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Only recently have processes in molecular biology been formalized. Despite of simpler mathemat-
ics behind them and apparent biological necessity, none has been studied with rigor. Mathematics 
has become superseded by computer modeling that advanced in the last years. The processes dis-
cussed in this abstract actually describe important biological phenomena at the molecular level, 
unlike many other publications that distantly relate to biological reality, for details see [1]. 
In areas 1-4 we developed original computer models that produce predictions close to real meas-
urements, often to the precision of experimental error. In areas 5-6, on the contrary, already de-
signing an effective modeling is a problem. The qualities discussed in areas 1-6 cannot always be 
measured experimentally, and are therefore estimated indirectly. Understanding biological terms 
below is not important for mathematical understanding of areas 1-6.  
A genome is a long sequence of millions (in bacteria) or billions (in animals) of characters in the 
4-letter alphabet {А, Т, G, C}, and a gene is a directed (in one of the two orientations) short region 
within it. The number of genes may be many thousands (from 8-9 in bacteria to 50 in animals), 
hundreds (bacteria, plastids) or just a few (mitochondria). Shorter regions in between the genes 
regulate their activity, they are also directed and encode complex structures. Thus, a genome can 
be viewed as a set of genes and regulatory regions (”regulatory systems” or “regulations”). The 
rest of the genome, so called junk regions of unknown function, is not used in modeling. In many 
cases the character composition of the genome, gene and regulatory region is not used in modeling 
either.  
An organism is a genome that evolves during lifetime, a species is a collection of genomes with 
similar characteristics, which provides for breeding compatibility and production of descendant 
genomes (the progeny).  
All processes run in physical time, however discrete time is as yet used in models for a seeming 
simplicity.  
 
1. Competing processes of binding and movement (competition of RNA polymerases). Given 
is a sequence in the 4-letter alphabet with directed regions of two types: genes and promoters. The 
mutual arrangement of promoters and genes can be arbitrary but is fixed. Each promoter, if avail-
able, is bound by a molecular machine (the polymerase) of a certain type out of a fixed finite set of 
types. A polymerase of each type has a fixed type-specific length and moves along the sequence in 
the corresponding direction of promoter. Many polymerases concurrently bind the sequence and 
move each in its direction. The promoter is available if none of polymerases overlaps with its se-
quence. The gene is “read” if a polymerase moved from its beginning to the end. The gene’s read-
ing frequency is its transcription level. Each promoter, for each polymerase type, is characterized 
by the intensity of binding attempts. The polymerase concentration is assumed sufficient, thus the 
intensity is only a function of the promoter quality, for each polymerase type. An attempt is suc-
cessful if at the instance of its realization the promoter is available. For certain polymerase types, 
binding is followed by the abort process: an alternation of movement at a fixed finite rate in the 
corresponding direction of promoter at an arbitrary (e.g., exponentially distributed) distance and 
instantaneous return to the initial position. Such alternations occur an arbitrary (e.g., geometrically 
distributed) number of times until the polymerase reaches at a threshold distance from the pro-
moter. At this instance the polymerase detaches from the promoter, its size instantaneously de-
creases by a fixed value and movement continues in the same direction. Other polymerase types 
lack the abort process: the movement initiates immediately after binding, the size does not change. 
Binding attempts are allowed to form a Poisson process, with a polymerase moving at a predeter-
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mined rate fixed for each type until colliding with another polymerase. If two polymerases moving 
in the same direction collide, their rates become equal to that of the leading polymerase until it is 
attached to the sequence (“elongates”). In case of a front collision both polymerases detach (“ter-
minate”). Under this model several biologically meaningful questions can be formulated. For ex-
ample: inferring transcription levels of all genes given the binding attempt intensities of all pro-
moters; inferring binding attempt intensities that best approximate given gene transcription levels; 
inferring binding attempt intensities that best approximate known changes of gene transcription 
levels under wide fluctuations of temperature and polymerase rates (described by simple combina-
tions of affine functions). Although we obtained a rigorous description of the stochastic movement 
of the polymerase, such biologically preferred assumption causes large difficulties even for model-
ing. A computer realization of the model is available at http://lab6.iitp.ru/ru/rivals, [2]. The prob-
lem is largely simplified into a special case of the counter-flow theory with annihilation by assum-
ing no abort processes, equal rates of polymerases, and zero sizes of polymerases and promoters. 
However, this case is biologically irrelevant.  
Further difficulties arise if the sequence is replaced by a circle, i.e., a sequence modulo its length. 
The simplest case is a circle of 17.000 characters (a human mitochondrial genome), whereon com-
petition occurs only among polymerases of the same type, and only three promoters are located at 
positions 407 counterclockwise, 561, and 646 clockwise. Abort processes are absent. Initially, po-
lymerases do not complete the circle, their counter-flows from the three promoters collide and the 
polymerases detach. Genes distant from the promoters have nearly zero expression levels, which 
contradicts biological observations. This is an unstable state: one of the promoters realizes by 10-
20 more bindings, the extra polymerases avoid collisions and complete the full circle including the 
initial promoter. It simulates the increasing number of successful bindings and increases the num-
ber of  polymerases completing the circle in one direction. If another promoter also receives 
enough bindings, the movement in opposite direction may become more successful. The directions 
are rarely swapped several times, and a winning direction rapidly establishes. When the amount of 
polymerases moving in one direction reaches a threshold, the intensity of effective binding to one 
promoter and the transcription levels of its downstream genes continue to increase until poly-
merases occupy the entire circle and spaces between them become less than the polymerase size.  
Usually the circle sequence contains regions with “passing terminators”, which  are sites that allow 
through a certain average amount of polymerases in each direction. This process dynamics includ-
ing bifurcation points is to be described. Changes in characters (mutations) leading to terminators 
misfunction may cause severe human health disorders. The mutual arrangement of promoters and 
genes varies widely as well. “Passing terminators” also occur in straight sequences.  
A competition of another type occurs when two promoters are overlapping or very close in the se-
quence, which causes spatial interference between binding polymerases in some 3-dimensional 
neighborhood. Many particular questions remain, such as inferring the average length of the poly-
merase run, asymptotic distribution of the lengths, etc. 
 
2. Reconciliation of a set of trees (resulting in a species tree). Genes and regulatory systems 
are part of an organism (species), which is thus a set of genes and regulatory systems. Although 
genes and regulations evolve inside and with the species, their evolutionary patterns often do not 
coincide. Of fundamental importance is to develop a concept that describes genes, regulations 
and species in continuous time. Commonly, the evolutions of genes and regulations are consid-
ered independently in discrete times and reconciled “against” the evolution of species. Each evo-
lution (gene, regulation, gene-and-regulation, species) is represented as a tree. Define the gene 
evolution as tree Gi («gene tree»). A set of gene trees {Gi} is given. The sought is tree S («spe-
cies tree») nearest in average to trees in {Gi}. The solution: each Gi is assigned the value с(Gi,S) 
of its difference from unknown S, and  the functional с({Gi},S) = ( , )i

i
с G S∑  in minimized over 

variable S. Define с(Gi,S) as the amount of difference between the evolutions of gene and spe-
cies, i.e., between Gi and S. Such definition requires to determine a list of evolutionary events 
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and to correlate discrete times along trees Gi and S. To do so one needs a mapping of vertices in 
Gi into vertices and edges in S (“scenario of the evolution of gene Gi along species tree S”). 
Our original algorithms to solve the above tasks have at maximum cubic (a very low) complexity 
and are available at http://lab6.iitp.ru/ru/super3gl, [3,4]. In our solution, the unknown S and gene 
evolutionary scenarios are built with induction as the cardinality of set V of leaves in S increases. 
At each induction step, trees S1 (with leaves set V1) and S2 (with leaves set V2), and their corre-
sponding sets of scenarios f1 and f2  are already known. The trees are merged into a larger tree 
S1+S2 with combined scenarios f1+f2 such that the value с({Gi},S1+S2) is minimal against all possi-
ble partition of V into V1 and V2. The same principle is used to build a gene scenario along the giv-
en S, when component trees are subtrees in S, [3]. The subtrees need to be rooted within the same 
time slice. We developed an algorithm to impose time slices on the tree edges, [3]. Instantaneous 
events are allowed between edges within a time slice. Incorporating continuous time in the ap-
proach is likely to relieve uncertainties with justification of time slices.  
 
3. Reconstruction of secondary structures along a tree (the example of attenuation regula-
tion). Certain regulatory regions (primary structures) after being copied into the outside of the ge-
nome fold into secondary structures (SS, ref. to Figs 1-3). Each SS is a pairing of characters, А – Т 
and G – C, maintained by hydrogen bonds and stacking interactions of neighboring pairs. Fig. 1 
shows a part of SS, the “helix”. Biological SS may contain up to several thousands of helices in a 
complex combination. The pairing occurs between regions (“shoulders”) of certain length (6, 3, 
and 4 characters in Fig. 1). A helix consists of several paired regions, “hypohelices”: two longest 
continuous shoulders connected by a loop (Fig. 1 shows three nested hypohelices with loops of 25, 
18 and 6 characters). Certain genes are regulated by specific types of SS. One such type is attenua-
tion regulation partly depicted in Fig. 2 (two alternative helices). Given is tree S of species or regu-
lation factors with primary structures assigned to the leaves. Although some primary structures 
have experimentally known SS’, secondary structures are not given in our approach and need to be 
reconstructed. Known SS’ are used for verification purposes. To be found is the evolutionary in-
ference of the distribution (configuration) of primary structures in internal vertices, and SS’ in all 
vertices of tree S. The solution realizes a Gibbs approach with energy functional ( )H σ , which 
global minimums define the sought configurations σ ′ . Global minimums are found with annealing 
based on the Metropolis–Hastings stochastic dynamics. The functional ( )H σ  is a sum of three 
terms. The first term defines the energy of pair interaction between the two next primary structures 
on each edge. More specifically, it defines the standard dynamics of the primary structure: the 
probability of a character substitution according to a fixed transition rate matrix, and also the prob-
abilities of insertion/deletion of a word of any length at any position in the primary structure. At 
each position, the evolution rate is considered according to the gamma law. The second term de-
fines conservativity of the secondary structure along each edge and entire paths in tree S that is 
specified by a sophisticated potential of non-local interaction. The third term defines the presence 
of other elements pertinent to the regulation of interest (e.g., the “leader peptide gene”). The first 
and second terms require a pairwise alignment to be found: primary structures at the ends of each 
edge to be aligned for the first term computation, and secondary structures – for the second term. 
For the latter, we developed a procedure that aligns the secondary structures of two primary struc-
tures. The algorithm is realized as a heterogeneous Markov chain, with transition probabilities be-
ing functions of current configuration ( )nσ  and temperature parameter nβ . Let the chain start with 
any configuration (0)σ  and nβ →∞  such that lim(log / )nn Cβ > . Then ( )nσ  converges over 
probabilities to one of minimal σ ′ , thus describing all globally minimal configurations. The algo-
rithm is available at http://lab6.iitp.ru/ru/anneal, [5]. 
 
4. Competition of two processes (transcription and translation, the case of attenuation reg-
ulation). Two machines, a polymerase and a ribosome, move on a sequence. The ribosome rec-
ognizes and binds a specific site (like a promoter) upstream a specific gene (the “leader peptide 
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gene”) after the polymerase had already bound to its promoter and moved forward. If the ribo-
some catches up with the polymerase, their rates become equal, and the polymerase is not af-
fected. The ribosome rate is function ( )v c  of concentration с of certain substance (amino acid) 
and does not exceed 45 characters/sec. The region between the two machines forms secondary 
structure ω  with the minimal energy (by definition in our model) that decreases the polymerase 
rate according to function ( )v ω  (at no SS the rate is 42 characters/sec). If the polymerase decel-
erates at a T-rich region, its binding strength weakens and it detaches from the sequence (“tran-
scription termination”). Given are a sequence and two functions, ( )v c  and ( )v ω . The functions 
define the instantaneous positions of the leading polymerase and the following-up ribosome on 
the sequence. To be found is correlation р(c) between transcription termination frequency and 
concentration c. Usually ( )v c  is found according to the Michaelis-Menten law, while determin-
ing ( )v ω  is much more sophisticated. Our solution is available at http://lab6.iitp.ru/rnamodel/ 
runmodel.php?lang=rus, [6].  
Two special problems below are of high importance and have to be addressed. 
 
4.1. How to determine the binding strength of a molecular machine (a polymerase, ribosome, etc.) 
with a sequence that it moves on; what is the effect of SS? Evidence exists that the binding 
strength decreases with deceleration. How the SS lowers the rate and how deceleration decreases 
the strength is unknown, [6]. 
 
4.2. Ample experimental observations exist but no theoretical explanation. How to categorize 
complex SS with many pseudoknots; how to determine energy of a given SS? Little is evident on 
how to classify pseudoknots and decompose a SS into elementary SS’; what is the list of elemen-
tary SS’. Consider the simplest case when the SS consists of one helix (Fig. 1). Recall that a helix 
consists of several hypohelices. We estimated the helix energy as the sum of the bond energy 
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and iE  is the energy of i-th hypohelix determined from the experimentally known hydrogen bonds 
and stacking energies; il  is the loop length of i-th hypohelix; B and C  are constants, [6]. 
Another challenge is to decompose a huge SS space into clusters (“macrostates”) and then calcu-
late clusters energies. Such decomposition is to be effective. Consider a parentheses structure 
where each pair of parentheses corresponds to a hypohelix and is tagged with the number of its pa-
rental helix (Fig. 3). The parentheses are interpreted as follows: consecutive hypohelices corre-
spond to consecutive pairs of parentheses, ( )1( )2; an overlap of one hypohelix with the loop of the 
next is represented by the nested structure (()1)2. The notation is applicable to simple pseudoknots: 
(1(2)1)2. The macrostate is a set of all SS (“microstates”) defined by a given parenthesis structure; 
this set must not be empty.  
 
5. Combination of three- and one-dimensional diffusions. A promoter is very short (dozens of 
characters at max) comparing to a typical sequence (several million characters in bacteria), which 
raises a question of how the polymerase finds its specific promoter in the space of the cell. The se-
quence (the DNA molecule in the cell) has a peculiar spatial geometry, like the Jordan curve in the 
square, and this arrangement is functional. In current views, initially the polymerase binds weakly 
(“non-specifically”) to the closest region of the sequence and moves in one of the two randomly 
chosen directions for a random short period of time. This is the one-dimensional diffusion along 
the curve. If the binding is too weak or a collision takes place, the polymerase detaches and again 
non-specifically binds to the next spatially close region of the sequence, which may be very distant 
lineally in the curve. Thus, the three- and one-dimensional diffusions switch until the polymerase 
finds its promoter where it binds strongly (“specifically”). To be studied is such alternation of dif-
fusions taking into account the type or only characteristics of the curve. Ample experimental evi-
dence exists with no sound theoretical bases. 
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6. Origin of species (speciation). The genome is represented by sequential characteristics x , 
where i -th position contains number im  of different genes, each represented by exactly i  copies 
(copies are also genes). Numbers im  are nonnegative, all integers or real; starting from a certain 
position x  contains only zeros. Define 1 2( ) ...m x m m= + +  as the number of all gene types and 

1 2( ) 2 ...n x m m= + +  as the total number of genes in “genome” x . Define X as the space of all al-
lowed sequences x  and ( , )f x t  as the density of genomes in point x  at time t . Note that genes 
and genomes are represented in the model only via their characteristics x . The following transi-
tions (events at the gene or genome level) are allowed in point x :  
1) 1..., ,... ..., 1, 1,...i i im m m−< >→< + − >  loss of a gene from im , if 1i ≠  and 1im ≥ , and 

1 2..., ,... 1, ,...im m m< >→< − > , if 1i =  and 1 1m ≥ ; if 0im =  or 1 0m = , then the transition is for-
bidden. 2) 1 2..., ,... 1, ,...im m m< >→< + >  transfer, i.e. gain of a single copy of a new gene. 3) 

1..., ,... ..., 1, 1,... , 1i i im m m i+< >→< − + > ≠  duplication of a gene from im ; if 1im ≥  is not true the 
transition is forbidden. 4) 1 1..., ,... 1,..., 1, 1,...i i im m m m−< >→< + + − >  mutation of a gene from im , 
if 1i ≠ , and ..., ,... ..., ,...i im m< >→< > , if 1i = ; if 1im ≥  is not true the transition is forbidden. 
Each transition is assigned a x -dependent vector of transition rate (intensity). Let ( )A x  be the sum 
of vectors that defines the vector potential. Scalar potential is denoted V− , where ( , )V x t  reflects 
the internal congruence («survival») of a genome in x  at t . Both potentials depend on parameters, 
including the main ( )m x  and ( )n x ; some parameters are unknown and varied. Let ( , )V x t  belong 
to class V of functions with low chaotic maxima. According to natural interpretation of V , at V-
max points genomes possess certain selective advantages to survive during dynamics described by 

( )A x  but the result is still not pre-defined. Scalar potential ( , )V x t  changes dynamically in space 
V. The exact choice of class V , as well as how ( , )V x t  depends on time, is a matter of study. Ac-
cording to one possible representation, sharp perturbations occur at certain times it  that form a 
Poisson distribution with parameter μ . Such changes in survival conditions correspond to transi-
tions from ( )iV t  to 1( )iV t +  through smooth changes of the set of local maxima in ( )iV t  according 
to a distribution with parameter λ  (a noise). Are there such natural distributions and values of pa-
rameters μ  and λ  that would result in the formation of clusters (biologically, species) in space X? 
More specifically, we aim at describing parameter regions, for which there exists time 0t  after that 

trajectories acquire the property «almost all mass ( ) ( , )M t f x t dx= ∫  concentrates in several dis-
junctive clusters in X», (*). The clusters describe species. Their number can be estimated via the 
number of extant species in the problem statement. Then 0t corresponds to the time of species for-
mation (origin), i.e., speciation. Modeling provides the estimates of parameter regions, for which 
property (*) is true. 
Our model does not incorporate a biologically more relevant genome representation as a sequence 
of natural numbers with repeats, where each number is the name of a gene. Such system is de-
scribed by a more complex dynamics. 
 
6.1. The dynamics of ( )x x t=  can be alternatively described with equation ( )x A x εξ′ = + , where 
ξ  is a noise with a certain potentials-dependent generator, and ε  is a parameter. It can be as-
sumed that there exists time 0t , after which a finite number of massive clusters exists with cen-
ters of mass 1 2, ,...x x , with transitions requiring exponentially long times or impossible (**). 
Then jx  describe the formed species, and 0t  – the time of speciation. A theory like the Ventsel-
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Freydlin theory allows for such function ( )xϕ  that ( ) 0xϕ′ =  is a necessary condition of (**). 
Then jx  can be found from the equation. 
 
The authors are grateful to L. Rusin, K. Gorbunov, L. Rubanov, S. Pirogov, E. Zhizhina for de-
tailed discussions and involvement in some of the described areas of research. The authors thank 
L. Rusin for help with preparing the text. 
 
The Figures below are given in the order of numbering. 
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