 2.1).

Fermat was very interested in Galileo’s treatise De motu locali, as we know from his

letters to Marin Mersenne dated apr/may 1637, 10 august, and 22 october 1638. Galileo’s

treatment of infinitesimals in De motu locali is discussed in Settle (1966) and (Wisan

1974, p. 292).

The clerics in Rome forbade the doctrine of indivisibles on 10 august 1632 (a month

before Galileo was summonded to stand trial over heliocentrism); this may help explain

why the catholic Fermat may have been reluctant to speak of them explicitly.

The problem of the parabola could of course be solved purely in the context of poly-

nomials using the idea of a double root, but for transcendental curves like the cycloid

Fermat does not study the order of multiplicity of the zero of an auxiliary polynomial.

Rather, Fermat explicitly stated that he applied the defining property of the curve to points

on the tangent line: ‘‘Il faut donc adégaler (à cause de la propriété spécifique de la courbe

qui est à considérer sur la tangente)’’ (see Katz et al. 2013 for more details).

Fermat’s approach involves applying the defining relation of the curve, to a point on a

tangent line to the curve where the relation is not satisfied exactly. Fermat’s approach is

therefore consistent with the idea of approximation. His method involves a negligible

distance (whether infinitesimal or not) between the tangent and the original curve when one

is near the point of tangency. This line of reasoning is related to the ideas of the differential

calculus. Fermat correctly solves the cycloid problem by obtaining the defining equation of

the tangent line.
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5 James Gregory

In his attempt to prove the irrationality of p, James Gregory (1638–1675) broadened the

scope of mathematical procedures available at the time by introducing what he called a

sixth operation (on top of the existing four arithmetic operations as well as extraction of

roots). He referred to the new procedure as the termination of a (convergent) sequence:

‘‘And so by imagining this [sequence] to be continued to infinity, we can imagine the

ultimate convergent terms to be equal; and we call those equal ultimate terms the termi-

nation of the [sequence].’’ (Gregory 1667, p. 18–19) Referring to sequences of inscribed

and circumscribed polygons, he emphasized that

if the abovementioned series of polygons can be terminated, that is, if that ultimate

inscribed polygon is found to be equal (so to speak) to that ultimate circumscribed

polygon, it would undoubtedly provide the quadrature of a circle as well as a

hyperbola. But since it is difficult, and in geometry perhaps unheard-of, for such a

series to come to an end [lit.: be terminated], we have to start by showing some

Propositions by means of which it is possible to find the terminations of a certain

number of series of this type, and finally (if it can be done) a general method of

finding terminations of all convergent series.

Note that in a modern infinitesimal framework like Robinson (1966), sequences possess

terms with infinite indices. Gregory’s relation can be formalized in terms of the standard

part principle in Robinson’s framework. This principle asserts that every finite hyperreal

number is infinitely close to a unique real number.

If each term with an infinite index n is indistinguishable (in the sense of being infinitely

close) from some real number, then we ‘‘terminate the series’’ (to exploit Gregory’s ter-

minology) with this number, meaning that this number is the limit of the sequence. Gre-

gory’s definition of the coincidence of lengths of inscribed (In) and circumscribed (Cn)

polygons corresponds to a relation of infinite proximity in a hyperreal framework. Namely

we have In � Cn where � is the relation of being infinitely close (i.e., the difference is

infinitesimal), and the common standard part of these values is what is known today as the

limit of the sequence.

Our proposed formalisation does not mean that Gregory is a pre-Robinsonian, but rather

indicates that Robinson’s framework is more helpful in understanding Gregory’s proce-

dures than a Weierstrassian framework.

6 Gottfried Wilhelm von Leibniz

Gottfried Wilhelm Leibniz (1646–1716) was a co-founder of infinitesimal calculus. When

we trace the diverse paths through mathematical history that have led from the infinitesimal

calculus of the seventeenth century to its version implemented in Abraham Robinson’s

framework in the twentieth, we notice patterns often neglected in received historiography

focusing on the success of Weierstrassian foundations.

We have argued that the final version of Leibniz’s infinitesimal calculus was free of

logical fallacies, owing to its procedural implementation in ZFC via Robinson’s

framework.
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6.1 Berkeley on Shakier Ground

Both Berkeley as a philosopher of mathematics, and the strength of his criticisms of

Leibniz’s infinitesimals have been overestimated by many historians of mathematics. Such

criticisms stand on shakier ground than the underestimated mathematical and philosophical

resources available to Leibniz for defending his theory. Leibniz’s theoretical strategy for

dealing with infinitesimals includes the following aspects:

(1) Leibniz clearly realized that infinitesimals violate the so-called Archimedean

property7 which Leibniz refers to as Euclid V.5;8 in a letter to L’Hospital he

considers infinitesimals as non-Archimedean quantities, in reference to Euclid’s

theory of proportions (De Risi 2016, p. 64, note 15).

(2) Leibniz introduced a distinction between assignable and inassignable numbers.

Ordinary numbers are assignable while infinitesimals are inassignable. This

distinction enabled Leibniz to ground the procedures of the calculus relying on

differentials on the transcendental law of homogeneity (TLH), asserting roughly that

higher order terms can be discarded in a calculation since they are negligible (in the

sense that an infinitesimal is negligible compared to an ordinary quantity like 1).

(3) Leibniz exploited a generalized relation of equality up to. This was more general

than the relation of strict equality and enabled a formalisation of the TLH (see

previous item).

(4) Leibniz described infinitesimals as useful fictions akin to imaginary numbers.

Leibniz’s position was at variance with many of his contemporaries and allies who

tended to take a more realist stance. We interpret Leibnizian infinitesimals as pure

fictions at variance with a post-Russellian logical fiction reading involving a

concealed quantifier ranging over ordinary values; see Bascelli et al. (2016).

(5) Leibniz formulated a law of continuity (LC) governing the transition from the realm

of assignable quantities to a broader one encompassing infinite and infinitesimal

quantities: ‘‘il se trouve que les règles du fini réussissent dans l’infini... et que vice

versa les règles de l’infini réussissent dans le fini.’’ Leibniz (1702)

(6) Meanhile, the TLH returns to the realm of assignable quantities.

The relation between the two realms can be represented by the diagram of Fig. 1.

Leibniz is explicit about the fact that his incomparables violate Euclid V.5 (when

compared to other quantities) in his letter to l’Hospital from the same year: ‘‘J’appelle

grandeurs incomparables dont l’une multipliée par quelque nombre fini que ce soit, ne

sçauroit exceder l’autre, de la même facon qu’Euclide la pris dans sa cinquieme definition

du cinquieme livre.’’9 (Leibniz 1695a, p. 288)

6.2 Arthur’s Errors

The claim in (Arthur 2013, p. 562) that allegedly ‘‘Leibniz was quite explicit about this

Archimedean foundation for his differentials as ‘incomparables’ ’’ (emphasis added) is

therefore surprising. Arthur fails to explain his inference of an allegedly Archimedean

7 In modern notation this can be expressed as ð8x; y[ 0Þð9n 2 NÞ½nx[ y�.
8 In modern editions of The Elements this appears as Definition V.4.
9 This can be translated as follows: ‘‘I use the term incomparable magnitudes to refer to [magnitudes] of
which one multiplied by any finite number whatsoever, will be unable to exceed the other, in the same way
[adopted by] Euclid in the fifth definition of the fifth book [of the Elements].’’
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nature of the Leibnizian continuum. Therefore we can only surmise the nature of Arthur’s

inference, apparently based on the reference to Archimedes himself by Leibniz. However,

the term Archimedean axiom for Euclid V.4 was not coined until the 1880s (see Stolz

1883), about two centuries after Leibniz. Thus, Leibniz’s mention of Archimedes could not

refer to what is known today as the Archimedean property or axiom. Rather, Leibniz

mentions an ancient authority merely to reassure the reader of the soundness of his

methods. Arthur’s cryptic claim concerning the passage mentioning Archimedes (i.e., that

it is indicative of an allegedly Archimedean foundation for the Leibnizian differentials)

borders on obfuscation.

The 1695 letter to l’Hospital (with its explicit mention of violation of Euclid Definition

V.4 by his incomparables) is absent from Arthur’s bibliography.

Leading Leibniz scholar Jesseph in Jesseph (2015) largely endorses Bos’ interpretation

of Leibnizian infinitesimals as fictions, at variance with Ishiguro, Arthur, and surprisingly

many other historians who back the syncategorematic reading in substance if not in name.

Modern proxies for Leibniz’s procedures expressed by LC and TLH are, respectively,

the transfer principle and the standard part principle in Robinson’s framework. Leibniz’s

theoretical strategy for dealing with infinitesimals and infinite numbers was explored in the

articles (Katz and Sherry 2012, 2013; Sherry and Katz 2014; Bascelli et al. 2016).

7 Leonhard Euler

Leonhard Euler (1707–1783) routinely relied on procedures exploiting infinite numbers in

his work, as in applying the binomial formula to an expression raised to an infinite power

so as to obtain the development of the exponential function into power series.

Euler’s comments on infinity indicate an affinity with Leibnizian fictionalist views:

‘‘Even if someone denies that infinite numbers really exist in this world, still in mathe-

matical speculations there arise questions to which answers cannot be given unless we

admit an infinite number.’’ (Euler 2000, § 82).

Euler’s dual notion of arithmetic and geometric equality which indicate that, like

Leibniz, he was working with generalized notions of equality. Thus, Euler wrote:

Since the infinitely small is actually nothing, it is clear that a finite quantity can

neither be increased nor decreased by adding or subtracting an infinitely small

quantity. Let a be a finite quantity and let dx be infinitely small. Then aþ dx

and a� dx, or, more generally, a� ndx, are equal to a. Whether we consider the

relation between a� ndx and a as arithmetic or as geometric, in both cases the ratio

turns out to be that between equals. The arithmetic ratio of equals is clear:

Since ndx ¼ 0, we have a� ndx� a ¼ 0. On the other hand, the geometric ratio is

clearly of equals, since a�ndx
a

¼ 1. From this we obtain the well-known rule that the

infinitely small vanishes in comparison with the finite and hence can be neglected.

For this reason the objection brought up against the analysis of the infinite, that it

lacks geometric rigor, falls to the ground under its own weight, since nothing is

Fig. 1 Leibniz’s law of continuity (LC) takes one from assignable to inassignable quantities, while his
transcendental law of homogeneity (TLH) returns one to assignable quantities
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neglected except that which is actually nothing. Hence with perfect justice we can

affirm that in this sublime science we keep the same perfect geometric rigor that is

found in the books of the ancients. (Euler 2000, § 87)

Like Leibniz, Euler did not distinguish notationwise between different modes of

comparison, but we could perhaps introduce two separate symbols for the two relations,

such as ≈ for the arithmetic comparison and the Leibnizian symbol for the geometric

comparison. See Bair et al. (2016) for further details.

8 Augustin-Louis Cauchy

A. L. Cauchy (1789–1857)’s significance stems from the fact that he is a transitional figure,

who championed greater rigor in mathematics. Historians enamored of set-theoretic

foundations tend to translate rigor as epsilon-delta, and sometimes even attribute an

epsilon-delta definition of continuity to Cauchy.

In reality, to Cauchy rigor stood for the traditional ideal of geometric rigor, meaning the

rigor of Euclid’s geometry as it was admired throughout the centuries. What lies in the

background is Cauchy’s opposition to certain summation techniques of infinite series as

practiced by Euler and Lagrange without necessarily paying attention to convergence. To

Cauchy rigor entailed a rejection of these techniques that he referred to as the generality of

algebra.

In his textbooks, Cauchy insists on reconciling rigor with infinitesimals. By this he

means not the elimination of infinitesimals but rather the reliance thereon, as in his defi-

nition of continuity. As late as 1853, Cauchy still defined continuity as follows in a

research article:

...une fonction u de la variable réelle x sera continue, entre deux limites données

de x, si, cette fonction admettant pour chaque valeur intermédiaire de x une valeur

unique et finie, un accroissement infiniment petit attribué à la variable produit tou-

jours, entre les limites dont il s’agit, un accroissement infiniment petit de la fonction

elle-même. (Cauchy 1853) [emphasis in the original]

In 1821, Cauchy denotes his infinitesimal a and requires f ðxþ aÞ � f ðxÞ to be infinitesimal

as the definition of the continuity of f. In differential geometry, Cauchy routinely defined

the center of curvature of a plane curve by intersecting a pair of infinitely close normals to

the curve. An approach to differential geomety exploiting infinitesimals was developed in

Nowik and Katz (2015). These issues are explored further in Cutland et al. (1988),

Katz and Katz (2011), Borovik and Katz (2012), Katz and Tall (2013), Bascelli et al.

(2014), and Błaszczyk et al. (2016b).

9 Conclusion

We have argued that a history of mathematics that views the past through the lens of

Weierstrassian foundations is misguided. Not only are these developments of 140 years

ago less central to mathematical practice today, but a historical approach that focuses on

foundations distorts the actual work of past mathematicians. A more fruitful approach is to

examine the procedures mathematicians developed, which had little or nothing to do with
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questions of foundations. Modern mathematical conceptions of quantity, approximation,

and particularly infinitesimals, have roots in the procedures developed by leading math-

ematicians from the 16th through the nineteenth century.

By examining the procedures of a few mathematical masters of the past, we have argued

that the real accomplishments of the calculus and analysis have been based primarily on

the elaboration of new techniques rather than quest for ultimate foundations. The masters

are best understood through the study of their procedures rather than their contribution to

what some historians perceive to be a heroic march toward ultimate foundations.
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Giusti, E. (2009) Les méthodes des maxima et minima de Fermat. Annales de la Faculté des Sciences de
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