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A B S T R A C T

Multiple primary lung cancer (MPLC) is an increasingly prevalent subtype of lung cancer. According to

recent genomic studies, the different lesions of a single MPLC patient exhibit functional similarities that may

reflect evolutionary convergence. We perform whole-exome sequencing for a unique cohort of MPLC

patients with multiple samples from each lesion found. Using our own and other relevant public data,

evolutionary tree reconstruction reveals that cancer driver gene mutations occurred at the early trunk,

indicating evolutionary contingency rather than adaptive convergence. Additionally, tumors from the same

MPLC patient are as genetically diverse as those from different patients, while within-tumor genetic het-

erogeneity is significantly lower. Furthermore, the aberrant molecular functions enriched in mutated genes

for a sample show a strong overlap with other samples from the same tumor, but not with samples from

other tumors or other patients. Overall, there is no evidence of adaptive convergence during the evolution of

MPLC. Most importantly, the similar between-tumor diversity and between-patient diversity suggest that

personalized therapies may not adequately account for the genetic diversity among different tumors in an

MPLC patient. To fully exploit the strategic value of precision medicine, targeted therapies should be

designed and delivered on a per-lesion basis.

Copyright © 2022, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of

Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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cancer screening (Chen et al., 2019). However, the genomic char-

acteristics of MPLC, as well as the history of somatic evolution to-

wards MPLC, remain poorly understood.

In lung cancer (Liu et al., 2016; Ma et al., 2017) and many other

solid tumors (Ling et al., 2015; Tao et al., 2015; Wang et al., 2016;

Zhai et al., 2017), genetic heterogeneity is a widely observed feature

that is frequently associated with a poor prognosis (Zhou et al., 2011;

Thress et al., 2015; Blakely et al., 2017; Rosenthal et al., 2019; Vitale

et al., 2021). Understanding the origin and development of genetic

heterogeneity could potentially aid in therapeutic target selection and

drug development (Greaves and Maley 2012; McGranahan and

Swanton 2015) and shed light on the somatic evolution history of

cancer cells (Ling et al., 2015; Wu et al., 2016; Hu et al., 2019). For

example, investigations of genetic heterogeneity in single or meta-

static tumors have revealed the spatial organization of tumor cell

subpopulations (Ling et al., 2015), discovered quantitative evidence

of early metastatic seeding (Hu et al., 2019), and highlighted the

genomic evolution that occurs from preneoplasia to tumor develop-

ment and progression (Hu et al., 2019). For MPLC, the genetic het-

erogeneity among multiple lesions observed in the same patient has

been used to confirm their nonmetastatic nature (Liu et al., 2016).

More recently, the genetic heterogeneity of MPLC was found to be

compatible with the convergent evolution of cancer cells, as only a

limiting number of signaling pathways were mutated (Ma et al., 2017).

This finding indicates that targeting these small number of conver-

gent pathways might be a viable therapeutic strategy for MPLC (Ma

et al., 2017). However, due to a lack of formal statistical or evolu-

tionary model-based tests (Ma et al., 2017), such a theory of evolu-

tionary/functional convergence of MPLC is still questionable.

Meanwhile, multiple lines of evidence in favor of non-Darwinian

divergent evolution have been reported for other types of cancer

(Ling et al., 2015; Wu et al., 2016; Zhai et al., 2017). Clearly, a more

detailed analysis of the genetic heterogeneity of MPLC is required to

provide better diagnosis and treatment strategies for MPLC patients

and to resolve the conflicting views of convergence versus diver-

gence in cancer evolution.

Other than the biomedical significance mentioned above, inves-

tigation into the genetic heterogeneity of MPLC also bears important

theoretical value. More than 30 years ago (Gould, 1990), the promi-

nent evolutionary biologist Stephen Jay Gould conducted a

gedanken experiment: if we rewind and replay the tape of evolution,

should we expect the same outcome? The question, in essence, is

whether evolution is dominated by deterministic evolutionary forces

(and therefore convergent outcomes) or historical contingency (and

therefore divergent outcomes). The answer to this now-famous

question has been debated not only for the evolution of the natural

population (Morris, 1998) but also for cancer cell evolution (Wu et al.,

2016). Unfortunately, there is a general bias towards adaptationist

storytelling that undervalues the role of nonadaptive forces such as

drift or mutation (Gould and Lewontin, 1979), which is of particular

importance in the genomic era (Lynch 2007; Koonin 2016). The

multiple lesions in an MPLC patient are derived from an identical

genetic background and subject to the same environmental expo-

sure and thus represent repeated evolution. The systematic evalua-

tion of the genetic heterogeneity of MPLC constitutes a unique

opportunity to address Gould’s question in the context of cancer cell

evolution, preferably with proper assessment of the nonadaptive

evolutionary null model.

In this study, we collected whole-exome sequencing data from

101 tumor/paratumor samples from 16 patients pathologically diag-

nosed with MPLC (including 78 newly sequenced samples).

Comprehensive analysis of the genetic heterogeneity of the tumor

samples confirmed their nonmetastatic nature and revealed a limited

range of driver mutations during the early stage of cancer evolution.
331
However, mutations occurring in later stages of cancer evolution

suggested divergent rather than convergent evolution at the levels of

both individual genes and functional pathways. Most importantly, our

findings suggest that targeted therapies tailored for each patient

might not be precise enough and need to be replaced by those

tailored for each tumor, as different tumors found within the same

patient were as genetically diverse as tumors from different patients.

Results

MPLC samples and whole-exome sequencing

We sampled a cohort of 11 patients, each diagnosed with MPLC

according to the comprehensive histologic assessment criteria used

in our previous work (Cheng et al., 2017) (Fig. 1A; Materials and

methods). In each patient, two to three primary tumors were detec-

ted, the majority of which were detected by computed tomography

(Fig. 1Be1L). We collected tumor samples from at least 3 foci

within each tumor, as well as corresponding paratumor/normal

samples, yielding a total of 78 samples (Table S1). These samples

were subjected to whole-exome sequencing on BGISEQ-500 to an

average coverage of 140.14, with approximately 90% of the targeted

regions covered to a depth of ~42� or more (Fig. 2A; Table S2;

Materials and methods). Furthermore, we downloaded raw data of

previously sequenced MPLC samples (Ma et al., 2017), and dis-

carded those from patients with only one tumor sample sequenced.

As a result, we obtained an additional dataset consisting of 18 tumor

samples and 5 paired normal samples. Taken together, our full

dataset contains whole-exome sequencing data for a total of 101

samples from 16 patients (Tables S1 and S2). As inferred by

segmented copy number and allelic fraction values for somatic point

mutation profiles, the tumor samples had an average tumor purity of

0.24 (Fig. 2B). Following the best practice pipeline suggested by

Genome Analysis Toolkit (GATK) (Materials and methods), we iden-

tified 9 to 1418 somatic alterations per tumor sample, including

~10,288 single nucleotide variations (SNVs) (Table S3), which

correspond to a rate of 0.23e35.6 mutations per megabase (Fig. 2C).

A list of putative lung cancer driver genes was compiled by

requiring that the genes appear in at least two of the five commonly

used driver gene datasets, including Catalogue of Somatic Mutations

in Cancer (COSMIC) (Tate et al., 2019), DriverDBv3 (Liu et al., 2020),

Integrative Onco Genomics (IntOGen) (Martinez-Jimenez et al.,

2020), OncoVar (Wang et al., 2021), and 12 general tumorigenesis

drivers inferred by Trigos and colleagues (Trigos et al., 2017)

(Fig. 2D). One striking pattern was the high prevalence of missense

mutations in Epidermal Growth Factor Receptor (EGFR), which is

indeed one of the genes reported to show recurrent alterations in

lung cancer (Cancer Genome Atlas Research Network 2014). Muta-

tions that appeared in other driver genes appeared moderately

consistent within the same tumor and displayed substantial variation

between different tumors from the same patient. For example, only

57.8% and 9.0% of the driver gene mutations were shared within the

same tumor and between different tumors from the same patient,

respectively (See Materials and methods).

Reconstructed evolutionary history suggested early onset of

driver gene mutations at the trunk of the evolutionary tree

From a theoretical point of view, recurrence of a driver gene

mutation in samples from different tumors of the same MPLC pa-

tient could be explained by two mutually exclusive mechanisms

(Fig. 3). On the one hand, driver gene mutations could occur at the

early trunk in the evolutionary tree of cancer cells, making them

shared by all descendant cancer cells. On the other hand, driver
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Fig. 1. MPLC samples. A: Comprehensive histologic assessment criteria for MPLC diagnosis. AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; LPA, lepidic

predominant invasive adenocarcinoma; EGFR, epidermal growth factor receptor; ALK, ALK receptor tyrosine kinase; Kras, KRAS proto-oncogene; Ros, ROS proto-oncogene 1, re-

ceptor tyrosine kinase; Ret, ret proto-oncogene. BeL: Computed tomography (CT) diagnosis of each MPLC patient collected in this study, with yellow arrows pointing at each individual

tumor. The scale bar on the right has tick marks with 1 cm increment. For (AeL), the patient names are listed on top of each panel, which are all named with prefix “ZDWY,” followed by

the number of the patient (1e11). The name of each tumor is indicated at the bottom right corner of the image, where “L” or “R” indicating that the tumor was found in the left or right

lung. Note that not all tumors were captured on CT. The list of all samples used in this study can be found in Table S1.
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gene mutations (identical mutations or mutations from functionally

interchangeable genes within a pathway) could occur later but were

subsequently selected due to the growth advantage they conferred

to the cells, ultimately making the cancer cell population evolu-

tionarily converge (as previously argued ). We will hereinafter refer to

these two models as the “early-trunk mutation” and “adaptive

convergence” models. Note that the exclusivity of these two models

lies in the fact that in the early-trunk mutation model, all cancer cells

share driver gene mutations; therefore, these mutations are
332
considered to confer no growth advantage relative to other cancer

cells (not relative to normal cells). In other words, these mutations

have no adaptive value in the early-trunk mutation model, making

adaptive convergence irrelevant for the recurrence of driver gene

mutations.

As a first examination of the early-trunk mutation and adaptive

convergence models, we built phylogenetic trees using all SNVs in

the tissue samples (tumor or paratumor/normal) from each individual

patient (Fig. S1). By assigning the paratumor samples as the
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Fig. 2. Sequencing overview. The sequencing depth on the exome (A), estimated tumor purity (B), mutation rate (C) and identified single nucleotide somatic mutations on driver genes of

lung cancer (D) are listed for each sample (x axis). Subclonal mutations, as indicated by asterisks, were called by ABSOLUTE as a cancer cell fraction < 80%. The functional impact of

each mutation as predicted by EnsEMBL VEP is shown as the color of each tile as indicated by the legend on the bottom. The sample of each column is listed at the bottom. The

samples are all named by the patient name (e.g., “ZDWY1”), a hyphen, the tumor name (e.g., “L1”), and the number of the sample within the tumor as C1 to C3 (or C4). See also

Tables S2 and S3.
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Fig. 3. Schematic diagram for the early-trunk model and the adaptive convergence model. The recurrence of the same “driver”mutations in different tumor samples might be explained

by two different models. That is, the mutations could happen at the “early-trunk” of cancer evolution, or they could have been selected by adaptive convergence. The different

phenotypic consequences are also listed below.

Fig. 4. Driver mutations at the early trunk. The observed number of early-trunk mutations on driver genes for each sample (A) or the pooled sample (B) are indicated as red lines or

arrows, whereas their respective random expectations are indicated as accompanying violin plots or histograms.
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outgroups in every phylogenetic tree, we were able to reconstruct the

ancestral genotypes and locate the evolutionary branches in which

the driver gene mutations occurred. We found that many driver gene

mutations occurred at the early trunk in the phylogenetic tree (dark or

light red branches in Fig. S1). Indeed, significant enrichment of driver

gene mutations in early trunk can be identified in five patients, but

none of the patients displayed significant results in the opposite di-

rection (lower half of Fig. 4A, permutation tests; see Materials and

methods). Moreover, when we pooled and analyzed data from all

patients together, we again found that driver gene mutations are

significantly enriched at the evolutionary trunk of all MPLCs (Fig. 4B,

permutation test; see Materials and methods). Therefore, the
334
observed mutation profile of MPLC appeared to be better explained

by the early-trunk mutation model.

Genetic heterogeneity suggested a lack of evolutionary

convergence

The multiple lesions found in an MPLC patient are derived from an

identical genetic background and subject to the same environmental

exposure. They are therefore repeated evolutions of cancer cells. As

such, we can test evolutionary convergence by quantifying the ge-

netic heterogeneity within a tumor (“within-tumor heterogeneity”) and

between different tumors of the same patient (“between-tumor



Fig. 5. Genetic heterogeneity and the general lack of evolutionary convergence. A: Schematic diagram for three types of comparisons among tumor samples. Possible outcomes and

their corresponding conclusions are listed at the bottom. B: Averaged Nei’s genetic distances (D-value) of each indicated group for each patient is shown as individual dots and their

distribution is shown as violin plots. Nominal P values from the Wilcoxon signed-rank tests are indicated as ***, P < 0.001; NS, not significant. C: Statistics in the modulus space of

evolutionary trees. Each dot represents a pair of tumor samples, in which one sample with more mutations is named “Sample 1” and the other “Sample 2.” The coordinates correspond

to the probability that Sample 1 (blue axis) or Sample 2 (red axis) is more distant or that they are similarly distant (green axis) from their common ancestor.
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heterogeneity”). It is expected that the between-tumor heterogeneity

should be higher than the within-tumor heterogeneity (Liu et al., 2016;

Ma et al., 2017). But if there is strong evolutionary convergence,

different tumors within the same patient should genetically converge,

and as a result, the between-tumor heterogeneity should be com-

parable to the within-tumor heterogeneity. It should be noted that

even if the between-tumor heterogeneity is higher than the within-

tumor heterogeneity, there may still be intermediate levels of evolu-

tionary convergence, which will reduce the between-tumor hetero-

geneity relative to its convergence-free expectation. As a further test,

we used the genetic heterogeneity of tumors between different pa-

tients (“between-patient heterogeneity”), which have different ge-

netic backgrounds and evolutionary histories in different

environments, to approximate the expected heterogeneity without

evolutionary convergence among tumors within the same patient.

The between-patient heterogeneity should be higher than the

between-tumor heterogeneity if there is intermediate level of evolu-

tionary convergence between tumors from the same patient. In

contrast, if the between-patient heterogeneity was not significantly

higher than the between-tumor heterogeneity, we considered it a

lack of evidence for evolutionary convergence. From a quantitative

perspective, we can examine the value of between-tumor hetero-

geneity relative to the lower bound defined by within-tumor
335
heterogeneity and the upper bound defined by between-patient

heterogeneity to assess the strength of evidence for evolutionary

convergence (Fig. 5A).

As a pairwise metric for genetic heterogeneity, we calculated

Nei’s genetic distance (D-Value) between all tumor samples (Mate-

rials and methods). We found that the within-tumor heterogeneity

was significantly lower than the between-tumor heterogeneity

(Fig. 5B), which was consistent with previous reports of MPLC (Liu

et al., 2016; Ma et al., 2017). Unexpectedly, the between-tumor

heterogeneity and between-patient heterogeneity were not signifi-

cantly different from each other (Fig. 5B). More importantly, as

reasoned above, the significantly higher between-tumor heteroge-

neity than within-tumor heterogeneity, along with the similar

between-tumor and between-patient heterogeneity, suggested a

lack of convergence in MPLC evolution. To further corroborate our

findings, we computed statistics on the evolutionary modulus spaces

(Fig. 5C; Materials and methods). We found that pairwise compari-

sons between samples within the same tumor revealed intermediate

levels of shared mutations (Fig. 5C, green points), whereas com-

parisons between samples of different tumors from the same pa-

tients or between samples from different patients all yielded results

indicating a similar depletion of shared mutations for these two

groups of comparisons (Fig. 5C, yellow and red points). Collectively,
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Fig. 6. Evolutionary convergence is absent at the level of molecular function. A: The overlapping fraction of aberrant molecular functions between tumor samples of each indicated

group is shown along with their corresponding null expectation (see Materials and methods). B: Same as (A) except that only GO terms containing driver genes of lung cancer are

considered. In both panels, nominal P values from the Wilcoxon rank-sum test are indicated as NS, not significant; **, P < 0.01; ***, P < 0.001.
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our analyses of the genetic heterogeneity of MPLC suggested a

general lack of evolutionary convergence at the level of individual

mutations. More importantly, this result indicates that personalized

targeted therapies might be of little help for patients with MPLC

relative to general therapies, as tumors within the same patient were

found to be as genetically diverse as tumors from different patients.

Instead, MPLC needs targeted therapy with higher precision, such

that treatments should be tailored for each tumor. This notion is

supported by a clinical case report (Ye et al., 2016) of MPLC with

heterogeneous EGFR and KRAS mutations in different lesions of the

same patient, which shows that treatments tailored per lesion are

effective.

Lack of convergence at the functional pathway level

Although we have shown the lack of convergence at the mutation

level, whether convergence is also absent at the level of functional

pathways remained unanswered. On the one hand, a previous report

implied that mutations in different tumors of the same patient

converged to a narrow list of functional pathways, thereby leading to

constrained phenotypic and biomedical outcomes (Ma et al., 2017).

On the other hand, studies on other types of cancers have suggested

that evolutionary divergence causedby either contingentmutations or

adaptive divergence is more prevalent (Ling et al., 2015; Wu et al.,

2016).

To resolve this anomaly in MPLC with a formal statistical test, we

categorized the molecular function of mutated genes by Gene

Ontology terms and then inferred the aberrant molecular function by

identifying the functional categories enriched with the mutated genes

within each sample (Materials and methods). The overlap in aberrant

molecular functions for within-tumor comparisons was found to be

higher than that in between-tumor comparisons, which was similar to

that observed in the between-patient comparisons (Fig. 6A). In other

words, the functional convergence between different tumors from the

same patient is not stronger than that between patients, and this

observation directly contradicts previous claim that the evolutionary

convergence at the functional level among tumors from the same

patient (Ma et al., 2017).

To further assess the null expectation of the above analysis, we

randomly shuffled themutations found in each sample such that each

sample retained the same total number of mutations in all genes and

each gene retained the same total number ofmutations in all samples.

The resulting shuffled list of mutations suggested that the expected

level of overlapped aberrant molecular functions was not significantly

lower than the observed level between different samples from the

same tumor, the same patient, or different patients (Fig. 6A). This

result again suggested a general absence of evolutionary conver-

gence at the functional level between tumors from the same patient.

The previous claim of functional convergence between different

tumors of an MPLC patient was based on an additional constraint

that only driver genes/pathways were considered (but not all genes/

pathways) (Ma et al., 2017). Was this additional requirement

responsible for the detected functional convergence? We repeated

the analysis performed for Fig. 6A but only considered the afore-

mentioned list of putative driver genes. Similar to the above result, we

found that the overlap of aberrant molecular functions between tu-

mors was less than that of within-tumor comparisons and similar to

that of between-patient comparisons. Note that the levels of

convergence for the within-tumor, between-tumor and between-

patient comparisons increased from 0.19, 0.0027, and 0.0020 (red

points in upper Fig. 6A) to 0.51, 0.21, and 0.15 (red points in upper

Fig. 6B), respectively. These numbers appeared to indicate that

functional convergence is strong when only cancer driver genes/

pathways are considered. However, we found that their corre-

sponding null expectations also increased similarly (gray points,
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Fig. 6B compared with Fig. 6A), such that the observed levels of

functional convergence remained indistinguishable from their null

expectations (Fig. 6B). This result therefore suggested that con-

straining the analysis within cancer driver genes/pathways might

artifactually increase the signal of functional convergence. However,

the observed signal of functional convergence was actually compa-

rable to its null expectation, lending no support for evolutionary

convergence among tumors in an MPLC patient and therefore sug-

gesting that the genetic heterogeneity of MPLC is better described

by evolutionary contingency, but not evolutionary convergence.

Discussion

The genetic heterogeneity of tumors not only has major implica-

tions for targeted cancer therapies but also informs us of the evolu-

tionary history of cancer cells. In the current study, we analyzed the

whole exome of 101 tumor or paratumor samples from 16 MPLC

patients and performed a comprehensive analysis of their genetic

heterogeneity. We identified recurrent mutations in putative cancer

driver genes, which were inferred as events at the early trunk of the

evolutionary history of cancer cells rather than evolutionary conver-

gence of independent mutational events. Taking advantage of mul-

tiple primary lesions in the same MPLC patients as repeated

evolutionary processes within the same genetic/environmental

background, we further tested the conjecture of functional conver-

gence of cancer cells. As a result, the level of genetic heterogeneity

between tumors from the same patient was found to be significantly

increased relative to that within the same tumor to a level comparable

to that between different patients. This observation, which was

confirmed at both the levels of genes and functional pathways,

directly contradicted the evolutionary convergence and thereby cast

doubt on the potential application of personalized MPLC therapies

relying on the evolutionary convergence of different tumors in the

same patient.

There are a few potential caveats to our study worth discussing.

First, it is possible that sample patients with metastasis were

mistakenly diagnosed with MPLC. In this case, the genetic similar-

ities between tumors from the patient should be overestimated

relative to actual MPLC, thereby further diminishing the signal for

adaptive convergence between tumors of the same patient. Second,

although our results are consistent with the early-trunk model and

evolutionary contingency underlying cancer evolution in MPLC, we

emphasize that the precise nature of this result is a lack of evidence

for adaptive convergence; in other words, we cannot reject the null

hypothesis of historical contingency driven by largely neutral evolu-

tion (i.e., compared to other tumor cells, no mutation appears to be

advantageous). It is also possible that the tumors found are in their

early stage and therefore have not been subjected to strong enough

natural selection. Regardless, our results have critical implications for

the clinical treatment of MPLC. That is, tumors from the same MPLC

patient are already as genetically diverse as tumors from different

patients, which in theory would render personalized targeted thera-

pies useless relative to generalized therapies. Third, we have shown

that the assessment of convergence at the level of functional path-

ways could have been skewed by limiting the analysis within cancer

driver genes/pathways. Although we have used well-accepted driver

gene lists (Martinez-Jimenez et al., 2020), it is still possible that other

key driver genes/pathways exist for lung cancer or MPLC. If these

additional drivers were to be discovered, we would repeat our ana-

lyses again to test for functional convergence. However, a total

reversion of the vast difference between the observed and expected

overlap of aberrant molecular functions (Fig. 6B) is highly unlikely. We

therefore believe that our conclusion of a lack of functional conver-

gence will be robust to changes in the list of cancer driver genes/

pathways.
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The evolutionary convergence of cancer cells has long been

presumed without being formally tested (Wu et al., 2016). On the

one hand, this conjecture is not totally unfounded because, after all,

cancers phenotypically converge, as we have defined cancer by, for

example, phenotypic hallmarks (Hanahan and Weinberg 2011). On

the other hand, a high level of genetic heterogeneity also appears to

be the norm (Liu et al., 2016). How can we reconcile such an

apparent inconsistency between genotypic divergence and

phenotypic convergence? In the case of MPLC, it was purported

that convergence was achieved by constraints at the level of

functional pathways, which, according to our analyses, was an

artifact with no actual statistical support (Fig. 6). More importantly,

the whole premise of precision medicine is founded on the idea that

despite their phenotypic convergence, a type of cancer such as

lung cancer could have a vast amount of clinically relevant genetic

heterogeneity. In the case of MPLC, testing whether the between-

tumor (within-patient) heterogeneity is indeed limited due to

convergent evolution, or is just as high as the between-patient

heterogeneity would indicate whether the level of precision

required for MPLC should be per-patient or per-tumor. There is

therefore a clear clinical relevance to our results beyond their

theoretical importance.

Our results are consistent with a previously proposed model of

carcinogenesis, where a few founder cancer cells with a limited

number of driver mutations undergo further near-neutral evolution to

give rise to a large population of cancer cells with a high level of

heterogeneity. Stem cells or other specific functional groups of cells

are possible sources of these founder cells (Chen et al., 2021). A

contrasting, unsupported model was that driver mutations occurring

much later in the evolutionary history of cancer cells were positively

selected and fixed in the cancer cell population, which should lead to

relatively low genetic heterogeneity due to the effect of the selective

sweep caused by positive selection. Indeed, pervasive non-

Darwinian evolution has been observed by intratumor heterogene-

ity analyses in hepatocellular carcinoma (Ling et al., 2015; Zhai et al.,

2017), among others (Williams et al., 2016). To the best of our

knowledge, the results presented herein represent the first evidence

to support non-Darwinian evolution in MPLC.

In the context of evolution theory, our findings that between-

tumor heterogeneity was significantly higher than within-tumor het-

erogeneity strongly suggested that evolution starting from the same

genotype and within the same environment cannot give rise to

convergent outcomes. More surprisingly, the genotypic outcomes

arising from such repeated evolutions were no more similar than

those arising from different genetic backgrounds and different envi-

ronments (different patients). Such observations are compatible with

the notion that the evolution of cancer cells is mostly driven by his-

torical contingency but not adaptive convergence.

As for the mechanism underlying the lack of adaptive convergence,

we suspected that local dispersal among tumors of the samepatient or

even among regions within the same tumor might have limited the

competition among cancer cells and therefore the efficacy of natural

selection (Kerr et al., 2002). Additionally, non-cell-autonomous drivers

for tumor growth and clonal interference (Marusyk et al., 2014) might

have also contributed to the genetic heterogeneity ofMPLC. Resolving

detailed mechanism for the observed non-Darwinian evolution would

be an important future direction for MPLC and other type of tumor with

significant heterogeneity.

Materials and methods

Tumor samples

Patients who had more than one synchronous lung tumor and

who underwent surgical resection with curative intent were eligible
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for inclusion. The tumor size was at least one centimeter. We used a

comprehensive histologic assessment (see below) to distinguish

these tumors as multiple primary lung cancers or intrapulmonary

metastases. This study was reviewed and approved by the Medical

Ethical Committee of The Fifth Affiliated Hospital of Sun Yat-sen

University, China. All participants provided written informed con-

sent. Note that ZDWY7 and ZDWY10were tumor samples taken from

two different surgeries of the same patient, both after neoadjuvant

chemotherapy. Therefore, these two samples were never paired as

between-patient samples.

Whole-exome sequencing data from a previous report (Ma et al.,

2017) of MPLC were also downloaded from NCBI SRA under the

accession number SRP095985. Each downloaded sample is named

according to this previous report through our study. It should be

noted that this dataset contains a total of seven patients (RJLC1-7),

but two of them (RJLC5 and RJLC6) have only one sample

sequenced, which is therefore useless for our analysis and

discarded.

Comprehensive histologic assessment

The diagnostic criteria of multiple primary lung cancers were

based on comprehensive histologic assessment, as used in our

previous work (Cheng et al., 2017). Briefly, we semiquantitatively

evaluated the relative percentage of each histological subtype,

including lepidic, acinar, papillary, micropapillary, and solid com-

ponents, in 10% increments. Additional histological features such

as grade, cytological features, and collagen and inflammatory

stromal characteristics were also considered when comparing

tumors. Paired tumors exhibiting similar histologic features were

considered lung metastases, and those showing different histo-

logic features were considered multiple primaries. Tumors pre-

senting as adenocarcinoma in situ (AIS), minimally invasive

adenocarcinoma (MIA), or lepidic predominant invasive adeno-

carcinoma (LPA) were considered multiple primaries. We also

incorporated a targeted gene (EGFR/ALK/Kras/Ros/Ret) panel test

to confirm the multiple primaries. After MPLC was confirmed, we

performed whole-exome sequencing (WES) on fresh frozen sam-

ples from multiple subsections of each tumor and paired germline

DNA samples.

Tumor collection and processing

All surgically resected tumorswerecut fresh, and the largest section

of tumor of 3 mm thick was sent for pathologic diagnosis without

compromising the bronchial or pleural resection margins. The rest of

the specimens were dissected into multiple subsections for DNA

extraction. We cut each tumor with new, sterile scalpel blades on a

clean surface to avoid contamination with other DNA. At least two

subsections from each tumor, separated by at least 3 mm, were

collected for research purposes. Areas that were obviously necrotic,

fibrotic or hemorrhagic were avoided tomaximize the number of viable

tumor cells. Spatially separated tumor regionswere collected and snap

frozen in liquid nitrogen and stored at �80�C for subsequent DNA

extraction.

DNA extraction

Approximately 3�3�3 mm of tumor tissue from each subsection

was used for genomic DNA extraction using a modification of the

DNA/RNA AllPrep Kit (Qiagen). Peripheral blood or normal lung tissue

was also collected at the time of surgery. DNA was quantified by

Qubit (Invitrogen), and DNA integrity was assessed by TapeStation

(Agilent Technologies).
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Whole-exome sequencing

Whole-exome sequencing was conducted by BGI Shenzhen on a

BGISEQ-500 platform using the DNA extracted from each sample.
Sequence quality control and variant calling

The whole pipeline of sequence quality control and variant calling

generally followed the best practices workflows proposed by the

GATK team (McKenna et al., 2010). Specifically, raw short reads ob-

tained from BGI Shenzhen were first processed by Trimmomatic

(Bolger et al., 2014) to remove sequencing adaptors and short reads

with poor sequencing quality, after which all reads were mapped to

the human genome GRCh38 (Church et al., 2011) by BWA (Li and

Durbin, 2009). The mapping statistics can be found in Table S2. We

then usedGATK tomark and remove duplicated reads and recalibrate

the base quality score before calling the variants in each sample by

MuTect2. The somaticmutations in each tumor samplewere called by

comparing them with the corresponding normal sample via MuTect2

parameters. We considered the full list of somatic mutations, along

with their residing genes (intergenic genomic regions), and the

annotation by EnsEMBLVariant Effect Predictor (VEP) (McLaren et al.,

2016) can be found in Table S3. Finally, the tumor purity of each tumor

sample and cancer cell fraction (CCF) of each mutation were esti-

mated by ABSOLUTE (Carter et al., 2012). The fraction of (driver gene)

mutations shared by a pair of samples was calculated as the number

of mutations shared by the two samples, divided by the number of

unique mutations found in the two samples.
Evolutionary analyses

For each patient, we compiled a list of segregating sites by the

union of all the genomic coordinates that appeared somatically

mutated in at least one tumor sample from the patient. Either the

mutated allele or the germline allele was then extracted from each

sample according to the GATK MuTect2 result and concatenated

with those from other segregating sites to form a genotype sequence

containing only the segregating sites. All genotype sequences from

the different samples of the same patient were used to construct a

maximum likelihood-based phylogenetic tree in MEGA (Kumar et al.,

2018), where the evolutionary relationships of the samples as well as

the ancestral genotypes were also inferred. Each individual somatic

mutation was then assigned to one of the branches on the phylo-

genetic tree. These genotype sequences were also used to calculate

Nei’s genetic distance between samples and compute statistics on

the modulus spaces of phylogenetic trees (Zairis et al., 2014). Nei’s

genetic distance (D) was calculated as

D¼ � log
Sðxiyi þ ð1� xiÞð1� yiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

S
�
x2i þ ð1� xiÞ2

���
S
�
y2i þ ð1� yiÞ2

��r

where, x is all CCFs of sample 1 and y is all CCFs of sample 2. Since

the numbers of sample pairs in the three groups (within-tumor,

between-tumor, and between-patient) are vastly different, we aver-

aged, for each patient, the D values of all relevant sample pairs within

a group, such that all three groups have the same number of data

points and allows paired comparison among groups.

To assess the null expectations of the number of driver mutations,

for each patient, we randomly picked a group of mutations that was

the same number of early-trunk mutations and checked the number

of driver mutations with the group. This process was repeated 10000

times to infer the null distribution of the number of driver mutations

occurring at the early trunk during cancer evolution. All mutations
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from all patients were combined and similarly analyzed as the

“pooled” sample (Fig. 4B).

Gene Ontology analyses

The list of mutated genes in each tumor sample was subjected to

Gene Ontology (GO) analysis to infer aberrant molecular functions,

which were defined as GO terms significantly (by hypergeometric

test) enriched among the mutated genes. GO analyses were per-

formed using the R packages “clusterProfiler” (Yu et al., 2012) and

“org.Hs.eg.db” (Carlson 2019).
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