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INTRODUCTION

Various curves and surfaces of the third degree are
often used for the brief approximation and presenta�
tion of data. The Bezier plane curves are widely
applied. However, the analysis of 3D images that are
obtained, for example, in tomography includes the
interesting study of 2D surfaces making the contour
image of a 3D body [1]. Close problems appear in the
analysis of electrocardiograms, though other methods
of mathematical processing of data can be applied in
this case [2]. When different properties of large sys�
tems are simultaneously studied, hypersurfaces appear
in spaces of higher dimensionalities. The comparison
of such hypersurfaces calls for quick calculation of
invariants that are independent of rotations and reflec�
tions. The number of monomials of degree d depend�
ing on n + 1 variables equals binomial coefficient

 Even the number of monomials of a cubic form
quickly grows with the number of variables. Therefore,
a special interest is of invariants that depend on a small
number of coefficients and, hence, can easily be cal�
culated for high dimensionalities. Comparing the val�
ues of such invariant, the substantial differences of the
forms of two hypersurfaces can quickly be discovered.
Meanwhile, the rigorous proof of coincidence neces�
sitates the calculation of other invariants as well,
whose assembly fully determines the hypersurface
accurately to the orthogonal transformations of coor�
dinates.

Since the algebraic hypersurfaces are uniquely
determined by a finite number of their points in the
general position, the considered problem can be refor�
mulated as a problem of discrete analysis. Let us

denote N =  and let N points of the n�dimen�
sional space lie on a unique hypersurface of degree d.
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d

.
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d 1–

Then, for another such set of N points, the necessary
condition for the existence of the orthogonal transfor�
mation of the space that maps one set to another one
is the coincidence of the invariants of hypersurfaces on
which the points of the corresponding sets lie. The cal�
culation of the hypersurface equation in a certain
coordinate system is reduced to the solution of the sys�
tem of linear equations. Simultaneously, the condition
of the hypersurface uniqueness and the degree of this
hypersurface are checked. Note that, when the
uniqueness is checked, each coefficient of the equa�
tion specifying the hypersurface substantially depends
on the position of each point of the set. When the
coordinates of the point are integer, the coefficients of
the hypersurface equation can be chosen to be integer
and polynomially bounded. Therefore, the invariant of
this hypersurface can serve as the certification of the
invariable mutual position of the considered points. A
close problem appears in geological location [3]. On
the other hand, the considered method makes it possi�
ble to solve certain combinatorial problems.

Recall that a nonoriented graph corresponds to the
symmetric adjacency matrix that can be considered as
the matrix of coefficients of a quadratic form. Its
eigenvalues are invariant of the coordinate transposi�
tions and are the same for isomorphic graphs. This
property is used in heuristic algorithms serving for
checking the graph nonisomorphy, because it suffices
to indicate the difference of values for any of the
invariants. Analogously, a hypergraph corresponds to a
form of a higher degree, and its invariants can be used
for the proof of the nonisomorphy of hypergraphs.
Since the permutation matrices are orthogonal, any
invariants of the orthogonal group can be used to
check the nonisomorphy of hypergraphs.
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We suppose that the characteristic of the basic field
is zero. However, many of our results remain true for
finite fields of the sufficiently large characteristic too.
This can be used for the solution of combinatorial prob�
lems including the construction of block error�correct�
ing codes. The application of invariants depending on a
small number of the form coefficients has an important
analog over the field of the characteristic two: these are
binary codes having a small density of parity tests [4].

A quadratic form corresponds to the symmetric
matrix whose trace equals the sum of coefficients of
the quadratic form except for multilinear terms. As is
known, the trace does not change during the orthogo�
nal transformations of coordinates. The forms of
higher degrees also can be compared to the polynomi�
als of the coefficients of nonmultilinear terms. These
polynomials are invariant in presence of orthogonal
transformations. Such invariants are the natural gen�
eralization of the notion of the trace.

Recall that the irreducible form of three variables
over the field of complex numbers can be reduced by a
linear change of coordinates to the form of monomials
of two variables when the corresponding projective
curve is smooth [5]. The reducibility to this form is
proved in [6, 7] for a general surface. In addition, for
cubics of small dimensionalities, various representa�
tions that allow predetermining their properties are
known [8]. However, it is known very little for large
dimensionalities.

Let us denote Δ the Laplace operator

It is invariant with respect to orthogonal transforma�
tions of coordinates.

1. RESULTS

Theorem 1. A cubic form is given. There is such a
nontrivial algebraic expression of its coefficients which is
invariant to orthogonal transformations of coordinates
and independent of the coefficients of multilinear mono�
mials.

Proof. We apply the Laplace operator to the form

to obtain the invariant linear form
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Squaring this form, applying again the Laplace opera�
tor, and rejecting the number multiplier, we obtain the
invariant numerical expression

which is independent of coefficients γijk. The theorem
is proved.

This method can be applied to obtain also other
invariants that do not depend on coefficients γijk, for
example, ΔΔΔ(f 2). The linear combination of this
invariant and the invariant described in Theorem 1
gives the invariant

This method can easily be extended to higher degree
forms. Applying m times the Laplace operator to the
form of degree 2m + 1, we obtain an invariant linear
form. Next, applying the Laplace operator to the
square of this linear form, we obtain a scalar invariant.
On the other hand, applying the Laplace operator to
the quadratic form, we obtain the doubled trace of its
matrix. Similarly, applying m times the Laplace opera�
tor to a form of degree 2m, we also obtain an invariant
that depends only on a small number of its coeffi�
cients.

We apply the described invariant to analyze the
cubic forms

where all the coefficients βjk = 0 of the terms contain�
ing two variables vanish.

The cubic hypersurface in �n that is specified by
the form of the kind

i.e., when αn = 0, is a singular one. Really, at the point
with the homogeneous coordinates (0: … :0: 1), form f
and all of its first derivatives are zero. Hence, if a smooth
cubic hypersurface is specified by an indicated form
(when βjk = 0), then, αk ≠ 0 for each index k. For singu�
lar hypersurfaces, the number of zero coefficients αk

may depend on the choice of coordinates. Let us denote
ε a root of the polynomial ε2 + ε + 1. Then,
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In the case of orthogonal transformations of the real
number field, the situation changes.

Theorem 2. A multilinear cubic form is given. If, after
the orthogonal transformation of coordinates, the
obtained form again does not contain monomials that
depend on two variables, it also does not contain mono�
mials that depend on one variable, i.e., the form remains
to be multilinear.

Proof. The multilinear cubic form invariant that is
determined in the proof of Theorem 1 equals zero. If
all coefficients βjk remain to be zero in the case of the
orthogonal transformation of coordinates, then, the

sum of squares  equals zero. This is possible

only when each αk is zero. This means that the form
remains to be multilinear.

3. DISCUSSION

Another method of calculation of invariants is the
computation of eigenvalues of symmetrical tensors
[9, 10] or, speaking more accurately, E�eigenvalues
according to the terminology from [9]. Note that in
studies [9, 11], another definition of eigenvalues that
are noninvariant under orthogonal transformations is
also discussed.

The determinant of a matrix is expressed in terms
of the traces of its degrees. Analogously, using the sug�
gested generalization of the trace, we can obtain
another invariants for higher degree forms (or the cor�
responding symmetric tensors). Then, the trace that
depends only on a small number of the form coeffi�
cients can easily be calculated. Hence, some other
invariants can be calculated. At the same time, calcu�
lation of them on the basis of eigenvalues is an algo�
rithmically hard problem because of the exponentially
large number of different eigenvalues for forms of
degree three and for forms of higher degrees [10].

Although the invariant that we have considered
may coincide for forms belonging to different orbits of
an orthogonal group, the probability of random coin�
cidence can be estimated from above with the help of
the Schwartz–Zippel lemma [12]. Since the invariant
has the degree two, this probability is small even in the
case when the coefficients of the form are chosen from
a small set of values. If coefficients of the form are cho�
sen from the set {0, …, m – 1}, this probability is no
more than 2/m.
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