
653

ISSN 1064-2269, Journal of Communications Technology and Electronics, 2017, Vol. 62, No. 6, pp. 653–662. © Pleiades Publishing, Inc., 2017.
Original Russian Text © K.Yu. Gorbunov, V.A. Lyubetsky, 2016, published in Informatsionnye Protsessy, 2016, Vol. 16, No. 2, pp. 223–236.

A Linear Algorithm for the Shortest Transformation
of Graphs with Different Operation Costs

K. Yu. Gorbunov* and V. A. Lyubetsky**
Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia

*e-mail: gorbunov@iitp.ru
**e-mail: lyubetsk@iitp.ru

Received June 16, 2016

Abstract⎯A novel time- and memory-efficient algorithm for solving the problem of finding the most eco-
nomical (i.e., having the lowest overall cost) transformation of an arbitrary oriented graph representing a dis-
joint union of chains and cycles into another graph of the same type is proposed. The correctness of this algo-
rithm (i.e., the fact that it always yields the minimum of the overall cost functional) and the linearity of the
estimated memory and time of its operation are demonstrated.

Keywords: linear algorithm, oriented graph, chain, cycle, graph transformation, operation cost, combinatorial
optimization

DOI: 10.1134/S1064226917060092

1. FORMULATION OF THE PROBLEM
The complete proof of correctness of a linear algo-

rithm for solving the combinatorial optimization
problem detailed below is given. A rigorous solution to
this problem under general conditions discussed below
was still not known.

An oriented graph with its connected components
(without regard to orientation)—chains and cycles—is
given. The graph edges are marked with positive inte-
gers (edge names) without repetitions. The problem of
finding the most economical transformation of such
an oriented graph into another one has been studied
extensively at the heuristic level in the last two
decades. The list of operations transforming such
graphs into each other is fixed. More general types of
graphs and an arbitrary list of operations may also be
considered, but the indicated restrictions on graphs
and the list of operations, which are given in Section 2,
have taken shape for various (mostly practical) reasons
over the long history of studies. A number (cost) is
assigned to each operation. These numbers are posi-
tive and rational in applied problems, but in theory
they may be considered natural. Every sequence of
operations following each other, which starts from
graph a and ends with a certain resulting graph b, has
its overall cost (the sum of all operation costs in this
sequence).

Formulation of the problem. Assume that we have
two graphs a and b. The problem consists in finding
the sequence of operations transforming a into b with

the minimum value of the overall cost functional.
Such a sequence is called the shortest sequence and its
cost is the shortest cost.

It is assumed (although not proven) that the prob-
lem of finding the shortest sequence or the shortest
cost for variable a and b and variable operation costs is
NP-hard. It remains NP-hard if arbitrary (random)
operation costs are fixed. Since only linear or, at least,
low-degree polynomial algorithms are of practical
importance, some restrictions need to be applied to
cost. The simplest case is the case of equal costs. The
problem with this restriction applied is called the equal
costs problem.

Restrictions of a different type may also be applied
to the considered problem: one and the same fixed set
of names is required to be present in the sequence of
operations transforming a into b (including a and b
themselves). The problem with this restriction applied
is called the constant composition (of edge names)
problem. If this restriction is removed, the problem is
called the variable composition problem.

A brief review of earlier studies can be found in
[1, 2]. One possible numerical application of the pro-
posed algorithm was discussed in [2]. An linear in time
algorithm for constructing the shortest sequence for
the equal costs problem was outlined in [1]. In this
case, the sought-for sequence is called the minimal
sequence.

MATHEMATICAL MODELS
AND COMPUTATIONAL METHODS

654

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

GORBUNOV, LYUBETSKY

2. LIST OF OPERATIONS
AND AN AUXILIARY RESULT

The following six operations are allowed to be used
in transformation of graph a into graph b. A node may
be split (Fig. 1a) in order to break a chain into two
chains or break a cycle. The inverse operation involves
merging (matching) of two free ends of different chains
or one and the same chain. Sesquialteral intermerging
(Fig. 1b) consists in breaking a chain or a cycle and
merging one of the newly formed ends with some
other free end. Double intermerging (Fig. 1c) consists
in breaking two chains (cycles) or a single chain (cycle)
at two sites and merging of four newly formed ends in
a different way. Removal of a section (several edges) of
a chain or a cycle (Fig. 1d) may be performed if the
edge numbers in this section are not found in graph b;
the newly formed ends are merged. Insertion is the
inverse operation of introduction of a section (with the
edge numbers in this section lacking in graph a) into a
chain or a cycle. The edge orientation is not used in
operations. The first four operations are called stan-
dard operations and the remaining two are additional
operations.

Let us recall the scheme of the algorithm from [1].
The notion of a combined graph a + b of two oriented
graphs a and b is introduced. Its nodes are designated
as n1 or n2 for each edge with name n found in a and b;
indices denote the head and the tail of an edge. These
nodes in a + b are called ordinary nodes. In addition,
blocks (maximal (in inclusion) connected sections
containing edges that belong only to a or only to b)
serve as nodes in a + b. These nodes are called singular
ones in a + b and are designated with a set of names in
the block. A combined graph a + b has the following
edges. An ordinary edge connects two ordinary nodes
if their corresponding ends are merged (matched) in a
or in b. A singular edge connects an ordinary node to a

singular one if the end corresponding to an ordinary
node in a or in b is merged with the end of the block
corresponding to a singular node. Such an edge is des-
ignated as an a-edge or a b-edge, respectively. A loop in
a + b corresponds to a cycle that is also a block; in
other words, the singular node of this block is con-
nected to itself. An edge of a combined graph is called
a pendant one if it has one singular end that is not con-
nected to anything.

A combined graph contains chains and cycles,
which are also called components. The size of a compo-
nent is the sum of the number of ordinary edges and
half the number of singular nonpendant edges in it.
The size of a loop is 0, and the size of an isolated sin-
gular node (not a loop) is –1. It was proven in [1] that
the initial problem is equivalent to the problem of
transformation (reduction) of a combined graph to the
final form (a graph comprised of cycles of length 2
without singular nodes and isolated ordinary nodes).
The reduction of a combined graph is performed using
similar operations with one exception: insertion is
replaced by removal of a singular b-node. It is easy to
verify that the proof of the equivalence of these two
formulations of the problem in [1] remains valid if all
standard operations have the same cost and the cost of
insertion and removal is arbitrary.

3. REDUCTION OF A COMBINED GRAPH
IN THE CASE OF CONSTANT COMPOSITION

AND DIFFERENT OPERATION COSTS

Let us denote the cost of splitting, merging, sesqui-
alteral intermerging, and double intermerging as c1, ,
c1.5, and c2, respectively. Two versions of the cost rela-
tionship are considered below: c2 ≤ c1 ≤ ≤ c1.5 (cyclic
version) and c1 ≤ ≤ c1.5 ≤ c2 (linear version).

1'c

1'c

1'c

Fig. 1. Operations that transform one graph of the indicated type into another graph of the same type.

i i ′

i ′

(a) Splitting and merging
...

...

(b) Sesquialteral intermerging

(c) Double intermerging

(d) Removal and insertion

i

i ′

i ′

i ′ j ′

i j... ...

... j ...

i j... ...

... ...

i p... q

i ′

i ′ i i ′

j ′i

j

... ...

... ...

i... ...

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

A LINEAR ALGORITHM FOR THE SHORTEST TRANSFORMATION OF GRAPHS 655

We will seek the shortest sequence among all min-
imal sequences (i.e., solve the problem of constrained
optimization). This sequence is called the condition-
ally shortest one. In the case under consideration, a
combined graph contains cycles and chains with alter-
nating a- and b-edges. If the composition is constant,
we define quality H(a + b) of a combined graph a + b
as the sum of the number of cycles and half the number
of even chains in it. An even chain is a chain with an
even number of edges or a chain with size 0; odd chains
are neglected; in this section, the notions of size and
length are considered interchangeable. Let graphs a
and b have n edges each.

Lemma 1. 1. Each standard operation alters the
quality of a combined graph by 0 or ±1.

2. An operation increasing the quality by 1 exists for a
nonfinal graph.

3. Graph a + b is final if and only if a = b; H(a + b) =
n for a final graph.

4. Both unconditional and conditional problems for a
and b are equivalent to the corresponding problems of
reduction of combined graph a + b to the final form.

5. There is a sequence of operations transforming a + b
to the final form with the quality increasing by exactly 1 at
each step. Its length is k = n – H(a + b).

6. The length of the minimal sequence of operations
is k.

7. The sequences with each operation increasing the
combined graph quality by 1 are the minimal ones for a + b.
Their lengths are equal to k.

Proof. 1. Let us consider standard operations one
by one.

Double intermerging. If it is applied to a single
cycle, one or two cycles are obtained, and the quality
either remains unchanged or increases by 1. If it is
applied to a single chain, one obtains either a single
chain of the same length or a cycle with a chain having
the same parity as the initial one. The quality either
remains unchanged or increases by 1. If it is applied to
two cycles, one cycle is obtained, and the quality
decreases by 1. If it is applied to a cycle and a chain,
one chain having the same parity as the initial one is
obtained. The quality decreases by 1. If it is applied to
two chains, two chains with the same overall length are
obtained. The following transformations are possible
here: two even chains are transformed into two even
chains (the quality remains unchanged), two odd
chains are transformed into two odd chains (the quality
remains unchanged), two even chains are transformed
into two odd chains (the quality decreases by 1), two
odd chains are transformed into two even chains (the
quality increases by 1), and even and odd chains are
transformed into even and odd chains (the quality
remains the same).

Sesquialteral intermerging. A free node is taken
from a chain and is the outermost one. If it is applied
to a chain and a node from it, a chain of the same

length (the quality remains unchanged) or a cycle with
a chain of the same parity (the quality increases by 1)
are obtained. If it is applied to a chain and a node from
another chain, two chains having the same overall
length as the initial ones are obtained (all three scenar-
ios of quality change found in the case of double
intermerging are possible). If it is applied to a cycle
and a node from a chain, a chain of the same parity is
obtained. The quality decreases by 1.

Splitting. If it is applied to a cycle, a chain of an odd
length is obtained (the quality decreases by 1). If it is
applied to a chain, one obtains two chains that, when
combined, are shorter than the initial chain by 1. The
following transitions are possible: an even chain is
transformed into even and odd chains (the quality
remains unchanged), an odd chain is transformed into
two odd chains (the quality remains unchanged), and
an odd chain is transformed into two even chains (the
quality increases by 1).

Merging. If it is applied to a single (necessarily
odd) chain, a cycle is obtained (the quality increases
by 1). If it is applied to two chains, a chain that is lon-
ger by 1 than the initial chains combined is obtained.
The following transitions are possible: even and odd
chains are transformed into an even chain (the quality
remains unchanged), two odd chains are transformed
into an odd chain (the quality remains unchanged),
and two even chains are transformed into an odd chain
(the quality decreases by 1).

5. The sequence is constructed through successive
application of clause 2.

Simple proofs of other clauses are omitted.

The operation of our algorithms is illustrated in doc-
ument no. 1 found at http://lab6.iitp.ru/-/graph_trans-
formation_algorithms. These illustrations are not
essential for formal understanding of the proofs and are
referred to below without mention of the website link.

Let us characterize an exact linear algorithm for
reduction to the final form in the cases of cyclic and
linear cost relationships. The algorithm for the cyclic
version involves three steps.

Step 1. If we have a cycle with its length strictly
larger than 2, we break it up into two cycles by double
intermerging. One of these new cycles has a length of 2
(see Fig. 2a).

Step 2. Each odd chain is transformed into a cycle
by merging. Step 1 is then repeated (Fig. 2b).

Step 3. Each nonzero even chain is transformed
into a cycle by means of sesquialteral intermerging.
One chain end turns into a zero chain (Fig. 2c). Step 1
is then repeated.

The algorithm for solving the constrained problem
in the linear version also involves three steps.

Step 1. It remains the same.

Step 2. The outermost node is separated from each
odd chain by splitting, which yields an even chain
(shorter by 1) and a zero chain (Fig. 3a).

656

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

GORBUNOV, LYUBETSKY

Step 3. Each nonzero even chain is shortened by
two edges by means of sesquialteral intermerging, and
its outermost edges are closed into a cycle. This pro-
cess continues until no nonzero chains are left in the
combined graph (Fig. 3b).

If no one step is applicable to the examined com-
bined graph, this graph is already in the final form. An
empty sequence of operations is applied to it.

Theorem 1. The indicated linear algorithms solve
exactly the problem of constrained optimization for cyclic
and linear cost relationships.

Proof. The minimality of the obtained sequence
follows from Lemma 1. It also follows from it that the
algorithm is linear in time.

Let us prove that the obtained sequence is the
shortest one. An a-chain in a combined graph is
defined as an odd chain with its outermost edges
labeled a. A b-chain is defined in a similar way. Let n1

be the number of cycles in a combined graph and ,1 be

their overall length. The corresponding quantities for
a-chains, b-chains, and even nonzero chains are na
and ,a, nb and ,b, and n2 and ,2, respectively. The

overall cost in the obtained sequence for the cyclic ver-
sion is

and the cost of the linear version is

This overall cost for combined graph G is denoted as
c(G). The shortest cost for reducing graph G to the
final form is denoted as C(G). We will show by induc-
tion in C(G) that inequality c(G) ≤ C(G) is satisfied for
all graphs G. It then follows that c(G) = C(G), which is
the required result.

Since the number of nodes in graph G is fixed, the
set of minimal costs is finite. Induction proceeds over
the natural order in this cost set. If C(G) = 0, graph G
is of the final form, and c(G) = 0.

Induction step. Let inequality c(G) < C(G) be sat-
isfied for all graphs G ' with C(G ') < C(G). In order to
prove it for G, we consider the reduction sequence for
G. Let o be the first operation in it, c(o) be its cost, and
o(G) be the result of application of o to G. It is suffi-
cient to verify inequality

Since operation o increases the quality of G by 1,
the number of cycles (or even chains) increases by 1
(or 2) after application of this operation. Let us ana-
lyze all possible cases.

1. Operation o is double intermerging that is
applied to a cycle and breaks it up into two cycles
(Fig. 2a). If this is the case, n1 increases by 1, and other

quantities in the formula for c(G) remain unchanged.
Equality c(o) = c2 = c(G) – c(o(G)) is satisfied.

()[]2 1 2 3 1 3 2

1.5 2 1 1

0.5 0.5

' ,a b

c n n n

c n c n c n

+ + − − −

+ + +

, , ,

() ()− + + − + +2 1 1 1.5 2 3 3 1 1'0.5 0.5 .a bc n c n c n c n, , ,

() () ()()≥ − .c o c G c o G

2. Operation o is double intermerging that is
applied to a chain and cuts a cycle out of it (Fig. 4a).

A cycle and a nonzero chain having the same parity
as the initial one are obtained. The value of n1

increases by 1, and ,1 increases as many as sum ,2 + ,3

decreases (for definiteness, by a certain p). Other
quantities in the formula for c(G) remain unchanged.
Therefore, relations c2 = c(G) – c(o(G)) and c(G) –

c(o(G)) = c2 – 0.5c2p + 0.5c1.5p ≤ c2 hold true for cyclic

and linear versions, respectively.

3. Operation o is double intermerging that is
applied to two odd chains (a-chain and b-chain;
Fig. 4b). Two nonzero even chains of the same overall
length are obtained. The values of na and nb decrease

by 1, n3 decreases by 2, n2 increases by 2, and ,3

decreases as much as ,2 increases. In the case of the

cyclic relationship, c(G) – c(o(G)) = –c2 + 2c2 – 2c1.5 +

c1 + = c2 + c1 + – 2c1.5 ≤ c2. If the cost relationship

is linear, c(G) – c(o(G)) = –c1.5 + c1 + ≤ c2.

4. Operation o is sesquialteral intermerging that is
applied to a chain and cuts a cycle off it (Fig. 2c). A
cycle and (possibly zero) chain having the same parity
as the initial one are obtained. The value of n1

increases by 1, and ,1 increases as many as sum ,2 + ,3

decreases (for definiteness, by a certain p). If the
obtained chain is zero, n2 also decreases by 1. In the

cyclic case, c(G) – c(o(G)) = c2 ≤ c1.5 (nonzero case)

and c(G) – c(o(G)) = c1.5 (zero case). In view of the

evident fact that p ≥ 2, c(G) – c(o(G)) = c2 – 0.5c2p +
0.5c1.5p ≤ c1.5 in the linear case.

5. Operation o is sesquialteral intermerging that is
applied to two odd chains (a-chain and b-chain;
Fig. 4c). Two even chains (one of them may be zero) of
the same overall length are obtained. If both chains are
nonzero, the reasoning is the same as in clause 3. If
this is not the case (n2 then increases by 1), c(G) –

c(o(G)) = –c2 + c2 – c1.5 + c1 + = c1 + – c1.5 ≤ c1.5

both for cyclic and linear versions.

6. Operation o is merging that is applied to an odd
chain and transforms it into a cycle (Fig. 2b). Here,

c(o) = c1 if the chain is an a-chain, and c(o) = if the

chain is a b-chain. The value of n1 increases by 1, n3

and either na or nb decrease by 1, ,1 increases by p ≥ 2,

and ,3 decreases by p – 1. In the case of the cyclic rela-

tionship, c(G) – c(o(G)) = – 0.5c2 + c2 – 0.5c2 + c(o) =

c(o). If the cost relationship is linear, c(G) – c(o(G)) =
– 0.5c2p + c2 + 0.5c1.5(p –2) + c(o) ≤ c(o).

7. Operation o is merging that is applied to an odd
chain. Two even chains are obtained (Figs. 4a and 4d);
either an edge labeled a in an a-chain or an edge
labeled b in a b-chain is cut in the process. Here,

c(o) = c1 if the cut edge is labeled a, and c(o) = if the

edge is labeled b. When combined, the obtained even
chains are shorter than the initial chain by 1. One of

1
'c 1

'c

1
'c

1'c 1'c

1
'c

1
'c

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

A LINEAR ALGORITHM FOR THE SHORTEST TRANSFORMATION OF GRAPHS 657

these two chains or both of them may be zero. If both
chains are nonzero, n2 increases by 2, n3 and either na
or nb decrease by 1, ,2 increases by a certain p, and ,3

decreases by p + 1. In the cyclic case, c(G) – c(o(G)) =
0.5c2 – 0.5c2 + 2c2 – 2c1.5 + c(o) ≤ c(o). If one of the

obtained chains or both of them are zero, n2 increases by

1 or remains unchanged. Correspondingly, 2 in the
inequality is replaced by 1 or 0, and it remains valid. In
the linear case, c(G) – c(o(G)) = –0.5c2p + 0.5c2p +
c(o) = c(o). u

4. REDUCTION OF A COMBINED GRAPH
IN THE CASE OF VARIABLE COMPOSITION

AND SPECIAL OPERATION COSTS

Combined graph a + b and number ε, 0 ≤ ε ≤ 1, are
given. All operations (i.e., standard operations and
removal of a- and b-nodes, which are singular nodes
labeled a or b) are allowed. Let the cost of standard
operations and a-removal be 1, and the cost of
b-removal be 1 + ε. The term end naturally applies to
an edge end or an isolated node in a combined graph.

The proposed algorithm was tested on a computer
in the general case, when the cost of b-removal is
higher than the cost of other operations. The algo-
rithm normally finds solutions close to the shortest
sequence. This general case is not discussed in this
study. However, in view of the possible heuristic appli-
cation, certain explanations were added to the subse-
quent description of the algorithm. These explana-
tions are not used in the proof given below.

Description of the Algorithm
Step 1. Remove singular a-loops.

Step 2. Cut out all ordinary edges not included into
2-cycles (i.e., cycles with size 2) and transform them
into final 2-cycles by double intermerging (if the edge
is not an outermost one, Fig. 5a), sesquialteral
intermerging (if the edge is an outermost one, Fig. 5b),
or merging (if the edge is isolated, Fig. 5c). If the cost
of double intermerging is not higher than that of ses-
quialteral intermerging, double intermerging of all
kinds is performed first. Otherwise, one should start
with sesquialteral intermerging.

Step 3. Let us recall and generalize some of the
definitions from [1]. An a-node is a singular node
labeled a (the definition of a b-node is similar). An odd
(even) chain is a chain of a odd (even) size. An a-chain
is either an odd chain with its outermost nonpendant
edges labeled a or an isolated b-node. The definition
of a b-chain is similar. The chains and cycles left after
steps 1 and 2 (with the exception of final 2-cycles and
isolated ordinary nodes) are assigned to the following
types: a cycle with an a-node and without a b-node is
an “a-cycle” (the definition of a “b-cycle” is similar),
and a cycle with both a- and b-nodes is assigned to
type “cycle.” A singular b-loop is assigned to type

“loop.” An a-chain is assigned to one of the following
types: 1a (if it has one pendant edge), 2a (if it has two
such edges), 2a' (if it is an isolated b-node), 3a (if it has
no pendant edges, but contains both a- and b-nodes
(its size is then larger than 1)), or 3a' (if it has neither
pendant edges nor b-nodes (its size then equals 1)).
The types assigned to b-chains are similar. Note that
primed and unprimed types were introduced because
of necessity to distinguish chains without b- or
a-nodes (this was unnecessary in [1], and types 2a'
and 3a' were included into 2a and 3a, respectively). An
even chain is assigned to one of the following types: 1
(if it has a single pendant edge and both b- and
a-nodes), 1' (if it consists of a single ordinary node and
an incident a-node), 1'' (if it consists of a single ordinary
node and an incident b-node), 2 (if it has nonpendant
edges and two pendant edges), 2' (if it has just two pen-
dant edges and no other edges), or 3 (if it has at least one
edge and no pendant edges). Type 1 is divided into
types 1a (corresponding to chains with a pendant

a-node) and 1b (chains with a pendant b-node).

A single entry within steps 3 and 4 may include sev-
eral successive transformations, which are separated
by an equality sign. Within an entry, the types of
chains (separated by the plus signs) prior to execution
of an operation are indicated to the left of the equality
sign, and the resulting chain type is indicated to the
right of the equality sign. Isolated ordinary nodes and
final 2-cycles are not indicated. For brevity, only the
first equality is described; the descriptions of other
equalities are similar. Types 2a, 3b, 1b, and 2 are the

combinations of types 2a and 2a', 3b and 3b', 1b and 1",

and 2 and 2', respectively (this notation reduces the
number of transformations). Type 1c signifies a

deferred choice between chains of type 1a and 1b (two

possible results of the corresponding operation). Both
results are preserved through to steps 4.15–4.24, where
one result is selected in each pair.

Let us proceed with characterizing the algorithm.
As a clarifying example, consider entry 3.2. Here, the
indicated operation is applied successively to the pairs
of chains of type 2a and 3b, and a 1b chain is obtained

as a result. Chains of type 2b and 3a, 2b' and 3a, 2b and
3a', and 2b' and 3a' are then transformed successively
in a similar fashion into chains of type 1a, 1a, 1a, and

1'. The other entries are organized in a similar way.

3.1. . The outermost nonpendant edge

(exterior edge) in one of the chains of type 1a or 1b is
unmerged, and the corresponding singular node is
merged with the outermost singular node of the other
chain (sesquialteral intermerging). Two versions are
shown in Fig. 6.

3.2.

 The exterior edge in a

3b-chain is unmerged, and a singular node is merged
with the outermost singular node of a 2a-chain
(Fig. 7).

+ =1 1 1ca b

+ =2 3 1 ,ba b + =2 3 1 ,ab a + =2 ' 3 1 ,ab a
+ =2 3 ' 1 ,ab a + =2 ' 3 ' 1'.b a

658

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

GORBUNOV, LYUBETSKY

3.3. 2 + 3 = 1c. The exterior edge in a 3-chain is

unmerged, and a singular node is merged with the out-
ermost singular node of a 2-chain. A chain of type 1a
or 1b (depending on which one of the two exterior

edges is unmerged) is obtained (Figs. 8a and 8b).

3.4. 1b + 2a + 3 = 2 + 3 = 1c, 1a + 2b + 3 = 2 + 3 =

1c, 1a + 2b' + 3 = 2 +3 = 1c. First 1b + 2a = 2 (see

description below), then 2 + 3 = 1c.

3.5. 1a + 3b + 2 = 3 + 2 = 1c, 1b + 3a + 2 = 3 + 2 =

1c, 1b + 3a' + 2 = 3 + 2 = 1c. First 1a + 3b = 3 (see

description below), then 2 + 3 = 1c.

3.6. 1a + 2 = 2a , 1b + 2 = 2b. The exterior edge in
a 1a-chain is unmerged, and a singular node is merged
with the outermost singular node of a 2-chain (Fig. 9).

3.7. 1a + 3 = 3a, 1b + 3 = 3b. The outermost b-edge
in a 3-chain is unmerged, and a singular node is
merged with the outermost singular node of a
1a-chain (Fig. 10).

3.8. 1a + 1a + 2b + 3b = 2 + 3 =1c, 1a + 1a + 2b' +

3b = 2 + 3 = 1c, 1b + 1b + 2a + 3a = 2 + 3 = 1c, 1b +

1b + 2a + 3a' = 2 + 3 =1c. First 1a + 2b = 2 and 1a +

3b = 3, then 2 + 3 = 1c.

3.9. 1a + 1a + 2b = 3a + 2b = 1a, 1a + 1a + 2b' =

3a + 2b' = 1a, 1b + 1b + 2a = 3b + 2a = 1b. First 1a +

1a = 3a (see description below), then 2b + 3a = 1a.

3.10. 1a + 1a + 3b = 1a + 3 = 3a, 1b + 1b + 3a =
1b + 3 = 3b, 1b+ 1b + 3a' =1b + 3 = 3b. First 1a + 3b =
3, then 1a + 3 = 3a.

3.11. 1a + 1a = 3a, 1b + 1b = 3b. The outermost
singular nodes of two 1a-chains are merged (Fig. 11).

3.12. 1a + 2b = 2, 1a + 2b' = 2, 1b + 2a = 2. The
exterior edge in a 1a-chain is unmerged, and a singular
node is merged with the outermost singular node of a
2b-chain (Fig. 12).

3.13. 1a + 3b = 3, 1b + 3a = 3 , 1b + 3a' =3 . The
exterior edge in a 3b-chain is unmerged, and a singular
node is merged with the outermost singular node of a
1a-chain (Fig. 13).

3.14. 2a + 2b + 3 + 3 = 2 + 3 = 1c, 2a + 2b' + 3 + 3 =

2 + 3 = 1c. First 2a + 2b + 3 = 2, then 2 + 3 = 1c.

3.15. 3a + 3b + 2 + 2 = 3 + 2 = 1c, 3a' + 3b + 2 + 2 =

3 + 2 = 1c. First 3a + 3b + 2 = 3, then 2 + 3 = 1c. The

mentioned transitions are described below.

3.16. 2a + 3 + 3 = 1a + 3 = 3a, 2b + 3 + 3 = 1b + 3 =
3b, 2b' + 3 + 3 = 1b + 3 = 3b. First 2a + 3 = 1a, then
1a + 3 = 3a.

3.17. 3b + 2 + 2 = 1b + 2 = 2b, 3a + 2 + 2 = 1a + 2 =
2a, 3a' + 2 + 2 = 1a + 2 = 2a. First 3b + 2 = 1b, then
1b + 2 = 2b. See step 4 for description.

3.18. 2a + 2b + 3 = 2a + 1b = 2, 2a + 2b' + 3 =
2a + 1b = 2. First 2b + 3 = 1b, then 1b + 2a = 2.

3.19. 3a + 3b + 2 = 3a + 1b =3, 3a' + 3b + 2 =
3a' + 1b = 3. First 3b + 2 = 1b, then 1b + 3a = 3.

Step 4. It is assumed that the cost of b-removal is
higher than that of other operations (recall that step 4
is aimed at replacing costly b-removal with another
operation). The algorithm depends on whether the
cost of double intermerging is higher than that of ses-
quialteral intermerging. If this is the case, the opera-
tions in steps 4.1–4.24 are to be fulfilled successively.
Otherwise, steps 4.1'–4.24' are applied. If sesquialteral
intermerging and double intermerging have one and
the same cost, one is free to choose steps 4.1–4.24 or
4.1'–4.24'. The operations at each step are first per-
formed as many times as possible, and only then one
proceeds to the next step. However, the proofs given
below are applicable only to the case of equal cost of
sesquialteral and double intermerging.

4.1. A “loop” + any type t with a b-node = type t. If
t is not equal to 2a', a loop is “inserted” by double
intermerging in a component of type t with subsequent
matching of b-nodes. Otherwise, the same is done by
sesquialteral intermerging (Fig. 14).

4.1'. The same as 4.1.

4.2. A “cycle” + any type t with a b-node and an
a-node = type t. A cycle is inserted (by double
intermerging with matching of two b-nodes) next to a
b-node from a component of type t on the side of the
a-node. The produced ordinary edge is cut out (Fig. 15).

4.2'. The same as 4.2.

4.3. 2a + 2b = 2 + 1'. Sesquialteral intermerging
with two nodes (the outermost a-node and the neigh-
boring ordinary node) of a 2b-chain cut off and the
formed end merged to the outermost b-node of a
2a-chain (Fig. 16).

4.3'. 2a' + 2b = 2 + 1'.

4.4. 3a + 3b = 3. The exterior edge in a 3a-chain is
unmerged, and a singular node is merged to the outer-
most ordinary node of a 3b-chain (Fig. 17).

4.4'. 3a + 3b' = 3.

Only the first case is considered below; the other
cases are similar.

4.5. 2a + 3 = 1a, 2b + 3 = 1b. The exterior b-edge
in a 3-chain is unmerged, and a singular node is
merged with the outermost singular node of a
2a-chain (Fig. 18).

4.5'. 2a' + 3 = 1a.

4.6. 3a + 2 = 1a, 3b + 2 = 1b. The exterior edge in
a 3a-chain is unmerged, and a singular node is merged
with the outermost singular node of a 2-chain
(Fig. 19).

4.6'. 3a + 2' = 1a, 3b' + 2 = 1b.

4.7. 2a + 2a = 2a, 2b + 2b = 2b. The outermost sin-
gular nodes of two chains are merged (Fig. 20).

4.7'. 2a' + 2a = 2a.

4.8. 3a + 3a = 3a, 3b + 3b = 3b. Two outermost
ordinary nodes of chains are interconnected by an
ordinary edge, which is then cut out (Fig. 21).

4.8'. 3b' + 3b = 3b.

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

A LINEAR ALGORITHM FOR THE SHORTEST TRANSFORMATION OF GRAPHS 659

4.9. 1a + 2a = 1a, 1b + 2b = 1b. The outermost sin-
gular nodes of two chains are merged (Fig. 22).

4.9'. 1a + 2a' = 1a.

4.10. 1a + 3a = 1a, 1b + 3b = 1b. Two outermost
ordinary nodes of chains are interconnected by an
ordinary edge, which is then cut out (Fig. 23).

4.10'. 1b + 3b' = 1b.

4.11. 2a + 2 = 2, 2b + 2 = 2. The outermost singular
nodes of two chains are merged (Fig. 24).

4.11'. 2a' + 2 = 2, 2a + 2' = 2, 2b + 2' = 2.

4.12. 3a + 3 = 3, 3b + 3 = 3. Two outermost ordi-
nary nodes of chains are interconnected by an ordi-
nary edge, which is then cut out (Fig. 25).

4.12'. 3b' + 3 = 3.

4.13. 2 + 2 = 2 + 1'. Sesquialteral intermerging with
two nodes (the outermost a-node and the neighboring
ordinary node) of a 2-chain cut off and the formed end
merged to the outermost b-node of another 2-chain
(Fig. 26).

4.13'. 2' + 2 = 2 + 1'.

4.14. 3 + 3 = 3. The exterior a-edge in a 3-chain is
unmerged, and the produced chain end is merged to
the b-end of another 3-chain (Fig. 27).

4.14'. Empty operation.

4.15. 1a + 1a = 1a, 1b + 1b = 1b, 1b + 1c = 1b (c = b is

set). The exterior edge in a 1a-chain is unmerged, and

a singular node is merged with the outermost singular
node of another 1a-chain (Fig. 28).

4.15'. 1'' + 1b = 1b, 1'' + 1c = 1b (c = b is set).

4.16. 1a + 1b = 1a, 1b + 1a = 1b, 1a + 1c = 1a (c = b is

set). The exterior edge in a 1b-chain is unmerged, and

a singular node is merged with the outermost singular
node of a 1a-chain (Fig. 29).

4.16'. 1a + 1'' = 1a.

4.17. 1a + 1a = 1a, 1b + 1b = 1b, 1b + 1c = 1b (c = b
is set). The exterior edge in a 1a-chain is unmerged,
and a singular node is merged with the outermost sin-
gular node of a 1a-chain (Fig. 30).

4.17'. 1b + 1'' = 1b.

4.18. 2a + 1b = 2a, 2b + 1a = 2b, 2a + 1c = 2a (c =

b is set). The exterior edge in a 1b-chain is unmerged,

and a singular node is merged with the outermost sin-
gular node of a 2a-chain (Fig. 31).

4.18'. 2a' + 1b = 2a, 2a + 1'' = 2a, 2a' + 1c = 2a (c =

b is set).

4.19. 3a + 1a = 3a, 3b + 1b = 3b, 3b + 1c = 3b (c =

b is set). The exterior edge in a 3a-chain is unmerged,
and a singular node is merged with the outermost sin-
gular node of a 1a-chain (Fig. 32).

4.19'. 3b' + 1b = 3b, 3b + 1'' = 3b, 3b' + 1c = 3b (c =

b is set).

4.20. 2 + 1a = 2, 2 + 1b = 2, 2 + 1c = 2 (c = b is set).

The exterior edge in a 1a-chain is unmerged, and a sin-

gular node is merged with the outermost singular node
of a 2-chain (Fig. 33).

4.20'. 2' + 1a = 2, 2' + 1b = 2, 2 + 1'' = 2, 2' + 1c =

2 (c = b is set).

4.21. 3 + 1a = 3, 3 + 1b = 3, 3 + 1c = 3 (c = b is set).

The exterior edge in a 3-chain is unmerged, and a sin-
gular node is merged with the outermost singular node
of a 1a-chain (Fig. 34).

4.21'. 3 + 1'' = 3.

4.22. 1a + 1c = 1a, 1b + 1c = 1b, 1a + 1c = 1a,

2b + 1c = 2b, 3a + 1c = 3a (c = a is set).

4.22'. Empty operation.

4.23. c = b is set for the remaining chains of type 1c,

and 1b + 1b = 1b is performed.

4.23'. Empty operation.

4.24. Chains with a nonpendant edge are closed
into cycles by merging (chains type 2a, 2b, 3a, and 3b)
or by sesquialteral intermerging with (chains of types 1a,

1b, 1c, and 2) or without (chains of types 1a, 1b, and 3)

singular nodes matching. When a type 1c chain is

closed, c = b is set. When a type 2 chain is closed, the
version with matching of two b-nodes is chosen
(Fig. 35a), and an a-node is removed from the pro-
duced type 1' chain. Ordinary edges are cut out from
cycles produced by closing chains of type 3a or 3b.
Step 4.2 is then repeated.

4.24'. The same as in 4.24.

Step 5. Isolated singular nodes and loops are
removed. Singular nodes are removed from the
remaining chains. 2-Cycles are cut out from cycles
larger than 2 in size in such a way as to ensure match-
ing of two b-nodes (as such, an a-node is included into
a 2-cycle; Fig. 35b). Singular nodes are removed from
2-cycles.

The end of the description of the algorithm.

Let us prove the theorem of the minimality of the
overall cost of the sequence of operations produced by
the algorithm (i.e., the theorem of the exactness (cor-
rectness) of the algorithm).

Let B ' be the number of b-cycles (cycles with a
b-node and without a-nodes) in graph a + b. Let us
recall the notation from [1]: B is the number of singu-
lar nodes in a + b; S is the sum of integer parts of half
the number of edges (length) of maximal sections (seg-
ments) in a + b, which consist of ordinary edges, plus
the number of odd (i.e., having an odd length) outer-
most segments minus the number of cyclic segments.
An outermost segment is the segment located at the end
of a chain (the case of a complete chain included). An
ordinary pair consist of one of the standard operations,
which does not alter the number of singular nodes,
with its argument. In what follows, the term “ordi-
nary” applies to an operation, while its argument is
assumed to be given. The defect of a chain (or a cycle)
is the minimum number of ordinary operations (the
operation of cutting ordinary edges out at step 2 is not

660

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

GORBUNOV, LYUBETSKY

included) in a sequence that reduces it to the final
form. Some operations with their arguments in the
sequence may differ from ordinary ones; such opera-
tions are called singular. The dependence of the defect
on the component type is given in [1]. Let us denote
the sum of defects of the components of graph a + b as
D. The difference between the values of D calculated
before and after step 3 is designated as P. Note that the
number of singular operations in any sequence finaliz-
ing a combined graph equals the number of singular
nodes in it. Thus, only the number of ordinary opera-
tions can be reduced. Since all operations at step 3 are
singular ones, P equals the number of operations saved
at step 3. Quantity ε was defined above. Let C = B +
S + D – P + ε(B' + 1).

Theorem 2. The algorithm constructs a sequence of
operations with its overall cost assuming one of the fol-
lowing three values: C – ε, C, C + ε. The minimum pos-
sible overall cost of a sequence of operations reducing
graph a + b to the final form also assumes one of these
values. The algorithm running time is of a linear order of
magnitude.

Before proving the theorem itself, let us prove
Lemmas 2–4.

Lemma 2. With the exception of repeated execution of
step 4.2 at step 4.24, it is impossible to perform any oper-
ation at step 4 (4.1–4.24 or 4.1'–4.24') again after it was
performed for the first time; i.e., subsequent actions pro-
duce no components to which preceding operations are
applicable.

Proof. We go through the operations at step 4 and
demonstrate for all of them that the result of each sub-
sequent operation does not contain types present in
the argument of the first operation, but absent in the
argument of the second one. Since it is impossible to
find a component of even one type of the arguments of
an operation after its completion, repeated execution
is excluded.

Lemma 3. After step 4, a total of 0, 1, or 2 con-
nected components that have a b-node and are not the
initial b-cycles are left.

Proof. By virtue of Lemma 2, cycles and chains
without nonpendant edges, which allow none of the
operations performed at step 4, remain after step 4.
New b-cycles may emerge from type 3b' chains; in
view of 4.8 (4.8') and Lemma 2, the maximum number
of new b-cycles is 1. Thus, the components mentioned
in Lemma 3 may be of the following types: 2a', 1", 2',
cycle, and b-cycle. Applying the same reasoning, one
can easily demonstrate that the maximum number of
remaining components of the first three types is also 1.
The only thing left to prove is that the maximum of
two types out of the mentioned five may remain. Let
us assume that this is not true. If the remaining three
types do not contain a b-cycle, an operation may be
performed between two of them (those that are not
cycles). This contradicts Lemma 2. Otherwise, such
an operation is possible between a type 3b' compo-

nent, which gave rise to a b-cycle, and one of the three
components that is not a cycle. Again, we arrive at a
contradiction.u

Lemma 4. The number of ordinary operations in
the algorithm is S + D – P.

Proof. Let us recall [1] that the minimum number
of ordinary operations needed to reduce a component
(after step 2) to the final form without the use of other
components equals its defect. The algorithm in this
study differs from the one in [1] in that it has an addi-
tional step (step 4). Each operation in step 4 is either a
singular one, which does not alter the defect of the
result relative to the overall defect of arguments, or an
ordinary one, which reduces the defect by 1. There-
fore, the number of ordinary operations in the algo-
rithm remains unchanged (i.e., equals S + D – P).u

Proof of Theorem 2. A single operation of b-node
removal is applied at step 5 to each component with
b-nodes. By virtue of Lemma 3, the overall number of
such operations is B ' + n, where n = 0, 1, or 2. The
number of singular operations is B. By virtue of
Lemma 4, the overall cost of algorithm operations is
(1 + ε)(B' + n) + (B – B ' – n) + (S + D – P) = B + S +
D – P + ε(B ' + n). The first statement of the theorem
follows from this. The linearity of the algorithm time
and the used memory is evident.

The second statement of the theorem is proven by
induction for the minimal overall cost M of operations
reducing a combined graph to the final form. A finite
number of possible M values exist in any bounded
interval, and we consider these values in the ascending
order.

The basis of induction is evident. Let us character-
ize the induction step. It is sufficient to verify for any
operation o applied to an arbitrary combined graph G
that the cost of operation o c(o) is not lower than
C(G) – C(o(G)), where C(G) is the C value defined in
Theorem 2. If o does not alter the value of B ', only t =
B + S + D – P may change in C(o(G)) relative to C(G).
The reasoning is then the same as in [1]; Theorem 5
validates the inequality. If o forces B ' to increase,
C(G) – C(o(G)) ≤ 1 – ε ≤ c(o), since t may decrease by
1 at the most. Thus, it is sufficient to consider the case
when o forces B ' to decrease. This analysis involves the
following five steps.

1. Operation o is singular node removal. If o forces
B' to decrease (evidently, by 1), o removes a b-node,
and C(G) – C(o(G)) ≤ 1 + ε = c(o).

2. Operation o is merging. It may not reduce the
value of B '.

3. Operation o is splitting. One should consider the
case when B ' decreases by 1 and a b-cycle is split. Since
an odd number of ordinary edges is present in a b-cycle
between b-nodes, either a type 3b chain or a type 2a
chain (according to the classification from [1]
(Lemma 6) for components of the general form) is
produced by splitting. In the former case, S remains
unchanged, and D increases by 1; in the latter case, the

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

A LINEAR ALGORITHM FOR THE SHORTEST TRANSFORMATION OF GRAPHS 661

effect is reversed. In both cases, B remains unchanged,
and P either also remains unchanged or increases by 1.
Thus, C(G) – C(o(G)) ≤ ε < c(o).

4. Operation o is sesquialteral intermerging. One
should consider the case when B ' decreases by 1, a
b-cycle is split, and the obtained chain is merged with
another chain. It was demonstrated at the previous
step that t does not decrease when a b-cycle is split.
Therefore, it is sufficient to demonstrate that, if t
remains unchanged (i.e., P increases by 1) when a
b-cycle is split, it also does not decrease when two
chains are merged.

Let us assume that a type 2a chain is produced as a
result of b-cycle splitting. The possible types of chain
merging are listed in the table. The first chain is a type
2a one, and the end type of the second chain is indi-
cated in the column header (the notation is the same
as in [1]).

Searching through the table cells, we determine the
variation of P corresponding to reduction t. For exam-
ple, this reduction corresponds to preservation of P in
column 1a (the second chain has type 1a). This is
impossible, since a type 1a chain is again produced by
merging, and, if P increases on emergence of a type 2a
chain, P should decrease on its disappearance. Like-
wise, column 1a' tells us that a type 2a chain is pro-
duced, which is equivalent to elimination of a type 1a
chain by merging chain types 2a and 1a. However, if P
decreases upon disappearance of a type 2a chain, it
should certainly decrease upon disappearance of a
type 1a chain. Columns 2a, 1, 2, and 3 are analyzed in
a similar fashion. Merging operation 2a + 3a = 1a cor-
responds to column 3a. This operation does not result
in an increase in P: if we assume that P does increase, it
will increase by 2 following the substitution of a type 3a
chain with a type 1a chain (the result of application of
operation o), and this is impossible. Merging opera-
tion 2a + 1 = 2 corresponds to column 1'. This opera-
tion does not result in an increase in P: if we assume
that P does increase, it will increase by 2 upon emer-
gence of a type 2 chain (the result of application of
operation o), and this is impossible. The case when a
type 3b chain is produced by splitting a b-cycle is con-
sidered in a similar fashion.

5. Operation o is double intermerging. Let us con-
sider possible cases when B ' decreases.

5.1. Operation o is applied to two b-cycles and pro-
duces a single b-cycle. Since an odd number of ordi-
nary edges is present between b-nodes in b-cycles

(or in one b-cycle, which is sufficient), the value of
B + S does not decrease. D and P remain unchanged,
and B ' decreases by 1. The required result is evident.

5.2. Operation o is applied to two cycles. One of
them is a b-cycle, and the other contains both types of
singular nodes. The reasoning is the same as in the
above entry.

5.3. Operation o is applied to a b-cycle and a chain;
a cycle is inserted into a chain. It needs to be demon-
strated that t = B + S + D – P does not decrease in this
case.

5.3.1. If singular nodes are present in a chain on both
sides of the cut, the chain type remains unchanged.
Therefore, D and P also remain unchanged. Since the
segment (with ordinary edges) adjacent to the cut in a
b-cycle is odd, B + S does not decrease, which is the
required result.

5.3.2. Let us assume that singular nodes are present
in a chain only on one side of the cut. If the parity of
the outermost chain segment remains the same, the
chain type does not change, and the above reasoning
applies. If an even outermost segment is substituted
with an odd one, B remains unchanged (we take into
account the fact that the segment in a b-cycle is odd),
and S increases by 1. The following chain type changes
are then possible: 3a → 1a, 1 → 2, 1a → 2a, and 3 → 1.
In the first two cases, D remains the same, and P either
also remains unchanged or increases by 1. In the last
two cases, D decreases by 1, and P either remains
unchanged or decreases by 1. Thus, t does not
decrease. If an odd outermost segment is substituted
with an even one, B and S naturally remain
unchanged. The following chain type changes are then
possible: 1a → 3a, 2 → 1, 2a → 1a, and 1 → 3. In the
first two cases, D remains the same, and P either also
remains unchanged or decreases by 1. In the last two
cases, D increases by 1, and P either remains
unchanged or increases by 1. Thus, t does not
decrease.

5.3.3. A chain has no singular nodes. It is more
convenient to consider operation o' (the inverse of o),
which cuts a cycle out of a chain, in the case when all
singular nodes are located between the cuts. It is suffi-
cient to prove that operation o' cannot alter t by more
than 1, and if two singular nodes are not matched and
all segments in the obtained cycle are odd, t does not
increase. Let us analyze two cases.

1. Two singular nodes are matched; i.e.,
B decreases by 1. Two outermost chain segments are

Results of merging the ends of two chains

0a 0 1a 1a' 2a 3a 1 1' 2 3

(0) (0, +1) (0, –1) (0, +1, –1) (0, –1) (0, +1, –1) (0, –1) (0, +1, –1) (0, –1) (0, +1, –1)

[0] [0, –1] [–1, 0] [–1, –2, 0] [–1, 0] [0, –1, +1] [–1, 0] [0, –1, +1] [–1, 0] [–1, –2, 0]

2a 1 1a 2a 2a 1a 1 2 2 1

662

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 62 No. 6 2017

GORBUNOV, LYUBETSKY

then matched, and an additional ordinary edge
emerges. If both segments are even, S increases by 1.
The chain type is then 3a or 3b; when it disappears,
D decreases by 1 and P either remains unchanged or
decreases by 1. If one segment (or both segments) is
odd, S remains unchanged. The chain type is then 2a,
2b, or 1; when it disappears, D remains the same and
P either remains unchanged or decreases by 1. Thus,
t changes by no more than 1 in each case.

2. Two singular nodes are not matched; i.e.,
B remains unchanged. Two outermost chain segments
are then transformed into two segments of the same
overall length (one (outermost) segment in a chain
and another segment in a cycle). Let us analyze the
possible scenarios.

2.1. A pair of even segments is transformed into a
pair of even or odd segments. Quantity S remains
unchanged. The chain type was 3a, 3b, or 3; when it
disappears, D decreases by 1, and P either remains
unchanged or decreases by 1. Thus, t either remains
unchanged or decreases by 1.

2.2. A pair of odd segments is transformed into a
pair of even or odd segments. Quantivy S decreases by
1. The chain type was 2a, 2b, or 2; when it disappears,
D remains the same, and P either remains unchanged
or decreases by 1. Thus, t either remains unchanged or
decreases by 1.

2.3. A pair of segments of different parity is trans-
formed into a pair of segments of different parity,
where the even segment is in a cycle. Quantity S

remains unchanged. Since an even segment emerges in
a cycle, outermost singular nodes of a chain had differ-
ent labels. The chain type was then 1a or 1b; when it
disappears, D decreases by 1, and P either remains
unchanged or decreases by 1 or 2. Thus, t changes by
no more than 1.

2.4. A pair of segments of different parity is trans-
formed into a pair of segments of different parity, where
an odd segment is in a cycle. Quantity S decreases by 1.
Since an odd segment emerges in a cycle, outermost
singular nodes of a chain had the same labels. The chain
type was then 1; when it disappears, D and P remain
unchanged. Thus, t decreases by 1.

ACKNOWLEDGMENTS

This study was supported by the Russian Science
Foundation, project no. 14-50-00150.

REFERENCES

1. K. Yu. Gorbunov and V. A. Lyubetsky, “Linear algo-
rithm for minimal rearrangement of structures,” Probl.
Inf. Transmis. 51(1), 55–72 (2017).

2. V. A. Lyubetsky, R. A. Gershgorin, A. V. Seliverstov,
and K. Yu. Gorbunov, “Algorithms for reconstruction
of chromosomal structures,” BMC Bioinformatics 17,
40 (2016).

Translated by D. Safin

