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Models of set theory in which the separation theorem fails

V. G. Kanovei and V. A. Lyubetsky

Abstract. We use a finite-support product of Jensen-minimal forcings to
define a model of set theory in which the separation theorem fails for the
projective classes Σ1

n and Π1
n, for a given n ⩾ 3.
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§ 1. Introduction

The separation problem was introduced in descriptive set theory by Luzin [1].
In particular, he asked whether (in the modern notation for projective classes)

(I) any pair of disjoint Σ1
n-sets of reals can be separated by a ∆1

n-set,
(II) the remainders of two Σ1

n-sets after removing their intersection can be
separated by disjoint Π1

n-sets, and
(III) there are two disjoint Π1

n-sets not separable by a ∆1
n-set.

He stressed the importance and difficulty of these problems.1 Novikov ([2],
Russian p. 279) characterized the separation problem as one of the three main
problems of descriptive set theory, along with the measurability problem for Σ1

2-sets
and the cardinality problem for Π1

1-sets. (See, for example, [3] for the last two
problems.)

The problem is well known in descriptive set theory. In modern terms (see
Moschovakis [4], Kechris [5]), the (first) separation theorem for a class Γ of pointsets
(sets in Polish spaces) is the claim that any two disjoint sets in Γ (in the same space)
can be separated by a set in Γ∩Γ∁, where Γ∁ is the class of complements of Γ-sets.
The second separation theorem for Γ claims that if X, Y are sets in Γ (in the same
space), then the sets X ′ = X \Y and Y ′ = Y \X are separable by two disjoint sets
in Γ∁. Thus the content of the problems (I), (II), (III) is as follows:

– does the (first) separation theorem hold for Σ1
n?

1‘L‘un des problémes les plus importants de la théorie des ensembles projectifs et qui attend
encore sa solution, est celui de leur séparabilité. On sait que deux ensembles analytiques
quelconques sans point commun sont toujours séparables B. Il serait trés important de démontrer
que deux ensembles (An) quelconques sans point commun sont séparables (Bn). De même, nous
savons que si l’on supprime la partie commune á deux ensembles analytiques, les parties restantes
sont séparables au moyen de deux complémentairs analytiques. La question se pose naturellement
de savoir si ce principe subsiste quand on remplace les ensembles analytiques par (An) et les
complémentaires analytiques par (CAn). C’est un prob́leme que mérite d’attirer l’attention des
analystes malgré sa difficulté. D’ailleurs, il importe de savoir s’il existe deux ensembles (CAn) qui
ne soient pas séparables (Bn).’ Luzin [1], p. 289.

This paper was written with the support of RFBR (grant no. 20-01-00670).
AMS 2020 Mathematics Subject Classification. 03E15, 03E35.

c○ 2021 Russian Academy of Sciences (DoM) and London Mathematical Society

https://doi.org/10.1070/IM8937


1182 V. G. Kanovei and V. A. Lyubetsky

– does the second separation theorem hold for Σ1
n?

– does the (first) separation theorem fail for Π1
n?

Both separation theorems hold for Σ1
1 according to Luzin [6], [1], but fail for Π1

1

according to Novikov [7], and these results were known before the publication of
(the French original of) [1] in 1930. Somewhat later, Novikov [8] established that
the picture changes at the second projective level: both separation theorems hold
for Π1

2 but fail for Σ1
2.

At the same time Kuratowski [9] proved the reduction theorem for Σ1
2, that is,

if X, Y are sets in Σ1
2, then there are disjoint sets X ′ ⊆ X and Y ′ ⊆ Y in the same

class Σ1
2 with the same union X ′ ∪ Y ′ = X ∪ Y . Kuratowski also observed that

Luzin’s arguments in the proof of the separation theorem for Σ1
1 yield the reduction

theorem for Π1
1. Generally, if the reduction theorem holds for a projective class Γ,

then both separation theorems hold for the dual class Γ∁.
Thus the classical studies showed that the reduction theorem holds for the

projective classes Π1
1, Σ1

2 and fails for Σ1
1, Π1

2 while the separation theorems hold
for Σ1

1, Π1
2 and fail for Π1

1, Σ1
2. Note the inversion between the first and second

levels of the hierarchy.
Concerning the higher levels of the projective hierarchy, all attempts to solve the

separation/reduction problems above the second level by the methods of classical
descriptive set theory were fruitless until some extra set-theoretic axioms were
added. In particular, according to Novikov [2] (see also Addison [10]), Gödel’s axiom
of constructibility V = L implies that, for every n ⩾ 3, the reduction theorem
holds for Σ1

n and fails for Π1
n while the separation theorems hold for Π1

n and fail
for Σ1

n, like at the second level. On the other hand, according to Addison and
Moschovakis [11] and Martin [12], the axiom of projective determinacy PD implies
that, for everym ⩾ 1, the reduction theorem holds for the projective classes Π1

2m+1,
Σ1

2m+2 and fails for Σ1
2m+1, Π1

2m+2 while the separation theorems hold for Σ1
2m+1,

Π1
2m+2 and fail for Π1

2m+1, Σ1
2m+2, like what happens at the first and second levels

(n = 0 in this scheme). Moreover, according to Steel [13], it is true under the full
axiom of determinacy AD that if the class Γ of pointsets is closed under some
simple operation and is not self-dual (that is, Γ ̸= Γ∁), then the reduction theorem
holds for exactly one of the classes Γ, Γ∁ and the separation theorems hold for
the other. Conversely, Steel [14] proved that a more special form of separability
for Π1

3 implies some otherwise impossible connections between certain determinacy
hypotheses. See also [15] for other relevant results.

These achievements still leave open a number of important questions about
the status of the separation theorems for higher projective classes. For example,
consider the following problem.

Problem 1.1 (Mathias [16] for n = 3). Given a number n ⩾ 3, is it consistent
with ZFC that the (first) separation theorem fails for Σ1

n and Π1
n?

Harrington solved this problem in the affirmative using a generic extension of L in
which the (first) separation theorem fails for Σ1

3 and Π1
3. The solution was obtained

by the technique of almost-disjoint forcing [17] and was sketched in unpublished
handwritten notes [18], Part 2. This result was mentioned by Moschovakis [4],
5B.3, with reference to Harrington. Moreover, Harrington [18] suggested substantial
changes in the construction of the generic extension, which supposedly lead to the
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failure of separation for the classes Σ1
n and Π1

n with a given n > 3, or even for
all n, but this generalization has never been published in detail.

Our goal here is to prove the following theorem, which indeed solves Problem 1.1
in the affirmative for any given n > 3, albeit by a method different from that
used in [18].

Theorem 1.2. Let n ⩾ 3. It is true, in a suitable generic extension of L, that
(i) there is a pair of disjoint Π1

n-sets X,Y ⊆ 2ω not separable by disjoint Σ1
n-sets,

whence the separation theorem fails for Π1
n and Π1

n ;
(ii) there is a pair of disjoint Σ1

n-sets X,Y ⊆ 2ω not separable by disjoint
Π1

n-sets, whence the separation theorem fails for Σ1
n and Σ1

n .

§ 2. Outline of the proof

Given an n ⩾ 3, we define a sequence of forcing notions Pξ, ξ < ω1, in L whose
finite-support product P =

∏
ξ Pξ satisfies the countable antichain condition CCC

(abbreviation of Countable Сhain Сondition) and adjoins a sequence of generic
reals xξ ∈ 2ω that are independent of each other in the sense that

(I) if η < ω1, then (a) the submodel L[⟨xξ⟩ξ ̸=η] contains no reals Pη-generic over
L and, moreover, (b) xη is the only real in L[⟨xξ⟩ξ<ω1 ], Pη-generic over L,

and the following definability property holds:
(II) the relation “x ∈ 2ω is a real Pξ-generic over L” (with arguments x, ξ) is of

class Π1
n−1 in the whole extension and any of its submodels.

Then, to construct an example for Theorem 1.2, (i), we can generically split ω1 into
three unbounded sets2 ω1 = Ω1∪Ω2∪Ω3, put ∆ = {2ν : ν ∈ Ω1∪Ω3}∪{2ν+1: ν ∈
Ω2 ∪Ω3} and prove that Ω1 and Ω2 (more precisely, the sets of codes in 2ω for the
ordinals in Ω1 and Ω2) are disjoint Π1

n-sets non-separable by disjoint Σ1
n-sets in

the model M = L[⟨xξ⟩ξ∈∆]. Indeed, by (I) we have

Ω1 = {ν < ω1 : ¬∃x (x is P2ν+1-generic over L)}

in M , whence Ω1 is Π1
n in M by (II), and similarly for Ω2. The non-separability

claim uses the following crucial property of P-generic extensions:
(III) if a set X ∈ L, X ⊆ ω1, is unbounded in ω1 and a set G ⊆ P is P-generic

over L, then L[⟨xξ⟩ξ∈X ] is an elementary submodel of L[G] with respect to
all Σ1

n−1-formulae.
Each factor forcing Pξ in this scheme is a clone of Jensen minimal forcing defined
in [19] (and henceforth referred to as Jensen forcing for brevity; see also [20],
28A, on this forcing). In particular, Pξ consists of perfect trees in 2<ω. The
idea of using finite-support products of Jensen forcings to obtain models with
various definability effects belongs to Enayat [21]. It was exploited to obtain
generic models containing countable non-empty Π1

2 -sets (even Eo-classes) without
OD-elements [22], [23], a countable Π1

2 Groszek–Laver pair [24], OD-non-uniformiz-
able planar Π1

2 -sets with countable cross-sections [25], [26], counterexamples to
the separation theorem for both Σ1

3 and Π1
3 [25], counterexamples to the axiom

2In fact this partition is more complicated because we simultaneously construct an example
for Theorem 1.2, (ii); see § 19.
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of choice [27], as well as an ordinal-definable partition of the real line into two
non-empty ordinal-undefinable sets [28].

The result in [25] corresponds to the case n = 3 of Theorem 1.2, when (III) is
immediately true according to Schoenfield. On the other hand, conditions similar
to (I), (II) for n = 3 occur in the forcing constructions in [22]–[26] as well as in [19]
itself, where a CCC forcing J ∈ L adding a real a ∈ 2ω was constructed in such
a way that a is the only J-generic real in L[a] and the property ‘to be a J-generic
real’ is a Π1

2 -property. These properties are guaranteed by a special construction of
J =

⋃
α<ω1

Jα in L from countable sets Jα of perfect trees. This construction may
be regarded as a maximal branch of some mega-tree P whose nodes are countable
sets of perfect trees and each Jα is chosen as the ⩽L-smallest appropriate extension.
The complexity of this construction is ∆1

2 in the codes. This gives rise to the
Π1

2 -definability of the property of being generic, while a special type of extension
in the mega-tree enables one to ‘kill’ all possible competitors of a to be J-generic.

Pretty similar ideas and constructions work in the papers mentioned above,
including [25], where a model was constructed in which Π1

3-separation fails.
The method of transferring generic counterexamples (which were originally

defined at the second and third projective levels) to higher projective levels n was
introduced by Harrington [18] on the basis of an almost-disjoint forcing [17] and
independently in [29] on the base of Jensen forcing [19]. In the above terms, this
method consists in defining a maximal branch in P that intersects all dense sets
in P of descriptive complexity n (or n + c, where c is a small entire constant
depending on the nature of the problem). It was recently used to construct models
in which, for a given n ⩾ 2, there are

(a) a Π1
n Eo-equivalence class containing no OD elements while every countable

Σ1
n-set of reals contains only OD reals [30],
(b) a Π1

n-singleton {a} such that a ∈ 2ω encodes a cofinal map f : ω → ωL
1

minimal over L while every Σ1
n-set X ⊆ ω is constructive [31],

(c) a non-ROD-uniformizable Π1
n-set with countable cross-sections while all

Σ1
n-sets with countable cross-sections are ∆1

n+1-uniformizable [32],

and a model in which the family P(ω)∩L of all constructive sets x ⊆ ω is equal to
the family of all ∆1

n-sets x ⊆ ω; see the recent paper [33]. Here we use this method
to prove Theorem 1.2.

Sections 3–7: perfect trees in 2<ω, perfect tree forcing notions, multitrees (finite
products of trees), multiforcings (countable products of forcings), splittings, refine-
ments, generic refinements by Jensen splitting construction.

Sections 8–13: properties of generic refinements, sealing of dense sets, sealing of
real names, applications to generic extensions.

Sections 14–16: we define the set
−−→
MF of all countable sequences π⃗ of small

multiforcings increasing in the sense of the refinement relation. Arguing in L,
we define a maximal branch Π⃗ in

−−→
MF of class ∆1

n−1 (in codes) that blocks all the
Σ1

n−2-sets in
−−→
MF, where n is the number in Theorem 1.2. Here we say that π⃗ ∈

−−→
MF

blocks a set W ⊆
−−→
MF if either π⃗ ∈ W or no extension of π⃗ in

−−→
MF belongs to W .

The forcing notion P for Theorem 1.2 is a derivate of Π⃗.
Sections 17–20: we show that P satisfies (I) and (II).
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Sections 22–26: to achieve (III), we develop an auxiliary forcing relation forc
which approximates the truth in P-generic extensions for Σ1

n−1-formulae and below.
The restriction of the relation forc to Σ1

m, Π1
m, m ⩾ 2, is of type Σ1

m, Π1
m

respectively. Using the invariance of the relation forc under certain transformations
(while the forcing notion P is not invariant!), we complete the proof of (III) and
Theorem 1.2.

§ 3. Trees and perfect-tree forcing notions

We write 2<ω for the set of all strings (finite sequences) of the numbers 0, 1.
If t ∈ 2<ω and i = 0, 1, then t⌢ i stands for the extension of t by i as the rightmost
term. If s, t ∈ 2<ω, then s ⊆ t means that t extends s, while s ⊂ t means a proper
extension. lh(t) is the length of t ∈ 2<ω, and 2n = {s ∈ 2<ω : lh(s) = n} (strings
of length n).

A set T ⊆ 2<ω is a tree if, given any s ⊂ t in 2<ω, the inclusion t ∈ T implies
that s ∈ T . Thus every non-empty tree T ⊆ 2<ω contains the empty string Λ.

When T ⊆ 2<ω is a tree and s ∈ T , we put T ↾s = {t ∈ T : s ⊆ t or t ⊆ s}.

Definition 3.1. PT is the set of all perfect trees ∅ ̸= T ⊆ 2<ω. A tree T belongs
to PT if it has no endpoints and no isolated branches. Given any T ∈ PT, we
define a perfect set

[T ] = {a ∈ 2ω : ∀n (a ↾ n ∈ T )} ⊆ 2ω.

Trees T, S ∈ PT are said to be almost disjoint, or ad for brevity, if the intersection
S ∩ T is finite or, equivalently, [S] ∩ [T ] = ∅. A set A ⊆ PT is an antichain if any
two trees T ̸= S in A are ad.

Consider pairs of the form ⟨n, T ⟩, where n < ω and T ∈ PT. Following [34], we
order the set ω × PT of all such pairs by a special relation ≼ in such a way3 that
⟨n, T ⟩ ≼ ⟨m,S⟩ (reads: ⟨n, T ⟩ extends ⟨m,S⟩) if m ⩽ n, T ⊆ S and T∩2m = S∩2m.
The role of the number m in a pair ⟨m,S⟩ is to preserve the value S ∩ 2m under
≼-extensions.

While the implication m > n =⇒ ⟨m,T ⟩ ≼ ⟨n, T ⟩ (with the same T !) always
holds, it is not always true that S ⊆ T =⇒ ⟨n, S⟩ ≼ ⟨n, T ⟩: we need the equality
T ∩ 2n = S ∩ 2n.

Lemma 3.2 (see [34]). Let · · · ≼ ⟨n2, T2⟩ ≼ ⟨n1, T1⟩ ≼ ⟨n0, T0⟩ be a decreasing
sequence in ω × PT with n0 < n1 < n2 < · · · which is minimally generic in the
sense that it has a non-empty intersection with every set of the form

Dt = {⟨n, T ⟩ ∈ ω × PT : t /∈ T or ∃ s ∈ T (t ⊆ s ∧ s ⌢ 0, s ⌢ 1 ∈ T )}, t ∈ 2<ω.

Then T =
⋂
n Tn ∈ PT, and if i < ω , then ⟨ni, T ⟩ ≼ ⟨ni, Ti⟩.

3This definition does not explicitly contain any splitting condition. This is why the genericity
assumption is needed in Lemma 3.2. An earlier definition in [35] required that for every s ∈ S∩2m

there are two strings s′ ̸= s′′ in T ∩ 2n such that s ⊂ s′ and s ⊂ s′′. For this ordering, Lemma 3.2
holds without the genericity assumption.
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Definition 3.3. An arboreal forcing is any set P ⊆ PT such that if u ∈ T ∈ P,
then T ↾u ∈ P. We write AF for the set of all arboreal forcings P. A forcing P ∈ AF
is said to be

– regular if, for any S, T ∈ P, the intersection [S] ∩ [T ] is closed and open in [S]
or in [T ] (or in [S] and [T ] simultaneously),

– special if there is a finite or countable antichain A ⊆ P such that P = {T ↾s :
s ∈ T ∈ A} (then the antichain A is unique and P is clearly regular).

Example 3.4. If s ∈ 2<ω, then the tree T [s] = {t ∈ 2<ω : s ⊆ t or t ⊆ s} belongs
to PT and T [s] = (2<ω)↾s ∀ s. The set Pcoh = {T [s] : s ∈ 2<ω} (the Cohen forcing)
is a regular and special arboreal forcing notion.

Any set P ∈ AF may be regarded as a forcing notion (if T ⊆ T ′, then T is
a stronger ‘condition’). Such a forcing P clearly adds a real in 2ω.

To carry out the splitting constructions (as in Lemma 3.2) over a forcing P ∈ AF,
we use the bigger forcing

⋃fin P ∈ AF which consists of all finite unions of trees
in P. Then the set P is dense in

⋃fin P, so that the forcing properties of both sets
coincide. Yet

⋃fin P is more flexible with respect to tree constructions.
The following lemma implies that the compatibility of ‘conditions’ in a regular

forcing is absolute.

Lemma 3.5. Assume that P ∈ AF is regular and the trees S, T ∈ P are not ad.
Then S ∩ T ∈

⋃fin P, whence S , T are compatible in P.

Proof. By regularity, the intersection [S]∩ [T ] is closed and open, say, in [S]. Then
there is a finite set U ⊆S such that [S] ∩ [T ] =

⋃
u∈U [S↾u]. But every S↾u belongs

to P because the latter is an arboreal forcing. □

Lemma 3.6. Suppose that P ∈ AF and S, T ∈
⋃fin P, u ∈ S , n = lh(u), T ⊆

S↾u . Then the tree S′ = T ∪
⋃
v∈S∩2n, v ̸=u S↾v belongs to

⋃fin P, ⟨n, S′⟩ ≼ ⟨n, S⟩,
S′↾u = T , and S′↾v = S↾v for all strings v ∈ S with lh(v) = n and v ̸= u.

Corollary 3.7. Suppose that P,P′ ∈ AF. Then the following assertions hold.
(i) If n < ω and T ∈

⋃fin P, then there is a tree S ∈
⋃fin P such that ⟨n, S⟩ ≼

⟨n, T ⟩ and S↾t ∈ P (not only ∈
⋃fin P!) for all t ∈ 2n ∩ S .

(ii) If T ∈ P and T ′ ∈ P′ , then there are trees S ∈ P, S′ ∈ P′ such that S ⊆ T ,
S′ ⊆ T ′ and [S] ∩ [S′] = ∅.

(iii) If n < ω , T ∈
⋃fin P and T ′ ∈

⋃fin P′ , then there are trees S ∈
⋃fin P,

S′ ∈
⋃fin P′ such that ⟨n, S⟩ ≼ ⟨n, T ⟩, ⟨n, S′⟩ ≼ ⟨n, T ′⟩, [S] ∩ [S′] = ∅.

Proof. (ii) If T = T ′, then pick a pair of strings u ̸= v in T =T ′ with lh(u) = lh(v)
and put S = T ′↾u, S′ = T ′↾v. If, for example, T ̸⊆ T ′, then take any u ∈ T \T ′ and
put S = T ↾u and simply S′ = T ′. To prove (iii), iterate (ii) and use Lemma 3.6. □

§ 4. Multiforcings and multitrees

A multiforcing is any map π : |π| → AF, where |π| = dom π ⊆ ω1. Let MF
be the family of all multiforcings. We typically represent multiforcings π ∈ MF as
indexed sets π = ⟨Pξ⟩ξ∈|π|, where Pξ ∈ AF for all ξ ∈ |π|, so that each set
Pξ = Pπ

ξ = π(ξ), ξ ∈ |π|, is an arboreal forcing. A multiforcing π is said to be
– small if the set |π| and each forcing Pπ

ξ , ξ ∈ |π|, is countable,
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– special if each forcing Pπ
ξ is special in the sense of Definition 3.3,

– regular if each forcing Pπ
ξ is regular in the sense of Definition 3.3.

A multitree is any function p : |p| → PT whose support |p| = domp is finite.
Let MT be the family of all multitrees. We typically represent multitrees p ∈ MT
as indexed sets p = ⟨Tp

ξ ⟩ξ∈|p|, where Tp
ξ = p(ξ) ∈ PT for all ξ ∈ |p|.

Let π = ⟨Pξ⟩ξ∈|π| be a multiforcing. In this case, a π-multitree is any multitree
p ∈ MT such that |p| ⊆ |π| and if ξ ∈ |p|, then the tree p(ξ) = Tp

ξ belongs to Pξ.
If p ∈ MT(π), then the set

[p] = {x ∈ (2ω)|π| : ∀ ξ ∈ |p| (x(ξ) ∈ [Tp
ξ ])}

is a cofinite-dimensional perfect cube in (2ω)|π|. We order MT and each MT(π)
componentwise: q ⩽ p (q is stronger than p) if |p| ⊆ |q| and T q

ξ ⊆ Tp
ξ for all ξ ∈ |p|

or, equivalently, [q] ⊆ [p]. The empty multitree Λ is defined by putting |Λ| = ∅.
It belongs to MT(π) and is the weakest.

Remark 4.1. If π = ⟨Pξ⟩ξ∈|π| is a multiforcing, then the set MT(π) of all π-multi-
trees can be identified with the finite-support product

∏
ξ∈|π| Pξ of the arboreal

forcings Pξ.

Definition 4.2. Two multitrees p, q ∈ MT(π) are somewhere almost disjoint
(sad) if there is a ξ ∈ |p| ∩ |q| such that Tp

ξ and T q
ξ are ad. The property of

being sad is equivalent to the equality [p] ∩ [q] = ∅ and, in the case of regular
multiforcings π, to incompatibility in MT(π) by the following result.

Corollary 4.3 (of Lemma 3.5). Assume that π is a regular multiforcing and p, q ∈
MT(π) are not sad. Then there is a finite set R ⊆ MT(π) such that [p] ∩ [q] =⋃

r∈R[r]. Therefore p, q are compatible in MT(π), that is, there is a multitree
r ∈ MT(π) satisfying r ⩽ p and r ⩽ q .

Definition 4.4. The componentwise union of two multiforcings π,ϙ is the multi-
forcing π ∪cw

ϙ such that |(π ∪cw
ϙ)| = |π| ∪ |ϙ| and

(π ∪cw
ϙ)(ξ) = π(ξ), ϙ(ξ), π(ξ) ∪ ϙ(ξ)

when ξ ∈ |π| \ |ϙ|, ξ ∈ |ϙ| \ |π|, ξ ∈ |ϙ| ∩ |π| respectively.
Given any sequence π⃗ = ⟨πα⟩α<λ of forcings in MF, we define π =

⋃ cw
π⃗ =⋃ cw

α<λ πα ∈ MF in such a way that |π| =
⋃
α<λ |πα| and π(ξ) =

⋃
α<λ, ξ∈|πα| πα(ξ)

for every ξ ∈ |π|.

Remark 4.5. Any forcing of the form MT(π), where π = ⟨Pξ⟩ξ∈|π| ∈ MF, adjoins
a generic sequence ⟨xξ⟩ξ∈|π|, where each xξ = xξ[G] ∈ 2ω is a Pξ-generic real. Reals
of the form xξ[G] will be called principal generic reals in V[G].

§ 5. Refining arboreal forcings

Given any T ∈ PT (a tree) and D ⊆ PT, we write X ⊆fin
⋃
D if there is a finite

set D′ ⊆ D such that T ⊆
⋃
D′ or, equivalently, [T ] ⊆

⋃
S∈D′ [S].

Definition 5.1. Let P,Q ∈ AF be arboreal forcings. We say that Q is a refinement
of P (and write P ⊏ Q) if the following conditions hold.
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(1) The set Q is dense4 in P ∪ Q: if T ∈ P, then ∃Q ∈ Q (Q ⊆ T ).
(2) If Q ∈ Q, then Q ⊆fin

⋃
P.

(3) If Q ∈ Q and T ∈ P, then [Q] ∩ [T ] is closed and open in [Q] and T ̸⊆ Q.

Lemma 5.2. (i) If P ⊏ Q and S ∈ P, T ∈ Q, then [S] ∩ [T ] is meagre in [S] and,
therefore, P ∩ Q = ∅ and Q is open-dense in P ∪ Q.

(ii) If P ⊏ Q ⊏ R, then P ⊏ R. Thus ⊏ is a strict partial order.
(iii) If ⟨Pαα<λ⟩ is a ⊏-increasing sequence in AF and 0 < µ < λ, then P =⋃
α<µ Pα ⊏ Q =

⋃
µ⩽α<λ Pα .

(iv) If ⟨Pαα<λ⟩ is a ⊏-increasing sequence in AF and each Pα is special, then
P =

⋃
α<λ Pα ∈ AF is a regular forcing and each of the Pγ is pre-dense in P.

Proof. (i) Otherwise there is a string u ∈ S such that S↾u ⊆ [T ]∩ [S]. But S↾u ∈ P,
which contradicts 5.1, (3).

(ii), (iii) We use part (i) to establish 5.1, (3).
(iv) To check the regularity, suppose that S ∈ Pα, T ∈ Pβ , α ⩽ β. If α=β, then

in view of the speciality of Pα Lemma 3.5 yields that the trees S, T are either ad
or ⊆-comparable. If α < β, then [S] ∩ [T ] is open and closed in [T ] by 5.1, (3).

To check the pre-density, suppose that S ∈ Pα, α ̸= γ. If α < γ, then by 5.1, (1)
there is a tree T ∈ Pγ , T ⊆ S. Now let γ < α. Then S ⊆fin

⋃
Pγ by 5.1, (2).

Hence there is a tree T ∈ Pγ such that [S] ∩ [T ] ̸= ∅. However, [S] ∩ [T ] is closed
and open in [S] by 5.1, (3). Therefore, S↾u ⊆ T for an appropriate u ∈ S. Finally,
S↾u ∈ Pα since Pα ∈ AF. □

Note that if P,Q ∈ AF and P ⊏ Q, then a dense set D ⊆ P need not be dense
or even pre-dense in P ∪ Q. However, there is a special type of refinement which
preserves at least pre-density.

Definition 5.3. Suppose that P,Q ∈ AF and D ⊆ P. We say that Q seals D
over P (and write P ⊏D Q) if P ⊏ Q and every tree S ∈ Q satisfies S ⊆fin

⋃
D.

Then the “simple” P ⊏ Q is equivalent to P ⊏P Q.

We shall see that a sealed set has to be pre-dense before and after the refinement.
Sealing refinements are important because the property of being sealed is preserved
under further simple refinements, that is, ⊏D is transitive when combined with ⊏
in the sense of part (ii) of the following lemma.

Lemma 5.4. (i) If P ⊏D Q, then D is pre-dense in P ∪ Q. If in addition P is
regular, then D is also pre-dense in P.

(ii) If P ⊏D Q ⊏ R (note: the second ⊏ is not ⊏D!), then P ⊏D R.
(iii) If ⟨Pαα<λ⟩ is a ⊏-increasing sequence in AF, 0 < µ<λ, and

P =
⋃
α<µ

Pα ⊏D Pµ,

then P ⊏D Q =
⋃
µ⩽α<λ Pα .

4Given any P ⊆ R ⊆ PT, we say that the set P is 1) dense in R if ∀T ∈ R ∃S ∈ P (S ⊆ T );
2) open-dense in R if, moreover, ∀T ∈ R ∀S ∈ P (T ⊆ S =⇒ T ∈ P); and 3) pre-dense in R if the
derived set P′ = {T ∈ R : ∃S ∈ P (T ⊆ S)} is dense in R.
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Proof. (i) To see that D is pre-dense in P∪Q, suppose that T0 ∈P∪Q. By 5.1, (1)
there is a tree T ∈ Q with T ⊆ T0. Then T ⊆fin

⋃
D and, in particular, there

is a tree S ∈ D with X = [S] ∩ [T ] ̸= ∅. However, X is closed and open in [T ]
by 5.1, (3). Therefore there is a tree T ′ ∈ Q with [T ′] ⊆ X. Thus, T ′ ⊆ S ∈ D and
T ′ ⊆ T ⊆ T0. We conclude that T0 is compatible with S ∈ D in P ∪ Q.

To see that D is pre-dense in P (in the case when P is regular), suppose that
S0 ∈P. We have already seen that then S0 is compatible with some S ∈ D. Hence
S and S0 are not ad. It remains to use Lemma 3.5.

To prove (ii), in addition to Lemma 5.2, (ii), suppose that R ∈ R. Then R ⊆fin⋃
Q, but every T ∈ Q satisfies T ⊆fin

⋃
D. The same goes for (iii). □

§ 6. Refining multiforcings

Let π, ϙ be multiforcings. We say that ϙ is a refinement of π (and write π ⊏ ϙ)
if |π| ⊆ |ϙ| and π(ξ) ⊏ ϙ(ξ) whenever ξ ∈ |π|.

Corollary 6.1 (of Lemma 5.2). If π ⊏ ϙ ⊏ ρ, then π ⊏ ρ.
If π ⊏ ϙ, then the set MT(ϙ) is open-dense5 in MT(π ∪cw

ϙ).

Our next goal is to adjust Definition 5.3 for multiforcings in such a way that
an analogue of Lemma 5.4 holds.

We first adjust the definition of the relation ⊆fin in § 5 for multitrees. Namely,
given a multitree u and a set D of multitrees, we shall write u ⊆fin

∨
D if there

is a finite set D′ ⊆ D such that 1) |v| = |u| for all v ∈ D′, and 2) [u] ⊆
⋃

v∈D′ [v].

Definition 6.2. Suppose that π, ϙ are multiforcings and π ⊏ ϙ. We say that ϙ
seals a set D ⊆ MT(π) over π (and write π ⊏D ϙ) if the following condition
holds.

(∗) If p ∈ MT(π), u ∈ MT(ϙ), |u| ⊆ |π| and |u| ∩ |p| = ∅, then there is
a q ∈ MT(π) such that q ⩽ p, |q| ∩ |u| = ∅ and u ⊆fin

∨
D|u|

q , where

D|u|
q = {u′ ∈ MT(π) : |u′| = |u| and u′ ∪ q ∈ D}.

Note that if p,u,D, q are as indicated, then u ∪ q ⊆fin
∨

D′, where D′ =
{u′ ∪ q : u′ ∈ D|u|

q } ⊆ D. The definition of ⊏D in 6.2 looks somewhat different
from and more complicated than that of ⊏D in 5.3. This reflects the fact that
finite-support products of forcing notions in AF behave differently and in a more
complicated way than single arboreal forcings. The following lemma, which is
similar to Lemma 5.4, is accordingly somewhat less obvious.

Lemma 6.3. Suppose that π , ϙ, σ are multiforcings and D ⊆ MT(π). Then the
following assertions hold.

(i) If π ⊏D ϙ, then D is dense in MT(π) and pre-dense in MT(π ∪cw
ϙ).

(ii) If π is regular, π ⊏Di ϙ for i = 1, . . . , n, all the sets Di ⊆ MT(π) are
open-dense in MT(π), and D =

⋂
i Di , then π ⊏D ϙ.

(iii) If D is open-dense in MT(π) and π ⊏D ϙ ⊏ σ , then π ⊏D σ .

5Given any P ⊆ R ⊆ MT, we say as in footnote 4 that P is 1) dense in R if
∀ r∈R ∃p∈P (p ⩽ r), 2) open-dense in R if in addition ∀ r∈R ∀p∈P (p ⩽ r =⇒ p∈R),
and 3) pre-dense in R if the set P ′ = {r ∈ R : ∃p ∈ P (r ⩽ p)} is dense in R.



1190 V. G. Kanovei and V. A. Lyubetsky

(iv) If ⟨παα<λ⟩ is a ⊏-increasing sequence in MF, 0 < µ < λ, π =
⋃ cw
α<µ πα ,

the set D is open-dense in MT(π), and π ⊏D πµ , then π ⊏D ϙ =
⋃ cw
µ⩽α<λ πα .

Proof. (i) To check that D is pre-dense in MT(π ∪cw
ϙ), suppose that r ∈

MT(π∪cw
ϙ). Since MT(π∪cw

ϙ) is a product, we can assume that |r| ⊆ |π|. Put

X = {ξ ∈ |r| : T r
ξ ∈ MT(ϙ)}, Y = {ξ ∈ |r| : T r

ξ ∈ MT(π)}.

Then r = u∪p, where u = r ↾ X ∈ MT(ϙ), p = r ↾ Y ∈MT(π). Since ϙ seals D,
there is a multitree q ∈ MT(π) such that q ⩽ p, |q| ∩ |u| = ∅ and u ⊆fin

∨
D|u|

q .
It is easy to see that there is a multitree u′ ∈ D|u|

q compatible with u in MT(ϙ).
Suppose that w ∈ MT(ϙ), w ⩽ u, w ⩽ u′, |w| = |u′| = |u|. Then the multitree
r′ = w ∪ q ∈ MT(π∨ϙ) satisfies r′ ⩽ r and r′ ⩽ u′ ∪ q ∈ D.

To check that D is dense in MT(π), suppose that p ∈ MT(π). Taking u = Λ
(the empty multitree) in the condition (∗) of Definition 6.2, we see that |u| = ∅
and D|u|

q = D.
(ii) Suppose that p ∈ MT(π), u ∈ MT(ϙ), |u| ⊆ |π|, |u| ∩ |p| = ∅. Iterating

(∗) for the sets Di, i = 1, . . . , n, we find a multitree q ∈ MT(π) such that q ⩽ p,
|q| ∩ |u| = ∅ and u ⊆fin

∨
(Di)

|u|
q for all i, where

(Di)|u|
q = {u′ ∈ MT(π) : |u′| = |u| and u′ ∪ q ∈ Di}.

Thus there are finite sets Ui ⊆ (Di)
|u|
q such that [u] ⊆

⋃
v∈Ui

[v] for all i. Using the
regularity assumption and Corollary 4.3, we obtain a finite set W ⊆ MT(π) such
that |w| = |u| for all w ∈ W ,

⋂
i

⋃
v∈Ui

[v] =
⋃

w∈W [w] and if i = 1, . . . , n and
w ∈ W , then [w] ⊆ [v] for some v ∈ Ui, whence w ∪ q ∈ Di. We conclude that
if w ∈ W , then w ∪ q ∈ D and, therefore, w ∈ D|u|

q . Thus W ⊆ D|u|
q . However,

[u] ⊆
⋃

w∈W [w] by the choice of W . Thus u ⊆fin
∨

D|u|
q .

(iii) We have π ⊏ σ by Corollary 6.1. To check that σ seals D over π, suppose
that u ∈ MT(σ), |u| ⊆ |π|, p ∈ MT(π), |u| ∩ |p| = ∅. Since ϙ ⊏ σ, there is
a finite set U ⊆ MT(ϙ) such that |v| = |u| for all v ∈ U , and [u] ⊆

⋃
v∈U [v]. Since

π ⊏D ϙ, an iterated application of Definition 6.2, (∗) yields a multitree q ∈ MT(π)
such that q ⩽ p, |q| ∩ |u| = ∅ and if v ∈ U , then v ⊆fin

∨
D|u|

q , where

D|u|
q = {v′ ∈ MT(π) : |v′| = |v| = |u| ∧ v′ ∪ q ∈ D}.

We finally note that u ⊆fin
∨
U by construction. Hence we also have u ⊆fin

∨
D|u|

q .
(iv) We have to check that ϙ seals D over π. Suppose that u ∈ MT(ϙ), |u| ⊆ |π|,

p ∈ MT(π), |u| ∩ |p| = ∅. There is a finite set U ⊆ MT(πµ) such that |v| = |u|
for all v ∈ U and [u] ⊆

⋃
v∈U [v]. We proceed as in the proof of (iii). □

§ 7. Generic refinement of a multiforcing according to Jensen

Here we define a splitting/fusion construction of refinements. The construction
was originally invented as a method for obtaining perfect sets in Polish spaces.
Jensen modified it in [19] in order to obtain refinements of certain countable
subforcings of the Saks forcing. Our next definition introduces what is essentially
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a product version of Jensen refiniements which is applicable to arboreal forcings and
multiforcings. Since we are dealing with finite-support products (see Remark 4.1),
the standard technique in the theory of countable-support Saks products (as, for
example, in [36] or [37]–[39]) is not fully applicable. The notion of a system
in our next definition contains appropriate changes of instrumentation related
to the splitting/fusion construction. It was established in [22], [23] that infinite
finite-support products of Jensen-type forcing notions are CCC, preserve cardinals
(in contrast to finite-support Saks products) and admit a suitable version of the
splitting/fusion technique.

Definition 7.1. Suppose that π = ⟨Pξ⟩ξ∈|π| is a small multiforcing.
(0) A π-system is any indexed set of the form

φ = ⟨Tφξk⟩⟨ξ,k⟩∈|φ|,

where |φ| ⊆ |π| × ω is finite and Tφξk = φ(ξ, k) ∈
⋃fin Pξ for all ξ, k. (We recall

that
⋃fin Pξ consists of all finite unions of trees in Pξ.) We order the set Sys(π)

of all π-systems componentwise: φ ⩽ ψ (φ extends ψ) if |ψ| ⊆ |φ| and Tφξk ⊆ Tψξk
for all ⟨ξ, k⟩ ∈ |ψ|. Accordingly, the set ω × Sys(π) is ordered in such a way that
⟨n, φ⟩ ≼ ⟨m,ψ⟩ if and only if |ψ| ⊆ |φ| and ⟨n, Tφξk⟩ ≼ ⟨m,Tψξk⟩ in ω × PT (§ 3) for
all ξ, k. This implies that m ⩽ n.

(1) Let M ∈ HC be any set.6 The set M+ of all setsX ∈ HC that are ∈-separable
in HC by formulae with sets in M as parameters is still countable. Hence there is
a ≼-decreasing sequence Φ = ⟨⟨nj , φj⟩⟩j<ω of pairs ⟨nj , φj⟩ ∈ ω × Sys(π) which
is M+-generic in the sense that it intersects all the setsD ∈ M withD ⊆ ω×Sys(π)
that are open-dense7 in ω × Sys(π). We fix such an M+-generic sequence Φ.

By definition, each φj is of the form φj = ⟨Tφj

ξk ⟩⟨ξ,k⟩∈|φj |, where |φj | ⊆ |π| × ω

is finite and each tree Tφj

ξk belongs to
⋃fin Pξ. Since nj → ∞ by genericity, we can

assume without loss of generality that n0 < n1 < n2 < · · · strictly.
(2) Suppose that ξ ∈ |π|, k < ω. By the genericity assumption, there is a number

j(ξ, k) such that if j ⩾ j(ξ, k), then ⟨ξ, k⟩ ∈ |φj |. Hence the tree φj(ξ, k) = T
φj

ξk ∈⋃fin Pξ is defined and we have

· · · ≼ ⟨nj(ξ,k)+2, T
φj(ξ,k)+2

ξk ⟩ ≼ ⟨nj(ξ,k)+1, T
φj(ξ,k)+1

ξk ⟩ ≼ ⟨nj(ξ,k), T
φj(ξ,k)

ξk ⟩,

with nj(ξ,k) < nj(ξ,k)+1 < nj(ξ,k)+2 < · · · strictly; see (1) above.
(3) It then follows by Lemma 3.2 that each intersection QΦ

ξk =
⋂
j⩾j(ξ,k) T

φj

ξk is
a tree in PT (not necessarily in Pξ) and the relation ⟨nj ,QΦ

ξk⟩ ≼ ⟨nj , T
φj

ξk ⟩ holds
for all j ⩾ j(ξ, k). We define QΦ

ξ = {QΦ
ξk↾s : k < ω ∧ s ∈ QΦ

ξk}.
(4) We finally put ϙ = ⟨QΦ

ξ ⟩ξ∈|π| and π ∪cw
ϙ = ⟨Pξ ∪ QΦ

ξ ⟩ξ∈|π|.
(5) Let ϙ = ϙ[Φ] be the multiforcing obtained in this way from an M+-generic

sequence Φ. Then ϙ is called an M-generic refinement of π.
6We recall that HC = all hereditarily countable sets, that is, those having at most countable

transitive closures.
7The density means that for any ⟨m,ψ⟩ ∈ ω × Sys(π) there is an ⟨n, φ⟩ ∈ D with ⟨n, φ⟩ ≼

⟨m,ψ⟩. The openness means that if ⟨m,ψ⟩ ∈ D and ⟨n, φ⟩ ≼ ⟨m,ψ⟩, then ⟨n, φ⟩ ∈ D.
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Lemma 7.2 (by the countability of M+). If M ∈ HC, then for every small
multiforcing π there is an M-generic refinement ϙ.

The following theorem is formulated under the hypotheses and notation of Defi-
nition 7.1. Its goal is to demonstrate that the construction in Definition 7.1 results
in refinements of types ⊏D and ⊏D.

Theorem 7.3. Suppose that M ∈ HC is transitive and ϙ = ϙ[Φ] = ⟨Qξ⟩ξ∈|π| is
an M-generic refinement of a small multiforcing π = ⟨Pξ⟩ξ∈|π| ∈ M. Then the
following assertions hold.

(i) ϙ is a small special multiforcing, |ϙ| = |π| and π ⊏ ϙ.
(ii) If pairs ⟨ξ, k⟩ ≠ ⟨η, ℓ⟩ belong to |π| = |ϙ|, then [QΦ

ξk] ∩ [QΦ
ηℓ] = ∅.

(iii) If ξ ∈ |π|, S ∈ Qξ and T ∈ Pξ , then [S] ∩ [T ] is closed and open in [S] and
T ̸⊆ S . Hence Qξ ∩ Pξ = ∅.

(iv) If ξ ∈ |π|, then the set Qξ is open-dense in Qξ ∪ Pξ .
(v) If ξ ∈ |π| and D ∈ M is such that D ⊆ Pξ is pre-dense in Pξ , then Pξ ⊏D Qξ .
(vi) If in addition π =

⋃ cw
α<λ πα , where λ < ω1 and ⟨πα⟩α<λ ∈ M is a ⊏-increas-

ing sequence of small special multiforcings, then πα ⊏ ϙ for all α < λ.

Proof. We argue using the notation in Definition 7.1.
(ii) By Corollary 3.7, (iii), the set D of all pairs ⟨n, φ⟩ ∈ ω×Sys(π), where φ is

a pairwise ad system and |φ| contains ⟨ξ, k⟩ and ⟨η, ℓ⟩, is dense in ω×Sys(π) and,
obviously, D∈M+. Thus ⟨nj , φj⟩ ∈D for some j < ω. Then T

φj

ξk ∩ Tφj

ηℓ = ∅ since
φj is ad. But QΦ

ξk ⊆ T
φj

ξk and QΦ
ηℓ ⊆ T

φj

ηℓ by construction.
(iii) Let S = QΦ

ξk. To prove the closedness and openness, we consider the set
D(T ) of all pairs ⟨n, φ⟩ ∈ ω × Sys(π) such that ⟨ξ, k⟩ ∈ |φ| and if s ∈ 2n, then
Tφξk↾s ⊆ T or [Tφξk]∩[T ] = ∅, and note that this set is dense in ω×Sys(π). To prove
that T ̸⊆ S, we similarly consider the set D′(T ) of all pairs ⟨n, φ⟩ ∈ ω × Sys(π)
such that ⟨ξ, k⟩ ∈ |φ| and T ̸⊆ Tφξk. This set is dense. We note that D(T ), D′(T ) ∈
M+ and argue as above.

(iv) The openness follows easily from (iii). To prove the density, suppose that
T ∈ Pξ. Let ∆(T ) be the set of all pairs ⟨n, φ⟩ ∈ ω × Sys(π) such that ⟨ξ, k⟩ ∈ |φ|
and Tφξk = T for some k. Then this set belongs to M+ and is dense in ω×Sys(π).

(i) By construction, the sets ϙ(ξ) = QΦ
ξ are special arboreal forcings. Hence ϙ is

a small special multiforcing and |ϙ| = |π|. To establish that π ⊏ ϙ, suppose that
ξ ∈ |π|. We have to prove that Pξ ⊏ Qξ. Condition (1) of Definition 5.1 follows
from (iv), condition (3) from (iii), and (2) holds because QΦ

ξk ⊆ T
φj

ξk ∈
⋃fin Pξ for

some j.
(v) Assume that ξ ∈ |π|, k < ω and D ∈ M+ is pre-dense in Pξ. Then the

set D′ = {T ∈ Pξ : ∃S ∈ D(T ⊆ S)} is open-dense in Pξ and, therefore, ∆
is dense in ω × Sys(π) by Lemma 3.6, where ∆ ∈ M+ is the set of all pairs
⟨n, φ⟩ ∈ ω×Sys(π) such that ⟨ξ, k⟩ ∈ |φ| and Tφξk↾s ∈ D′ for all s ∈ 2n∩Tφξk. Thus
⟨nj , φj⟩ ∈ ∆ for some j. It follows that QΦ

ξk ⊆ T
φj

ξk ⊆fin
⋃
D.

(vi) We need to prove that πα(ξ) ⊏ ϙ(ξ) when ξ ∈ |πα|. Since the relation
π(ξ) ⊏ ϙ(ξ) has already been checked, it suffices to prove that QΦ

ξk ⊆fin
⋃

πα(ξ).
However, D = πα(ξ) is pre-dense in π(ξ) = Pξ by Lemma 5.2, (iv) and we still have
D ∈ M+. Hence (v) can be applied. □
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Corollary 7.4. Under the hypotheses of Lemma 7.2, if |π| ⊆ Z ⊆ ω1 and Z is
countable, then there is a small special multiforcing ϙ such that |ϙ| = Z and π ⊏ ϙ.

Proof. If |π| = Z, then let M ∈ HC be any countable set containing π, pick ϙ by
Lemma 7.2 and apply Theorem 7.3. But if |π| ⫋ Z, then we trivially extend the
construction by ϙ(ξ) = Pcoh (Example 3.4) for all ξ ∈ Z \ |π|. □

§ 8. Generic refinement: sealing dense sets

Here we prove an important corollary of the M+-genericity of multiforcing refine-
ments: the relation ⊏D (see Definition 6.2) between a multiforcing and a refinement
of it, where D is a dense set.

Theorem 8.1. Under the hypotheses of Theorem 7.3 suppose that D ∈ M+ , D ⊆
MT(π) and D is open-dense in MT(π). Then π ⊏D ϙ.

Proof. By hypothesis, ϙ = ϙ[Φ] is obtained from a decreasing M+-generic
sequence Φ of pairs ⟨nj , φj⟩ ∈ ω×Sys(π) as in Definition 7.1, (1). We work in the
notation of Definition 7.1. Suppose that p ∈ MT(π), u ∈ MT(ϙ), |u| ∩ |p| = ∅
as in the condition (∗) of Definition 6.2. The extra condition |u| ⊆ |π| holds
automatically since |ϙ| = |π|. We have to find a multitree q which gives 6.2, (∗)
for u.

Each term Tu
ξ of u (ξ ∈ |u|) is equal to some QΦ

ξ,kξ
↾tξ , where tξ ∈ QΦ

ξ,kξ
. There

is no loss of generality in assuming that tξ = Λ and, therefore, Tu
ξ = QΦ

ξ,kξ
∀ ξ.

Definition 8.2. If n < ω, then Sysn(π) contains all systems φ ∈ Sys(π) such
that ⟨ξ, kξ⟩ ∈ |φ| for all ξ ∈ |u| and Tφξk↾t ∈ Pξ = π(ξ) (not merely ∈

⋃fin Pξ!) for
all ⟨ξ, k⟩ ∈ |φ| and t ∈ 2n ∩ Tφξk.

If φ ∈ Sysn(π), then Snφ contains all multistrings s = ⟨sξ⟩ξ∈|u| such that sξ ∈
2n ∩ Tφξ,kξ

for all ∀ ξ ∈ |u|. If s = ⟨sξ⟩ξ∈|u| ∈ Snφ, then we define vs
φ ∈ MT(π) by

|vs
φ| = |u| and T

vs
φ

ξ = Tφξ,kξ
↾sξ

for all ξ ∈ |u|.

Lemma 8.3. Suppose that n < ω and φ ∈ Sys(π). Then there is a system ψ ∈
Sysn(π) such that ⟨n, ψ⟩ ≼ ⟨n, φ⟩.

Proof. Adjoin every absent pair ⟨ξ, kξ⟩ /∈ |φ| to |ψ| and define Tψξ,kξ
∈ Pξ arbitrarily.

If ⟨ξ, k⟩ ∈ |ψ| and t ∈ 2n ∩ Tψξk, but Tψξk↾t ∈
⋃fin Pξ \ Pξ, then shrink Tψξk to a tree

in Pξ by Lemma 3.7, (i) and do this for all such triples ξ, k, t. □

Lemma 8.4. Suppose that r ∈ MT(π) and |r| ∩ |u| = ∅. Let ∆r ∈ M be the set
of all pairs ⟨n, φ⟩ ∈ ω×Sys(π) such that φ ∈ Sysn(π) and there is a q ∈ MT(π)
satisfying q ⩽ r , |u| ∩ |q| = ∅ and (1) if s ∈ Snφ , then vs

φ ∪ q ∈ D . Then ∆r is
dense in ω × Sys(π).

Proof. Given any ⟨n, ψ⟩ ∈ ω × Sys(π), we shall find a pair ⟨n, φ⟩ ∈ ∆r (same n!)
such that ⟨n, φ⟩ ≼ ⟨n, ψ⟩. By Lemma 8.3, there is no loss of generality in assuming
that ψ ∈ Sysn(π).

Let s = ⟨sξ⟩ξ∈|u| ∈ Snψ. Consider the multitree vs
ψ ∈ MT(π). Since D is dense,

there are multitrees r′,v ∈ MT(π) such that |v| = |u|, v ⩽ vs
ψ, |r′| ∩ |u| = ∅,

r′ ⩽ r and v∪r′ ∈ D. Define a system ψ′ ∈ Sys(π) with |ψ′| = |ψ| that extends ψ
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by shrinking each tree Tψξ,kξ
↾sξ

to T v
ξ , so that Tψ

′

ξ,kξ
↾sξ

= T v
ξ but Tψ

′

ξ,kξ
↾t = Tψξ,kξ

↾t

for all t ∈ 2n ∩ Tψξ,kξ
, t ̸= sξ, and Tψ

′

ηk = Tψηk whenever ⟨η, k⟩ ∈ |ψ| is not of the
form ⟨ξ, kξ⟩, where ξ ∈ |u|. We have ⟨n, ψ′⟩ ≼ ⟨n, ψ⟩ by construction. Therefore
Snψ′ = Snψ.

This construction can be iterated, taking all the strings s ∈ Snψ one by one. This
results in a system φ ∈ Sys(π) such that |φ| = |ψ| and ⟨n, φ⟩ ≼ ⟨n, ψ⟩. Then
Snφ = Snψ and there is a multitree q ∈ MT(π) with q ⩽ r and |q| ∩ |u| = ∅ such
that if s ∈ Snψ, then the multitree vs

ψ satisfies vs
ψ ∪ q ∈ D. This q shows that

⟨n, φ⟩ ∈ ∆r. □

By the lemma, we have ⟨nj , φj⟩ ∈ ∆p for some j. Suppose that this is shown
by a multitree q ∈ MT(π), so that q ⩽ p, |u| ∩ |q| = ∅ and condition (1) of
Lemma 8.4 holds with n = nj , φ = φj . We easily conclude that [u] ⊆

⋃
s∈Sn

φj

[vs
φj

].

However, vs
φj

∈ D|u|
q ∀ s by (1). □

Corollary 8.5. Under the hypotheses of Theorem 7.3 assume that D ∈ M and
D ⊆ MT(π) is pre-dense in MT(π). Then it is also pre-dense in MT(π ∪cw

ϙ).

Proof. There is no loss of generality in assuming that D is open-dense in MT(π).
(Otherwise consider D′ = {p ∈ MT(π) : ∃ q ∈ D (p ⩽ q)}.) Note that π ⊏D ϙ by
Theorem 8.1 and use Lemma 6.3, (i). □

§ 9. Real names and direct forcing

Our next goal is to introduce suitable notation related to the names of reals
in 2ω in the context of forcing notions of the form MT(π).

Definition 9.1. A real name is any set c ⊆ MT × (ω× 2) such that the sets
Kc
ni = {p ∈ MT : ⟨p, n, i⟩ ∈ c} satisfy the following condition. If n < ω and

p ∈ Kc
n0, q ∈ Kc

n1, then p, q are sad.8 We put Kc
n = Kc

n0 ∪Kc
n1.

A real name c is small if each Kc
n is at most countable. Then the set |c| =⋃

n

⋃
p∈Kc

n
|p| and c itself are also countable.

Let π be a multiforcing. A real name c is π-complete if every set Kc
n ↑ π =

{p ∈ MT(π) : ∃ q ∈ Kc
n (p ⩽ q)} (the π-cone of Kc

n) is pre-dense in MT(π). In
this case, if a set (a filter) G ⊆ MT(π) is MT(π)-generic over the family of all
sets Kc

n, then we define a real c[G] ∈ 2ω in such a way that c[G](n) = i if and only
if G ∩ Cni ̸= ∅.

We do not require in this case that c ⊆ MT(π) × (ω × 2) or, equivalently,
Kc
n ⊆ MT(π) for all n. When this inclusion does hold, this will be mentioned

explicitly.

Let c be a real name in the sense of 9.1. We say that the multitree p
– directly forces c(n) = i (where n < ω and i = 0, 1) if there is a multitree

q ∈ Kc
ni such that p ⩽ q;

– directly forces s ⊂ c (where s ∈ 2<ω) if, for every n < lh(s), p directly forces
c(n) = i, where i = s(n);

8We recall that the condition sad of somewhere almost disjointness (Definition 4.2) is equivalent
to the incompatibility of p, q in MT and in any set of the form MT(π), where π is a regular
multiforcing, by Corollary 4.3.
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– directly forces c /∈ [T ] (where T ∈ PT) when there is a string s ∈ 2<ω \T such
that p directly forces s ⊂ c.

The definition of direct forcing is not explicitly associated with any concrete
forcing notion, but it is in fact compatible with any multiforcing.

Lemma 9.2. Let π be a multiforcing, c a π-complete real name and p ∈ MT(π).
When n < ω , we can find an i = 0, 1 and a multitree q ∈ MT(π) with q ⩽ p that
directly forces c(n) = i. When T ∈ PT, we can find an s ∈ T and a multitree
q ∈ MT(π) with q ⩽ p that directly forces c /∈ [T ↾s].

Proof. To prove the first claim, we use the density of the sets Kc
n in the light of

Definition 9.1. To prove the second claim, pick an n such that T ∩ 2n contains at
least two strings. By the first claim, one can find a multitree q ∈ MT(π) with
q ⩽ p and a string t ∈ T ∩ 2n such that q directly forces t ⊂ c. Now take any
s ∈ T ∩ 2n, s ̸= t. □

§ 10. Sealing real names and avoiding refinements

The following definition extends Definition 6.2 to real names.

Definition 10.1. Assume that π, ϙ are multiforcings, c is a π-complete real name
and π ⊏ ϙ. We say that ϙ seals c over π (and write π ⊏c ϙ) if ϙ seals every set
Kc
n ↑ π = {p ∈ MT(π) : ∃ q ∈ Kc

n (p ⩽ q)} over π in the sense of Definition 6.2.

Corollary 10.2. Under the hypotheses of Theorem 7.3, if c ∈ M+ and c is
a π-complete real name, then π ⊏c ϙ.

Proof. Each set Kc
n ↑ π belongs to M+ (along with π and c) and is open-dense

in MT(π). It remains to apply Theorem 8.1. □

Lemma 10.3. Let π,ϙ,σ be multiforcings and let c be a real name. Then the
following assertions hold.

(i) If π ⊏c ϙ, then c is a π-complete and (π ∪cw
ϙ)-complete real name.

(ii) If π ⊏c ϙ ⊏ σ , then π ⊏c σ .
(iii) If ⟨παα<λ⟩ is a ⊏-increasing sequence in MF, 0 < µ < λ, π =

⋃ cw
α<µ πα ,

and π ⊏c πµ , then π ⊏c ϙ =
⋃ cw
µ⩽α<λ πα .

Proof. (i) By definition, we have π ⊏Kc
n↑π ϙ for each n. Therefore Kc

n ↑ π is
dense in MT(π) (and then clearly open-dense) and pre-dense in MT(π ∪cw

ϙ) by
Lemma 6.3, (i). Hence Kc

n ↑ (π ∪cw
ϙ) is dense in MT(π ∪cw

ϙ).
To prove (ii) and (iii), use parts (iii) and (iv) of Lemma 6.3. □

If π is a multiforcing, then MT(π) adjoins a family of principal generic reals
xξ = xξ[G] ∈ 2ω, ξ ∈ |π|, where each xξ is π(ξ)-generic over the ground-set universe;
see Remark 4.5. Clearly, many more reals are adjoined, and given a π-complete
real name c, we can establish various requirements for a condition p ∈ MT(π) to
force that c is the name of a real of the form xξk, or to force the opposite. The
following definition provides such a condition related to the ‘opposite’ direction.

Definition 10.4. Let π be a multiforcing, ξ ∈ |π|. A real name c is said to be
non-principal over π at ξ if the following set is open-dense in MT(π):

Dξ
c(π) = {p ∈ MT(π) : ξ ∈ |p| ∧ p directly forces c /∈ [Tp

ξ ]}.
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We shall prove below (Theorem 12.2, (i)) that non-principality implies that c is
not a name of the real xξ[G]. We shall further show that the avoidance condition
in the next definition implies that c is a name of a non-generic real.

Definition 10.5. Suppose that π, ϙ are multiforcings, π ⊏ ϙ, ξ ∈ |π|. We say
that ϙ avoids a real name c over π at ξ (and write π ⊏c

ξ ϙ) if, for every Q ∈ ϙ(ξ),
ϙ seals the set

D(c, Q,π) = {r ∈ MT(π) : ξ ∈ |r| ∧ r directly forces c /∈ [Q]}

over π in the sense of Definition 6.2, that is, formally π ⊏D(c,Q,π) ϙ.

Lemma 10.6. Assume that π , ϙ, σ are multiforcings, ξ ∈ |π| and c is a π-complete
real name. Then the following assertions hold.

(i) If π ⊏c
ξ ϙ and Q ∈ ϙ(ξ), then the set D(c, Q,π) is open-dense in MT(π)

and pre-dense in MT(π ∪cw
ϙ).

(ii) If π ⊏c
ξ ϙ ⊏ σ , then π ⊏c

ξ σ .
(iii) If ⟨παα<λ⟩ is a ⊏-increasing sequence in MF, 0 < µ < λ, π =

⋃ cw
α<µ πα

and π ⊏c
ξ πµ , then π ⊏c

ξ ϙ =
⋃ cw
µ⩽α<λ πα .

Proof. (i) Apply Lemma 6.3, (i). To prove part (ii), suppose that S ∈σ(ξ). Since
ϙ⊏ σ, there is a finite set {Q1, . . . , Qm} ⊆ ϙ(ξ) such that S ⊆ Q1 ∪ · · · ∪ Qm.
We have π ⊏D(c,Qi,π) ϙ for all i because π ⊏c

ξ ϙ. Hence π ⊏D(c,Qi,π) σ ∀ i,
by Lemma 6.3, (iii). Note that

⋂
i D(c, Qi,π) ⊆ D(c, S,π) since S ⊆

⋃
iQi. We

conclude that π ⊏D(c,S,π) σ by Lemma 6.3, (ii). Therefore π ⊏c
ξ σ, as required.

To prove (iii), we use Lemma 6.3, (iv) in the same way. □

§ 11. Generic refinement avoids non-principal names

The following theorem says that generic refinements as in § 7 avoid non-principal
names. This resembles Theorem 8.1 to some extent, but the latter is not directly
applicable here because the multitree Q and the set D(c, Q,π) depend on ϙ and,
therefore, the sets D(c, Q,π) need not belong to M+. However, the proof will be
based on rather similar arguments.

Theorem 11.1. Under the hypotheses of Theorem 7.3, if η ∈ |π| ⊆ M and c ∈ M
is a π-complete real name non-principal over π at η , then π ⊏c

η ϙ.

Proof. By hypothesis, ϙ = ϙ[Φ] is obtained from a decreasing M+-generic
sequence Φ of pairs ⟨nj , φj⟩ ∈ ω × Sys(π) as in Definition 7.1, (1). We work
in the notation of Definition 7.1.

Suppose that Q ∈ ϙ(η) = Pϙη . We need to prove that ϙ seals the set D(c, Q,π)
over π. By construction, Q = QΦ

ηK↾s for some K < ω and s ∈ QΦ
ηK . It can be

assumed that simply Q = QΦ
ηK . Following the proof of Theorem 8.1, we suppose

that p ∈ MT(π), u ∈ MT(ϙ), |u| ∩ |p| = ∅ and Tu
ξ = QΦ

ξ,kξ
for all ξ ∈ |u|. We

have to find a multitree q which gives 6.2, (∗) for u, p, D = D(c, Q,π). Note that
η may or may not belong to the set |u| and, even when η ∈ |u| and, therefore, kη
is defined, K may or may not be equal to kη. In the remainder of the proof, we
use the notation in Definition 8.2, in particular, Sysn(π), Snφ, vs

φ.
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Assume that r ∈ MT(π), |r| ∩ |u| = ∅. Consider the set ∆r ∈ M of all pairs
⟨n, φ⟩ ∈ ω×Sys(π) such that φ ∈ Sysn(π) (Definition 8.2), ⟨η,K⟩ ∈ |φ| and there
is a multitree q ∈ MT(π) satisfying q ⩽ r, |u| ∩ |q| = ∅ and

(1′) if s ∈ Snφ and t ∈ TφηK ∩ 2n, then vs
φ ∪ q directly forces c /∈ [TφηK↾t].

Condition (1′) is similar to condition (1) of Lemma 8.4, of course. Note that
direct forcing of c /∈ [Q] cannot be used in (1′) since Q need not belong to M. But
c /∈ [TφηK ] appears to be an effective replacement.

Lemma 11.2. If r ∈ MT(π) and |r| ∩ |u| = ∅, then ∆r is dense in ω× Sys(π).

Proof. We follow the proof of Lemma 8.4. Suppose that ⟨n, ψ⟩ ∈ ω×Sys(π). There
is no loss of generality in assuming that ψ ∈ Sysn(π) (see Lemma 8.4), whence
⟨ξ, kξ⟩ ∈ |ψ| for all ξ ∈ |u|, Tψξk↾t ∈ Pξ for all ⟨ξ, k⟩ ∈ |ψ| and t ∈ 2n ∩ Tψξk, and
⟨η,K⟩ ∈ |ψ| as well.

We have to define a system φ ∈ Sysn(π) such that ⟨n, φ⟩ ≼ ⟨n, π⟩ and φ∈∆r.
As in the proof of Lemma 8.4, it suffices to fulfill (1′) for one particular pair of
s = ⟨sξ⟩ξ∈|u| ∈ Snψ and t ∈ TψηK ∩ 2n; the final goal is then achieved by a simple
iteration through all such pairs. We have two cases.
Case 1. η ∈ |u|, K = kη, t = sη. Consider the multitree vs

ψ ∈ MT(π). The
set Dη

c(π), as in Definition 10.4, is dense because c is non-principal. Hence there
are multitrees q,v ∈ MT(π) such that |v| = |u|, v ⩽ vs

ψ, |q| ∩ |u| = ∅, q ⩽ r
and v ∪ q ∈ Dη

c(π). Therefore v ∪ q directly forces c /∈ [T q
η ]. Using ψ, we define

a system φ ∈ Sys(π) with |φ| = |ψ| by performing the following operations:
(a) shrinking each tree Tψξ,kξ

↾sξ
(ξ ∈ |u|) to T v

ξ , so that Tφξ,kξ
↾sξ

= T v
ξ ,

(b) in particular, shrinking TψηK↾t to T v
η , so that TφηK↾t = T v

η ,
and making no other changes. We have ⟨n, φ⟩ ≼ ⟨n, ψ⟩, vs

φ = v and TφηK↾t = T v
η

by construction. In particular, vs
φ ∪ q directly forces c /∈ [TφηK↾t]. Thus (1′) holds.

Case 2: not Case 1. By Lemma 9.2 there are multitrees q,v ∈ MT(π) and a tree
T ∈ Pη such that T ⊆ TψηK↾t, |v| = |u|, v ⩽ vs

ψ, |q| ∩ |u| = ∅, q ⩽ r and v ∪ q
directly forces c /∈ [T ]. We define a system φ ∈ Sys(π) with |φ| = |ψ| which
extends ψ by performing the operations (a) and

(c) shrinking TψηK↾t to T , so that TφηK↾t = T

and making no other changes. Note that (a) and (c) do not contradict each
other since ⟨η, T, t⟩ ≠ ⟨ξ, kξ, sξ⟩ for all ξ ∈ u by the hypotheses of Case 2. By
construction, we have ⟨n, φ⟩ ≼ ⟨n, ψ⟩, vs

φ = v and TφηK↾t = T v
η . In particular,

vs
φ ∪ q directly forces c /∈ [TφηK↾t]. Thus (1′) holds. □

We return to the theorem. Since ∆p ∈ M+, we have ⟨nj , φj⟩ ∈ ∆p for some j by
the lemma. Let this be shown by a multitree q ∈ MT(π), so that q ⩽ p, |u|∩ |q| =
∅ and (1′) holds with n = nj , φ = φj . In particular, since Tφj

ηK =
⋃
t∈T

φj
ηK∩2n T

φj

ηK↾t,

the multitree vs
φj

∪ q directly forces c /∈ [Tφj

ηK ] whenever s ∈ Snφj
and, therefore,

directly forces c /∈ [Q] because Q = QΦ
ηK ⊆ T

φj

ηK by construction. Thus, if s ∈ Snφj
,

then vs
φj

∪ q ∈ D(c, Q,π) and, therefore, vs
φj

∈ D(c, Q, φj)
|u|
q ). On the other

hand, [u] ⊆
⋃

s∈Sn
φj

[vs
φj

], so that u ⊆fin
∨

D(c, Q,π|u|
q ), as required. □
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§ 12. Consequences for generic extensions

We first prove a lemma on the adequate representation of reals in MT(π)-generic
extensions by real names. Then Theorem 12.2 will have corollaries for non-principal
names.

Lemma 12.1. Suppose that π is a regular multiforcing and G ⊆ MT(π) is generic
over the ground-set universe V.

If x ∈ V[G]∩2ω , then there is a π-complete real name c ∈ V, c ⊆ MT(π)×ω×2,
such that x = c[G].

If MT(π) is a CCC forcing9 in V, and c ∈ V, c ⊆ MT(π) × ω × 2, is
a π-complete real name, then there is a small π-complete real name d ∈ V,
d ⊆ MT(π) × ω × 2, such that MT(π) forces c[G] = d[G] over V.

Proof. The first part is a particular case of a general forcing theorem. To prove
the second part, we extend each set Kc

n ⊆ MT(π) to an open-dense set Kc
n ↑ π =

{p ∈ MT(π) : ∃ q ∈ Kc
n (p ⩽ q)}, choose maximal antichains An ⊆ Kc

n ↑ π (they
are countable by the CCC) and then put Ani = {p ∈ An : ∃ q ∈ Kc

ni(p ⩽ q)} and
d = {⟨p, n, i⟩ : p ∈ Ani}. □

Theorem 12.2. Suppose that π is a regular multiforcing and ξ ∈ |π|. Then the
following assertions hold.

(i) If MT(π) is CCC, a set G ⊆ MT(π) is generic over the ground-set universe
V and x ∈ V[G] ∩ 2ω , then x ̸= xξ[G] if and only if there is a small π-complete
real name c ⊆ MT(π) × (ω × 2) which is non-principal over π at ξ and satisfies
x = c[G].

(ii) If c ⊆ MT(π) × (ω × 2) is a π-complete real name, ϙ is a multiforcing,
π ⊏c

ξ ϙ and G ⊆ MT(π ∪cw
ϙ) is generic over V, then c[G] /∈

⋃
Q∈ϙ(ξ)[Q].

Proof. (i) Suppose that x ̸= xξ[G]. By a known forcing theorem, there is a π-com-
plete real name c ⊆ MT(π) × (ω × 2) such that x = c[G] and MT(π) forces that
c ̸= xξ[G]. By Lemma 12.1, c is small since MT(π) is CCC. It remains to show
that c is a non-principal name over π at ξ, that is, the set

Dξ
c(π) = {p ∈ MT(π) : ξ ∈ |p| ∧ p directly forces c /∈ [Tp

ξ ]}

is open-dense in MT(π). The openness is clear. To prove the density consider
any q ∈ MT(π). Then q MT(π)-forces c ̸= xξ[G] by the choice of c. Hence we
can assume that there is an n such that q MT(π)-forces c(n) ̸= xξ[G](n). Then,
by Lemma 9.2, we can find a multitree p ∈ MT(π), p ⩽ q, and an s ∈ ωn+1

such that p directly forces s ⊆ c. It suffices to show that s /∈ Tp
ξ . Assume the

opposite: s ∈ Tp
ξ . Then the tree T = Tp

ξ ↾s belongs to MT(π). Therefore, defining
a multitree r by the formulae T r

ξ = T and T r
ξ′ = Tp

ξ′ for every ξ′ ̸= ξ, we see that
r belongs to MT(π) and r ⩽ p ⩽ q. However, r directly forces c(n) and xξ[G](n)
to be equal to the same quantity ℓ = s(n). This contradicts the choice of n.

To prove the converse, suppose that c ⊆ MT(π) × (ω × 2) is a π-complete real
name, non-principal over π at ξ, and x = c[G]. Assume the opposite: x = xξ[G].
There is a multitree q ∈ G which MT(π)-forces c = xξ[G]. Since c is non-principal,

9The CCC property means that every antichain A ⊆ MT(π) is at most countable.
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there is a multitree p ∈ G ∩ Dξ
c(π), p ⩽ q. Thus p directly forces c /∈ [Tp

ξ ] and,
therefore, MT(π)-forces the same statement. However, p clearly MT(π)-forces
xξ[G] ∈ [Tp

ξ ]. This is a contradiction.
(ii) Assume the opposite: Q ∈ ϙ(ξ) and c[G] ∈ [Q]. By definition, ϙ seals the

set
D(c, Q,π) = {r ∈ MT(π) : ξ ∈ |r| ∧ r directly forces c /∈ [Q]}

over π. Hence D(c, Q,π) is pre-dense in MT(π∪cw
ϙ) by Lemma 6.3 and, therefore,

G∩D(c, Q,π) ̸= ∅. In other words, there is a multitree r ∈ MT(π) which directly
forces c /∈ [Q]. It follows easily that c[G] /∈ [Q]. This is a contradiction. □

§ 13. Combining types of refinement

Here we summarize the properties of generic refinements considered above. The
following definition combines the types ⊏D, ⊏D, ⊏c, ⊏c

ξ .

Definition 13.1. Suppose that π ⊏ ϙ are multiforcings, ξ ∈ |π| and M ∈ HC is
any set. We write π ⊏⊏M ϙ if the following four requirements hold.

(1) If D ∈ M, D ⊆ π(ξ) and D is pre-dense in π(ξ), then π(ξ) ⊏D ϙ(ξ).
(2) If D ∈ M, D ⊆ MT(π) and D is open-dense in MT(π), then π ⊏D ϙ.
(3) If c ∈ M is a π-complete real name, then π ⊏c ϙ.
(4) If c ∈ M is a π-complete real name, non-principal over π at ξ, then π ⊏c

ξ ϙ.

Corollary 13.2 (of Lemmas 5.4, 6.3, 10.3, 10.6). Let π,ϙ,σ be multiforcings and
M a countable set. Then the following assertions hold.

(i) If π ⊏⊏M ϙ ⊏ σ , then π ⊏⊏M σ .
(ii) If ⟨πα⟩α<λ is a ⊏-increasing sequence in MF, 0 < µ < λ, π =

⋃ cw
α<µ πα

and π ⊏⊏M πµ , then π ⊏⊏M ϙ =
⋃ cw
µ⩽α<λ πα .

Corollary 13.3. If π is a small multiforcing, M ∈ HC and ϙ is an M-generic
refinement of π (which exists by Lemma 7.2!), then π ⊏⊏M ϙ.

Proof. We have π ⊏⊏M ϙ in view of 7.3, (v), 8.1, 8.5, 11.1. □

§ 14. Increasing sequences of multiforcings

Recall that MF is the family of all multiforcings (§ 4). Put

sMF = {π ∈ MF : π is a small multiforcing};
spMF = {π ∈ MF : πis a small and special multiforcing}.

Thus a multiforcing π ∈ MF belongs to sMF if |π| ⊆ ω1 is (at most) countable
and if ξ ∈ |π|, then π(ξ) is a countable forcing in AF. The inclusion π ∈ spMF
requires in addition that each π(ξ) is special (Definition 3.3).

Definition 14.1. If κ ⩽ ω1, then we write
−−→
MFκ for the set of all ⊏-increasing

sequences π⃗ = ⟨πα⟩α<κ of multiforcings πα ∈ spMF which are domain-continuous
in the sense that if λ < κ is a limit ordinal, then |πλ| =

⋃
α<λ |πα|. We put

−−→
MF =

⋃
κ<ω1

−−→
MFκ.

We order
−−→
MF∪

−−→
MFω1 by the ordinary relations ⊆ and ⊂ of extension of

sequences. Namely, π⃗ ⊂ ϙ⃗ if and only if κ = dom(π⃗) < λ = dom(ϙ⃗) and πα = ϙα
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for all α < κ. In this case, if M is any set and ϙκ (the first term of ϙ⃗ which is
absent from π⃗) satisfies π ⊏⊏M ϙκ, where π =

⋃ cw
α<κ πα, then we write π⃗ ⊂M ϙ⃗.

If π⃗ ∈
−−→
MFκ, then we put MT(π⃗) = MT(π), where π =

⋃ cw
π⃗ =

⋃ cw
α<κ πα (the

componentwise union). Accordingly, a π⃗-complete real name means a π-complete
real name.

Lemma 14.2. If π⃗, ϙ⃗ ∈
−−→
MF, c is a π⃗-complete real name and π⃗ ⊂{c} ϙ⃗, then c

is a ϙ⃗-complete real name.

Proof. Suppose that κ = dom(π⃗) < λ = dom(ϙ⃗) and π =
⋃ cw

π⃗ =
⋃ cw
α<κ πα.

Then, by definition, π ⊏⊏{c} ϙκ. Hence π ⊏c ϙκ because c is a π-complete real
name. However, π ⊏c ϙ =

⋃ cw
κ⩽α<λ ϙα by Lemma 10.3, (iii). Therefore, c is

a (π ∪cw
ϙ)-complete name by Lemma 10.3, (i). However, π ∪cw

ϙ =
⋃ cw
α<λ ϙα =⋃ cw

ϙ⃗. □

Definition 14.3. Let ZFL− be the subtheory of ZFC including all axioms except
the power-set axiom, plus the axiom of constructivity V = L, and plus the axiom
saying that P(ω) exists. (Then the sets ω1, HC and, more generally, sets related
to the continuum, like 2ω and PT, also exist.) The axiom of choice is included
in ZFL− in the form of the well-ordering principle.

If x ∈ HC (HC = hereditarily countable sets; see footnote 6), then we write
L(x) for the least countable transitive model (CTM) of the theory ZFL− which
contains x and satisfies x ∈ (HC)L(x). It is necessarily of the form L(x) = Lµ,
where µ = µx < ω1.

An ordinal ξ < κ is said to be crucial for a sequence π⃗ = ⟨παα<κ⟩ ∈
−−→
MFκ if we

have (
⋃ cw
α<ξ πα) ⊏⊏L(π⃗↾ξ) πξ. This is equivalent to π⃗ ↾ ξ ⊂L(π⃗↾ξ) π⃗.

Lemma 14.4. Suppose that κ ⩽ ω1 and π⃗ = ⟨παα<κ⟩ ∈
−−→
MFκ . Then the following

assertions hold.
(i) π =

⋃ cw
π⃗ =

⋃ cw
α<κ πα is a regular multiforcing.

(ii) If κ < λ ⩽ ω1 and M ∈ HC, then there is a sequence ϙ⃗ ∈
−−→
MF such that

dom(ϙ⃗) = λ and π⃗ ⊂M ϙ⃗.
(iii) If ξ < κ is a crucial ordinal for π⃗ , π<ξ =

⋃ cw
α<ξ πα and π⩾ξ =

⋃ cw
ξ⩽β<κ πβ ,

then π<ξ ⊏⊏L(π⃗↾ξ) π⩾ξ and π<ξ ⊏⊏L(π⃗↾ξ) πβ for ξ ⩽ β < κ, whence,
(a) MT(π⩾ξ) is open-dense in MT(π⃗),
(b) if D ∈ L(π⃗ ↾ ξ), D ⊆ MT(π⃗ ↾ ξ) and D is open-dense in MT(π⃗ ↾ ξ), then

D is pre-dense in MT(π<ξ ∪cw π⩾ξ) = MT(π⃗).

Proof. (i) Use Lemma 5.2, (iv).
(ii) We use induction to define the terms ϙα of the required sequence ϙ⃗.
We naturally put ϙα = πα for all α < κ. To define the crucial term ϙκ, we

can assume without loss of generality that M contains π⃗ and satisfies κ ⊆ M
(otherwise take a bigger set). By Lemma 7.2, there is an M-generic refinement π′

of π =
⋃ cw
α<κ πα. By Theorem 7.3, π′ is a small special multiforcing, π ⊏ π′ and

πα ⊏ π′ for all α < κ. In addition, π ⊏⊏M π′ by Corollary 13.3. We put ϙκ = π′.
The extended sequence ϙ⃗+ = ⟨ϙα⟩α<κ+1 belongs to

−−→
MFκ+1 and satisfies π⃗ ⊂M ϙ⃗+.

The following steps are pretty similar, but we can take M = ∅.
To prove the main claim of (iii), we use Corollary 13.2.
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To prove (iii), (a), use Corollary 6.1. We now prove (iii), (b). Since π<ξ ⊏⊏L(π⃗↾ξ)

π⩾ξ and D ∈ L(π⃗ ↾ ξ), we have π<ξ ⊏D π⩾ξ. Therefore D is pre-dense in MT(π⃗)
by Lemma 6.3, (i). □

§ 15. The key sequence

In this section we define the forcing notion used to prove Theorem 1.2. It will be
of the form MT(Π) for a certain multiforcing Π with |Π| = ω1. The multiforcing Π

will be equal to the componentwise union of the terms of the sequence Π⃗∈
−−→
MFω1 .

The construction of this sequence in the constructible universe L will employ some
ideas related to diamond-style constructions as well as to a special form of definable
genericity. The following definition introduces an important notion used in this
construction.

Definition 15.1. We say that a sequence π⃗ ∈
−−→
MF blocks the set W if either π⃗ ∈W

(a positive block), or there is no sequence ϙ⃗ ∈W extending π⃗ (a negative block).

We recall that HC = all hereditarily countable sets; see footnote 6.

Definition 15.2. We use the standard notation ΣHC
n , ΠHC

n , ∆HC
n (slanted Σ,

Π, ∆) for the classes of lightface definability in HC (no parameters allowed) and
we write Σn(HC), Πn(HC), ∆n(HC) for boldface definability in HC (parameters
in HC allowed). It is well known that if n ⩾ 1 and X ⊆ 2ω, then

X ∈ ΣHC
n ⇐⇒ X ∈ Σ1

n+1, X ∈ Σn(HC) ⇐⇒ X ∈ Σ1
n+1,

and the same for Π, Π, ∆, ∆.
Theorem 15.3 (in L). Suppose that n ⩾ 3. There is a sequence Π⃗ = ⟨Πα⟩α<ω1 ∈
−−→
MFω1 satisfying the following requirements.

(i) Π⃗ belongs to the definability class ∆HC
n−2 .

(ii) |
⋃ cw Π⃗| = ω1 .

(iii) If n ⩾ 4 and W ⊆
−−→
MF is a boldface Σn−3(HC)-set, then there is an ordinal

γ < ω1 such that the sequence Π⃗ ↾ γ blocks W .
(iv) There is a closed unbounded set C ⊆ ω1 such that every γ ∈ C is a crucial

ordinal for Π⃗ in the sense of Definition 14.3.

Proof. We work under the hypothesis V = L. When n ⩾ 4, let unn(p, x) be the
canonical universal Σn−3-formula, so that the family of all boldface Σn−3(HC)-sets
X ⊆ HC is equal to the family of all sets of the form Υn(p) = {x ∈ HC: HC |=
unn(p, x)}, p ∈ HC.
Claim. If n ⩾ 4, then the set {⟨π⃗, p⟩ : π⃗ ∈

−−→
MF∧p ∈ HC∧ π⃗ blocks Υn(p)} belongs

to ∆HC
n−2 .

Proof. We skip the routine verification that
−−→
MF is ∆HC

1 . Furthermore, if π⃗ ∈
−−→
MF

and p ∈ HC, then for π⃗ to block Υn(p), it is necessary and sufficient that

π⃗ ∈ Υn(p)︸ ︷︷ ︸
ΣHC

n−3

∨ ¬∃ ϙ⃗
(
ϙ⃗ ∈

−−→
MF ∧ ϙ⃗ extends π⃗︸ ︷︷ ︸

∆HC
1

∧ ϙ⃗ ∈ Υn(p)︸ ︷︷ ︸
ΣHC

n−3

)
︸ ︷︷ ︸

ΠHC
n−3

,

so this is a disjunction of formulae of types ΣHC
n−3 and ΠHC

n−3, whence ∆HC
n−2. □
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For α < ω1 we define a sequence π⃗[α] ∈
−−→
MF by induction as follows. Put

π⃗[0] = ∅, the empty sequence.
Step α → α + 1. Suppose that π⃗[α] ∈

−−→
MF is defined. κ = dom π⃗[α], M =

L(π⃗[α]) and pα is the α th element of the set HC = Lω1 in the sense of the Gödel
well-ordering ⩽L. By Lemma 14.4, (ii), there is a sequence τ⃗ ∈

−−→
MFκ+1 such that

π⃗[α] ⊂M τ⃗ . By Corollary 7.4, there is a sequence ϙ⃗ ∈
−−→
MFκ+2 such that τ⃗ ⊂ ϙ⃗

and α ∈ |ϙ⃗(κ + 1)|. Finally, if n ⩾ 4, then there is a sequence π⃗ ∈
−−→
MF satisfying

ϙ⃗ ⊂ π⃗ and blocking the set Υn(pα). But if n = 3, then we simply put π⃗ = ϙ⃗. Thus
we finally have

(∗) π⃗[α] ⊂M π⃗, κ+ 1 < dom π⃗, α ∈ |ϙ⃗(κ+ 1)| and if n ⩾ 4, then π⃗ blocks the
set Υn(pα).

Let π⃗[α+1] be the ⩽L-least sequence among the sequences π⃗ ∈
−−→
MF satisfying (∗).

Note that the axiom V = L is a sine qua non of this construction since otherwise
the ⩽L-least choice of π⃗[α+ 1] would not necessarily be possible.
Limit step. If λ < ω1 is limit, then we naturally define π⃗[λ] =

⋃
α<λ π⃗[α].

We have α < β =⇒ π⃗[α] ⊂ π⃗[β] by construction. Hence Π⃗ =
⋃
α π⃗[α] ∈

−−→
MFω1 .

To prove (i), note that the relation R(π⃗, ϙ⃗,M) := “π⃗ ⊂M ϙ⃗” is absolute for all
transitive models of ZFL−, whenceR is∆HC

1 . We easily see that the map π⃗ 7→ L(π⃗)
is also ∆HC

1 . Finally, the relation ‘to block Υn(p)’ is a ∆HC
n−2-relation by the claim

above. Using these facts, we routinely verify that (∗) is a ∆HC
n−2-relation (in L). On

the other hand, it is known that, under V = L, choosing the ⩽L-least element in
every non-empty section of a ∆HC

k -set, k ⩾ 1, results in a set (a transversal) of the
same class ∆HC

k . This completes the verification of (i).
To check (ii), note that α ∈ |

⋃ cw
π⃗[α+ 1]| by construction.

To check (iii) (n ⩾ 4), note that any boldface Σn−3(HC)-set W ⊆
−−→
MF is equal

to Υn(pα) for some α < ω1. Hence we put γ = dom π⃗[α+ 1].
(iv) The set C = {dom π⃗[α] : α < ω1} is closed and unbounded by the limit

step of the construction. Moreover, if γ = dom π⃗[α] ∈ C, then Π⃗ ↾ γ = π⃗[α] and,
therefore, γ is crucial for Π⃗ by construction. □

Blanket Assumption 15.4 (in L). From now on we fix a number n ⩾ 3 as in
Theorem 1.2. We also fix a sequence Π⃗ = ⟨Π⟩αα<ω1

∈
−−→
MFω1 satisfying parts

(i)–(iv) of Theorem 15.3 for this n. This fixed sequence Π⃗ is referred to as the key
sequence.

Lemma 15.5. If n ⩾ 4 and W ⊆
−−→
MF is a Σn−3(HC)-set dense in

−−→
MF, then

there is an ordinal γ < ω1 such that Π⃗ ↾ γ ∈W .

Proof. By 15.4, Π⃗ satisfies part (iii) of Theorem 15.3. Hence there is an ordinal
γ < ω1 such that Π⃗ ↾ γ blocks W . The negative block is impossible because W is
dense. Hence we have Π⃗ ↾ γ ∈W . □

§ 16. The key forcing notion

We continue to argue in L and we now use the key sequence Π⃗ = ⟨Παα<ω1⟩
introduced in 15.4.
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Definition 16.1 (in L). Define the multiforcings

Π =
cw⋃

α<ω1

Πα ∈ MF,

Π<γ =
cw⋃
α<γ

Πα ∈ sMF for every γ < ω1,

Π⩾γ =
cw⋃

γ⩽α<ω1

Πα ∈ MF for every γ < ω1.

We further define P = MT(Π) = MT(Π⃗) and, for all γ < ω1,

P<γ = MT(Π<γ) = MT(Π⃗ ↾ γ), P⩾γ = MT(Π⩾γ) = MT(Π⃗ ↾ (ω1 \ γ)).

The set P = MT(Π) will be our key forcing notion.

Corollary 16.2 (in L, by 15.3, (ii)). Π is a regular multiforcing and |Π| = ω1 ,
whence P =

∏
ξ<ω1

Π(ξ) (a finite-support product).

If ξ < ω1, then (in accordance with the corollary) let α(ξ) < ω1 be the least
ordinal α such that ξ ∈ |Πα|. Thus the forcing Πα(ξ) ∈ AF is defined whenever α
satisfies α(ξ) ⩽ α < ω1. Moreover, ⟨Πα(ξ)⟩α(ξ)⩽α<ω1 is a ⊏-increasing sequence of
special forcings in AF. Note that Π(ξ) =

⋃
α(ξ)⩽α<ω1

Πα(ξ) by construction.

Corollary 16.3 (in L). The sequence ⟨α(ξ)⟩ξ<ω1 of ordinals and the sequence
⟨Πα(ξ)⟩ξ<ω1, α(ξ)⩽α<ω1 of forcings are ∆HC

n−2 .

Proof. The following double equivalence holds by construction:

α < α(ξ) ⇐⇒ ∃π(π = Πα ∧ ξ ∈ dom π)
⇐⇒ ∀π(π = Πα =⇒ ξ ∈ dom π).

However π = Πα is a ∆HC
n−2-relation by Theorem 15.3, (i). It follows that the

sequence ⟨α(ξ)⟩ξ<ω1 is also ∆HC
n−2. The second assertion is similar. □

Corollary 16.4 (in L, of Lemma 5.2, (iv)). If ξ < ω1 and α(ξ) ⩽ α < ω1 , then
the set Πα(ξ) is pre-dense in Π(ξ) and in Π.

In spite of Corollary 16.2, the sets |Π<γ | can be quite arbitrary (countable)
subsets of ω1. However, we obtain the following corollary.

Corollary 16.5 (in L, of Corollary 16.2). The set C′ = {γ < ω1 : |Π<γ | = γ} is
closed and unbounded in ω1 .

To prove the CCC property, we need the following lemma.

Lemma 16.6 (in L). If X ⊆ HC = Lω1 , then the set OX of all ordinals γ < ω1

such that ⟨Lγ ;X∩Lγ⟩ is an elementary submodel of ⟨Lω1 ;X⟩ and X∩Lγ ∈ L(Π⃗ ↾ γ)
is stationary and, therefore, unbounded in ω1 .

More generally, if Xn ⊆ HC for all n, then the set O of all ordinals γ <ω1

such that ⟨Lγ ; ⟨Xn ∩ Lγ⟩n<ω⟩ is an elementary submodel of ⟨Lω1 ; ⟨Xn⟩n<ω⟩ and
⟨Xn ∩ Lγ⟩n<ω ∈ L(Π⃗ ↾ γ) is stationary and, therefore, unbounded in ω1 .
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Proof. Let C ⊆ ω1 be a closed unbounded set, M a countable elementary submodel
of Lω2 containing C, ω1, X, Π⃗ and such that M ∩Lω1 is transitive, and ϕ : M onto−−−→
Lλ the Mostowski collapse. Put γ = ϕ(ω1). Then

γ < λ < ω1, ϕ(X) = X ∩ Lγ , ϕ(C) = C ∩ γ, ϕ(Π⃗) = Π⃗ ↾ γ

by the choice of M . It follows that ⟨Lγ ;X ∩ Lγ , C ∩ γ, Π⃗ ↾ γ⟩ is an elementary
submodel of ⟨Lω1 ;X,C, Π⃗⟩, whence γ ∈ OX . Moreover, γ is uncountable in Lλ.
Hence Lλ ⊆ L(Π⃗ ↾ γ). (See Defintion 14.3 on the models L(π⃗) |= ZFL−.) We
conclude that X ∩Lγ ∈ L(Π⃗ ↾ γ) since X ∩Lγ ∈ Lλ by construction. On the other
hand, C ∩ γ is unbounded in γ by elementarity. Hence γ ∈ C, as required.

The second, more general, claim does not differ much. □

Corollary 16.7 (in L). The forcing P satisfies CCC. Therefore P-generic exten-
sions of L preserve cardinals.

Proof. Suppose that A ⊆ P = MT(Π⃗) is a maximal antichain. By 15.4 and
Theorem 15.3, (iv), there is a closed unbounded set C⊆ω1 such that every γ ∈ C
is a crucial ordinal for Π⃗. By Lemma 16.6, there is an ordinal γ ∈ C such that
A′ = A ∩ P<γ is a maximal antichain in P<γ = MT(Π⃗ ↾ γ) and A′ ∈ L(Π⃗ ↾ γ). It
follows that the set D(A′) = {p ∈ P<γ : ∃ q ∈ A (p ⩽ q)} ∈ L(Π⃗ ↾ γ) is open-dense
in P<γ .

However, γ is a crucial ordinal for Π⃗. Therefore, by Lemma 14.4, (iii), (b), the
sets D(A′) and A′ remain pre-dense in the whole set P = MT(Π⃗). We conclude
that A = A′ is countable. □

Corollary 16.8 (in L). If a set D ⊆ P is pre-dense in P, then there is an ordinal
γ < ω1 such that D ∩ P<γ is pre-dense in P.

Proof. We can even assume that D is dense. Let A⊆D be a maximal antichain
in D. Then A is a maximal antichain in P because D is dense. Hence A ⊆ P<γ for
some γ < ω1 by Corollary 16.7. But A is pre-dense in P. □

§ 17. The basic generic extension

We recall that the key sequence Π⃗ = ⟨Πα⟩α<ω1 of small special multiforcings Πα
is defined in L by 15.4. Moreover, the componentwise union Π =

⋃ cw
α<ω1

Πα is
a multiforcing, |Π| = ω1 in L, and P = MT(Π⃗) = MT(Π) ∈ L is our key forcing
notion, equal to the finite-support product

∏
ξ<ω1

Π(ξ) of arboreal forcings Π(ξ)
in L. Some properties of P were established in § 16, including the CCC and the
definability of the factors Π(ξ) in L. Our next goal is to show that certain submodels
of P-generic models prove Theorem 1.2.

Remark 17.1. From now on, we typically argue in L and in ωL
1 -preserving generic

extensions of L (this includes, for example, P-generic extensions by Corollary 16.7).
Thus we always have ωL

1 = ω1. This enables us to assume that |Π| = ω1 (rather
than ωL

1 ).



Models of set theory in which the separation theorem fails 1205

Definition 17.2. Let G ⊆ P be a generic set over the constructible set universe L.
If ξ < ω1, then following Remark 4.5, we

– define G(ξ) = {Tp
ξ : p ∈ G ∧ ξ ∈ |p|} ⊆ Π(ξ);

– write xξ = xξ[G] ∈ 2ω for the only real in
⋂
T∈G(ξ)[T ];

– put X = X[G] = ⟨xξ[G]⟩ξ<ω1 = {⟨ξ, xξ[G]⟩ : ξ < ω1}.
Thus, P adjoins an array X[G] of reals to L, where each xξ[G] ∈ 2ω ∩ L[G] is

a Π(ξ)-generic real over L and we have L[G] = L[X[G]].
If ∆ ⊆ ω1, then we put P ↾ ∆ = MT(Π ↾ ∆) = {p ∈ P : |p| ⊆ ∆}.

The following lemma uses the product structure of P.

Lemma 17.3. Suppose that ∆ ∈ L, ∆ ⊆ ω1 . Then P = MT(Π) is equal to the
product (P ↾ ∆) × (P ↾ ∆′), where ∆′ = ω1 \ ∆. If G ⊆ P is generic over L, then
the set G ↾ ∆ = {p ∈ G : |p| ⊆ ∆} is (P ↾ ∆)-generic over L. If ξ < ω1 and ξ /∈ ∆,
then xξ[G] /∈ L[G ↾ ∆].

§ 18. Definability of generic reals

Recall that the factors Π(ξ) of the forcing notion P = MT(Π) =
∏
ξ<ω1

Π(ξ) are
defined by putting Π(ξ) =

⋃
α(ξ)⩽α<ω1

Πα(ξ), where α(ξ) < ω1, the sets Πα(ξ)
are countable sets of perfect trees, and their definability in L is determined by
Corollary 16.3. We shall freely use the notation introduced in Definition 17.2.

Theorem 18.1. Assume that G ⊆ P is a P-generic set over L, ξ < ω1 and x ∈
L[G] ∩ 2ω . Then the following assertions are equivalent:

(1) x = xξ[G];
(2) x is Π(ξ)-generic over L;
(3) x ∈

⋂
α(ξ)⩽α<ω1

⋃
T∈Πα(ξ)[T ].

Proof. (1) =⇒ (2) is routine; see Remark 4.5. To check (2) =⇒ (3), we recall
that each set Πα(ξ) is pre-dense in Π(ξ) by Lemma 5.2, (iv). We now prove that
(3) =⇒ (1). Suppose that x ∈ L[G] ∩ 2ω but (1) fails, that is, x ̸= xξ[G]. By
Theorem 12.2, (i) there is a Π-complete small (since P = MT(Π) is CCC by 16.7)
real name c ∈ L such that c ⊆ P × ω × 2, x = c[G] and c is non-principal over Π
at ξ in the sense that the set

Dξ
c(Π) = {p ∈ P = MT(Π) : ξ ∈ |p| ∧ p directly forces c /∈ [Tp

ξ ]}

is open-dense in P = MT(Π). Since c is small, there is an ordinal γ < ω1 such
that c is a Π<γ-complete real name, and we can assume by Corollary 16.8 that the
set Dξ

kc(Π) ∩ P<γ is pre-dense in P and, therefore, open-dense in P<γ . Then c is
non-principal over Π<γ at ξ. We can further assume that c ∈ L(Π⃗ ↾ γ). Finally, we
can assume that γ belongs to the set C in Theorem 15.3, (iv). In other words, γ is
a crucial ordinal for π⃗, that is, Π<γ ⊏⊏L(Π⃗↾γ) Πγ . It follows that Π<γ ⊏⊏L(Π⃗↾γ) Π⩾γ

by Lemma 14.4, (iii). Then we also have Π<γ ⊏c
ξ Π⩾γ by Lemma 13.1, (4) since

c ∈ L(Π⃗ ↾ γ) and c is non-principal. Now Theorem 12.2, (ii) with π = Π<γ and
ϙ = Π⩾γ (note that π ∪cw

ϙ = Π) implies that x = c[G] /∈
⋃
Q∈Π⩾γ(ξ)[Q] and, in

particular, x /∈
⋃
Q∈Πγ(ξ)[Q]. In other words, (3) fails as well. □
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Corollary 18.2. Assume that G ⊆ P is P-generic over L. Let M be a generic
extension of L satisfying 2ω ∩M ⊆ L[G]. Then X[G] ∩M is a set of definability
class ΠHC

n−2 in M .

We recall that X[G] was introduced in Definition 17.2.

Proof. By the theorem, the relation ⟨ξ, x⟩ ∈ X[G] is equivalent inM to the assertion

∀α < ω1 ∃T ∈ Πα(ξ)
(
α(ξ) ⩽ α =⇒ x ∈ [T ]

)
,

which can be rewritten as

∀α < ω1 ∀µ < ω1 ∀Y ∃T ∈ Y
(
µ = α(ξ) ∧ Y = Πα(ξ) ∧ µ ⩽ α =⇒ x ∈ [T ]

)
.

Here the equality µ = α(ξ) is of type ∆HC
n−2 by Corollary 16.3, and so is the equality

Y = Πα(ξ), again by 16.3. It follows that the whole relation is of type ΠHC
n−2 since

the quantifier ∃T ∈ Y is bounded. □

Corollary 18.3. If G ⊆ P is P-generic over L, then in L[G] there is a ‘good’
∆1

n-well-ordering of 2ω of length ω1 .

Proof. If γ < ω1, then let Xγ = ⟨xξ[G]⟩ξ<γ . The equality Y = Xγ is a ΠHC
n−2-

relation in L[G] (with arguments γ, Y ) by Corollary 18.2. If x ∈ 2ω ∩ L[G], then
let γ(x) be the least γ < ω1 such that x ∈ L[Xγ ], and let ν(x) < ω1 be the
index of x in the canonical well-ordering of 2ω in L[Xγ ]. We well-order 2ω ∩ L[G]
lexicographically for the triples ⟨max{γ(x), ν(x)}, γ(x), ν(x)⟩. This well-ordering is
of class ∆HC

n−1 by what was said above and, therefore, of class ∆1
n. One can also

easily verify the ‘goodness’ (that is, the set of all coded proper initial segments has
to be Σ1

n). □

§ 19. The non-separation model

The model for Theorem 1.2 will be defined on the basis of a P-generic extension
L[G] of L. More precisely, it will be of the form L[G ↾ ∆], where ∆ ⊆ ωL

1 will itself
be a generic set over L[G].

Put Q = {1, 2, 3}ω
L
1 ∩ L with countable support, that is, a typical element of Q

is a partial function q ∈ L from ωL
1 to the 3-element set {1, 2, 3} such that the

domain dom q ⊆ ωL
1 is countable in L, that is, just bounded in ωL

1 . (The choice of
the 3-element set {1, 2, 3} will be explained below; see Definition 19.3.) We order Q
oppositely to inclusion, that is, we put q ⩽ q′ (q is stronger) if and only if q′ ⊆ q.
Thus Q ∈ L and, inside L, Q is equal to the countable-support product {1, 2, 3}ω1 .
Accordingly, a Q-generic object is a Q-generic map H : ωL

1 → {1, 2, 3}.
Recall that P is a CCC forcing in L by Corollary 16.7.

Lemma 19.1. P remains CCC in any Q-generic extension L[H] of L. Therefore
P × Q preserves cardinals over L.

Proof. Assume the opposite: some q′ ∈ Q forces C to be an uncountable antichain
in P, where C is a Q-name. Note that Q is countably complete in L. This means that
if q0 ⩾ q1 ⩾ q2 ⩾ · · · is a sequence in Q, then there is a condition q =

⋃
k qk ∈ Q;

q ⩽ qk, ∀ k. Therefore, arguing in L, we can define by induction a decreasing
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sequence ⟨qξξ<ω1
⟩ in Q and a sequence of pairwise-incompatible conditions pξ ∈ P

such that q0 ⩽ q′ and each qξ forces that pξ ∈ C. But then A = {pξ : ξ <ω1} ∈ L
is an uncountable antichain in P, a contradiction. □

Lemma 19.2. Suppose that the set G × H is P × Q-generic over L. Then the
following assertions hold.

(i) 2ω ∩ L[G,H] ⊆ L[G]. Therefore, ωL
1 = ω

L[G]
1 = ω

L[G,H]
1 .

(ii) If ∆ ∈ L, ∆ ⊆ ωL
1 , then L[G ↾ ∆, H] ∩ 2ω ⊆ L[G ↾ ∆].

(iii) If ∆ ∈ L[H], ∆ ⊆ ωL
1 and ξ < ωL

1 , then xξ[G] ∈ L[G ↾ ∆] is equivalent to
ξ ∈ ∆.

Proof. Note that Q may not be countably complete in L[G]. Hence the most elem-
entary way to prove (ii) does not work. However, regard L[G,H] as a P-generic
extension L[H][G] of L[H]. Suppose that x ∈ 2ω ∩ L[H][G]. Since P = MT(Π)
is CCC in L[H] by Lemma 19.1, Lemma 12.1 yields a small Π-complete real name
c ∈ L[H] such that c ⊆ P × ω × 2 and x = c[G]. In view of its smallness, c is
effectively coded by a real. Hence we have c ∈ L because L[H]∩2ω = L∩2ω. Thus
x = c[G] ∈ L[G].

The proof of (ii) is similar.
(iii) In the non-trivial direction, suppose that ξ /∈ ∆. Consider the set ∆′ =

ωL
1 \ {ξ} ∈ L. It is clear that G ↾ ∆ ∈ L[G ↾ ∆′, H] and, therefore, any real in 2ω ∩

L[G ↾ ∆] belongs to L[G ↾ ∆′] by (ii). But xξ[G] /∈ L[G ↾ ∆′] by Lemma 17.3. □

Recall that if ν ∈ Ord, then the ordinal product 2ν is regarded as the ordered
sum of ν copies of the ordinal 2 = {0, 1}. (In contrast to ν2 = ν + ν.) Thus
if ν = λ + m, where λ is a limit ordinal or 0 and m < ω, then 2ν = λ + 2m and
2ν + 1 = λ+ 2m+ 1 while ⟨ν, i⟩ 7→ 2ν + i is a bijection of ω1 × 2 onto ω1.

Definition 19.3. If H : ωL
1 → {1, 2, 3}, then we define the sets

1H = {2ν : H(2ν) = 1}, 2H = {2ν : H(2ν) = 2}, 3H = {2ν : H(2ν) = 3},
4H = {2ν + 1: H(2ν + 1) = 1}, 5H = {2ν + 1: H(2ν + 1) = 2},

and 6H = {2ν + 1: H(2ν + 1) = 3}, and further

∆H = {4ν : 2ν ∈ 1H ∪ 3H} ∪ {4ν + 1: 2ν ∈ 2H ∪ 3H}
∪ {4ν + 2: 2ν + 1 ∈ 4H} ∪ {4ν + 3: 2ν + 1 ∈ 5H}.

Note that the relation L[G ↾ ∆H ] ⊆ L[G] is not necessarily true since the set ∆H

does not necessarily belong to L[G], but we have L[G ↾ ∆H ] ⊆ L[G][H], of course.

§ 20. The non-separation theorem: the HC-version

We now prove the following version of Theorem 1.2 for HC-definability.

Theorem 20.1. Let G ⊆ P be a P-generic set over L and let H : ωL
1 → {1, 2, 3}

be a Q-generic function over L[G]. Then it is true in L[G ↾ ∆H ] that
(i) 1H , 2H are disjoint ΠHC

n−1-sets not separable by disjoint Σn−1(HC)-sets;
(ii) 4H , 5H are disjoint ΣHC

n−1-sets not separable by disjoint Πn−1(HC)-sets.
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The proof of Theorem 20.1 in this section includes a reference to the following
theorem, whose separate lengthy proof occupies the remainder of the paper.

Theorem 20.2 (to be proved in § 26). Assume that X ∈ L, X ⊆ ωL
1 is unbounded

in ωL
1 , and G ⊆ P is a P-generic set over L. Then L[G ↾ X] ∩ 2ω is an elementary

submodel of L[G] ∩ 2ω with respect to all Σ1
n−1-formulae with parameters in 2ω ∩

L[G ↾ X].

Corollary 20.3. Under the hypotheses of Theorem 20.1, HCL[G↾∆H ] is an elemen-
tary submodel of HCL[G] with respect to all Σn−2-formulae.

Note that HCL[G↾∆H ] ⊆ HCL[G] by Lemma 19.2 while L[G ↾ ∆H ] ̸⊆ L[G].

Proof (of Corollary 20.3). We have ωL
1 = ω

L[G]
1 = ω

L[G↾∆H ]
1 and ∆H ∩ λ ∈ L for all

λ < ωL
1 by Lemma 19.2. We now use Theorem 20.2 with ΣHC

n−2-definability instead
of Σ1

n−1-definability. □

Proof (of Theorem 20.1). (i) To check that 1H is a ΠHC
n−1-set in L[G ↾ ∆H ], it

suffices to prove the equality

1H = {2ν < ω1 : ¬∃x (⟨4ν + 1, x⟩ ∈ X)}

in L[G ↾ ∆H ], where X = X[G] ∩ L[G ↾ ∆H ] is a ΠHC
n−2-set in L[G ↾ ∆H ] by

Corollary 18.2. (For 2H it would be ⟨4ν, x⟩ ∈ X in the displayed formula.)
Assuming first that ν < ωL

1 , ξ = 4ν + 1, x ∈ L[G ↾ ∆H ] ∩ 2ω and ⟨ξ, x⟩ ∈ X, we
claim that 2ν /∈1H . Indeed, x = xξ[G] by definition and ξ ∈∆H by Lemma 19.2,(iii).
But then 2ν ∈ 2H ∪ 3H and, therefore, 2ν /∈ 1H , as required.

To prove the converse, suppose that 2ν /∈ 1H , whence 2ν ∈ 2H ∪ 3H . Then
ξ = 4ν + 1 ∈ ∆H and, therefore, x = xξ ∈ L[G ↾ ∆H ] and ⟨ξ, x⟩ = ⟨4ν + 1, x⟩ ∈ X,
as required.

To prove the non-separability, assume the opposite: the sets 1H , 2H are separated
by disjoint Σn−1(HC)-sets A,B ⊆ ω1 = ωL

1 in L[G ↾ ∆H ]. The sets A, B are
defined in HCL[G↾∆H ] by the Σn−1-formulae φ(a, ξ), ψ(a, ξ) respectively with a real
parameter a ∈ L[G ↾ ∆H ] ∩ 2ω. Hence a ∈ L[G] by Lemma 19.2. Let λ < ωL

1 be
a limit ordinal such that a ∈ L[G ↾ ∆Hλ], where ∆Hλ = ∆H ∩ λ ∈ L.

If K : ωL
1 → {1, 2, 3} (for example, K = H), then we put

A∗
K = {ξ < ωL

1 : φ(a, ξ)HCL[G↾∆K ]
}, B∗

K = {ξ < ωL
1 : ψ(a, ξ)HCL[G↾∆K ]

}. (∗)

By definition, 1H ⊆ A = A∗
H , 2H ⊆ B = B∗

H and A∗
H ∩B∗

H = ∅. We fix a condition
q0 ∈ Q which is compatible with H (this simply means that q0 ⊂ H) and forces the
properties mentioned of the sets A, B, so that

(†) if K : ωL
1 → {1, 2, 3} is a Q-generic map over L[G] compatible with q0, then

1K ⊆ A∗
K , 2K ⊆ B∗

K and A∗
K ∩B∗

K = ∅.
We can assume that dom q0 ⊆ λ, otherwise simply increase λ.

Take any ordinal ν0, λ ⩽ ν0 < ω1. Consider maps H1, H2, H3:ωL
1 → {1, 2, 3}

which are generic over L[G], compatible with q0 and satisfy Hi(2ν0) = i, i = 1, 2, 3,
and H1(α) = H2(α) = H3(α) for all α ̸= 2ν0. Then ∆H3 = ∆H1 ∪ {4ν0 + 1} by
Definition 19.3. Hence L[G ↾ ∆H1 ] ⊆ L[G ↾ ∆H3 ]. It follows that A∗

H1
⊆ A∗

H3
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by Corollary 20.3. Therefore 1H1 ⊆ A∗
H1

⊆ A∗
H3

by (†). We conclude that 2ν0 ∈
A∗
H3

because 2ν0 ∈ 1H1 by the choice of H1.
A similar argument with H2 yields that 2ν0 ∈ B∗

H3
. Thus, A∗

H3
∩ B∗

H3
̸= ∅,

contrary to (†). This contradiction completes the proof of (i).
The proof of (ii) is similar. □

§ 21. The main theorem modulo Theorem 20.2

Proof (of Theorem 1.2). (i) We work under the hypotheses of Theorem 20.1. To
define a non-separable pair of Π1

n-sets in L[G ↾ ∆H ], we consider the Π1
1 -set WO ⊆

2ω of codes of countable ordinals and, for any w ∈ WO, let |w| < ω1 be the ordinal
encoded by w. Since ωL

1 = ω1 by Corollary 16.7, for every ξ < ω1 there is a code
w ∈ WO ∩ L with |w| = ξ. We write wξ for the ⩽L-least of them and put
X = {wξ : ξ ∈ 1H} and Y = {wξ : ξ ∈ 2H}.

The sets X,Y ⊆ WO ∩ L are ΠHC
n−1 in L[G ↾ ∆H ] together with 1H , 2H (hence

they are Π1
n) and X ∩ Y = ∅. Assume the opposite: in L[G ↾ ∆H ], X ′, Y ′ ⊆ 2ω

are disjoint sets in Σ1
n (and hence in Σn−1(HC)) such that X ⊆ X ′ and Y ⊆ Y ′.

Then, in L[G ↾ ∆H ],

A = {ξ < ωL
1 : wξ ∈ X ′} and B = {ξ < ωL

1 : wξ ∈ Y ′}

are disjoint Σn−1(HC)-sets and we have 1H ⊆ A and 2H ⊆ B by construction,
contrary to Theorem 20.1. This contradiction completes the proof of (i). The proof
of (ii) is similar. □

§ 22. An auxiliary forcing relation

We now begin the lengthy proof of Theorem 20.2. It uses an auxiliary forcing
relation which is not explicitly connected with any particular forcing notion. In
particular, it is not connected with the key forcing P.

Blanket Assumption 22.1. We assume that n ⩾ 4 because if n = 3, then
Theorem 20.2 holds by Schoenfield absoluteness.

We work in L. Consider the second-order arithmetic language with variables
k, l,m, n, . . . of type 0 over ω and variables a, b, x, y, . . . of type 1 over 2ω whose
atomic formulae are of the form x(n) = i. Let L be the extension of this
language allowing the substitution of variables of type 0 (resp. 1) by positive integers
(resp. small real names c ∈ L; see Definition 9.1).

We define natural classes LΣ1
n, LΠ1

n (n ⩾ 1) of L -formulae. Let L (ΣΠ)11 be
the closure of LΣ1

1 ∪LΠ1
1 under ¬, ∧, ∨ and quantifiers over ω. If φ is a formula

in LΣ1
n (resp. LΠ1

n), then let φ− be the result of the canonical transformation
of ¬φ to LΠ1

n-form (resp. LΣ1
n-form).

We now define a relation p forcπ⃗ φ between multitrees p ∈ MT, sequences π⃗ ∈−−→
MF and closed formulae φ in L (ΣΠ)11 or LΣ1

n ∪ LΠ1
n, n ⩾ 2, which suitably

approximates the true P-forcing relation. The definition is by induction on the
complexity of φ.
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1◦. Suppose that π⃗ ∈
−−→
MF, p ∈ MT (not necessarily p ∈ MT(π⃗)) and φ is

a closed L (ΣΠ)11-formula. We define p forcπ⃗ φ if and only if there are a CTM M |=
ZFL− (see Definition 14.3 about ZFL−), an ordinal ϑ < dom π⃗ and a multitree
p0 ∈ MT(π⃗ ↾ ϑ) such that

(1) p ⩽ p0 (meaning: p0 is weaker),
(2) M contains π⃗ ↾ ϑ (then it also contains MT(π⃗ ↾ ϑ) and p0),
(3) every name c in φ belongs to M and is π⃗ ↾ ϑ-complete,
(4) π⃗ ↾ ϑ ⊂M π⃗ and, therefore, π⃗ ↾ ϑ ⊂{c} π⃗ for any name c in φ, and
(5) p0 MT(π⃗ ↾ ϑ)-forces φ[G] over M in the ordinary sense.10
2◦. If φ(x) is an LΠ1

n-formula, n ⩾ 1, then we define p forcπ⃗ ∃xφ(x) if and
only if there is a small real name c such that p forcπ⃗ φ(c).

3◦. If π⃗ ∈
−−→
MF, p ∈ MT and φ is a closed LΠ1

n-formula, n ⩾ 2, then we
define p forcπ⃗ φ if and only if we cannot find a sequence τ⃗ ∈

−−→
MF and a multitree

p′ ∈ MT(τ⃗ ) such that π⃗ ⊆ τ⃗ , p′ ⩽ p and p′ forcτ⃗ φ
−.

Remark 22.2. The condition ‘p0 MT(π⃗ ↾ ϑ)-forces φ[G] over M’ in 1◦ is indepen-
dent of the choice of the CTM M containing π⃗ ↾ ϑ and φ. Indeed, if φ is
an L (ΣΠ)11-formula, then all transitive models agree on the formula φ[G] by
Mostowski’s absoluteness theorem ([20], Theorem 25.4).

Lemma 22.3. Assume that sequences π⃗ ⊆ ϙ⃗ belong to
−−→
MF, q,p ∈ MT, q ⩽ p

and φ is an L -formula. Then p forcπ⃗ φ implies q forc
ϙ⃗
φ.

Proof. Suppose that φ is an L (ΣΠ)11-formula and p forcπ⃗ φ is given by M, ϑ, p0

as in 1◦. Then the same M, ϑ, p0 give q forc
ϙ⃗
φ.

The induction step ∃, as in 2◦, is elementary.
We now consider the induction step ∀ as in 3◦. Suppose that φ is a closed

LΠ1
n-formula, n ⩾ 2, and p forcπ⃗ φ. Assume that q forc

ϙ⃗
φ fails. Then, by 3◦, we

can find a sequence ϙ⃗
′ ∈

−−→
MF and a multitree q′ ∈ MT(ϙ⃗

′
) such that ϙ⃗ ⊆ ϙ⃗ ′

,
q′ ⩽ q and q′ forc

ϙ⃗
′ φ−. But then π⃗ ⊆ ϙ⃗ ′

and q′ ⩽ p. Hence p forcπ⃗ φ fails
by 3◦. □

Definition 22.4. LetK be one of the classes L (ΣΠ)11, LΣ1
n, LΠ1

n (n⩾ 2). Then
FORC[K] is the set of all triples ⟨π⃗,p, φ⟩ such that p forcπ⃗ φ.

Thus, FORC[K] is a subset of HC.

Lemma 22.5 (definability, in L). FORC[L (ΣΠ)11] ∈ ∆HC
1 . If n ⩾ 2, then

FORC[LΣ1
n] belongs to ΣHC

n−1 and FORC[LΠ1
n] belongs to ΠHC

n−1 .

Proof. Relations such as π⃗ ∈
−−→
MF, ‘to be a formula in L (ΣΠ)11, LΣ1

n, LΠ1
n’,

p ∈ MT(ρ⃗), forcing over a CTM, and so on are definable in HC by bounded
formulae. Hence they are ∆HC

1 . Moreover, the model M can be tied by both ∃ and
∀ in 1◦; see Remark 22.2. This wraps up the ∆HC

1 -estimation for L (ΣΠ)11.
The inductive step by 2◦ is quite simple.
We now consider the inductive step by 3◦. Assume that n ⩾ 2 and it is already

known that FORC[LΣ1
n] ∈ ΣHC

n−1. However, ⟨π⃗,p, φ⟩ ∈ FORC[LΠ1
n] if and only

10Item 1◦ not only requires φ[G] to be forced but also suitably seals this status by π⃗ ↾ ϑ ⊂M π⃗.
This will help us to prove the consistency of forc in Lemma 22.7.
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if π⃗ ∈
−−→
MF, p ∈ MT, φ is a closed LΠ1

n-formula and, by 3◦, there is no triple
⟨τ⃗ ,p′, ψ⟩ ∈ FORC[LΣ1

n] such that τ⃗ ∈
−−→
MF, π⃗ ⊆ τ⃗ , p′ ∈ MT(τ⃗ ), p′ ⩽ p and ψ

is φ−. We easily get the required ΠHC
n−1-estimate for FORC[LΠ1

n]. □

Lemma 22.6 (in L). Suppose that π⃗ ∈
−−→
MF, p ∈ MT(π⃗) and φ is an L (ΣΠ)11-

formula.
(i) If π⃗ ⊆ ϙ⃗ ∈

−−→
MF ∪

−−→
MFω1 , N |= ZFL− is a TM containing ϙ⃗ and φ, and

p forcπ⃗ φ, then p MT(ϙ⃗)-forces φ[G] over N in the ordinary sense.
(ii) If N |= ZFL− is a TM containing π⃗ , each name c in φ belongs to N and

is π⃗-complete and p MT(ϙ⃗)-forces φ[G] over N, then there is a ϙ⃗ ∈
−−→
MF such that

π⃗ ⊂N ϙ⃗ and p forc
ϙ⃗
φ.

Proof. (i) By definition, there are an ordinal ϑ < dom π⃗, a multitree p0 ∈ MT(π⃗ ↾ϑ)
and a CTM M |= ZFL− containing π⃗ ↾ ϑ such that p ⩽ p0, each name c in φ
belongs to M and is π⃗ ↾ ϑ-complete, π⃗ ↾ ϑ ⊂M π⃗ and p0 MT(π⃗ ↾ ϑ)-forces φ[G]
over M. There is no loss of generality in assuming that M ⊆ N. (Otherwise N ⊆ M
and we replace N by M.)

We now suppose that G⊆MT(ϙ⃗) is an MT(ϙ⃗)-generic set over N and p ∈ G.
Then also p0 ∈ G. We have to prove that φ[G] is true in N[G].

We claim that the set G′ = G ∩ MT(π⃗ ↾ ϑ) is MT(π⃗ ↾ ϑ)-generic over M.
Indeed, suppose that D ∈ M and D ⊆ MT(π⃗ ↾ ϑ) is open-dense in MT(π⃗ ↾ ϑ).
Since π⃗ ↾ ϑ ⊂M ϙ⃗, D is pre-dense in MT(ϙ⃗) by Lemma 14.4, (iii), (b). Hence
G ∩ D ̸= ∅ by the choice of G. It follows that G′ ∩ D ̸= ∅.

Now if c is a name in φ, then c ∈ M and c is π⃗ ↾ ϑ-complete. By the above,
it follows that c[G′] ∈ 2ω is defined. Hence c[G] = c[G′] because G′ ⊆ G. Thus
φ[G] coincides with φ[G′]. We also note that p0 ∈ G′. We conclude that φ[G′]
holds in M[G′] because p0 forces φ[G] over M. Then the same formula φ[G] holds
in N[G] by Mostowski absoluteness.

(ii) Lemma 14.4, (ii) yields the existence of a ϙ⃗ ∈
−−→
MF such that π⃗ ⊂N ϙ⃗. □

Lemma 22.7 (in L). Suppose that π⃗ ∈
−−→
MF, p ∈ MT(π⃗) and φ is a formula in

L (ΣΠ)11 or LΣ1
n , n ⩾ 2. Then the relations p forcπ⃗ φ and p forcπ⃗ φ

− cannot hold
simultaneously.

Proof. Suppose that φ ∈ L (ΣΠ)11. If we simultaneously have p forcπ⃗ φ and
p forcπ⃗ φ

−, then Lemma 22.6 yields that p MT(π⃗)-forces both φ[G] and φ−[G]
over a sufficiently large CTM M, a contradiction. If φ ∈ LΣ1

n, n ⩾ 2, then the
result follows from 3◦. □

§ 23. Tail invariance

Invariance theorems are very typical for all kinds of forcing. We prove two major
invariance theorems for the auxiliary forcing. The first shows the tail invariance.
The second (§ 24) explores the permutation invariance.

Suppose that π⃗ = ⟨παα<λ⟩ ∈
−−→
MF and γ < λ = dom π⃗. Then the γ-tail π⃗↾⩾γ is

defined as the restriction π⃗ ↾ [γ, λ) to the half-open ordinal interval [γ, λ) = {α : γ ⩽
α < λ}. Then the set MT(π⃗↾⩾γ) =

⋃ cw
γ⩽α<λ π⃗(α) is open-dense in MT(π⃗) by

Lemma 14.4, (iii), (a). Therefore it can be expected that if ϙ⃗ is another sequence
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of the same length λ = dom(ϙ⃗) and ϙ⃗↾⩾γ = π⃗↾⩾γ , then the relation forcπ⃗ coincides
with forc

ϙ⃗
. This turns out to be (almost) the case.

Theorem 23.1. Assume that π⃗, ϙ⃗ are sequences in
−−→
MF, γ < λ = dom π⃗ = dom ϙ⃗,

ϙ⃗↾⩾γ = π⃗↾⩾γ , p ∈ MT, n ⩾ 2 and φ is a formula in LΠ1
n ∪ LΣ1

n+1 . Then
p forcπ⃗ φ if and only if p forc

ϙ⃗
φ.

Proof. Part 1. The LΠ1
2 Case. Let ψ(x) be an LΣ1

1 -formula. Suppose that
p forc

ϙ⃗
∀xψ(x) fails. Hence there are ϙ⃗

′ ∈
−−→
MF and q ∈ MT(ϙ⃗

′
) such that ϙ⃗ ⊆ ϙ⃗ ′

,
q ⩽ p and q forc

ϙ⃗
′ ∃xψ−(x). We can assume that q ∈ MT(ϙ⃗

′
↾⩾γ). By definition

2◦ (§ 22), there is a small real name c such that q forc
ϙ⃗

′ ψ−(c). By definition 1◦,
there is an ordinal ϑ < λ′ = dom ϙ⃗

′
such that every name c′ in the formula ψ−(c),

including c′ = c, is ϙ⃗
′
↾ ϑ-complete and, therefore, ϙ⃗

′
-complete by Lemma 14.2.

We define a sequence π⃗′ such that dom π⃗′ = λ′, π⃗ ⊆ π⃗′ and π⃗′↾⩾λ = ϙ⃗
′
↾⩾λ.

Then π⃗′↾⩾γ = ϙ⃗
′
↾⩾γ . Hence q ∈ MT(π⃗′↾⩾γ) ⊆ MT(π⃗′).

Consider any CTM N |= ZFL− containing ψ, c, π⃗′, ϙ⃗
′
. Then q MT(ϙ⃗

′
)-forces

ψ−(c)[G] over N by Lemma 22.6. However, the forcing notions MT(π⃗′), MT(ϙ⃗
′
)

contain one and the same dense set MT(π⃗′↾⩾γ) = MT(ϙ⃗
′
↾⩾γ). Therefore, each

name c′ in the formula ψ−(c), including c′ = c, is π⃗′-complete since it is ϙ⃗
′
-com-

plete, and q also MT(π⃗′)-forces ψ−(c)[G] over N. Hence, by Lemma 22.6, (ii)
there is a sequence τ⃗ ∈

−−→
MF such that π⃗′ ⊆ τ⃗ and q forcτ⃗ ψ

−(c). But then
q forcτ⃗ ∃xψ−(x) and, therefore, p forcπ⃗ ∀xψ(x) fails, as required.
Part 2. The step LΠ1

n → LΣ1
n+1, n ⩾ 2. Let φ(x) be an LΠ1

n-formula. Assume
that p forcπ⃗ ∃xφ(x). By definition (see 2◦ in § 22) there is a small real name c
such that p forcπ⃗ φ(c). Then we have p forc

ϙ⃗
φ(c) by the inductive hypothesis.

Thus p forc
ϙ⃗
∃xψ(x).

Part 3. The step LΣ1
n → LΠ1

n, n ⩾ 3. Suppose that φ is an LΠ1
n-formula

and p forc
ϙ⃗
φ fails. By definition 3◦ (§ 22) one can find a sequence ϙ⃗

′ ∈
−−→
MF and

a multitree p′ ∈ MT(ϙ⃗
′
) such that ϙ⃗ ⊆ ϙ⃗ ′

, p′ ⩽ p and p′ forc
ϙ⃗

′ φ−. By Lemma
14.4, (ii), (a), there is a multitree r ∈ MT(ϙ⃗

′
↾⩾γ), r ⩽ p′. Then r ⩽ p and

r forc
ϙ⃗

′ φ−. Define a sequence π⃗′ ∈
−−→
MF by putting dom π⃗′ = λ′ = dom ϙ⃗

′
, π⃗ ⊆ π⃗′

and π⃗′↾⩾λ = ϙ⃗
′
↾⩾λ. Then r ∈ MT(π⃗′↾⩾γ), r ⩽ p and also r forcπ⃗′ φ− by the

inductive hypothesis. We conclude that p forcπ⃗ φ also fails. □

§ 24. Permutations

Continuing to work in L, we write PERM for the set of all bijections h : ω1
onto−−−→

ω1 such that h = h−1 and the non-identity domain NID(h) = {ξ : h(ξ) ̸= ξ} is at
most countable. The elements of PERM are called permutations.

Suppose that h ∈ PERM. We extend the action of h as follows.
– If p is a multitree, then hp is a multitree, |hp| = h′′p = {h(ξ) : ξ ∈ |p|}

and (hp)(h(ξ)) = p(ξ) whenever ξ ∈ |p|. In other words, hp coincides with the
superposition p ◦ (h−1).

– If π ∈ MT is a multiforcing, then so is h · π = π ◦ (h−1), |h · π| = h′′π and
(h · π)(h(ξ)) = π(ξ) whenever ξ ∈ |π|.
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– If c ⊆ MT× (ω×ω) is a real name, then we put hc= {⟨hp, n, i⟩ : ⟨p, n, i⟩ ∈ c}.
It is clear that hc is also a real name.

– If π⃗ = ⟨παα<κ⟩ ∈
−−→
MF, then hπ⃗ = ⟨h · παα<κ⟩ is still a sequence in

−−→
MF.

– If φ := φ(c1, . . . , cn) is an L -formula (with all names explicitly indicated),
then hφ is φ(hc1, . . . ,hcn).

Many of the notions and relations defined above are clearly PERM-invariant.
For example, p ∈ MT(π) ⇐⇒ hp ∈ MT(h · π), π ⊏ ϙ ⇐⇒ h · π ⊏ h · ϙ, and
so on. The invariance also holds for the relation forc.

Theorem 24.1. Assume that π⃗ ∈
−−→
MF, p ∈ MT(π⃗), h ∈ PERM, n ⩾ 2 and φ

belongs to LΠ1
n ∪ LΣ1

n+1 . Then p forcπ⃗ φ if and only if (hp) forchπ⃗(hφ).

Proof. Put ϙ⃗ = hπ⃗, q = hp.
Part 1. The LΠ1

2 Case. Assume that φ(x) is an LΣ1
1 -formula, ψ(x) := hφ(x)

and q forc
ϙ⃗
∀xψ(x) fails. By definition (1◦, 2◦ in § 22), we can find a sequence

ϙ⃗
′ ∈

−−→
MF, a multitree q′ ∈ MT(ϙ⃗

′
) and a small real name d such that ϙ⃗ ⊂ ϙ⃗ ′

,
q′ ⩽ q and q′ forc

ϙ⃗
′ ψ−(d). Then the sequence π⃗′ = hϙ⃗

′
satisfies π⃗ ⊂ π⃗′, the

multitree p′ = hq′ belongs to MT(π⃗′), p′ ⩽ p and c = hd is a small real name.
However, we cannot now claim that p′ forcπ⃗′ φ−(c) since the existence of M and ϑ
as in 1◦ of § 22 is not necessarily preserved by the action of h−1 or h.

To circumvent this difficulty, suppose that M |= ZFL− is a CTM containing π⃗′,
ϙ⃗

′
, h, c, d and (all names in) φ, ψ. Then q′ MT(ϙ⃗

′
)-forces ψ−(d)[G] over M by

Lemma 22.6, (i). It follows that p′ MT(π⃗′)-forces φ−(c)[G] over M by standard
theorems of forcing. Lemma 22.6, (ii) yields a sequence τ⃗ ∈

−−→
MF with π⃗′ ⊂ τ⃗ such

that p′ forcτ⃗ φ
−(c) and, therefore, p′ forcτ⃗ ∃xφ−(x) by 2◦. However, π⃗ ⊂ π⃗′ ⊂ τ⃗

and p′ ⩽ p. Therefore p forcπ⃗ ∀xφ(x) fails by 3◦, as required.
Part 2. The step LΠ1

n → LΣ1
n+1, n ⩾ 2. Let φ(x) be a formula in LΠ1

n. We
put ψ(x) := hφ(x) and assume that p forcπ⃗ ∃xφ(x). By definition (see 2◦ in § 22),
there is a small real name c such that p forcπ⃗ φ(c). Then we have q forc

ϙ⃗
ψ(d) by

the inductive hypothesis, where d = hc is a small real name. Thus q forc
ϙ⃗
∃xψ(x).

Part 3. The step LΣ1
n → LΠ1

n, n ⩾ 3. Let φ(x) be a formula in LΠ1
n. Assume

that q forc
ϙ⃗
ψ fails, where q = hp, ϙ⃗ = hπ⃗ and ψ is hφ as above. By 3◦ there are

a sequence ϙ⃗
′ ∈

−−→
MF and a multitree q′ ∈ MT(ϙ⃗

′
) such that ϙ⃗ ⊆ ϙ⃗ ′

, q′ ⩽ q and
q′ forc

ϙ⃗
′ ψ−. We now put p′ = h−1q′ and π⃗′ = h−1

ϙ⃗
′
, so that p′ ⩽ p and π⃗ ⊆ π⃗′.

We have p′ forcπ⃗′ φ− by the inductive hypothesis. We conclude that p forcπ⃗ φ fails,
as required. □

§ 25. Forcing inside the key sequence

Theorem 25.3 below shows that the forcing relation forcπ⃗, when considered with
countable initial segments π⃗ = Π⃗ ↾ α of the key sequence Π⃗, coincides with the true
P-forcing relation up to level n − 1.

We work in L. Recall that the number n and the key sequence Π⃗ = ⟨Πα⟩α<ω1 ∈
−−→
MFω1 (which satisfies parts (i)–(iv) of Theorem 15.3) were introduced in 15.4, and
P = MT(Π⃗) is our forcing notion. In addition, n ⩾ 4 by 22.1.

Definition 25.1. For brevity, we write p forcαφ instead of p forcΠ⃗↾α φ. Let p forcφ
mean that p forcαφ for some α < ω1.
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Lemma 25.2 (in L). Assume that p ∈ P, α < ω1 and p forcαφ . Then the following
assertions hold.

(i) If α ⩽ β < ω1 , q ∈ P<β = MT(Π⃗ ↾ β) and q ⩽ p, then q forcβφ .
(ii) If q ∈ P and q ⩽ p, then q forcβφ for some β , α ⩽ β < ω1 .
(iii) If q ∈ P and q forcφ− , then p, q are sad.
(iv) Therefore, first, if p, q ∈ P, q ⩽ p and p forcφ, then q forcφ and, second,

p forcφ and p forcφ− cannot hold simultaneously.

Proof. To prove (i), apply Lemma 22.3. To prove (ii), pick a β with α < β < ω1 and
a q ∈ MT(Π⃗ ↾ β) and apply (i). To prove (iii), note that p, q are incompatible in P
since otherwise (i) gives rise to a contradiction. But incompatibility in P implies
being sad by Corollary 4.3. □

Theorem 25.3. If φ is a closed L -formula in

L (ΣΠ)11 ∪ LΣ1
2 ∪ LΠ1

2 ∪ · · · ∪ LΣ1
n−2 ∪ LΠ1

n−2 ∪ LΣ1
n−1

and p ∈ P, then p P-forces φ[G] over L in the ordinary sense if and only if p forcφ.

Proof. Let ⊩ denote the ordinary P-forcing relation over L.
Part 1. φ is a formula in L (ΣΠ)11. If p forcφ, then p forcΠ⃗↾γ φ for some γ < ω1,
and then p ⊩ φ[G] by Lemma 22.6, (i) with ϙ⃗ = Π⃗ and N = L.

We now suppose that p ⊩ φ[G]. There is an ordinal γ0 < ω1 such that p ∈ Pγ0 =
MT(Π⃗ ↾ γ0) and all the names in φ belong to L(Π⃗ ↾ γ0). (We recall Definition 14.3
on models L(x) |= ZFL−.) Let U be the set of all sequences π⃗ ∈

−−→
MF such that

γ0 < dom π⃗ and there is an ordinal ϑ, γ0 < ϑ < dom π⃗, such that π⃗ ↾ ϑ ⊂L(π⃗↾ϑ) π⃗.
Then U is dense in

−−→
MF by Lemma 14.4, (ii) and belongs to ∆1(HC). Therefore by

Corollary 15.5 there is an ordinal γ < ω1 such that π⃗ = Π⃗ ↾ γ ∈ U . Let ϑ be the
ordinal that shows this, that is, γ0 < ϑ < γ = dom π⃗ and π⃗ ↾ ϑ ⊂L(π⃗↾ϑ) π⃗. We
claim that p MT(π⃗ ↾ ϑ)-forces φ[G] over L(π⃗ ↾ ϑ) in the ordinary sense. Then,
by definition, p forcπ⃗ φ, and we are done.

To prove the claim, assume the opposite. Then there is a multitree q ∈ MT(Π⃗↾ϑ)
with q ⩽ p that MT(π⃗ ↾ ϑ)-forces ¬φ[G] over L(π⃗ ↾ ϑ). It follows by definition
(see 1◦ in § 22) that q forcπ⃗ ¬φ, whence q forc¬φ and, therefore, q ⊩ ¬φ[G] (see
above). This contradicts p ⊩ φ[G].
Part 2. The step LΠ1

n → LΣ1
n+1 (n ⩾ 1). Consider an LΠ1

n-formula φ(x).
Assume that p forc∃xφ(x). By definition, there is a small real name c such that
p forcφ(c). By the inductive hypothesis, p ⊩ φ(c)[G], whence p ⊩ ∃xφ(x)[G].
Conversely, suppose that p ⊩ ∃xφ(x)[G]. Since P is a CCC forcing, there is
a small real name c (in L) such that p ⊩ φ(c)[G]. Then p forcφ(c) by the inductive
hypothesis. Hence p forc∃xφ(x).
Part 3. The step LΣ1

n → LΠ1
n (2 ⩽ n ⩽ n − 2). Assume that φ is a closed

LΣ1
n-formula and p forcφ−. By Lemma 25.2, (iv) there is no multitree q ∈ P with

q ⩽ p such that q forcφ. Hence p ⊩ φ− by the inductive hypothesis.
Conversely, suppose that p ⊩ φ−. There is an ordinal γ0 < ω1 such that p ∈

Pγ0 = MT(Π⃗ ↾ γ0) and φ belongs to L(Π⃗ ↾ γ0). Consider the set U of all sequences
π⃗ ∈

−−→
MF such that dom π⃗ > γ0 and there is a multitree q ∈ MT(π⃗) satisfying q ⩽ p

and q forcπ⃗ φ. We have U ∈ Σn−1(HC) (with parameters φ, p0) by Lemma 22.5.
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Hence U ∈ Σn−3(HC), where n ⩾ 4 by 22.1. Therefore, by 15.4 (and part (iii) of
Theorem 15.3), there is an ordinal γ < ω1 such that Π⃗ ↾ γ blocks U .
Case 1. Π⃗ ↾ γ ∈ U . Let q ∈ MT(π⃗) be the multitree that shows this. In particular,
q ⩽ p and γ > γ0. We have q ∈ MT(Π⃗ ↾ γ), q ⩽ p and q forcΠ⃗↾γ φ. Thus q ⊩ φ[G]
by the inductive hypothesis, contrary to the choice of p. Therefore Case 1 does not
occur.
Case 2. No sequence in U extends Π⃗ ↾ γ. We can assume that γ > γ0. (If not,
replace γ by γ0 + 1.) Then we claim that p forcγ φ−. Indeed, otherwise by 3◦ we
can find a sequence π⃗ ∈

−−→
MF and a multitree q ∈ MT(π⃗) such that Π⃗ ↾ γ ⊆ π⃗,

q ⩽ p and q forc
ϙ⃗
φ. But then π⃗ belongs to U . On the other hand, Π⃗ ↾ γ ⊆ π⃗

contrary to the assumption of Case 2. Thus, p forcφ−, as required. □

§ 26. A theorem on elementary equivalence

Proof (of Theorem 20.2). Assume the opposite. Then one can find a Π1
n−2-formula

φ(r, x) with just one parameter r ∈ 2ω ∩ L[G ↾ X] and a real x0 ∈ 2ω ∩ L[G] such
that φ(r, x0) is true in L[G] but there is no x ∈ 2ω ∩ L[G ↾X] such that φ(r, x) is
true in L[G]. By an appropriate version of Lemma 12.1, we have r = c0[G], where
c0 ⊆ MT(Π ↾ X) × ω × 2 is a small (Π ↾ X)-complete real name. (See § 17 for
notation.) Moreover, there is a small Π-complete real name c ⊆ P×ω×2 such that
x0 = c[G].

By Theorem 25.3 there is a multitree p0 ∈ G such that
(1) p0 P-forces ‘φ(c0[G], c[G]) ∧ ¬∃x ∈ L[G ↾ X]φ(c0[G], x)’ over L;
(2) p0 forcφ(c0, c), that is, p0 forcΠ⃗↾γ0

φ(c0, c), where γ0 < ω1, and we can
assume that p0 ∈ MT(Π⃗ ↾ γ0) as well.
Since c, c0 are small names, there is an ordinal δ < ω1 such that

(3) |c0| ⊆ δ ∩X, |c| ⊆ δ and |p0| ⊆ δ.
Since |Π⃗| = ω1 by Corollary 16.2, we can enlarge γ0 (if necessary) to guarantee that

(4) δ ⊆ |Π⃗ ↾ γ0|, that is, if η < δ, then η ∈ |Πα′ | for some α′ = α′(η) < γ0.
Our aim is to deduce a contradiction. We put D = δ \X.
Let U be the set of all sequences π⃗ ∈

−−→
MF such that Π⃗ ↾ γ0 ⊂ π⃗, whence

p0 ∈ MT(π⃗) by (2), and there are ζ < dom π⃗ and h ∈ PERM such that
(A) NID(h) ∩ (δ ∩X) = ∅ and h maps D onto a set R ⊆ X \ δ;
(B) γ0 ⩽ ζ < dom π⃗ and (hπ⃗)↾⩾ζ = π⃗↾⩾ζ , that is, h(π⃗(α)) = π⃗(α) whenever

ζ ⩽ α < dom π⃗.
Routine estimations show that U is a Σ1(HC)-set (with [parameters Π⃗ ↾ γ0, δ).

Hence it is a Σn−3(HC)-set because n ⩾ 4 by 22.1. Therefore, by 15.4, there is
an ordinal γ < ω1 such that Π⃗ ↾ γ blocks U .
Case 1. Π⃗ ↾ γ ∈ U , so that (A), (B) hold for π⃗ = Π⃗ ↾ γ in terms of some ζ ∈ [γ0, γ)
and h ∈ PERM. In particular, by (B), h(Πα) = Πα whenever ζ ⩽ α < γ. We
have p0 forcΠ⃗↾γ φ(c0, c) by (2) and Lemma 22.3. Put c′ = hc, p′

0 = hp0. Note
that hc0 = c0 since |c0| ∩ NID(h) = ∅ by (A). Theorem 24.1 now yields that
p′

0 forch·(Π⃗↾γ) φ(c0, c′). Hence we have p′
0 forcΠ⃗↾γ φ(c0, c′) by (B) and Theorem 23.1.

But the common domain |p0| ∩ |p′
0| is disjoint from NID(h) in view of (A) since

|p0| ⊆ δ. It follows that p0, p′
0 are compatible, so p = p0 ∪ p′

0 ∈ MT (not
necessarily ∈ MT(Π⃗ ↾ γ)) and p ⩽ p′

0, whence p forcΠ⃗↾γ φ(c0, c′).
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Unfortunately, Theorem 25.3 is not immediately applicable here to conclude
that p P-forces φ(c0[G], c′[G]) over L. This is because p may not belong to P.
We need a further argument. Recall that p0 ∈ MT(Π⃗ ↾ γ0), whence p′

0 ∈ MT(h ·
(Π⃗ ↾ γ0)). Since ζ > γ0, there is a multitree q0 ∈ MT(h · Πζ) satisfying |q0| = |p′

0|
and q0 ⩽ p′

0. Then q0 forcΠ⃗↾γ φ(c0, c′) (because p′
0 forcΠ⃗↾γ φ(c0, c′)) and q0 ∈

MT(Πζ) since h · Πζ = Πζ . Thus, q0 ∈MT(Π⃗ ↾ γ). Moreover, q0 is compatible
with p0 in MT(Π⃗ ↾ γ) because |q0| = |p′

0| and q0 ⩽ p′
0, and p′

0 coincides with p0

on the common domain |p0| ∩ |p′
0| = δ ∩X. Thus there is a q ∈ MT(Π⃗ ↾ γ) with

q ⩽ p0, q ⩽ q0. Then q forcΠ⃗↾γ φ(c0, c′) and we conclude that
(5) q P-forces φ(c0[G], c′[G]) over L

by Theorem 25.3. However, |c′| ⊆ (δ ∩ X) ∪ R ⊆ X by construction, whence
c′[G] ∈ L[G ↾ X] is forced. Thus q P-forces ∃x ∈ L[G ↾ X]φ(c0[G], x) over L
by (5), contrary to (1). This contradiction settles Case 1.
Case 2. No sequence in U extends Π⃗ ↾ γ. We can assume that γ > γ0. (Otherwise
replace γ by γ0 + 1.) Pick any set R ⊆ X \ δ satisfying

cardR = cardD and R ∩
( ⋃
α<γ

|Πα|
)

= ∅.

Since D ⊆ δ, we have D∩R = ∅ and there is a permutation h ∈ PERM, h : D onto−−−→
R, satisfying NID(h) = D ∪R. Hence (A) holds.

Pick any ordinal λ, γ < λ < ω1. Our plan is to modify π⃗ = Π⃗ ↾ λ in order to
fulfill (B) with ζ = γ. The modification replaces the R-part of Π⃗ ↾ λ above γ by
an h-copy of its D-part. To perform this in detail, we recall that Π⃗ ↾ λ = ⟨Παα<λ⟩,
where each Πα is a small special multiforcing whose domain dα = |Πα| ⊆ ω1 is
countable. If α < γ, then we put πα = Πα. Suppose that γ ⩽ α < λ. Then
D ⊆ |Πα| by (4). On the basis of Πα, we define a new multiforcing πα with the
following properties.

(a) |πα| = dα ∪ R. Note that D ⊆ dα = |Πα| ⊆ |πα| in this case because
D ⊆ δ ⊆ |Π⃗ ↾ γ| by (4) (since γ0 ⩽ γ).

(b) If ξ ∈ dα \R, then πα(ξ) = Πα(ξ).
(c) If ξ ∈ D, that is, h(ξ) = η ∈ R, then πα(η) = Πα(ξ).

We claim that π⃗ = ⟨παα<λ⟩ ∈
−−→
MF, that is, if α < β < λ, then πα ⊏ πβ . In other

words, if η ∈ |πα|, then πα(η) ⊏ πβ(η).
If η /∈ R, then πα(η) = Πα(η) by construction. It remains to check that πα(η) ⊏

πβ(η) whenever α < β < λ, η = h(ξ) ∈ R ∩ |πα| and ξ ∈ D. If now α < γ, then
R∩|πα| = ∅ by the choice of R. Hence it remains to consider the case when γ ⩽ α.
Then ξ, η ∈ |πα| by construction and we have πα(η) = Πα(ξ) and πβ(η) = Πβ(ξ).
Therefore πα(ξ) ⊏ πβ(ξ), as required.

We claim that the sequence π⃗ = ⟨παα<λ⟩ satisfies Π⃗ ↾ γ ⊆ π⃗ and (A), (B).
Indeed, Π⃗ ↾ γ ⊆ π⃗ since γ ⩾ γ0. (A) holds by construction. We now show that (B)
holds with ζ = γ, that is, if γ ⩽ α < λ, then h · πα = πα. Indeed, D ∪ R ⊆ |πα|
by (a) and, therefore, h · πα = πα by (b), (c).

Thus, π⃗ ∈ U and Π⃗ ↾ γ ⊂ π⃗. But this contradicts the assumptions of Case 2.
Either of the two cases leads to a contradiction. This completes the proof of

Theorem 20.2. Thus Theorem 1.2 is also proved. □
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§ 27. Remarks and problems

One may ask what happens with the separation theorem at other projective
levels m ̸= n in the model of § 19. For higher levels, it turns out that in the model
L[G ↾ ∆H ] of Theorem 20.1 there is a ‘good’ ∆1

n+1-well-ordering of the reals,
of length ω1. (The gaps in ∆H do not enable us to perform the well-ordering
construction of Corollary 18.3 at level n!) It follows by a standard argument that
the separation theorem holds for Π1

m and fails for Σ1
m for all m > n in the model

L[G ↾ ∆H ]. Concerning the levels 3 ⩽ m < n, we conjecture that separation holds
for Π1

m and fails for Σ1
m in L[G ↾ ∆H ], but this problem is open.

Let Pn be the forcing notion P defined in § 16 for a given n ⩾ 3. Using
a certain amalgamation of all Pn, n ⩾ 3, which is defined by a rather sophisticated
product-like construction originally used in [18], part 1, and [40], one can construct
a generic extension of L in which the separation theorem fails simultaneously for
all the classes Σ1

n, Π1
n, n ⩾ 3.

Finally, there is the interesting and perhaps very difficult problem of constructing
a generic extension of L in which the separation theorem holds for a given class
Σ1

n, n ⩾ 3, beginning with Σ1
3 for example. This problem has been open since the

early years of forcing; see [16], Problem 3029. In this regard, we mention a recent
preprint by Hoffelner [41] with interesting results.

The authors are grateful to the anonymous referee for valuable remarks and
suggestions, which contributed significantly to improving the quality of the publi-
cation.
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[29] V.G. Kanovĕı, “On the nonemptiness of classes in axiomatic set theory”, Izv. Akad.
Nauk SSSR Ser. Mat. 42:3 (1978), 550–579; English transl., Math. USSR-Izv. 12:3
(1978), 507–535.

[30] V. Kanovei and V. Lyubetsky, “Definable E0-classes at arbitrary projective levels”,
Ann. Pure Appl. Logic 169:9 (2018), 851–871.

[31] V. Kanovei and V. Lyubetsky, “Definable minimal collapse functions at arbitrary
projective levels”, J. Symb. Log. 84:1 (2019), 266–289.

https://doi.org/10.4064/fm-26-1-183-191
https://doi.org/10.4064/fm-26-1-183-191
https://doi.org/10.4064/fm-46-3-337-357
https://doi.org/10.4064/fm-46-3-337-357
https://doi.org/10.1073/pnas.59.3.708
https://doi.org/10.1073/pnas.59.3.708
https://doi.org/10.1090/S0002-9904-1968-11995-0
https://doi.org/10.1090/S0002-9904-1968-11995-0
https://doi.org/10.2307/2273254
https://doi.org/10.2307/2273254
https://doi.org/10.1017/9781316716892
https://doi.org/10.1017/9781316716892
https://doi.org/10.1016/S0168-0072(99)00038-X
https://doi.org/10.1016/S0168-0072(99)00038-X
https://doi.org/10.1007/BF02025889
https://doi.org/10.1007/BF02025889
https://zbmath.org/?q=an:0222.02077
https://zbmath.org/?q=an:0222.02077
https://zbmath.org/?q=an:0222.02077
http://logic-library.berkeley.edu/catalog/detail/2135
https://zbmath.org/?q=an:0245.02055
https://zbmath.org/?q=an:0245.02055
https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.4064/fm181-3-2
https://doi.org/10.4064/fm181-3-2
https://doi.org/10.1007/s00153-015-0436-9
https://doi.org/10.1007/s00153-015-0436-9
https://doi.org/10.4213/mzm10842
https://doi.org/10.4213/mzm10842
https://doi.org/10.1134/S0001434617090048
https://doi.org/10.1134/S0001434617090048
https://doi.org/10.1002/malq.201500020
https://doi.org/10.1002/malq.201500020
https://doi.org/10.1016/j.apal.2015.12.002
https://doi.org/10.1016/j.apal.2015.12.002
https://doi.org/10.4213/im8521
https://doi.org/10.4213/im8521
https://doi.org/10.4213/im8521
https://doi.org/10.1070/IM8521
https://doi.org/10.1142/S0219061318500137
https://doi.org/10.1142/S0219061318500137
https://doi.org/10.1142/S0219061321500148
https://doi.org/10.1142/S0219061321500148
http://mi.mathnet.ru/eng/im1779
http://mi.mathnet.ru/eng/im1779
https://doi.org/10.1070/IM1978v012n03ABEH001997
https://doi.org/10.1070/IM1978v012n03ABEH001997
https://doi.org/10.1016/j.apal.2018.04.006
https://doi.org/10.1016/j.apal.2018.04.006
https://doi.org/10.1017/jsl.2018.77
https://doi.org/10.1017/jsl.2018.77


Models of set theory in which the separation theorem fails 1219

[32] V. Kanovei and V. Lyubetsky, “Non-uniformizable sets with countable
cross-sections on a given level of the projective hierarchy”, Fund. Math. 245:2
(2019), 175–215.

[33] V. Kanovei and V. Lyubetsky, “On the ∆1
n problem of Harvey Friedman”,

Mathematics 8:9 (2020), 1477.
[34] U. Abraham, “A minimal model for ¬CH: iteration of Jensen’s reals”, Trans.

Amer. Math. Soc. 281:2 (1984), 657–674.
[35] J. E. Baumgartner and R. Laver, “Iterated perfect-set forcing”, Ann. Math. Logic

17:3 (1979), 271–288.
[36] M. Groszek and T. Jech, “Generalized iteration of forcing”, Trans. Amer. Math.

Soc. 324:1 (1991), 1–26.
[37] V. Kanovei, “Non-Glimm–Effros equivalence relations at second projective level”,

Fund. Math. 154:1 (1997), 1–35.
[38] V. Kanovei, “An Ulm-type classification theorem for equivalence relations in

Solovay model”, J. Symb. Log. 62:4 (1997), 1333–1351.
[39] V. Kanovei, “On non-wellfounded iterations of the perfect set forcing”, J. Symb.

Log. 64:2 (1999), 551–574.
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