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Abstract—We obtain some constraints on the zero-nonzero pattern of entries in the matrix of a real
quadratic form which attains a minimum on a large set of vertices in the multidimensional cube
centered at the origin whose edges are parallel to the coordinate axes. In particular, if the graph of
the matrix contains an articulation point then the set of the minima of the corresponding quadratic
form is not maximal (with respect to set inclusion) among all such sets for various quadratic forms.
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The search of the minimum points of a real quadratic polynomial on the vertices of a multidimensional
cube is algorithmically complex. Efficient algorithms are known only in special cases. For example, if the
quadratic terms constitute a tridiagonal symmetric matrix then the minimum can be found by pseudo-
Boolean programming [1]. For the square of a linear function with integer coefficients, the search of
the minimum is reduced to finding the maximum of a linear functional on the set of vertices of a cube
with one linear constraint, which can be done by dynamic programming. The last problem admits
a fully polynomial approximation scheme [11, 20]; an overview of the linear programming methods for
its solving is given in [17]; see [5] for another approach. Replacing the quadratic functional without
changing the positions of the minima on the vertices of the cube can sometimes reduce computational
complexity [16]. Other examples of exactly solvable problems and heuristic algorithms can be found
in [1–3,12, 21].

We obtain some constraints on the zero-nonzero pattern in the matrices of quadratic forms attaining
a minimum on an inclusion maximal proper subset of ±1-points. A point in the linear space R

n+1 with
fixed basis is identified with the column x = (x0, . . . , xn)∗, where ∗ stands for transposition. A symmetric
matrix A of order n + 1 defines a quadratic form A(x) = x∗Ax on R

n+1. A monomial xjxk occurs in
the representation of the quadratic form with matrix A if and only if Ajk �= 0.

Define the mapping λ : R
n+1 → R

N , where N = n(n+1)
2 , by the formula

λ(x) = (x0x1, . . . , x0xn, x1x2, . . . , xn−1xn)∗.

In other words, the components of λ(x) are entries in the square matrix xx∗ lying above the principal
diagonal. Obviously, λ(−x) = λ(x). The convex hull of the images of the ±1-points under this mapping
is called the polytope BQPn. The polytope BQPn is combinatorially equivalent to the polytope QPn

in [19]. For example, BQP2 is a simplex with four vertices.
The entries lying above the principal diagonal of a matrix A are the coefficients of a linear form A(x)

on R
N . Given a symmetric matrix A of order n + 1, denote by ΦA the face of BQPn on which A(x) attains

its minimum. The face ΦA coincides with the whole of BQPn if and only if the matrix A is diagonal [10].
A facet is a face of codimension one. Since each facet belongs to a unique supporting hyperplane, the
symmetric matrix of the coefficients of a quadratic form A(x) is defined by the facet ΦA in BQPn up
to a change of the principal diagonal and multiplication by a nonzero number.

To a symmetric matrix A of order n + 1, there is assigned a simple nonoriented graph G(A) with n + 1
vertices such that the vertices with numbers j and k are adjacent if Ajk �= 0. The entries on the principal
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diagonal do not influence the form of the graph. Call a vertex in a graph an articulation point if its
removal increases the number of the connected components of the graph. A set of vertices in a graph is
called independent if every two of these vertices are nonadjacent. If ΦA is a facet then the graph A is
defined uniquely.

Let A[i, . . . , j] denote the submatrix in A situated in the rows and columns with the indicated
numbers, and let A[i] = Aii stand for a diagonal entry. Denote by π[i, . . . , j] the projection of R

n+1 onto
the coordiante subspace for the coordinates xi, . . . , xj . If a symmetric matrix A = A′ ⊕ A′′ is decom-
posable as the direct sum of two matrices A′ and A′′ then the face ΦA is embedded in the intersection of
the faces ΦA′⊕0 ∩ Φ0⊕A′′ [9].

Lemma. Suppose that the vertex in the graph G(A) with number i is the articulation point
of the generated subgraphs G(A[0, . . . , i]) and G(A[i, . . . , n]) and Ǎ = A[0, . . . , i] ⊕ 0 is a decom-
posable matrix. Then the faces ΦA and ΦǍ of the polytope BQPn are embedded in one another:
ΦA ⊆ ΦǍ.

Proof. The symmetric matrix A has the form

A =

⎛
⎜⎜⎜⎝

A[0, . . . , i − 1] B 0

B∗ A[i] C∗

0 C A[i + 1, . . . , n]

⎞
⎟⎟⎟⎠ ,

where B and C are column containing at least one nonzero entry. Consider the restriction of A(x) to the
(i + 1)-dimensional linear subspace H defined by the system of equations xj = xi or xj = −xi, where
j > i. This is a quadratic form AH(π[0, . . . , i]x) with matrix of the kind

AH =

⎛
⎝ A[0, . . . , i − 1] B

B∗ dH

⎞
⎠ ,

in which only one entry dH depends on the choice of H , and the rest of the entries coincide with the
elements in a submatrix in A.

The form AH(π[0, . . . , i]x) attains a minimum on H at those ±1-points of the ambient space whose
projections π[0, . . . , i]x are independent of the choice of H . Moreover, the minimal value on H linearly
depends on dH . Consider the form on R

n+1 with the matrix

Ǎ =

⎛
⎜⎜⎜⎝

A[0, . . . , i − 1] B 0

B∗ A[i] 0

0 0 0

⎞
⎟⎟⎟⎠ .

If A(x) attains its minimum at a ±1-points then so does Ǎ(x).

Theorem. Given a symmetric matrix A of order n + 1 defining a facet ΦA in BQPn, removing
from G(A) any independent set of its vertices does not increase the number of connected
components. In particular, G(A) has no articulation points.

Proof. Suppose that the set of vertices with numbers from i to j is independent; i.e., the matrix
D = A[i, . . . , j] is diagonal. Assume that removing all vertices with numbers from i to j from G(A)
increases the number of connected components. Then A has the form

A =

⎛
⎜⎜⎜⎝

A[0, . . . , i − 1] B 0

B∗ D C∗

0 C A[j + 1, . . . , n]

⎞
⎟⎟⎟⎠ ,
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where 1 � i � j � n − 1, the matrix D = A[i, . . . , j] is diagonal, while B and C are rectangular
matrices.

Consider the restriction of A(x) to the (n + i + 1 − j)-dimensional linear subspace in H defined by
the system of equations xk = xi or xk = −xi for each k, i + 1 � k � j. This restriction is a quadratic
form AH(π[0, . . . , i, j + 1, . . . , n]x) for which the graph G(AH ) has an articulation point. By Lemma 1,
this form attains a minimum at each ±1-point where so does the form with the matrix

ǍH =

⎛
⎜⎜⎜⎝

A[0, . . . , i − 1] BH 0

B∗
H dH 0

0 0 0

⎞
⎟⎟⎟⎠ .

Define the decomposable matrix Ǎ = A[0, . . . , j]⊕ 0. All matrices ǍH are restrictions of the same matrix
Ǎ to H . Therefore, Ǎ(x) attains its minimum at each ±1-point where so does A(x). Since A defines
a facet in BQPn, this is possible only if the matrices A and Ǎ differ only by entries on the principal
diagonal and positive factor. But the matrix C contains a nonzero entry; a contradiction.

The proof of the theorem is complete.

The facets of the polytopes BQPn for n � 6 were computed by lrs Version 4.2c [13, 14] (see
http://cgm.cs.mcgill.ca). BQP1 has two facets; BQP2 has four facets; BQP3 has 16 facets; BQP4 has
56 facets; BQP5 has 368 facets; and BQP6 has 116764 facets. The graph of the matrix defining the facet
of BQPn for n � 5 is either complete or is a union of a clique or several isolated vertices. Choosing entries
on the principal diagonal, we can reduce the rank of such matrix to 1. On the other hand, for any values
on the principal diagonal, the rank of the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 −1 1 1 −1

0 ∗ −1 −1 0 1 1

0 −1 ∗ 0 −1 1 1

−1 −1 0 ∗ 1 1 0

1 0 −1 1 ∗ 0 1

1 1 1 1 0 ∗ 0

−1 1 1 0 1 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is at least three, and the face ΦA is a facet in BQP6. This facet is a simplex with 21 vertices.
The polytopes BQPn are defined via an explicit description of their vertices. For some series of

facets of these polytopes, there was obtained an explicit description [18, 19]. There is a well-known
constraint on the mutual disposition of vertices in a face [4, 8]. Nevertheless, for large n, the problem
of the recognition of supporting hyperplanes to BQPn remains algorithmically complex. Such problems
for different polytopes are reduced to each other [6, 7, 15].
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