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Some new results on Borel

irreducibility of equivalence relations

V. G. Kanovei and M. Reeken

Abstract. We prove that orbit equivalence relations (ERs, for brevity) of gener-
ically turbulent Polish actions are not Borel reducible to ERs of a family which
includes Polish actions of S∞ (the group of all permutations of N) and is closed
under the Fubini product modulo the ideal Fin of all finite sets and under some
other operations. We show that T2 (an equivalence relation called the equality
of countable sets of reals) is not Borel reducible to another family of ERs which
includes continuous actions of Polish CLI groups, Borel equivalence relations with
Gδσ classes and some ideals, and is closed under the Fubini product modulo Fin.
These results and their corollaries extend some earlier irreducibility theorems of
Hjorth and Kechris.

Introduction

Classification problems for different types of mathematical structure have been
at the centre of interest in descriptive set theory for the last 15 years. Suppose that
X is a class of mathematical structures, identified modulo an equivalence relation E.
This can be, for example, countable groups modulo the isomorphism relation, or
unitary operators on a fixed space Cn modulo conjugacy, or probability measures
on a fixed Polish space modulo the identification of measures having the same null
sets, or, for instance, reals modulo Turing reducibility. (These examples are taken
from the book [6] and the survey [12], where many more examples are given.)
Suppose that Y is another class of mathematical structures, identified modulo an
equivalence relation F. The classification problem is to decide whether there is a
definable, or effective, injection Θ: X/E → Y/F. Such a map Θ may be regarded
as a classification of objects in X in terms of objects in Y in a way which respects
the quotients over E and F. Its existence can be a result of great importance, for
instance when the objects in Y are of a simpler mathematical structure than those
in X.
In many cases, it turns out that the classes of structures X and Y can be regarded

as Polish spaces (that is, separable complete metric spaces), so that E, F become
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Borel relations or, more generally, analytic relations (as sets of pairs), and the
reduction maps are usually required to be Borel.1 In this case the problem can
be studied by the methods of descriptive set theory, where it takes the following
form. Let E, F be Borel or analytic equivalence relations on Polish spaces X,
Y respectively. Does there exist a Borel reduction of E to F, that is, a Borel
map ϑ : X → Y satisfying xEx′ ⇐⇒ ϑ(x)Fϑ(x′) for all x, x′ ∈ X? If such a map
ϑ exists, then E is said to be Borel reducible to F. The studies of Borel and
analytic equivalence relations (ERs, for brevity) in terms of Borel reducibility by
the methods of descriptive set theory revealed a remarkable structure of reducibility
and irreducibility theorems between ERs of different types. (We cite the surveys
[2], [5]–[7], [12].) Our paper lies in this direction.

Our main theorem, Theorem 1, establishes the Borel irreducibility of a large class
of ERs to another class. Class 1 consists of ERs induced by generically turbulent
Polish actions.2 Hjorth [6] proved that ERs of this class are not Borel reducible to
ERs of Class 2, which consists of ERs induced by Polish actions of S∞, the group of
all permutations of N. (There is another form of this result: generically turbulent
ERs are not classifiable by countable structures; see the comments in § 3.3.)
A possible proof of Hjorth’s theorem is as follows. First, if the given ER is Borel

reducible to an ER in Class 2, then it is also Borel reducible, at least on a comeagre
set, to an ER in Class 3,3 which consists of all ERs that can be obtained from equal-
ities on Polish spaces by iterating the operation of countable power E∞. Second
(this involves Hjorth’s turbulence theory), no ER of Class 1 is Borel reducible to an
ER of Class 3, even on a comeagre set. Our Theorem 1 generalizes the second part.
We consider Class 4, which contains all ERs that can be obtained from equalities
on Polish spaces by the following operations: 1) countable union of ERs in the
same space (if the result is an ER); 2) Fubini product

∏
k∈N Ek/Fin modulo

the ideal Fin of all finite subsets of N; 3) the countable power E∞ (see § 1.2 for
precise definitions).

Of course, Class 4 includes Class 3, but it also contains many other ERs, espe-
cially those defined by Fubini products. For example, it contains all ERs induced
by generalized Fréchet ideals, indecomposable ideals, and Weiss ideals (see § 1.2).

Theorem 1. ERs of Class 1 are not Borel reducible (or even reducible by Baire
measurable functions) to ERs of Class 4.

The proof (§ 2) involves induction on the construction of ERs of Class 4 by the
operations indicated. The proof is based on the techniques of turbulence theory. In
particular, the key step consists in proving that all ERs of Class 1 are generically
ergodic with respect to ERs of Class 4 (Theorem 6). As an application of this
result, we derive the theorem of Hjorth mentioned above by a few rather simple
arguments in § 3.

1That is, they have Borel graphs. One can also consider Baire measurable maps and reduc-
tions satisfying certain algebraic requirements [2], as well as ∆12 and more complicated

reductions [9], [10]. However, these are not considered in this paper.
2That is, all orbits (modulo first category) and even local orbits are somewhere dense (see

Definition 5).
3This was introduced essentially by Friedman [3], [4].
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Among the inhabitants of Class 1 we have ERs of the form xEI y if and only
if x∆y ∈ I for all x, y ∈ P(N), where I is an ideal on N. Any ideal I ⊆ P(N) is
obviously an Abelian group with the symmetric difference ∆ as the group operation,
and EI is induced by the shift action of I on P(N) by ∆. Kechris [11] has shown that
this action is turbulent provided that I is a Borel P -ideal,4 with a few exceptions
mentioned below. This enables us to prove the following result (see § 3.1) as a
corollary of Theorem 1.

Theorem 2. If Z is a non-trivial 5 Borel P -ideal on N, then EZ is not Borel
reducible to an ER of Class 4 unless Z is the ideal Fin of finite sets or a trivial
variation of Fin, or Z is isomorphic to I3 = 0 × Fin via a bijection between the
underlying sets.

The Borel P -ideals form a widely studied class, which includes, for instance,
Fin, the ideal I3 = 0× Fin of all sets x ⊆ N2 such that every cross-section (x)n =
{k : 〈n, k〉 ∈ x} is finite, and trivial variations of Fin, that is, ideals of the form
{x ∈ P(N) : x∩W ∈ Fin}, where W ⊆ N is infinite (see § 1.3), as well as summable
ideals, density ideals, and many others (see [2], [15]). It is easy to see that Class 4
contains the ERs E0 = EFin and E3 = EI3 (induced by the ideals Fin and I3),
and the ERs induced by trivial variations of Fin. Thus the exclusion of Fin, I3, and
trivial variations of Fin in Theorem 2 is necessary and fully motivated.
We note that a weaker form of Theorem 2 (with Class 3 instead of Class 4) was

essentially proved by Kechris [11]. A very particular result was announced in [3]:
let EZ0 be the ER induced by the null density ideal Z0. Then EZ0 is not Baire
reducible to any ER of Class 3 (a proof is given in [4]).
The final section, § 4, represents an attempt to obtain results in the opposite

direction: ERs of Class 4 are not Borel reducible to, say, turbulent ERs or other ERs
of a different nature. This area is relatively less developed, and perhaps the only
known theorem of this sort was proved by Hjorth [5]: let T2 be the ER on countable
sequences of the reals defined by {xn}T2{yn} if and only if {xn : n ∈ N} =
{yn : n ∈ N}.6 Then T2 is not Borel reducible to any ER induced by a continuous
action of a Polish group which admits a compatible complete left-invariant metric
(a CLI group; examples include Polish Abelian groups). It might be expected that
T2 is not even Borel reducible to any Borel action of a Borel Abelian group. But
this problem is still open, even with respect to the shift ∆-actions of Borel ideals.
One approach to this problem is connected with the following condition (intro-

duced implicitly in [5]) on an ER E: for any forcing notion P and any P-term ξ, if
P× P forces ξleft Eξright, then there is a real x in the ground universe such that P
forces xEξ. We say that an ER is pinned if it satisfies this condition. Note that
T2 is not pinned and is not Borel reducible to any analytic pinned ER. We prove
the following facts in § 4.
1) ERs induced by Polish actions of CLI groups are pinned. (Our proof is a

simplification of Hjorth’s proof in [5].)

4An ideal I on N is called a P -ideal if, for any sequence of sets xn ∈ I, there is a set x ∈ I such
that xn \ x is finite for any n.

5That is, it contains all singletons {n}, n ∈ N, and is different from P(N).
6T2 is sometimes denoted by F2 [6] and is often called equality of countable sets of reals. It

belongs to Class 3 and is one of the most important Borel ERs.
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2) Borel ERs whose equivalence classes are Gδσ-sets are pinned. (This is based
on an idea communicated to us by Hjorth.)
3) ERs associated with exhaustive ideals of sequences of submeasures on N (not

all of them admitting a Polish topology compatible with ∆) are pinned.
4) Fubini products of analytic pinned ERs modulo Fin are pinned.
None of these ERs can Borel reduce T2. In particular, all ERs induced by Fréchet

ideals are pinned and do not Borel reduce T2.

§ 1. Preliminaries
This section contains a review of the basic notation involved in the statements

and proofs of Theorems 1 and 2.

1.1. Descriptive set theory. We assume some degree of knowledge of the theory
of Borel and analytic sets in Polish spaces (that is, complete separable metric
spaces). We recall that analytic sets (also known as Suslin sets, A-sets, or Σ11) are
continuous images of Borel sets. Every Borel set is analytic, but the converse is not
true (in uncountable Polish spaces).
A map f (between Borel sets in Polish spaces) is said to be Borel if its graph

is a Borel set or, equivalently, if all f-pre-images of open sets are Borel. A map
f : X → Y is said to be Baire measurable if all f-pre-images of open subsets of Y
possess the Baire property inX. (In other words, they are equal to open sets modulo
meagre sets, that is, sets of the first category.) Any such map is continuous on a
dense Gδ-set D ⊆ X (X, Y are supposed to be Polish).
It is easy to see that superpositions of Borel maps are also Borel maps. Generally

speaking, this is not true for Baire measurable maps. However, we have a useful
partial result.

Lemma 3. Let X, Y, Z be Polish spaces, f : X→ Y a Baire measurable map, and
g : Y→ Z a Borel map. Then the superposition f ◦ g : X→ Z is Baire measurable.
Proof. By definition, g-pre-images of open subsets of Z are Borel in Y, and their
f-pre-images are Borel combinations of sets having the Baire property.

1.2. Equivalence relations. We denote by D(X) the ER of equality on X.
Let E be an ER on a set X. The E-class of any element y ∈ X is defined as

[y]E = {x ∈ X : y Ex}. A set Y ⊆ X is said to be pairwise E-equivalent if xE y
holds for all x, y ∈ Y .
Let E, F be ERs on Polish spaces X, Y respectively. We make the following

definitions.
(i) E �B F (Borel reducibility, sometimes denoted by X/E �B Y/F) means that

there is a Borel map ϑ : X→ Y (called a reduction) such that xE y ⇐⇒ ϑ(x)Fϑ(y)
for all x, y ∈ X.
(ii) E ∼B F means that E �B F and F �B E (bi-reducibility);
(iii) E <B F means that E �B F and F �B E (strict reducibility).
We consider the following operations over ERs on Polish spaces.
(e1) The countable union (if it results in an ER) and the countable intersection

of ERs on the same space.
(e2) The countable disjoint union F =

∨
k∈N Fk of ERs Fk on Polish spaces Sk is

the ER on the space S =
⋃
k({k}×Sk) (whose Polish topology is generated by sets
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of the form {k} × U , where U ⊆ Sk is open) defined as follows: 〈k, x〉F 〈l, y〉 if and
only if k = l and x Fk y. 7

(e3) The product P =
∏
k Fk of ERs Fk on spaces Sk is the ER on

∏
k Sk defined

as follows: xP y if and only if xk Fk yk for all k. In particular, if E, F are ERs on X,
Y respectively, then P = E× F is defined on X×Y by saying that 〈x, y〉P 〈x′, y′〉 if
and only if xEx′ and y F y′.
(e4) The Fubini product F =

∏
k∈N Fk/I of ERs Fk on spaces Sk modulo an

ideal I on N is the ER on the product space
∏
k∈N Sk defined as follows: x F y if

and only if {k : xk �Ek yk} ∈ I;
(e5) The countable power F∞ of an ER F on S is the ER on SN defined as follows:

x F∞ y if and only if {[xk]F : k ∈ N} = {[yk]F : k ∈ N}, so that for every k there
is l such that xk F yl, and for every l there is k such that xk F yl.
We note that the operations (e1), (e2), (e3), (e5), and (e4) with I = Fin

always yield Borel (resp. analytic) ERs provided that the given ERs are Borel
(resp. analytic).
These operations are not independent. In particular,

⋂
k∈N Fk is Borel reducible

to
∏
k Fk via themapx �→〈x, x, x, . . .〉 and the disjoint union

∨
k∈N Fk is reducible to

D(N)×
∏
k Fk via the map 〈k, x〉 �→ 〈k, x0, . . . , xk−1, x, xk+1, . . .〉, where the xk ∈ Sk

are fixed once and for all. The product
∏
k∈N Fk itself is expressible in terms of the

Fubini product modulo Fin. Indeed, let f : N onto→ N be any map such that f−1(n)
is infinite for each n. We put Ek = Ff(k). For any x = 〈x0, x1, x2, . . .〉 ∈

∏
k Sk

(where Sk is the domain of Fk) we put ϑ(x) = 〈y0, y1, y2, . . .〉, where yk = xf(k).
Then ϑ is a Borel reduction of

∏
k Fk to

∏
k Ek/Fin. However the Fubini product

and the countable power are certainly not reducible to each other, and we know
little about the countable union in (e1).
It follows that Class 4 (mentioned in Theorems 1 and 2) is the smallest class of

ERs that contains the equalities D(S) on Polish spaces S and is closed under the
operations (e1)–(e5) (with I = Fin in (e4)), and all ERs of Class 4 are Borel ERs
on Polish spaces.
Class 4 contains many interesting ERs. For instance, it contains the family Tα,

α < ω1, of ERs introduced by Friedman [4]. This family begins with T0 = D(N)
(the equality relation on N) and satisfies Tα+1 = T

∞
α for all α and Tλ =

∨
α<λTα

for limit ordinals λ. Thus domT1 = NN, and xT1y if and only if ranx = ran y for
x, y ∈ NN. Using the map ϑ(x) = χ, where χ is the characteristic function of ranx,
we see that T1 �B D(2N). Let us prove the converse. Given any a ∈ 2N, let β(a)
be the unique increasing bijection N onto→ |a| = {k : a(k) = 1} if |a| is infinite. If
|a| = {k0, . . . , kn}, then we put β(a)(i) = ki for i < n and β(a)(i) = kn for i � n.
The function β shows that D(2N) �B T1, whence T1 ∼B D(2N). It follows easily
that T2 ∼B D(2N)

∞
. The right-hand side is often taken as the definition of the

ER T2, and this is why T2 is usually called equality of countable sets of reals.

1.3. Ideals. An ideal on a set A is any set ∅ �= I ⊆ P(A) which is closed under ∪
and satisfies x ∈ I ∧ y ⊆ x =⇒ y ∈ I. Each ideal I determines an ER EI on P(A)
as follows: X EI Y if and only if X∆Y ∈ I. We note that EI is a Borel ER provided

7If Sk are pairwise disjoint and open in S
′ =
⋃
k Sk, then we can equivalently define F =

∨
k Fk

on S′ by saying that xF y if and only if x, y belong to the same Sk and xFk y.
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that I is a Borel ideal. Many important ERs arise in this way, among them

E0 = EFin, where Fin = {x ⊆ N : x is finite};
E1 = EI1 , where I1 = Fin×0 =

{
x ⊆ N2 : {k : (x)k �= ∅} ∈ Fin

}
;

E3 = EI3 , where I3 = 0× Fin =
{
x ⊆ N2 : ∀ k

(
(x)k ∈ Fin

)}
.

These three ERs belong to Class 4. 8 Ideals of the form {x ∈ P(N) : x ∩W ∈ Fin},
where W ⊆ N is infinite and coinfinite, are called trivial variations of Fin. They
also produce ERs of Class 4.
We write I �B J, I ∼B J, and so on if EI �B EJ, EI ∼B EJ, and so on,

respectively.
The Fubini product

∏
k∈N Jk/I of ideals Jk on sets Bk over an ideal I on N is the

ideal of all sets y ⊆ B = {〈k, b〉 : k ∈ N ∧ b ∈ Bk} such that the set {k : (y)k /∈ Jk}
belongs to I, where (y)k = {b : 〈k, b〉 ∈ y} is a cross-section of y. (Compare with
the Fubini product of ERs.) In particular, if I, J are ideals on N, B respectively,
then I ⊗ J =

∏
k∈N Jk/I, where Jk = J for all k ∈ N. Thus I⊗ J is the ideal of all

sets y ⊆ N ×B such that {k : (y)k /∈ J} ∈ I.
An ideal I on N is called a P -ideal if for any sequence of sets xn ∈ I there is a

set x ∈ I such that xn \ x ∈ Fin for all n. For example, Fin and I3 (but not I1) are
P -ideals.
The class of P -ideals admits different characterizations. A submeasure on a set A

is any map ϕ : P(A) → [0,+∞] such that ϕ(∅) = 0, ϕ({a}) < +∞ for all a, and
ϕ(x) � ϕ(x ∪ y) � ϕ(x) + ϕ(y). A submeasure ϕ on N is lower semicontinuous
(or l. s. c., for brevity) if ϕ(x) = supn ϕ(x ∩ [0, n)) for all x ∈ P(N). Solecki [15]
proved that the set of all Borel P -ideals coincides with the set of all ideals of the
form Exhϕ = {x ∈ P(N) : ϕ∞(x) = 0}, where ϕ is a l. s. c. submeasure on N and
ϕ∞(x) = infn(x ∩ [n,∞)). He also proved that Borel P -ideals are the same as
Polishable ideals, that is, those admitting a Polish group topology with ∆ as the
group operation.
Kechris [11] proved that the shift action of any Borel P -ideal I (except for Fin,

I3, and trivial variations of Fin) is generically turbulent, whence the corresponding
ER EI belongs to Class 1.
The Fréchet family is the smallest family Fr of ideals that contains Fin and is

closed under Fubini products
∏
n∈N In/Fin. For instance, Fr contains the iterated

Fréchet ideals Jα, which are defined by induction on α < ω1 as follows: J0 = Fin,
Jα+1 = Fin⊗Jα for all α, and Jλ =

∏
α<λ Jα/Finλ for any limit λ, where Finλ

is the ideal of all finite subsets of λ. (A modification of this construction in [8]
involves an ω-sequence cofinal in λ, fixed for any limit λ.)
By definition, if I ∈ Fr, then EI is an ER of Class 4.
Let otpX be the order type of X ⊆ Ord. For any α, γ < ω1 we consider the set

Iγα = {A ⊆ α : otpA < ωγ}

(which is non-trivial only if α � ωγ). This is an ideal because ordinals of the
form ωγ are not sums of pairs of smaller ordinals. These ideals are said to be

8To show that E0 belongs to Class 4, we take, for all k, equality on a 2-element set as Fk
in (e4). To see that E3 belongs to Class 4, we take Pk = E0 in (e3).
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indecomposable, especially in the case when α = ωγ . We do not know whether ideal
Iγα is really isomorphic to an ideal in Fr, but it can be shown that every I

γ
α is Borel

reducible to an ideal in Fr. We similarly consider the Weiss ideals

Wγα = {A ⊆ α : |A|CB < ωγ}

(non-trivial only if α � ωωγ ), where |X|CB is the Cantor–Bendixon rank of the set
X ⊆ Ord (see [2], § 1.14). They are also Borel reducible to ideals in Fr.

§ 2. Proof of Theorem 1
The proof of Theorem 1 employs the following auxiliary notions. Let E, F be

ERs on Polish spaces X, Y respectively. A map ϑ : X→ Y is said to be
(i) (E, F)-invariant if xE y =⇒ ϑ(x)Fϑ(y) for all x, y ∈ X;
(ii) generically 9 (E, F)-invariant if we have xEy =⇒ ϑ(x)Fϑ(y) for all x, y in

a comeagre set X ⊆ X;
(iii) generically F-constant if ϑ(x)Fϑ(y) holds for all x, y in a comeagre subset

of the space X.
Finally, E is said to be generically F-ergodic (see [6], § 3.1) if every Baire mea-

surable (E, F)-invariant function is generically F-constant.

Proposition 4. (i) If E is generically F-ergodic and has no comeagre equivalence
classes, then E is not reducible to F by a Baire measurable map.
(ii) If E is generically F-ergodic, then every Baire measurable generically (E, F)-

invariant function is generically F-constant.

We demonstrate below that any ER induced by a Polish turbulent action is
generically F-ergodic for any ER F in Class 4.

2.1. Local orbits and turbulence. An action of a group G on X is any map
a : G × X → X (usually written as a(g, x) = g · x) such that 1) e · x = x and
2) g · (h · x) = (gh) · x. Then 〈X; a〉 (as well as X itself) is called a G-space. A
continuous action of a Polish group 10 G on a Polish space X is called a Polish
action, and X itself is called a Polish G-space.
Any action a of G on X induces the orbit ER EXa = E

X

G on X as follows: xE
X

G y
if and only if there is g ∈ G with y = g · x. Its equivalence classes

[x]G = [x]EX
G

= {y : ∃ g ∈ G(g · x = y)}

are G-orbits. Induced ERs of Polish actions are analytic (as sets of pairs) and
sometimes even Borel ([1], § 7).
Suppose that a group G acts on a space X. If G ⊆ G and X ⊆ X, then we define

RXG = {〈x, y〉 ∈ X2 : ∃ g ∈ G(x = g · y)},

and let ∼XG denote the ER-hull of R
X
G , that is, the ⊆-least ER on X such that

xRXG y =⇒ x ∼XG y. In particular, ∼XG= E
X

G, but we generally have ∼XG� E
X

G � X.
We put O(x,X,G) = [x]∼XG = {y ∈ X : x ∼

X
G y} for x ∈ X. This is the local orbit

of x. In particular, [x]G = [x]EX
G

= O(x,X,G) is the full G-orbit of x ∈ X.

9In this context, a property is referred to as “generic” if it holds on a comeagre domain.
10That is, a topological group whose underlying set is a Polish space, and the group operation

and the inverse map are continuous.
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Definition 5 (this version is taken from Kechris [13], § 8). Suppose that X is a
Polish space and G is a Polish group acting continuously on X.
1) A point x ∈ X is said to be turbulent if, for any open non-empty set X ⊆ X

containing x and for any neighbourhood G ⊆ G (not necessarily a subgroup) of 1G,
the local orbit O(x,X,G) is somewhere dense (that is, not nowhere dense) in X.
2) An orbit [x]G is said to be turbulent if the point x is turbulent (then all points

y ∈ [x]G are turbulent).
3) The action (of G on X) is turbulent and X is a turbulent Polish G-space

if all orbits are dense and meagre. The action is generically turbulent and X is a
generically turbulent Polish G-space if the union of all dense, turbulent, and meagre
orbits [x]G is a comeagre set.

The ERs induced by generically turbulent Polish actions comprise Class 1 in
Theorem 1. To prove Theorem 1, we shall show that all ERs in Class 1 are generi-
cally F-ergodic for any F in Class 4. The proof is by induction on the construction
of ERs in Class 4. There is a slight inconvenience: we have to consider a somewhat
stronger property in the induction scheme.

Suppose that F is an ER on a Polish space. An action of G on X is said to be
hereditarily generically F-ergodic if the ER ∼XG is generically F-ergodic whenever
X ⊆ X is a non-empty open set, G ⊆ G is a non-empty open set containing 1G, and
the local orbits O(x,X,G) are dense inX for x belonging to a comeagre subset ofX.
This obviously implies generic F-ergodicity provided that the action is generically
turbulent.

Theorem 6. Suppose that G is a Polish group and X is a generically turbulent
Polish G-space. Then the relation EXG is hereditarily generically F-ergodic. Hence,
by Proposition 4, it is not reducible to any ER F in Class 4 by a Baire measurable
map.

2.2. Preliminaries for the proof of Theorem 6. We begin with two rather
simple technical facts related to turbulence.

Lemma 7. Under the assumptions of Theorem 6, suppose that X ⊆ X is a non-
empty open set, G ⊆ G is a neighbourhood of 1G, and O(x,X,G) is dense in X for
x belonging to a comeagre subset of X. If U, U ′ ⊆ X are non-empty open sets and
D ⊆ X is comeagre in X, then there are points x ∈ D ∩ U and x′ ∈ D ∩ U ′ such
that x ∼XG x′.

Proof. Under our assumptions there are points x0 ∈ U and x′0 ∈ U ′ with x0 ∼XG x′0,
that is, there are elements g1, . . . , gn ∈ G satisfying x′0 = gngn−1 . . . g1 · x0 and
gk . . . g1 · x0 ∈ X for all k � n. Since the action under consideration is continuous,
there is a neighbourhood U0 ⊆ U of x0 such that gk . . . g1 ·x ∈ X and gngn−1 . . . g1 ·
x ∈ U2 for all x ∈ U0. Since D is comeagre, it is clear that there is x ∈ U0 ∩D such
that x′ = gngn−1 . . . g1 · x ∈ U ′ ∩D. The lemma is proved.

Lemma 8. Under the assumptions of Theorem 6, for any open non-empty sets
U ⊆ X and G ⊆ G with 1G ∈ G, there is an open non-empty set U ′ ⊆ U such that
the local orbits O(x, U ′, G) are dense in U ′ for x belonging to a comeagre subset
of U ′.
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Proof. Let IntX be the interior of the closure of X. If x ∈ U and O(x, U,G) is
somewhere dense (in U), then the set Ux = U ∩ IntO(x, U,G) ⊆ U is open and
∼UG-invariant. (This observation was made, for example, in [13], proof of 8.4.)
Moreover, O(x, U,G) ⊆ Ux, whence O(x, U,G) = O(x, Ux, G). The invariance of
orbits implies that the sets Ux are pairwise disjoint, and the turbulence implies
that their union is dense in U . We take any non-empty Ux for the desired U

′. The
lemma is proved.

Our proof of Theorem 6 is by induction on the construction of ERs in Class 4
by the operations listed in § 1.2. It will occupy several subsections. We begin
with the base of induction, which asserts that EXG is hereditarily generically D(N)-
ergodic under the hypotheses of the theorem. Suppose that X ⊆ X and G ⊆ G are
non-empty open sets, 1G ∈ G, and the local orbits O(x,X,G) are dense in X for x
belonging to a comeagre subset ofX. We claim that∼XG is genericallyD(N)-ergodic.
Indeed, consider a Baire measurable generically (∼XG ,D(N))-invariant map

ϑ : X → N. Suppose, on the contrary, that ϑ is not generically D(N)-constant.
Then there are open non-empty sets U1, U2 ⊆ X, numbers l1 �= l2 and a comeagre
set D ⊆ X such that ϑ(x) = l1 for all x ∈ D ∩U1 and ϑ(x) = l2 for all x ∈ D ∩U2.
Lemma 7 yields a pair of points x1 ∈ U1 ∩D and x2 ∈ U2 ∩D satisfying x1 ∼XG x2,
a contradiction.

2.3. Inductive step of the countable power. Consider a generically turbulent
Polish G-space X and a Borel ER F on a Polish space Y. We assume that the
action of G on X is hereditarily generically F-ergodic and assert that this action
is hereditarily generically F∞-ergodic. To prove this, we fix a non-empty open set
X0 ⊆ X and a neighbourhood G0 of the element 1G in G such that O(x,X0, G0) is
dense in X0 for x belonging to a comeagre subset of X0. We shall prove that any
given Baire measurable (∼X0G0 , F

∞)-invariant function ϑ : X0 → YN is generically
F∞-constant. By definition, we have

for x, x′ ∈ X0 : x ∼X0G0 x
′ =⇒ ∀ k∃ l

(
ϑk(x)Fϑl(x

′)
)
, (1)

where ϑk(x) = ϑ(x)(k). We note that ϑ is continuous on a dense Gδ-set D ⊆ X0.
Lemma 9. For every positive integer k and every open non-empty set U ⊆ X0
there is an open non-empty set W ⊆ U such that ϑk is generically F-constant
on W .

Proof. A simple category argument beginning with (1) yields a number l, open
non-empty sets W ⊆ U , Q ⊆ G0 and a dense (in W × Q) set P ⊆ W × Q of
class Gδ such that ϑk(x)Fϑl(g · x) holds for all 〈x, g〉 ∈ P . We can assume that
〈x, g〉 ∈ P =⇒ x ∈ D. Since Q is open, there is an element g0 ∈ Q and a
neighbourhood G ⊆ G0 of 1G with G−1 = G such that g0G ⊆ Q.
The next part of the proof involves forcing.11

We fix a countable transitive model M of ZFHC, that is, ZFC minus the Power
Set axiom but with the axiom which postulates that every set is hereditarily count-
able. We can assume that X is coded inM in the sense that there is a set DX ∈M

11We assume some degree of acquaintance with forcing. The lemma can be proved by purely
topological arguments, but then the reasoning is not so transparent.
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which is a dense (countable) subset of X, and dX � DX (the distance function of X
restricted to DX) also belongs to M. We also assume that G, Y, the action of G
on X, the sets G, DX, P , and the map ϑ � DX are coded inM in a similar sense.
We consider the Cohen forcing CX for X, which consists of rational balls with

centres in a fixed dense countable subset of X, and the Cohen forcing CG for G,
which is defined similarly. As usual, U ⊆ V means that U is a stronger forcing
condition. Under these assumptions, the notion of Cohen generic (over M) points
of X or G makes sense, and the set of all Cohen generic (over M) points of X is a
dense Gδ-subset of X contained in D.

Claim 10 (the key point of the turbulence). If x, x′ ∈ W are CX-generic points
over M and x ∼WG x′, then ϑk(x)Fϑk(x′).
Proof. We argue by induction on the number n(x, x′), which is equal to the least
n such that there are elements g1, . . . , gn ∈ G satisfying

x′ = gngn−1 . . . g1 · x and gk . . . g1 · x ∈W for all k � n. (2)

Suppose that n(x, x′) = 1. Thus x = h · x′ for some h ∈ G ∩M[x, x′]. 12 Take
any CG-generic (over M[x, x

′]) element g ∈ Q, close enough to g0 for g′ = gh−1 to
be an element of Q. The pair 〈x, g〉 is (CX ×CG)-generic over M by the product
forcing theorem, whence 〈x, g〉 ∈ P (because P is a dense Gδ-set coded inM) and
ϑk(x)Fϑl(g · x) by the choice of P . Moreover, g′ is also CG-generic over M[x′],
so that ϑk(x

′)Fϑl(g′ · x′) by the same argument. However, we have g′ · x′ =
gh−1(h · x) = g · x.
We now suppose that (2) holds for some n � 2. Take aCG-generic (overM[x, x′])

element g′1 ∈ G, close enough to g1 for g′2 = g2g1g′−11 to be an element of G and
x∗ = g′1 ·x to be an element ofW . Then the point x∗ is CX-generic overM (product
forcing) and n(x∗, x′) � n − 1 because g′2 · x∗ = g2g1 · x. The claim is proved.
To summarize, we have shown that ϑk is generically (∼WG , F)-invariant on W

(that is, invariant on a comeagre subset of W ). By Lemma 8 we can also assume
that the orbit O(x,W,G) is dense in W for x belonging to a comeagre subset of W .
Then the hereditarily generic F-ergodicity implies that ϑk is generically F-constant
on W , as required. This proves Lemma 9.
According to Lemma 9, one can find anX0-comeagre set Z ⊆ X0 and a countable

set Y = {yj : j ∈ N} ⊆ Y such that, for any k and any x ∈ Z, there is j with
ϑk(x)F yj . We put η(x) =

⋃
k∈N{j : ϑk(x)F yj}. Then, for any pair x, x′ ∈ Z,

the relation ϑ(x)F∞ ϑ(x′) is equivalent to η(x) = η(x′). Hence the invariance of ϑ
implies that

x ∼X0G0 x
′ =⇒ η(x) = η(x′) for all x, x′ ∈ Z. (3)

It remains to prove that η is constant on a comeagre subset of Z.
Suppose, on the contrary, that there are two non-empty open sets U1, U2 ⊆ X0,

a number j ∈ N and a comeagre set Z′ ⊆ Z such that j ∈ η(x1) and j /∈ η(x2) for
all x1 ∈ Z′ ∩ U1 and x2 ∈ Z′ ∩ U2. Then Lemma 7 yields a contradiction to (3),
which can be demonstrated by the same method as at the end of § 2.2.

12Here M[x, x′] is defined as any (countable transitive) model of ZFHC containing x, x′ and
all sets inM, rather than a generic extension ofM. The modelM[x, x′] may contain more ordinals
thanM, but this is not essential here.
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2.4. Inductive step of the Fubini product. Suppose that X is a generically
turbulent PolishG-space. We want to prove that the action ofG on X is hereditarily
generically F-ergodic, where F =

∏
k Fk/Fin, Fk is a Borel ER on a Polish space Yk,

and the action is hereditarily generically Fk-ergodic for every k. We fix an open
non-empty set X0 ⊆ X and a neighbourhood G0 of the element 1G in G such
that O(x,X0, G0) is dense in X0 for x belonging to a comeagre subset of X0. We

shall prove that any (∼X0G0 , F)-invariant Baire measurable function ϑ : X0 → Y is
generically F-constant on X0. By definition,

for x, y ∈ X0 : x ∼X0G0 y =⇒ ∃ k0 ∀ k � k0
(
ϑk(x)Fk ϑk(y)

)
, (4)

where ϑk(x) = ϑ(x)(k). We note that ϑ is continuous on a dense Gδ-set D ⊆ X0.

Lemma 11. For any non-empty open set U ⊆ X0 there is a number k0 and a
non-empty open set W ⊆ U such that ϑk is generically F-constant on W for all
k � k0.
Proof. Applying (4), we easily find a number k0, open non-empty sets W ⊆ U ,
Q ⊆ G0, and a dense (inW×Q) set P ⊆W×Q of classGδ such that ϑk(x)Fϑk(g·x)
for all k � k0 and all pairs 〈x, g〉 ∈ P . We can assume that 〈x, g〉 ∈ P =⇒ x ∈ D.
Since Q is open, there is an element g0 ∈ Q and a neighbourhood G ⊆ G0 of the
element 1G with G

−1 = G such that g0G ⊆ Q.
Let M be a model as in the proof of Lemma 9. It can be proved as in Claim 10

that if points x, x′ ∈ W are CX-generic over M, k � k0 and x ∼WG x′, then
ϑk(x)Fk ϑk(x′). In other words, each function ϑk with k � k0 is generically
(∼WG , Fk)-invariant on W . By Lemma 8, we can assume that the orbits O(x,W,G)
are dense in W for x belonging to a comeagre subset of W . Then the heredi-
tarily generic Fk-ergodicity implies that all maps ϑk with k � k0 are generically
Fk-constant on W , as required. This proves the lemma.

It is clear that if W is chosen as in Lemma 11, then ϑ is generically F-constant
on W . It remains to show that these constants are F-equivalent to each other.
Suppose, on the contrary, that there are two non-empty open sets W1,W2 ⊆ X0
and a pair of points y �F y′ in Y such that ϑ(x)F y and ϑ(x′)F y′ for x belonging
to a comeagre subset of W1 and x

′ belonging to a comeagre subset of W2. A
contradiction can be derived by the same method as at the end of § 2.3.
2.5. Other inductive steps. We consider the operations (e1), (e2), (e3) of § 1.2.
To treat countable unions, we suppose that F1, F2, F3, . . . are Borel ERs on a

Polish space Y, F =
⋃
k Fk is an ER, and the Polish generically turbulent action

of G on X is hereditarily generically Fk-ergodic for every k. We claim that the
action remains hereditarily generically F-ergodic.
Indeed, we fix a non-empty open set X0 ⊆ X and a neighbourhood G0 of 1G in G

such that the orbits O(x,X0, G0) are dense in U0 for x belonging to a comeagre

subset ofX0. We consider a (∼X0G0 , F)-invariant Baire measurable function ϑ :X0→Y
which is continuous on a dense Gδ-set D ⊆ X0. Since ϑ is invariant, it follows
that for every open non-empty set U ⊆ X0 there are open non-empty sets W ⊆ U ,
Q ⊆ G0 and a number k such that ϑ(x)Fk ϑ(g·x) for any (CX×CG)-generic (overM)
pair 〈x, g〉 ∈ W × Q. We can find an element g0 ∈ Q ∩M and a neighbourhood
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G ⊆ G0 of 1G such that g0G ⊆ Q. As in the proof of Claim 10, we have ϑ(x)Fk ϑ(x′)
for any pair of CX-generic (overM) elements x, x

′ ∈W that satisfy x ∼WG x′. Then
the ergodicity implies that ϑ is generically Fk-constant and, therefore, generically
F-constant onW . As at the end of § 2.3, one can demonstrate that these F-constants
are F-equivalent to each other. The operation of countable intersection is treated
similarly.
We demonstrated in § 1.2 that the operation of countable product is reducible

to the Fubini product. However, there is a simple independent argument. If Fk are
ERs on spaces Yk, then F =

∏
k Fk is an ER on the space Y =

∏
k Yk. Let E be any

ER on X. A map ϑ : X → Y is (E, F)-invariant if and only if each coordinate map
ϑk(x) = ϑ(x)(k) is (E, Fk)-invariant. This immediately yields the required result.
The operation of disjoint union is reducible to the product (see § 1.2).
Thus Theorem 6 and Theorem 1 are proved.

§ 3. Applications
This section contains two applications of Theorem 6. One of them is Theorem 2.

The other gives rather simple arguments to show that Theorem 2 implies the
theorem of Hjorth mentioned in the introduction: “turbulent” ERs are not Borel
reducible to Polish actions of S∞.

3.1. Proof of Theorem 2. We fix a non-trivial Borel P -ideal Z ⊆ P(N) as in
Theorem 2. By a theorem of Solecki (see § 1.3) there is a l. s. c. submeasure ϕ on N
such that Z = {x ⊆ N : ϕ∞(x) = 0}. We put rk = ϕ({k}).

Lemma 12 [11]. Suppose that Z is not equal to Fin, is not a trivial variation
of Fin, and is not isomorphic to I3 = 0×Fin. Then there is a set W /∈ Z such that
{rk}k∈W → 0.

Proof. We put Un =
{
k : rk � 1

n

}
and, separately, U0 = N. Then Un+1 ⊆ Un for

all n. We claim that infm∈N ϕ(Um) > 0. For otherwise, a set x ⊆ N belongs to Z if
and only if x \ Un is finite for every n. If the set N = {n : Un \ Un+1 is infinite} is
empty, then we easily see that Z = P(N). If N �= ∅ is finite, then Z is either Fin
(when Un = ∅ for almost all n) or a trivial variation of Fin (when Un is non-empty
for all n). Finally, if N is infinite, then Z is isomorphic to 0× Fin. (For instance,
suppose that all sets Dn = Un \Un+1 are infinite. In this case, x ∈ Z if and only if
x∩Dn is finite for all n.) Thus we always get a contradiction to the hypotheses of
the lemma.
Hence there is ε > 0 such that ϕ(Um) > ε for all m. Since ϕ is l. s. c., we can

define an increasing sequence of numbers n1 < n2 < n3 < · · · and, for every l,
a finite set wl ⊆ Unl \ Unl+1 such that ϕ(wl) > ε. Then W =

⋃
l wl /∈ Z and,

obviously, {rk}k∈W → 0. The lemma is proved.

Since EZ�W �B EZ, the following lemma is now sufficient for Theorem 2.

Lemma 13. Suppose that Z, ϕ, rk are as above, and {rk} → 0. Then the shift
action of Z on P(N) is generically turbulent.

Proof. Z is a Polish group (with group operation ∆) in the topology τ induced by
the metric r(x, y) = ϕ(x∆y). The action of Z by means of ∆ on the space P(N)
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(which is here identified with 2N and is endowed with the product topology) is
continuous. It remains to verify the turbulence.

Let x ∈ P(N). It is easy to see that the orbit [x]Z = Z∆x is dense and meagre.
Hence it suffices to verify that x is a turbulent point. We consider an open set
X ⊆ P(N) containing x, and let G be a τ -neighbourhood of ∅ (the neutral element
of the group Z). We may assume that X = {y ∈ P(N) : y ∩ [0, k) = u} for some k,
where u = x ∩ [0, k), and G = {g ∈ Z : ϕ(g) < ε} for some ε > 0. We claim that
the local orbit O(x,X,G) is somewhere dense (that is, not nowhere dense) in X.

Indeed, let l � k be big enough to ensure that rn < ε for all n � l. We put
v = x ∩ [0, l) and claim that O(x,X,G) is dense in Y = {y ∈ P(N) : y ∩ [0, l) = v}.
Consider an open set Z = {z ∈ Y : z ∩ [l, j) = w}, where j � l, w ⊆ [l, j).
Let z be the unique element of Z with z ∩ [j,+∞) = x ∩ [j,+∞). Then x∆z =
{l1, . . . , lm} ⊆ [l, j). Each gi = {li} belongs to G by the choice of l (indeed, li � l).
Moreover, the element xi = gi∆gi−1∆ . . .∆g1∆x = {l1, . . . , li}∆x belongs to X for
every i = 1, . . . , m, and xm = z. Thus z ∈ O(x,X,G), as required.
This proves the lemma and Theorem 2.

3.2. Irreducibility to actions of the group of all permutations of NNN. We
recall that S∞ is the group of all permutations of N (that is, one-to-one maps of N
onto N) with superposition as the group operation. A compatible Polish metric
on S∞ can be defined by D(x, y) = d(x, y) + d(x

−1, y−1), where d is the usual
Polish metric on NN, that is, d(x, y) = 2−m−1, where m is the smallest number
with x(m) �= y(m).
Hjorth proved in 1995 that turbulent ERs are not Borel reducible to ERs induced

by Polish actions of S∞. The proof (as, for example, in [6], [13]) is quite complicated.
In particular, it contains references to some model theoretic facts and methods such
as Scott’s analysis. We include a simplified proof based on the following theorem.
The argument will still be lengthy because we outline the proofs of some auxiliary
results in order to make the exposition accessible to a reader not experienced in
special topics related to group actions and model theory.

Theorem 14. Let E be an ER induced by a Polish action. Suppose that E is
reducible by a Baire measurable map to an ER induced by a Polish action of S∞.
Then E is also reducible to one of the ERs Tγ by a Baire measurable map.13 Hence,
by Theorem 1, such an ER E cannot be induced by a generically turbulent Polish
action.

3.3. Classifiability by countable structures. Isomorphism relations of var-
ious classes of countable structures are amongst those induced by Polish actions
of S∞. Indeed, suppose that L = {Ri}i∈I is a countable relational language, that
is, card I � ℵ0, and each Ri is an mi-ary relational symbol. Put 14 ModL =∏
i∈I P(N

mi ). This is the space of L-structures on the underlying set N. The logic
action jL of S∞ on ModL is defined as follows. If x = {xi}i∈I ∈ModL and g ∈ S∞,

13We cannot claim Borel reducibility because any ER Borel reducible to Tγ is Borel itself
(since all the ERs Tγ are Borel) and, on the other hand, even ERs of the form ∼=L are generally
non-Borel (although they are analytic).

14XL is often used to denote ModL.
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then y = jL(g, x) = g · x = {yi}i∈I ∈ModL, where we have

〈k1, . . . , kmi〉 ∈ xi ⇐⇒ 〈g(k1), . . . , g(kmi)〉 ∈ yi

for all i ∈ I and 〈k1, . . . , kmi〉 ∈ Nmi . Then 〈ModL; jL〉 is a Polish S∞-space. The
jL-orbits in ModL are exactly the isomorphism classes of L-structures, which is the
reason for denoting the associated equivalence relation EModLjL

by ∼=L. Of course,
all ERs of the form ∼=L are analytic.
Hjorth ([6], § 2.38) defines an ER E to be classifiable by countable structures if

there is a countable relational language L such that E �B∼=L.
Theorem 15 [1]. Any ER induced by a Polish action of S∞ is classifiable by
countable structures.

Thus all ERs induced by Polish actions of S∞ (even of any closed subgroup
of S∞) are Borel reducible to very special actions of S∞.

Proof ([6], § 6.19). Consider a Polish S∞-space X with a basis {Ul}l∈N, and a lan-
guage L with relations Rlk of arity k. For any x ∈ X we define ϑ(x) ∈ ModL by
putting ϑ(x) |= Rlk(s0, . . . , sk−1) if and only if si �= sj whenever i < j < k, and
g−1 · x ∈ Ul whenever g ∈ S∞ satisfies 〈s0, . . . , sk−1〉 ⊂ g. Then ϑ reduces EXS∞
to ∼=L. The theorem is proved.
3.4. Reduction to countable graphs. It might be expected that more compli-
cated languages L produce more complicated ERs ∼=L. However, this is not the
case: it turns out that a single binary relation can code structures of any countable
language. Let G be the language of (oriented binary) graphs, that is, G contains a
single binary predicate, say R( ·, · ).
Theorem 16. If L is a countable relational language, then ∼=L�B∼=G.
In contrast to the following argument, Becker and Kechris ([1], § 6.1.4) outline a

proof based on coding in terms of lattices, although the idea may actually be the
same.

Proof. Let HF(N) be the set of all hereditarily finite sets over the set N regarded
as the set of atoms, and let ε be the associated “membership” (no n ∈ N has
ε-elements, {0, 1} is different from 2, and so on). Let �HF(N) denote the HF(N)-
version of∼=G. In other words, ifP,Q⊆HF(N)2, thenP �HF(N) Qmeans that there is
a bijection b of the set HF(N) onto itself such thatQ=b·P={〈b(s), b(t)〉 : 〈s, t〉∈P}.
Obviously, (∼=G) ∼B (�HF(N)). Thus it remains to prove that ∼=L�B�HF(N) for any
language L.
We define an action ◦ of S∞ on HF(N) as follows: g ◦ n = g(n) for n ∈ N and,

by ε-induction, g ◦ ({a1, . . . , an}) = {g ◦ a1, . . . , g ◦ an} for all a1, . . . , an ∈ HF(N).
If g ∈ S∞, then a �→ g ◦ a is an ε-isomorphism of HF(N).
Lemma 17. Suppose that X, Y ⊆ HF(N) are ε-transitive subsets of HF(N), the
sets N \ X and N \ Y are infinite, and ε � X �HF(N) ε � Y . Then there is a
permutation f ∈ S∞ such that Y = f ◦X = {f ◦ s : s ∈ X}.
Proof. The hypothesis ε � X ∼=HF(N) ε � Y implies that there is an ε-isomorphism
π : X

onto→ Y . It is easy to see that π � (X ∩ N) is a bijection of X0 = X ∩ N onto
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Y0 = Y ∩ N. Hence there is f ∈ S∞ such that f � X0 = π � X0, and then we have
f ◦ s = π(s) for any s ∈ X. The lemma is proved.
Returning to the proof of Theorem 16, we first claim that ∼=G(m)�B�HF(N) for

any m � 3, where G(m) is the language with a single m-ary predicate. Indeed,
we observe that 〈i1, . . . , im〉 ∈ HF(N) whenever i1, . . . , im ∈ N. We put Θ(x) =
{ϑ(s) : s ∈ x} for every x ∈ModG(m) = P(Nm), where ϑ(s) = TCε({〈2i1, . . . , 2im〉})
for each s = 〈i1, . . . , im〉 ∈ Nm and, finally, if X ⊆ HF(N), then TCε(X) is the
smallest ε-transitive set T ⊆ HF(N) with X ⊆ T . It follows easily from Lemma 17
that x ∼=G(m) y is equivalent to ε � Θ(x) �HF(N) ε � Θ(y). This completes the
proof that ∼=G(m)�B�HF(N).
It remains to show that ∼=L′�B�HF(N), where L′ is the language with infin-

itely many binary predicates. In this case ModL′ = P(N2)N, so we can assume
that every x ∈ ModL′ is given by x = {xn}n�1 with xn ⊆ (N \ {0})2 for all n.
We put Θ(x) = {sn(k, l) : n � 1 ∧ 〈k, l〉 ∈ xn} for any such x, where sn(k, l) =
TCε
({
{. . .{〈k, l〉} . . .}, 0

})
with n+2 pairs of braces { , }. Then Θ is a continuous

reduction of ∼=L′ to �HF(N). The theorem is proved.
3.5. Proof of Theorem 14. The proof (a version of the argument in [4]) is based
on Scott’s analysis.
We define a family ≡αst of Borel binary relations on P(N2), where α < ω1 and

s, t ∈ N<ω, as follows:
(i) A ≡0st B if and only if A(si, sj) ⇐⇒ B(ti, tj) for all i, j < lh s = lh t;

(ii) A ≡α+1st B if and only if ∀ k∃ l(A ≡αs∧k,t∧l B) and ∀ l∃ k(A ≡αs∧k,t∧l B);
(iii) if λ < ω1 is limit, then A ≡λst B means that A ≡αst B for all α < λ.
By definition, we put 〈s, A〉 ≡α 〈t, B〉 if and only if A ≡αst B. Then an induction

over α shows that each ≡α is a Borel ER on N<ω × P(N2) and ≡β⊆≡α for α < β.
Consider an ER E = EXG induced by a Polish action of a Polish group G on a

Polish space X which is reducible to a Polish action of S∞ by a Baire measurable
map. According to Theorems 15, 16 and Proposition 3 there is a Baire measur-
able reduction ϑ : X→ P(N2) of E to ∼=G. This reduction is continuous on a dense
Gδ-set D0 ⊆ X. We recall that the relation A ∼=G B for A,B ⊆ N2 means that
there is a function f ∈ S∞ such that A(k, l) ⇐⇒ B

(
f(k), f(l)

)
for all k, l.

We easily prove by induction on α that ∼=G⊆≡αst, where t = f ◦ s. In particular,∼=G⊆≡αΛΛ, where Λ is the empty sequence. Since ϑ is a reduction, the equivalence
xEy ⇐⇒ ϑ(x) ∼=G ϑ(y) holds for all x, y. Our goal is to find a dense Gδ-set
D ⊆ D0 and an ordinal α < ω1 such that
(∗) the implication x �Ey =⇒ ϑ(x) �≡αΛΛ ϑ(y) folds for all x, y ∈ D.
To find D, we fix a countable transitive model M of ZFHC (see above). We

assume that X, the group G, its action on X, the set D0, and the function ϑ � D0
are coded in M in the same sense as in the proof of Lemma 9. We claim that the
set D of all Cohen generic (over M) points of X (a dense Gδ-subset of X included
in D0) satisfies (∗).
Indeed, take x, y ∈ D. We first consider the case when 〈x, y〉 is a Cohen generic

pair over M. If x �Ey, then ϑ(x) �∼=G ϑ(y) by the choice of ϑ. Hence the Mostowski
absoluteness theorem yields that ϑ(x) �∼=G ϑ(y) in M[x, y]. Therefore, arguing
relatively to the model M[x, y] (which is still a model of ZFHC, see § 2.3), we find
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an ordinal α ∈ OrdM = OrdM[x,y] with ϑ(x) �≡αΛΛ ϑ(y). Moreover, since the Cohen
forcing satisfies CCC (the countable antichain condition), there is an ordinal α ∈M
such that ϑ(x) �≡αΛΛ ϑ(y) for all Cohen generic (overM) pairs 〈x, y〉 ∈ D2 with x �Ey.
It remains to show that this also holds when x, y ∈ D satisfy x �Ey but do not form
a Cohen generic pair.

Consider a Cohen generic (over M[x, y]) element g ∈ G. We easily see that
the point z = g · x ∈ X is Cohen generic over M[x, y] (because the action is
continuous). Moreover, xE z, whence y �E z. However y is Cohen generic over M,
and z is generic over M[y]. Therefore the pair 〈y, z〉 is Cohen generic over M, and
we get ϑ(z) �≡αΛΛ ϑ(y) by the above. On the other hand, ϑ(x) ≡αΛΛ ϑ(z) holds
because xE z. We finally obtain ϑ(x) �≡αΛΛ ϑ(y), as required by (∗).
To conclude, we have xE y ⇐⇒ ϑ(x) ≡αΛΛ ϑ(y) for all x, y ∈ D. In this

case we can easily redefine ϑ on the complement of D in X in such a way that
the equivalence holds for all x, y ∈ X. In other words, the improved ϑ is a Baire
measurable (because ϑ � D is continuous and D is a dense Gδ-set) reduction of E
to ≡αΛΛ.
The following result completes the proof of the theorem.

Proposition 18. Every ER ≡α is Borel reducible to some Tγ .

Proof. We have ≡0�B T0 since ≡0 has countably many equivalence classes, all of
which are open-and-closed sets. To carry out the step α �→α+ 1, we note that the
map 〈s, A〉 �→ {〈s∧k, A〉}k∈N is a Borel reduction of ≡α+1 to (≡α)∞. As for
the limit step, consider a limit ordinal λ = {αn : n ∈ N} and put R =

∨
n∈N ≡αn .

Hence R is the ER on N×N<ω×P(N2) defined as follows: 〈m, s, A〉R〈n, t, B〉 if and
only if m = n and A ≡αmst B. Then the map 〈s, A〉 �→ {〈m, s, A〉}m∈N is a Borel
reduction of ≡λ to R∞.

§ 4. Pinned ERs and the irreducibility of T2T2T2
This section contains a theorem showing that the ER T2 (equality of countable

sets of reals) is not Borel reducible to ERs belonging to the family of pinned ERs.
This family includes, for instance, continuous actions of CLI groups, some ideals
(not necessarily Polishable) and ERs having Gδσ equivalence classes, and is closed
under the Fubini product modulo Fin. The definition of this family is based on a
rather metamathematical property extracted from Hjorth’s paper [5].

4.1. Pinned ERs. First of all, if X is an analytic set in the universe V of all sets
(in particular, this applies when X is Borel), and V+ is a generic extension of the
universe V, then X
 will denote the result of the sequence of operations contained
in the definition of X but applied in V+. This is well defined by the Schoenfield
absoluteness theorem, and we easily see that X = X
 ∩ V.
For instance, if E is an analytic ER on a Polish space X in the universe V, then E


is an analytic ER on X
 by the Schoenfield absoluteness theorem. If x ∈ X (hence
x ∈ V), then the E-class [x]E ⊆ X of x (defined in V) is included in a unique E


-class

[x]E� ⊆ X

 (in V+). The classes [x]E� with x ∈ X belong to a wider category of

E
-classes, which admit a description from the point of view of the universe V.
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Definition 19. Assume that P is a notion of forcing in V. A virtual E-class is
any P-term ξ such that P forces ξ ∈ X
 and P× P forces ξleftE
ξright. 15 A virtual
class is pinned if there is a point x ∈ X (in V) which pins it in the sense that P
forces xE
ξ. Finally, an analytic ER E is pinned if, for any forcing notion P ∈ V,
all virtual E-classes are pinned.

Let ξ be a virtual E-class, and let V+ be any extension of the universe V. If U
and V are generic subsets of P, then x = ξ[U ] and y = ξ[V ] belong to X
 and
satisfy xE
 y. Hence ξ induces an E
-class in the extension. If ξ is pinned, then this
class contains an element in the ground universe V. In other words, pinned virtual
classes induce E
-equivalence classes of the form [x]E� , x ∈ V, in extensions of the
universe V.
We prove below that T2 is not pinned. Moreover, T2 is not Borel reducible

to any pinned analytic ER. We also give a simplified proof of Hjorth’s theorem
that continuous actions of Polish CLI groups never induce pinned ERs, introduce
a family of pinned ERs associated with Fσδ ideals, show that a Borel ER is pinned
if all its equivalence classes are Gδσ, and prove that the class of all pinned analytic
ERs is closed under the Fubini product modulo Fin.

4.2. Pinned ERs and T2. We recall that, modulo ∼B, the relation T2 is the ER
on (2N)N defined as follows: xT2 y if and only if ranx = ran y.

Lemma 20. T2 is not pinned. If E, F are analytic ERs with E �B F and F
is pinned, then E is also pinned. Hence T2 is not Borel reducible to a pinned
analytic ER.

Proof. To prove that T2 is not pinned, we consider, in V, the forcing notion P =
Coll(N, 2N), which induces a generic map f : N

onto→ 2N. (P consists of all functions
p : u→ 2N, where u ⊆ N is finite.) The P-term ξ for the set ran f = {f(n) : n ∈ N}
is a virtual T2-class, but it is not pinned because 2N is uncountable in the ground
universe V.
Suppose that ϑ : X → Y is a Borel reduction of E to F in V, where X = domE

and Y=domF. We can assume that X=Y=2N. Let P be a forcing notion, and
let ξ be a P-term which is a virtual E-class. By the Schoenfield absoluteness
theorem, ϑ
 is a reduction of E
 to F
 in any extension of V. Hence the P-term σ
for ϑ
(ξ) is a virtual F-class. Since F is pinned, there is y ∈ Y such that P forces
y F
 σ. Note that it is true in the P-extension that y F
 ϑ
(x) for some x ∈ X
.
Hence, by Schoenfield’s theorem, in the ground universe there is x ∈ X such that
y Fϑ(x). Clearly, P forces xE
 ξ. The lemma is proved.

4.3. The Fubini product of pinned ERs. We recall that the Fubini product
E =

∏
k∈N Ek/Fin of ERs Ek on Xk modulo Fin is the ER on X =

∏
k Xk defined

as follows: xE y if and only if x(k)Ek y(k) for all but finitely many indices k.

Lemma 21. The family of all analytic pinned ERs is closed under Fubini products
modulo Fin.

15ξleft and ξright are (P× P)-terms meaning that ξ is associated respectively with the left and
right factor P in the product forcing. Formally, ξleft[U × V ] = ξ[U ] and ξright[U × V ] = ξ[V ] for
any (P× P)-generic set U × V , where ξ[U ] is the interpretation of ξ via a generic set U .
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Proof. Let Ek be pinned analytic ERs on Polish spaces Xk. We claim that the
Fubini product E =

∏
k∈N Ek/Fin is a pinned ER on X =

∏
k Xk. Consider a

forcing notion P and a P-term ξ which is a virtual E-class. There is a number k0
and “conditions” p, q ∈ P such that 〈p, q〉 (P × P)-forces ξleft(k)E
k ξright(k) for
all k � k0. As all Ek are ERs, we conclude that the “condition” 〈p, p〉 also forces
ξleft(k)E



k ξright(k) for all k � k0. Therefore, since the Ek are pinned, there is (in V)

a sequence of points xk ∈ Xk such that p P-forces xk E
k ξ(k) for all k � k0. Let
x ∈ X be such that x(k) = xk for all k � k0. (The values x(k) ∈ Xk with k < k0
can be arbitrary.) Then p obviously P-forces xE
 ξ.
It remains to show that each q ∈ P forces xE
 ξ. Assume the opposite: some

q ∈ P forces that xE
 ξ fails. Consider the pair 〈p, q〉 as a “condition” in P × P.
It forces xE
 ξleft and ¬xE
 ξright as well as ξleft E
 ξright by the choice of E and ξ.
This contradiction proves the lemma.

4.4. Left-invariant actions and pinned ERs. We recall that a Polish group G
is complete left-invariant (CLI, for brevity) if G admits a compatible left-invariant
complete metric. Then G also admits a compatible right-invariant complete metric,
and this will be used in what follows.

Theorem 22 [5]. Let E = EXG be an ER induced by a Polish action of a CLI group G
on a Polish space X. Then E is pinned. Hence T2 is not Borel reducible to E.

Proof. Let P be a forcing notion, and let ξ be a virtual E-class. We denote by �
the partial order on P. As usual, p � q means that p is a stronger condition.
We fix a compatible complete right-invariant metric ρ on G. For every ε > 0 put
Gε = {g ∈ G : ρ(g, 1G) < ε}. We say that q ∈ P is of size � ε if 〈q, q〉 (P×P)-forces
the existence of g ∈ G
ε such that ξleft = g · ξright.

Lemma 23. If q ∈ P and ε > 0, then there is a condition r ∈ P of size � ε such
that r � q.

Proof. Otherwise, for every r ∈ P with r � q there is a pair of conditions r′, r′′ ∈ P
stronger than r and such that 〈r′, r′′〉 (P× P)-forces that there is no g ∈ G
ε with
ξleft = g · ξright. Let V+ be a generic extension of V in which P(P)∩V is countable.
Applying the usual splitting construction in V+, we find an uncountable set U of
generic sets U ⊆ P with q ∈ U such that all pairs 〈U, V 〉 with U �= V in U are
(P× P)-generic (over V). Hence there is no g ∈ G
ε with ξ[U ] = g · ξ[V ]. 16
Fix U0 ∈ U. For every U ∈ U we can take (in V+) an element gU ∈ G


such that ξ[U ] = gU · ξ[U0]. Then gU /∈ G
ε by the above. Moreover, we have
gV g

−1
U · ξ[U ] = ξ[V ] for all U, V ∈ U, whence gV g

−1
U /∈ G
ε whenever U �= V . It

follows that ρ(gU , gV ) � ε since the metric is right-invariant. But this contradicts
the separability of G. The lemma is proved.

We return to the proof of Theorem 22. Suppose, on the contrary, that a condition
p ∈ P forces that there is no x ∈ X (in the ground universe V) satisfying xE
 ξ. By
Lemma 23 one can find (in V) a sequence of conditions pn ∈ P of size � 2−n and
closed sets Xn ⊆ X of X-diameter� 2−n such that p0 � p, pn+1 � pn, Xn+1 ⊆ Xn,

16ξ[U ] is the interpretation of the P-term ξ obtained by taking U as the generic set.
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and pn forces ξ ∈ X
n for any n. Let x be the common point of the sets Xn in V.
We claim that p0 forces xE


 ξ.

For otherwise, there is q ∈ P such that q � p0 and q forces ¬xE
 ξ. Consider
an extension V+ of V rich enough to contain, for any n, a generic set Un ⊆ P
with pn ∈ Un such that each pair 〈Un, Un+1〉 is (P × P)-generic (over V) and,
in addition, q ∈ U0. Put xn = ξ[Un] (an element of X
). Then {xn} → x.
Moreover, Un and Un+1 contain pn for each n. Since pn has size � 2−n−1, there is
gn+1 ∈ G
ε with xn+1 = gn+1xn. Thus xn = hn · x0, where hn = gn . . . g1. However
ρ(hn, hn−1) = ρ(gn, 1G) � 2−n+1 by the right-invariance of the metric ρ. Hence
{hn}n∈N is a Cauchy sequence in G
. We denote its limit by h = limn→∞ hn ∈ G
.
Since the action is continuous, we have x = limn xn = h · x0. It follows that xE
 x0
holds in V+, hence also in V[U0]. However x0 = ξ[U0], while q ∈ U0 forces ¬xE
 ξ,
a contradiction.
Thus p0 P-forces xE


 ξ. Then any r ∈ P also forces xE
 ξ. Indeed, if some r ∈ P
forces ¬xE
 ξ, then the pair 〈p0, r〉 (P× P)-forces xE
 ξleft and ¬xE
 ξright, which
contradicts the fact that (P× P) forces ξleft E
 ξright. This proves Theorem 22.

4.5. ERs with GδσGδσGδσ-classes. We have a non-pinned ER T2, obviously of class Fσδ .
The following theorem shows that this is the simplest possible case of a non-pinned
ER.

Theorem 24. Let E be a Borel ER all of whose equivalence classes are Gδσ-sets.
Then E is pinned.

Proof (based on an idea communicated by Hjorth). We can assume that domE =
NN. It follows from a theorem of Louveau [14] that there is a Borel map γ defined
on NN in such a way that γ(x) is a Gδσ-code of [x]E for each x ∈ NN, that is, for
instance, γ(x) ⊆ N2 × N<ω and

[x]E =
⋃

i

⋂

j

⋃

〈i,j,s〉∈γ(x)
Bs, where Bs = {a ∈ NN : s ⊂ a} for all s ∈ N<ω.

We consider a forcing notion P = 〈P;�〉 and a virtual E-class ξ. Then P× P forces
ξleft E


 ξright. Hence there is a number i0 and a condition 〈p0, q0〉 ∈ P × P which
forces ξleft ∈ ϑ
(ξright), where ϑ(x) =

⋂
j

⋃
〈i0,j,s〉∈γ(x)Bs for all x ∈ N

N.

The key idea of the proof is to replace P by the Cohen forcing. Let S be the
set of all s ∈ N<ω such that p0 does not P-force s �⊂ ξ. We regard S as a forcing,
and s ⊆ t (that is, t is an extension of s) means that t is a stronger condition. The
empty sequence Λ is the weakest condition in S. If s ∈ S, then we obviously have
at least one n such that s∧n ∈ S. Hence S forces an element of NN, whose S-name
will be a.

Lemma 25. The pair 〈Λ, q0〉 (S× P)-forces a ∈ ϑ
(ξ).

Proof. Otherwise, some condition 〈s0, q〉 ∈ S× P with q � q0 forces a /∈ ϑ
(ξ). By
the definition of ϑ we can assume that

〈s0, q〉 (S× P)-forces ¬∃ s
(
〈i0, j0, s〉 ∈ γ(ξ) ∧ s ⊂ a

)
(5)
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for some j0. Since s0 ∈ S, there is a condition p′ ∈ P with p′ � p0 which P-forces
s0 ⊂ ξ. By the choice of 〈p0, q0〉 we can assume that

〈p′, q′〉 (P× P)-forces 〈i0, j0, s〉 ∈ γ(ξright) ∧ s ⊂ ξleft

for suitable s ∈ S and q′ ∈ P, q′ � q. This means that
1) p′ P-forces s ⊂ ξ;
2) q′ P-forces 〈i0, j0, s〉 ∈ γ(ξ).
In particular, by the above, p′ forces both s0 ⊂ ξ and s ⊂ ξ. Hence we have

either s ⊆ s0 (when we put s′ = s0), or s0 ⊂ s (when we put s′ = s). In both cases
〈s′, q′〉 (S×P)-forces 〈i0, j0, s〉 ∈ γ(ξ) and s ⊂ a. This contradicts (5). The lemma
is proved.

We note that S is a subforcing of the Cohen forcing C = N<ω. Hence, by
Lemma 25, there is a C-term σ such that 〈Λ, q0〉 (C × P)-forces σ ∈ ϑ
(ξ) and
therefore forces σ E
 ξ. By considering the forcing C × P × P, we see that C × P
forces σ E
 ξ. It follows that, first, C×C forces σleft E
σright and, second, to prove
the theorem it suffices to find x ∈ NN in V such that C forces xE
σ. This is our
next goal.
Let a be a C-name of the Cohen generic element of NN. The term σ can be of

a complicated nature, but it can be replaced by a term of the form f
(a), where
f : NN → NN is a Borel map in the ground universe V. It follows from the above that
f
(a)E
 f
(b) for any (C×C)-generic (over V) pair 〈a,b〉 ∈ NN×NN. We conclude
that f
(a)E
 f
(b) for any pair of separately Cohen generic elements a,b ∈ NN.
Thus, in a generic extension of V where there are comeagre-many Cohen generic
reals, there is a comeagre Gδ-set X ⊆ NN such that f
(a)E
 f
(b) for all a, b ∈ X.
By the Schoenfield absoluteness theorem, the statement on the existence of such a
set X is true in V as well. Hence, in V, there is a point x ∈ NN such that we have
xEf(a) for a comeagre set of points a ∈ NN. This is again a Schoenfield absolute
property of x. Hence C forces xE
 f
(a), as required.
Theorem 24 is proved.

4.6. A family of pinned ideals. A Borel ideal I is said to be pinned if the
induced ER EI is pinned. Theorem 22 implies that all P -ideals are pinned because
all Borel P -ideals are Polishable [15] while all Polish Abelian groups are CLI. Yet
there are non-Polishable pinned ideals.
We introduce a family of such ideals here. Let {ϕi}i∈N be a sequence of lower

semicontinuous (l. s. c.) submeasures on N. We define the exhaustive ideal of the
sequence of submeasures by setting

Exh{ϕi} = {X ⊆ N : ϕ∞(X) = 0}, where ϕ∞(X) = lim sup
i→∞

ϕi(X).

By Solecki’s theorem [15], for any Borel P -ideal I there is a l. s. c. submeasure ϕ
such that I = Exh{ϕi} = Exhϕ, where ϕi(x) = ϕ(x∩ [i,∞)). However, for example,
the non-Polishable ideal I1 = Fin×0 is also of the form Exh{ϕi}, where for x ⊆ N2
we define ϕi(x) = 0 or ϕi(x) = 1 if x ⊆ {0, . . . , n−1}×N or x �⊆ {0, . . . , n−1}×N,
respectively.
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Theorem 26. All ideals of the form Exh{ϕi} are pinned.

Proof. Put I = Exh{ϕi}, where all ϕi are l. s. c. submeasures on N. We can assume
that the submeasures ϕi decrease, that is, ϕi+1(x) � ϕi(x) for each x. For other-
wise, we can consider the l. s. c. submeasures ϕ′i(x) = supj�i ϕj(x).
Suppose that E = EI is not pinned. Then we have a forcing notion P, a virtual

E-class ξ and a condition p ∈ P which P-forces ¬xE
 ξ for any x ∈ P(N) in V. By
definition, for any p′ ∈ P and n ∈ N we can find i � n and conditions q, r ∈ P with
q, r � p′ such that 〈q, r〉 (P × P)-forces the inequality ϕi(ξleft∆ξright) � 2−n−1.
Hence 〈q, q〉 (P × P)-forces ϕi(ξleft∆ξright) � 2−n. It follows that, in V, one can
find a sequence of numbers i0 < i1 < i2 < · · · , a sequence p0 � p1 � p2 � · · · of
conditions in P and a set un ⊆ [0, n) for every n, such that p0 � p and
1) each pn P-forces ξ ∩ [0, n) = un;
2) each 〈pn, pn〉 (P× P)-forces ϕin(ξleft∆ξright) � 2−n.
Arguing in the universe V, we put a =

⋃
n un. Then a ∩ [0, n) = un for all n.

We claim that p0 forces aE

 ξ, which will contradict the assumption above, thus

proving the theorem.
If not, there is a condition q0 � p0 that forces ¬aE
 ξ. Consider a generic

extension V+ of the universe in which there is a sequence of P-generic sets Un ⊆ P
such that, for every n, the pair 〈Un, Un+1〉 is (P × P)-generic over V, pn ∈ Un
and, in addition, q0 ∈ U0. Then, in V+, the sets xn = ξ[Un] ∈ P(N) satisfy
ϕin(xn∆xm) � 2−n whenever n � m, by 2). It follows that ϕin(xn∆a) � 2−n
because a = limm xm, by 1). However, we have assumed that the submeasures ϕj
decrease, whence ϕ∞(xn∆a) � 2−n. On the other hand, ϕ∞(xn∆x0) = 0 because
ξ is a virtual E-class. We conclude that ϕ∞(x0∆a) � 2−n for any n. In other
words, ϕ∞(x0∆a) = 0, that is, x0 E


 a. This contradicts the choice of U0 because
x0 = ξ[U0] and q0 ∈ U0.

Question 1. Are all Borel ideals pinned? The expected answer “yes” would show
that T2 is not Borel reducible to any Borel ideal. Is any ER induced by a Borel
action of a Borel CLI group pinned?

Question 2 (Kechris). Is there a �B-least non-pinned Borel ER? It was once
expected that T2 is such a one, but Hjorth has informed us that there is a strictly
�B-smaller non-pinned Borel ER of a rather complicated nature.
We are grateful to Greg Hjorth, A. S. Kechris, and Su Gao for useful discussions

related to the content of this paper. We are also grateful to Greg Hjorth for his
kind permission to include one of his unpublished results (Theorem 24).
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