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Abstract We apply Benacerraf’s distinction between mathematical ontology and mathe-

matical practice (or the structures mathematicians use in practice) to examine contrasting

interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in

the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some

of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro

proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser

declares classical analysis to be a ‘‘primary point of reference for understanding the

eighteenth-century theories.’’ Meanwhile, scholars like Bos and Laugwitz seek to explore

Eulerian methodology, practice, and procedures in a way more faithful to Euler’s own.

Euler’s use of infinite integers and the associated infinite products are analyzed in the

context of his infinite product decomposition for the sine function. Euler’s principle of

cancellation is compared to the Leibnizian transcendental law of homogeneity. The

Leibnizian law of continuity similarly finds echoes in Euler. We argue that Ferraro’s

assumption that Euler worked with a classical notion of quantity is symptomatic of a post-
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Weierstrassian placement of Euler in the Archimedean track for the development of

analysis, as well as a blurring of the distinction between the dual tracks noted by Bos.

Interpreting Euler in an Archimedean conceptual framework obscures important aspects of

Euler’s work. Such a framework is profitably replaced by a syntactically more versatile

modern infinitesimal framework that provides better proxies for his inferential moves.

Keywords Archimedean axiom � Infinite product � Infinitesimal � Law of continuity � Law

of homogeneity � Principle of cancellation � Procedure � Standard part principle �
Ontology � Mathematical practice � Euler � Leibniz

Mathematics Subject Classification Primary 01A50; Secondary 26E35 � 01A85 �
03A05

1 Introduction

This text is part of a broader project of re-appraisal of the Leibniz–Euler–Cauchy tradition

in infinitesimal mathematics that Weierstrass and his followers broke with around 1870.

In the case of Cauchy, our task is made easier by the largely traditionalist scholars

G. Schubring and G. Ferraro. Thus, Schubring distanced himself from the Boyer–Grabiner

line on Cauchy as the one who gave you the epsilon in the following terms: ‘‘I am

criticizing historiographical approaches like that of Judith Grabiner where one sees epsi-

lon-delta already realized in Cauchy’’ (Schubring 2016, Section 3). Ferraro goes even

further and declares: ‘‘Cauchy uses infinitesimal neighborhoods of x in a decisive way...

Infinitesimals are not thought as a mere façon de parler, but they are conceived as num-

bers, though a theory of infinitesimal numbers is lacking’’ (Ferraro 2008, 354). Ferraro’s

comment is remarkable for two reasons:

• it displays a clear grasp of the procedure versus ontology distinction (see below

Sect. 2.4);

• it is a striking recognition of the bona fide nature of Cauchy’s infinitesimals that is a

clear break with Boyer–Grabiner.

Ferraro’s comment is influenced by Laugwitz’s perceptive analysis of Cauchy’s sum

theorem in Laugwitz (1987), a paper cited several times on Ferraro (2008, 354). For further

details on Cauchy see the articles by Błaszczyk et al. (2013, 2016).

In this article, we propose a re-evaluation of Euler’s and, to an extent, Leibniz’s work in

analysis. We will present our argument in four stages of increasing degree of controversy,

so that readers may benefit from the text even if they don’t agree with all of its conclusions.

(1) We argue that Euler’s procedures in analysis are best proxified in modern

infinitesimal frameworks rather than in the received modern Archimedean ones, by

showing how important aspects of his work have been underappreciated or even

denigrated because inappropriate conceptual frameworks are being applied to

interpret his work. To appreciate properly Euler’s work, one needs to abandon

extraneous ontological matters such as the continuum being punctiform (i.e., made

out of points) or nonpunctiform, and focus on the procedural issues of Euler’s actual

mathematical practice.

(2) One underappreciated aspect of Euler’s work in analysis is its affinity to Leibniz’s.

A number of Eulerian procedures are consonant with those found in Leibniz, such as
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the law of continuity (governing the passage from an Archimedean continuum to an

infinitesimal-enriched continuum) and the transcendental law of homogeneity

(governing the passage from an infinitesimal-enriched continuum back to an

Archimedean continuum). This is consistent with the teacher–student lineage from

Leibniz to Johann Bernoulli to Euler.

(3) Leibniz wrote in 1695 that his infinitesimals violate the property expressed by

Euclid’s Definition V.4 (see Leibniz 1695, 288).1 This axiom is a variant of what is

known today as the Archimedean property. Thus, Leibnizian infinitesimals violate

the Archimedean property when compared to other quantities.

(4) Our reading is at odds with the syncategorematic interpretation elaborated in

(Ishiguro 1990, Chapter 5), Arthur (2008), and elsewhere. Ishiguro, Arthur, and

others maintain that Leibniz’s continuum was Archimedean, and that his infinites-

imals do not designate and are logical fictions in the sense of Russell. The leap by

Ishiguro (and her followers) from infinitesimals being fictions to their being logical

fictions is a non-sequitur analyzed by Katz and Sherry (2013) and Sherry and Katz

(2014). Arthur’s interpretation was also challenged in Tho (2012). The fictions in

question are pure rather than logical, meaning that they do designate insofar as our

symbolism allows us to think about infinitesimals. This is consistent with

interpretations of Leibniz by Bos (1974) and Jesseph (2015) (see Sect. 3.2 for a

discussion of Jesseph’s analysis). Euler similarly works explicitly with infinite and

infinitesimal numbers rather than some kind of paraphrase thereof in terms of proto-

Weierstrassian hidden quantifiers.

In ‘‘Appendix’’, we examine the mathematical details of the Eulerian procedures in the

context of his proof of the infinite product decomposition for the sine function and related

results.

In addition to Robinson’s framework, other modern theories of infinitesimals are also

available as possible frameworks for the interpretation of Euler’s procedures, such as

Synthetic Differential Geometry (Kock 2006; Bell 2008) and Internal Set Theory (Nelson

1977; Kanovei and Reeken 2004). See also Nowik and Katz (2015) as well as Kanovei

et al. (2016). Previous studies of the history of infinitesimal mathematics include Katz and

Katz (2011), Borovik and Katz (2012), Bair et al. (2013), Katz et al. (2013), Carroll et al.

(2013), Bascelli et al. (2014), Kanovei et al. (2015).

2 Historiography

It is a subject of contention among scholars whether science (including mathematics)

develops continuously or by discontinuous leaps. The idea of paradigm shift by Kuhn

(1962) is the most famous instance of the discontinuous approach. The discontinuous case

is harder to make for mathematics than for the physical sciences: we gave up on phlogiston

and caloric theory, but we still use the Pythagorean theorem and l’Hôpital’s rule.

1 Actually Leibniz referred to V.5; in some editions of the Elements this Definition does appear as V.5.
Thus, Euclid (1660) as translated by Barrow in 1660 provides the following definition in V.V (the notation
‘‘V.V’’ is from Barrow’s translation): Those numbers are said to have a ratio betwixt them, which being
multiplied may exceed one the other.
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2.1 Continuity and Discontinuity

We argue that the continuous versus discontinuous dichotomy is relevant to understanding

some of the current debates in interpreting classical infinitesimalists like Leibniz and Euler.

Thus, A. Robinson argued for continuity between the Leibnizian framework and his own,

while H. Bos rejected Robinson’s contention in the following terms:

... the most essential part of non-standard analysis, namely the proof of the existence

of the entities it deals with, was entirely absent in the Leibnizian infinitesimal

analysis, and this constitutes, in my view, so fundamental a difference between the

theories that the Leibnizian analysis cannot be called an early form, or a precursor, of

non-standard analysis. (Bos 1974, 83)

Of course, many scholars reject continuity not merely between Robinson’s framework and

historical infinitesimals, but also between the received modern mathematical frameworks

and historical infinitesimals. A case in point is Ferraro’s treatment of an infinitesimal

calculation found in Euler (1730, 11f.). Here Euler sought the value of the ratio
�
1 � x

g=ðfþgÞ�
=g for f ¼ 1 and g ¼ 0 by applying l’Hôpital’s rule to 1�xz

z
. Ferraro proceeds

to present the problem ‘‘from a modern perspective’’ by analyzing the function f ðzÞ ¼ 1�xz

z

and its behavior near z ¼ 0 in the following terms:

From the modern perspective, the problem of extending the function f ðzÞ ¼ 1�xz

z
in a

continuous way means that... the domain D of f(z) has a point of accumulation at 0 so

that we can attempt to calculate the limit as z ! 0, where by k ¼ limz!c f ðzÞ [the c

in Ferraro’s formula needs to be replaced by 0] we mean: given any e[ 0 there

exists a d[ 0 such that if z belongs to D and jzj\d then jf ðzÞ � kj\e; ... This

procedure is substantially meaningless for Euler. (Ferraro 2004, 46, emphasis added)

Ferraro’s concluding remarks concerning ‘‘substantially meaningless’’ procedures place

him in the discontinuity camp.

While there is a great deal of truth in the discontinuous position, particularly with regard

to currently prevalent ontological frameworks (set-theoretic or category-theoretic), we will

argue for a limited reading of the history of analysis from the perspective of continuous

development in the following sense. As we analyze the history of analysis since the

seventeenth century, we note stark differences among the objects with which mathe-

maticians reason; there are for example no sets as explicit mathematical objects in Leibniz

or Euler. On the other hand, there are important continuities in the principles which guide

the inferences that they draw; for example, Leibniz’s transcendental law of homogeneity,

Euler’s principle of cancellation, and the standard part principle exploited in analysis over

a hyperreal extension R � �R.

The crucial distinction here is between practice and ontology, as we detail below in

Sect. 2.4. We will argue that there is a historical continuity in mathematical practice but

discontinuity in mathematical ontology. More specifically, the set-theoretic semantics that

currently holds sway is a discontinuity with respect to the historical evolution of mathe-

matics. Scholars at times acknowledge the distinction in relation to their own work, as

when Ferraro speaks about the intensional nature of the entities in Euler in (Ferraro 2004,

44) and the syntactic nature of algebraic and analytic operations (Ferraro 2008, 203), but

not always when it comes to passing judgment on Laugwitz’s work; see Sect. 2.2.
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2.2 Procedures and Proxies

In the case of Euler, we will examine philosophical issues of interpretation of infinitesimal

mathematics (more specifically, the use of infinitesimals and infinite integers) and seek to

explore the roots of the current situation in Euler scholarship, which seems to be something

of a dialog of the deaf between competing approaches. Some aspects of Euler’s work in

analysis were formalized in terms of modern infinitesimal theories by Laugwitz, McKinzie,

Tuckey, and others. Referring to the latter, G. Ferraro claims that ‘‘one can see in operation

in their writings a conception of mathematics which is quite extraneous to that of Euler’’

(Ferraro 2004, 51, emphasis added). Ferraro concludes that ‘‘the attempt to specify Euler’s

notions by applying modern concepts is only possible if elements are used which are

essentially alien to them, and thus Eulerian mathematics is transformed into something

wholly different’’ (Ferraro 2004, 51–52, emphasis added).

Now quite extraneous and essentially alien are strong criticisms. The vagueness of the

phrase ‘‘to specify Euler’s notions by applying modern concepts’’ makes it difficult to

evaluate Ferraro’s claim here. If specification amounts to bringing to light tacit assump-

tions in Euler’s reasoning, then it is hard to see why Ferraro uses such harsh language.

We find a different attitude in P. Reeder’s approach to Euler. Reeder writes:

I aim to reformulate a pair of proofs from [Euler’s] Introductio using concepts and

techniques from Abraham Robinson’s celebrated non-standard analysis (NSA). I will

specifically examine Euler’s proof of the Euler formula and his proof of the diver-

gence of the harmonic series. Both of these results have been proved in subsequent

centuries using epsilontic (standard epsilon-delta) arguments. The epsilontic argu-

ments differ significantly from Euler’s original proofs. (Reeder 2012, 6)

Reeder concludes that ‘‘NSA possesses the tools to provide appropriate proxies of the

inferential moves found in the Introductio.’’ Reeder finds significant similarities between

some of Euler’s proofs and proofs in a hyperreal framework. Such similarities are missing

when one compares Euler’s proofs to proofs in the �; d tradition. We take this to mean that

Euler’s conception has more in common with the syntactic resources available in a modern

infinitesimal tradition than in the �; d tradition.

Scholars thus appear to disagree sharply as to the relevance of modern theories to

Euler’s mathematics, and as to the possibility of meaningfully reformulating Euler’s

infinitesimal mathematics in terms of modern theories.

2.3 Precalculus or Analysis?

Having mentioned Euler’s Introductio, we would like to clarify a point concerning the

nature of this book. Blanton writes in his introduction that ‘‘the work is strictly pre-

calculus’’ (Euler 1988, xii). Is this an accurate description of the book? It is worth keeping

the following points in mind.

(1) The algebraic nature of the Introductio was mirrored 70 years later by Cauchy’s

Cours d’Analyse, which was subtitled Analyse Algebrique. Laugwitz noted in fact

that Cours d’Analyse was modeled on Euler’s Introductio (Laugwitz 1999, 52).

(2) There may not be much material related to differentiation in Introductio, but series

are dealt with extensively. Series certainly being part of analysis, it seems more

reasonable to describe Introductio as analysis than precalculus.
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(3) Infinitesimals in Introductio and differentials in Institutiones are arguably of similar

nature. Leibniz already thought of differentials as infinitesimals, as did Johann

Bernoulli. There is little reason to assume otherwise as far as Euler is concerned,

particularly since he viewed all his analysis books as a unified whole.

To elaborate further on item (3), note that Euler writes in his Institutionum calculi inte-

gralis as follows: ‘‘In calculo differentiali iam notavi, quaestionem de differentialibus non

absolute sed relative esse intelligendam, ita ut, si y fuerit function quaecunque ipsius x,

non tam ipsum eius differentiale dy, quam eius ratio ad differentiale dx sit definienda’’

Euler (1768–1770, 6). This can be translated as follows: ‘‘Now in differential calculus I

have observed that an investigation of differentiation is to be understood as not absolute

but relative; namely, if y is a function of x, what one needs to define is not so much its

differential dy itself as its ratio to the differential dx.’’

The comment indicates that throughout the period 1748–1768, Euler thinks of

infinitesimals and differentials as essentially interchangeable.

2.4 Practice Versus Ontology

In an influential essay ‘‘The Relation Between Philosophy of Science and History of

Science,’’ M. Wartofsky argues that historiography of science needs to begin its analysis by

mapping out an ontology of the scientific field under investigation. Here ontology is to be

understood in a broader sense than merely the ontology of the entities exploited in that

particular science—such as numbers, functions, sets, etc., in the case of mathematics—but

rather to develop the ontology of mathematics as a scientific theory itself (Wartofsky 1976,

723).

As a modest step in this direction we distinguish between the (historically relative)

ontology of the mathematical objects in a certain historical setting, and its procedures,

particularly emphasizing the different roles these components play in the history of

mathematics. More precisely, our procedures are representative of what Wartofsky called

the praxis characteristic of the mathematics of a certain time period, and our ontology takes

care of the mathematical objects recognized at that time.

To motivate our adherence to procedural issues, we note that there is nothing wrong in

principle with investigating pure ontology. However, practically speaking attempts by

historians to gain insight into Euler’s ontology (as opposed to procedures) have a tendency,

to borrow Joseph Brodsky’s comment in his introduction to Andrei Platonov’s novel The

Foundation Pit, to choke on their own subjunctive mode, as richly illustrated by an on-

tological passage that we quote in Sec. 2.8.

The dichotomy of mathematical practice versus ontology of mathematical entities has

been discussed by a number of authors including W. Quine, who wrote: ‘‘Arithmetic is, in

this sense, all there is to number: there is no saying absolutely what the numbers are; there

is only arithmetic’’ (Quine 1968, 198).

For our purposes it will be more convenient to rely on Benacerraf’s framework.

Benacerraf (1965) pointed out that if observer E learned that the natural numbers ‘‘are’’ the

Zermelo ordinals

£; f£g; ff£gg; . . .;

while observer J learned that they are the von Neumann ordinals

£; f£g; f£; f£gg; . . .
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then, strictly speaking, they are dealing with different things. Nevertheless, observer E’s actual

mathematical practice (and the mathematical structures he is interested in) is practically the

same as observer J’s. Hence, different ontologies may underwrite one and the same practice.

For observer E, the entity 0 is not an element of the entity 2, while for observer J it is.

But for both of them the relation 0\2 holds. Benacerraf’s point is that although mathe-

maticians carry on their reasoning in terms of some objects or others, the particular objects

are not so important as the relations among those objects. The relations may be the same,

even though the objects are different.

We would extend this insight beyond differences in set-theoretic foundations and argue

that even though Euler reasons about quantities and Robinson reasons about sets (or types),

they both agree, for example, that a þ dx ¼ a for infinitesimal dx in a suitable generalized

sense of equality. This is made precise in a hyperreal framework via the standard part

principle; see Sect. 3.3 for more details.

This distinction relativizes the import of ontology in understanding mathematical

practice. A year after the publication of Benacerraf’s text, a related distinction was made

by Robinson in syntactic/procedural terms:

...the theory of this book ... is presented, naturally, within the framework of contemporary

Mathematics, and thus appears to affirm the existence of all sorts of infinitary entities.

However, from a formalist point of view we may look at our theory syntactically and may

consider that what we have done is to introduce new deductive procedures rather than

new mathematical entities. (Robinson 1966, 282, emphasis in the original)

In short, we have, on the one hand, the ontological issue of giving a foundational account

for the entities, such as infinitesimals and infinite integers, that classical infinitesimalists

may be working with. On the other hand, we have their procedures, or inferential moves,

termed syntactic by Robinson. What interests Euler scholars like Laugwitz is not Euler’s

ontology but the syntactic procedures of his mathematical practice. The contention that

B-track formalisations (see Sect. 2.5) provide better proxies for Euler’s procedures and

inferential moves than A-track formalisations, is a methodological or instrumentalist rather

than an ontological or foundational matter.

To quote H. Pulte: ‘‘Philosophy of science today should offer a more accurate analysis

to history of science without giving up its task – not always appreciated by historians – to

uncover the basic concepts and methods which seem relevant for the understanding of

science in question’’ (Pulte 2012, 184, emphasis added). Lagrange’s approach in his 1788

Méchanique analytique was remarkably modern in its instrumentalism:

Neither are the metaphysical premises of his mechanics made explicit, nor is there

any epistemological justification given for the presumed infallible character of the

basic principles of mechanics. This is in striking contrast not only to seventeenth

century foundations of mechanics such as that of Descartes, Leibniz, and Newton but

also to the approaches of Lagrange’s immediate predecessors, Euler, Maupertuis, or

d’Alembert ... In short, a century after Newton’s Principia, Lagrange’s textbook can

be seen as an attempt to update the mathematical principles of natural philosophy

while abandoning the traditional subjects of philosophia naturalis. In this special

sense, the Méchanique analitique [sic] is also a striking example of mathematical

instrumentalism. (Pulte 1998, 158, emphasis in the original)

Two and a quarter centuries after Lagrange’s instrumentalist approach, perhaps a case can

be made in favor of a historiography focusing on methodological issues accompanied by an

instrumentalist caution concerning metaphysics and/or ontology of mathematical entities
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like numbers and quantities. This is in line with Pulte’s insightful comment made in the

context of the study of rational mechanics in the eighteenth century: ‘‘Euclideanism

continues to be the ideal of science, but it becomes a syntactical rather than a semantical

concept of science’’ (Pulte 2012, 192).

2.5 A-track and B-track from Klein to Bos

The sentiment that there have been historically at least two possible approaches to the

foundations of analysis, involving dual methodology, has been expressed by a number of

authors.

In 1908, Felix Klein described a rivalry of two types of continua in the following terms.

Having outlined the developments in real analysis associated with Weierstrass and his

followers, Klein pointed out that ‘‘The scientific mathematics of today is built upon the

series of developments which we have been outlining. But an essentially different con-

ception of infinitesimal calculus has been running parallel with this [conception] through

the centuries’’ (Klein 1932, 214). Such a different conception, according to Klein, ‘‘harks

back to old metaphysical speculations concerning the structure of the continuum according

to which this was made up of ... infinitely small parts’’ (ibid.). Thus according to Klein

there is not one but two separate tracks for the development of analysis:

(A) the Weierstrassian approach (in the context of an Archimedean continuum); and

(B) the approach with indivisibles and/or infinitesimals (in the context of what could be

called a Bernoullian continuum).

For additional details on Klein see Sect. 4.3.

A similar distinction can be found in Henk Bos’s seminal 1974 study of Leibnizian

methodology. Here Bos argued that distinct methodologies, based respectively on

(Archimedean) exhaustion and on infinitesimals, are found in the work of seventeenth and

eighteenth century giants like Leibniz and Euler:

Leibniz considered two different approaches to the foundations of the calculus; one

connected with the classical methods of proof by ‘‘exhaustion’’, the other in con-

nection with a law of continuity. (Bos 1974, 55)

The first approach mentioned by Bos relies on an ‘‘exhaustion’’ methodology in the context

of an Archimedean continuum. Exhaustion methodology is based on proofs by reductio ad

absurdum and the ancient theory of proportion, which, as is generally thought today, is

based on the Archimedean axiom.2

2 We note, in the context of Leibniz’s reference to Archimedes, that there are other possible interpretations
of the exhaustion method of Archimedes. The received interpretation, developed in Dijksterhuis (1987), is in
terms of the limit concept of real analysis. However, Wallis (1685, 280–290) developed a different inter-
pretation in terms of approximation by infinite-sided polygons. The ancient exhaustion method has two
components:

(1) geometric construction, consisting of approximation by some simple figure, e.g., a polygon or a line
built of segments,

(2) justification carried out in the theory of proportion as developed in Elements Book V.

In the seventeenth century, mathematicians adopted the first component, and developed alternative justifi-
cations. The key feature is the method of exhaustion is the logical structure of its proof, namely reductio ad
absurdum, rather than the nature of the background continuum. The latter can be Bernoullian, as Wallis’
interpretation shows.
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One way of formulating the axiom is to require that every positive number can be added

to itself finitely many times to obtain a number greater than one. The adjective Archi-

medean in this sense was introduced by O. Stolz in the 1880s (see Sect. 3.9). We will refer

to this type of methodology as the A-methodology.

Concerning the second methodology Bos notes: ‘‘According to Leibniz, the use of

infinitesimals belongs to this kind of argument’’ (Bos 1974, 57). We will refer to it as the

B-methodology, in an allusion to Johann Bernoulli (whose work formed the basis for

l’Hôpital 1696), who, having learned an infinitesimal methodology from Leibniz, never

wavered from it.

The Leibnizian laws such as the law of continuity mentioned by Bos in the passage cited

above, as well as the transcendental law of homogeneity mentioned in Bos (1974, 33), find

close procedural analogs in Euler’s work, and indeed in Robinson’s framework. The

transcendental law of homogeneity is discussed in Sect. 3.3 and the law of continuity in

Sect. 3.6.

In 2004, Ferraro appeared to disagree with Bos’s dual track assessment, and argued for

what he termed a ‘‘continuous leap’’ between (A-track) limits and (B-track) infinitesimals

in Euler’s work; see Sect. 4.10.

2.6 Mancosu and Hacking

To support our contention that there exist two distinct viable tracks for the development of

analysis, we call attention to Mancosu’s critique of Gödel’s heuristic argument for the

inevitability of the Cantorian cardinalities as the only plausible theory of the infinite.

Gödel’s argued that

the number of objects belonging to some class does not change if, leaving the objects

the same, one changes in any way whatsoever their properties or mutual relations

(e.g. their colors or their distribution in space). (Gödel 1990, 254)

Mancosu argues that recent theories on numerosities undermine Gödel’s assumption. These

were developed in Benci and Nasso (2003) as well as Nasso and Forti (2010) and

elsewhere.3 Mancosu concludes that

having a different way of counting infinite sets shows that while Gödel gives voice to

one plausible intuition about how to generalize ‘number’ to infinite sets there are

coherent alternatives. (Mancosu 2009, 638)

Inspired in part by Mancosu (2009), Ian Hacking proposes a distinction between the

butterfly model and the Latin model, namely the contrast between a model of a

deterministic biological development of animals like butterflies, as opposed to a model of a

contingent historical evolution of languages like Latin. For a further discussion of

Hacking’s views see Sect. 5 below.

3 A technical comment on numerosities is in order. A numerosity is a finitely additive measure-like function
defined on an algebra of sets, which takes values in the positive half of a non-Archimedean ordered ring. A
numerosity is elementary if and only if it assigns the value 1 to every singleton in the domain, so that the
numerosity of any finite set is then equal to its number of elements. Therefore any elementary numerosity
can be viewed as a generalization of the notion of finite quantity. Numerosities are sometimes useful in
studies related to Lebesgue-like and similar measures, where they help to ‘‘individualize’’ classically infinite
measure values, associating them with concrete infinitely large elements of a chosen non-Archimedean
ordered ring or field. As a concept of infinite quantity, numerosities have totally different properties, as well
as a totally different field of applications, than the Cantorian cardinals.
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2.7 Present-Day Standards

Bos’s comment on Robinson cited at the beginning of Sect. 2.1 is not sufficiently sensitive

to the dichotomy of practice (or procedures) versus ontology (or foundational account for

the entities) as analyzed in Sect. 2.4. Leibnizian procedures exploiting infinitesimals find

suitable proxies in the procedures in the hyperreal framework; see Reeder (2013) for a

related discussion in the context of Euler. The relevance of such hyperreal proxies is in no

way diminished by the fact that set-theoretic foundations of the latter (‘‘proof of the

existence of the entities,’’ as Bos put it) were obviously as unavailable in the seventeenth

century as set-theoretic foundations of the real numbers.

In the context of his discussion of ‘‘present-day standards of mathematical rigor’’, Bos

writes:

it is understandable that for mathematicians who believe that these present-day

standards are final, nonstandard analysis answers positively the question whether,

after all, Leibniz was right. (Bos 1974, 82, emphasis added)

The context of the discussion makes it clear that Bos’s criticism targets Robinson. If so,

Bos’s criticism suffers from a strawman fallacy, for Robinson specifically wrote that he did

not consider set theory to be the foundation of mathematics. Being a formalist, Robinson

did not subscribe to the view attributed to him by Bos that ‘‘present-day standards are

final.’’ Robinson expressed his position on the status of set theory as follows: ‘‘an infinitary

framework such as set theory ... cannot be regarded as the ultimate foundation for

mathematics’’ (Robinson 1969, 45), see also Robinson (1966, 281). Furthermore, contrary

to Bos’s claim, Robinson’s goal should not be seen as showing that ‘‘Leibniz was right’’

(see above). Rather, Robinson’s goal was to provide hyperreal proxies for the inferential

procedures commonly found in Leibniz as well as Euler and Cauchy. Leibniz’s procedures,

involving as they do infinitesimals and infinite numbers, seem far less puzzling when

compared to their B-track hyperreal proxies than from the viewpoint of the traditional

A-track frameworks; see Sect. 2.5.

2.8 Higher Ontological Order

We wish to emphasize that we do not hold that it is only possible to interpret Euler in terms

of modern formalisations of his procedures. Discussions of Eulerian ontology could

potentially be fruitful. Yet some of the existing literature in this direction tends to fall short

of a standard of complete lucidity. Thus, Panza quotes Euler to the effect that ‘‘Just as from

the ideas of individuals the idea of species and genus are formed, so a variable quantity is

the genus in which are contained all determined quantities,’’ and proceeds to explicate this

as follows:

As constant quantities are determined quantities, this is the same as claiming that a

variable quantity is the genus in which are contained all constant quantities. A

variable quantity is thus a sort of a formal characterization of quantity as such. Its

concept responds to a need for generality, i.e. a need of studying the essential

properties of any object of a certain genus, the properties that this object has insofar

as it belongs to such a genus. But, according to Euler, this study has to have its own

objects. In order to identify these objects, it is necessary to sever these essential

properties from any other property that characterizes any object falling under the

same genus. If the genus is that of quantities, one has thus to identify some objects
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that are not specific (and, a fortiori, particular) quantities and pertain thus to a higher

ontological order than that to which specific quantities pertain. (Panza 2007, 8–9,

emphasis added)

We are somewhat confused by this passage which seems to be ontological in nature. Since

ontology is not our primary concern here (see Sect. 2.4), we will merely propose further

investigation into the nature of variable quantities.

3 Our Reading of Leibniz and Euler

The book Introductio in Analysin Infinitorum (Euler 1748) contains remarkable calcula-

tions carried out in a framework where the basic algebraic operations are applied to

infinitely small and infinitely large quantities.

3.1 Exponential Function

In Chapter 7 on exponentials and logarithms expressed through series, we find a derivation

of the power series for the exponential function az starting from the formula

ax ¼ 1 þ kx: ð1Þ

Here x is infinitely small, while k is finite. Euler specifically describes the infinitesimal x
as being nonzero; see Sect. 4.8. Euler then raises Eq. (1) to the infinitely great power i ¼ z

x
for a finite z to give

az ¼ aix ¼ ð1 þ kxÞi: ð2Þ

He then expands the right hand side of (2) into a power series by means of the binomial

formula. In the chapters that follow, Euler finds infinite product decompositions for

transcendental functions (see Sect. 3.5 below where we analyze his infinite product for-

mula for sine). In this section, we argue that the underlying principles of Euler’s mathe-

matics are closer to Leibniz’s than is generally recognized.

3.2 Useful Fictions

We argue in this subsection that Euler follows Leibniz both ontologically and method-

ologically. On the one hand, Euler embraces infinities as well-founded fictions; on the

other, he distinguishes assignable quantities from inassignable quantities.

The nature of infinitesimal and infinitely large quantities is dealt with in Chapter 3 of

Institutiones Calculi Differentialis (Euler 1755). We cite Blanton’s English translation of

the Latin original:

[e]ven if someone denies that infinite numbers really exist in this world, still in

mathematical speculations there arise questions to which answers cannot be given

unless we admit an infinite number.4 (Euler 2000, §82)

4 In the original Latin this reads as follows: ‘‘Verum ut ad propositum revertamus, etiamsi quis neget in
mundo numerum infinitum revera existere; tamen in speculationibus mathematicis saepissime occurrunt
questiones, ad quas, nisi numerus infinitus admittatur, responderi non posset.’’ Note that the Latin uses the
subjunctive neget (rather than negat), which is the mode used for a ‘‘future less vivid’’ condition: not ‘‘even
if someone denies’’ but rather ‘‘even if someone were to deny.’’

Interpreting the Infinitesimal Mathematics of Leibniz and… 205

123



Here Euler argues that infinite numbers are necessary ‘‘in mathematical speculations’’ even

if someone were to deny ‘‘their existence in this world’’. Does this passage indicate that

Euler countenances the possibility of denying that ‘‘infinite numbers really exist in this

world’’? His position can be fruitfully compared with that of the scholars of the preceding

generation. Those disagreed on the issue of the existence of infinitesimal quantities.

Bernoulli, l’Hôpital, and Varignon staunchly adhered to the existence of infinitesimals,

while Leibniz adopted a more nuanced stance. Leibniz’s correspondence emphasized two

aspects of infinitesimal and infinite quantities: they are

(1) useful fictions and

(2) inassignable quantities.

It is important to clarify the meaning of the Leibnizian term fiction. Infinitesimals are to be

understood as pure fictions rather than logical fictions, as discussed in Sect. 1; see Katz and

Sherry (2012), Katz and Sherry (2013), and Sherry and Katz (2014). Furthermore, the work

Jesseph (2015) shows that Leibniz’s strategy for paraphrasing B-methods in terms of

A-methods has to presume the correctness of an infinitesimal inference (more precisely, an

inference exploiting infinitesimals), namely identifying the tangent to a curve. In the case

of conic sections this succeeds because the tangents are already known from Apollonius.

But for general curves, and in particular for transcendental curves treated by Leibniz,5 non-

Archimedean infinitesimals remain an irreducible part of the Leibnizian framework,

contrary to Ishiguro (1990, chapter 5). This argument is developed in more detail in

Bascelli et al. (2016).

Similarly to Leibniz, Euler exploited the dichotomy of assignable versus inassignable,

and mentioned the definition of infinitesimals as being smaller than every assignable

quantity, as well as the definition of infinite numbers as being greater than every assignable

quantity; see Gordon et al. (2002, 17, 19f.). Thus, Euler writes: ‘‘if z becomes a quantity

less than any assignable quantity, that is, infinitely small, then it is necessary that the value

of the fraction 1 / z becomes greater than any assignable quantity and hence infinite’’

(Euler 2000, §90).

Euler’s wording in (Euler 2000, §82), making the usefulness of infinite numbers in-

dependent of their ‘‘existence in this world,’’ suggests that his position is closer to a

Leibnizian view that infinitesimals are useful (or well-founded) fictions. Euler goes on to

note that

an infinitely small quantity is nothing but a vanishing quantity, and so it is

really ¼ 0.6 (Euler 2000, §83)

Euler’s term nihil is usually translated as nothing by Blanton. However, in Introductio,

§114, Blanton translates ‘‘tantum non nihilo sit aequalis’’ as ‘‘just not equal to zero’’ where

it should be ‘‘just not equal to nothing’’ (see Sect. 4.8). Granted, ‘‘equal to nothing’’ would

sound awkward, but Euler seems to distinguish it from ‘‘equal to zero’’. It is tempting to

conjecture that nihil might be equivalent to ‘‘exactly equal to zero’’, whereas cyphra is the

term for a quantity whose only possible assignable value is zero, or ‘‘shadow zero’’.

Meanwhile in Institutiones §84, Euler writes ‘‘duae quaevis cyphrae ita inter se sunt

5 Leibniz applies his method in his de Quadratura Arithmetica to find the quadrature of general cycloidal
segments (Edwards 1979, 251). Here also the calculation exploits the family of tangent lines.
6 In the original Latin this reads as follows: ‘‘Sed quantitas infinite parva nil aliud est nisi quantitas
evanescens, ideoque revera erit ¼ 0.’’ Note that the equality sign ‘‘¼’’ and the digit ‘‘0’’ are both in the
original. While Euler writes ‘‘revera erit ¼ 0’’ in §83, in the next §84 the formulation is ‘‘revera esse
cyphram.’’
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aequales, ut earum differentia fit nihil.’’ This can be translated as follows: ‘‘two zeros are

equal to each other, so that there is no difference between them.’’ This phrase is part of a

larger sentence that reads as follows in translation: ‘‘Although two zeros are equal to each

other, so that there is no difference between them, nevertheless, since we have two ways to

compare them, either arithmetic or geometric, let us look at quotients of quantities to be

compared in order to see the difference’’ (Euler 2000, 51).

This could be interpreted as saying that two instances of cyphra could be equal arith-

metically but not geometrically. The distinction between cyphra and nihil could potentially

give a satisfactory account for the Eulerian hierarchy of zeros.

3.3 Law of Homogeneity from Leibniz to Euler

As analyzed in Sect. 3.2, Euler insists that the relation of equality holds between any

infinitesimal and zero. Similarly, Leibniz worked with a generalized relation of ‘‘equality’’

which was an equality up to a negligible term. Leibniz codified this relation in terms of his

transcendental law of homogeneity (TLH), or lex homogeneorum transcendentalis in the

original Latin Leibniz (1710). Leibniz had already referred to the law of homogeneity in

his first work on the calculus: ‘‘quantitates differentiales, quae solae supersunt, nempe

dx, dy, semper reperiuntur extra nominatores et vincula, et unumquodque membrum

afficitur vel per dx, vel per dy, servata semper lege homogeneorum quoad has duas

quantitates, quomodocunque implicatus sit calculus’’ Leibniz (1684) (emphasis added).

This can be translated as follows: ‘‘the only remaining differential quantities, name-

ly dx, dy, are found always outside the numerators and roots, and each member is acted on

by either dx, or by dy, always with the law of homogeneity maintained with regard to these

two quantities, in whatever manner the calculation may turn out.’’

The TLH governs equations involving differentials. Bos interprets it as follows:

A quantity which is infinitely small with respect to another quantity can be neglected

if compared with that quantity. Thus all terms in an equation except those of the

highest order of infinity, or the lowest order of infinite smallness, can be discarded.

For instance,

a þ dx ¼ a

dx þ ddy ¼ dx
ð3Þ

etc. The resulting equations satisfy this ... requirement of homogeneity. (Bos

1974, 33)

(here the expression ddx denotes a second-order differential obtained as a second

difference). Thus, formulas like Euler’s

a þ dx ¼ a ð4Þ

(where a ‘‘is any finite quantity’’, Euler 2000, §§86, 87) belong in the Leibnizian tradition

of drawing inferences in accordance with the TLH and as reported by Bos in formula (3)

above. The principle of cancellation of infinitesimals was, of course, the very basis of the

technique, as articulated for example in l’Hôpital (1696) (see also Sect. 4.1). However, it

was also the target of Berkeley’s charge of a logical inconsistency (Berkeley 1734). This
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can be expressed in modern notation by the conjunction ðdx 6¼ 0Þ ^ ðdx ¼ 0Þ. But the

Leibnizian framework does not suffer from an inconsistency of type ðdx 6¼ 0Þ ^ ðdx ¼ 0Þ
given the more general relation of ‘‘equality up to’’; in other words, the dx is not identical

to zero but is merely discarded at the end of the calculation in accordance with the TLH;

see further in Sect. 4.13.

3.4 Relations (pl.) of Equality

What Euler and Leibniz appear to have realized more clearly than their contemporaries is that

there is more than one relation falling under the general heading of ‘‘equality’’. Thus, to

explain formulas like (4), Euler elaborated two distinct ways, arithmetic and geometric, of

comparing quantities. He described the two modalities of comparison in the following terms:

Since we are going to show that an infinitely small quantity is really zero [cyphra],

we must meet the objection of why we do not always use the same symbol 0 for

infinitely small quantities, rather than some special ones... [S]ince we have two ways

to compare them [a more precise translation would be ‘‘there are two modalities of

comparison’’], either arithmetic or geometric, let us look at the quotients of quan-

tities to be compared in order to see the difference. (Euler 2000 §84)

Furthermore,

If we accept the notation used in the analysis of the infinite, then dx indicates a

quantity that is infinitely small, so that both dx ¼ 0 and a dx ¼ 0, where a is any

finite quantity. Despite this, the geometric ratio a dx : dx is finite, namely a : 1. For

this reason, these two infinitely small quantities, dx and a dx, both being equal to 0,

cannot be confused when we consider their ratio. In a similar way, we will deal with

infinitely small quantities dx and dy. (ibid., emphasis added)

Having defined the two modalities of comparison of quantities, arithmetic and geometric,

Euler proceeds to clarify the difference between them as follows:

Let a be a finite quantity and let dx be infinitely small. The arithmetic ratio of equals

is clear: Since ndx ¼ 0, we have

a � ndx � a ¼ 0: ð5Þ

On the other hand, the geometric ratio is clearly of equals, since

a � ndx

a
¼ 1: ð6Þ

(Euler 2000, §87).

While Euler speaks of distinct modalities of comparison, he writes them down

symbolically in terms of two distinct relations, both denoted by the equality sign ‘‘¼’’;

namely, (5) and (6). Euler concludes as follows:

From this we obtain the well-known rule that the infinitely small vanishes in com-

parison with the finite and hence can be neglected [with respect to it]. (Euler

2000, §87, emphasis in the original)
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The ‘‘well-known rule’’ is an allusion to l’Hôpital’s Demande ou Supposition discussed in

Sect. 4.1.

Note that in the Latin original, the italicized phrase reads infinite parva prae finitis

evanescant, atque adeo horum respectu reiici queant. The words ‘‘with respect to it’’

(horum respectu) do not appear in Blanton’s translation. We restored them because of their

importance for understanding Euler’s phrase. The term evanescant can mean either vanish

or lapse, but the term prae makes it read literally as ‘‘the infinitely small vanishes before

(or by the side of) the finite’’, implying that the infinitesimal disappears because of the

finite, and only once it is compared to the finite.

To comment on Euler’s phrase in more detail, a possible interpretation is that any

motion or activity involved in the term evanescant does not indicate that the infinitesimal

quantity is a dynamic entity that is (in and of itself) in a state of disappearing, but rather is a

static entity that changes, or disappears, only ‘‘with respect to’’ (horum respectu) a finite

entity. To Euler, the infinitesimal has a different status depending on what it is being

compared to. The passage suggests that Euler’s usage accords more closely with reasoning

exploiting static infinitesimals than with dynamic limit-type reasoning.

Euler proceeds to present the usual rules going back to Leibniz, L’Hôpital, and the

Bernoullis, such as

a dxm þ b dxn ¼ a dxm ð7Þ

provided m\n ‘‘since dxn vanishes compared with dxm’’ (ibid., §89), relying on his

geometric comparison. Euler introduces a distinction between infinitesimals of different

order, and directly computes a ratio dx�dx2

dx
of two particular infinitesimals by means of the

calculation

dx � dx2

dx
¼ 1 � dx ¼ 1; ð8Þ

assigning the value 1 to it (ibid., §88). Note that rather than proving that the expression is

equal to 1 (such indirect proofs are a trademark of the �; d approach), Euler directly

computes (what would today be formalized as the standard part of) the expression.7 Euler

combines the informal and formal stages by discarding the higher-order infinitesimal as in

(6) and (8). Such an inferential move is formalized in modern infinitesimal analysis in

terms of the standard part function or shadow; see Sect. 4.2. Euler concludes:

Although all of them [infinitely small quantities] are equal to 0, still they must be

carefully distinguished one from the other if we are to pay attention to their mutual

relationships, which has been explained through a geometric ratio (ibid., §89).

Like Leibniz in his Symbolismus (Leibniz 1710), Euler considers more than one way of

comparing quantities. Euler’s formula (6) indicates that his geometric comparison is

procedurally identical with the Leibnizian TLH (see Sect. 3.3): namely, both Euler’s

geometric comparison and Leibniz’s TLH involve discarding higher-order terms in the

context of a generalized relation of equality, as in (6) and (7).

Note that there were alternative theories around 1700, such as the one proposed by

Nieuwentijt. Nieuwentijt’s system, unlike Leibniz’s system, possessed only first-order

7 To give an elementary example, the determination of the limit lim
x!0

xþx2

x
in the �; d approach would involve

first guessing the correct answer, L ¼ 1, by using informal reasoning with small quantities; and then for-

mally choosing a suitable d for every � in such a way that xþx2

x
turns out to be within � of L if jxj\d.
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infinitesimals with square zero (Nieuwentijt 1695; Vermij 1989; Mancosu 1996, chap-

ter 6). It is clear that the Eulerian hierarchy of orders of infinitesimals follows Leibniz’s

lead.

Euler’s geometric comparison was dubbed ‘‘the principle of cancellation’’ in Ferraro

(2004, 47); see Sect. 4.4 for a more detailed discussion of Euler’s zero infinitesimals.

3.5 Infinite Product Formula for Sine

In Sect. 2.5 we analyzed a pair of approaches to interpreting the work of the pioneers of

analysis, namely the A-track in the context of an Archimedean continuum, and the B-track

in the context of a Bernoullian continuum (an infinitesimal-enriched continuum). We

explore a B-track framework as a proxy for the Eulerian procedures; here we leave aside

the ontological or foundational issues, as discussed in Sect. 2.4. We will analyze specific

procedures and inferential moves in Euler’s oeuvre and argue that the essential use he

makes of both infinitesimals and infinite integers is accounted for more successfully in a

B-track framework.

The fruitfulness of Euler’s approach based on infinitesimals can be illustrated by some

of the remarkable applications he obtained. Thus, Euler derived an infinite product

decomposition for the sine and sinh functions of the following form:

sinh x ¼x 1 þ x2

p2

� �
1 þ x2

4p2

� �
1 þ x2

9p2

� �
1 þ x2

16p2

� �
. . . ð9Þ

sin x ¼x 1 � x2

p2

� �
1 � x2

4p2

� �
1 � x2

9p2

� �
1 � x2

16p2

� �
. . . ð10Þ

(see Euler 1748, §§155–164). Here (10) generalizes an infinite product formula for p
4

(or p
2
)

due to Wallis; see Wallis 1656/2004, Proposition 191. Namely, Wallis obtained the fol-

lowing infinite product:

Y

n¼1

2n

2n � 1
� 2n

2n þ 1

� �
¼ 2

1
� 2

3
� 4

3
� 4

5
� 6

5
� 6

7
� 8

7
� 8

9
� � � ¼ p

2
:

Evaluating Euler’s product decomposition sin x
x

¼
Q

n¼1 1 � x2

n2p2

� �
at x ¼ p

2
one

obtains 2
p ¼

Q
n¼1 1 � 1

4n2

� �
or p

2
¼

Q
n¼1

4n2

4n2�1

� �
. It follows that p

2
¼

Q
n¼1

2n
2n�1

� 2n
2nþ1

� �
, in

other words p
2
¼ 2

1
� 2

3
� 4

3
� 4

5
� 6

5
� 6

7
� � �.

Euler also summed the inverse square series: 1 þ 1
4
þ 1

9
þ 1

16
þ � � � ¼ p2

6
; this is the so-

called Basel problem. This identity results from (10) by comparing the coefficient of x3 of

the two sides and using the Maclaurin series for sine. This is one of Euler’s four solutions

to the Basel problem; see Sandifer (2007, 111).

A common feature of these formulas is that Euler’s computations involve not only

infinitesimals but also infinitely large natural numbers, which Euler sometimes treats as if

they were ordinary natural numbers.

Euler’s proof of the product decompositions (9) and (10) rely on infinitesimalist pro-

cedures that find close proxies in modern infinitesimal frameworks. In ‘‘Appendix’’ we

present a detailed analysis of Euler’s proof.
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3.6 Law of Continuity

Euler’s working assumption is that infinite numbers satisfy the same rules of arithmetic as

ordinary numbers. Thus, he applies the binomial formula to the case of an infinite expo-

nent i without any further ado in Euler (1748, §115); see formula (2) above. The

assumption was given the following expression in 1755:

The analysis of the infinite, which we begin to treat now, is nothing but a special case

of the method of differences, explained in the first chapter, wherein the differences

are infinitely small, while previously the differences were assumed to be finite. (Euler

2000, §114, emphasis added)

The significance of this passage was realized by Bos (who gives a slightly different

translation; see Sect. 4.10). Euler’s assumption is consonant with the Leibnizian law of

continuity: il se trouve que les règles du fini réussissent dans l’infini... et que vice versa les

règles de l’infini réussissent dans le fini’’ (Leibniz 1702), though apparently Euler does not

refer explicitly to the latter in this particular sense. Robinson wrote:

Leibniz did say ... that what succeeds for the finite numbers succeeds also for the

infinite numbers and vice versa, and this is remarkably close to our transfer of

statements from R to �R and in the opposite direction. (Robinson 1966, 266)

On the transfer principle see Sect. 4.6. Euler treats infinite series as polynomials of a

specific infinite order (see Sect. 4.9 for a discussion of the difference between finite and

infinite sums in Euler). In the context of a discussion of the infinite product

1 þ x

i
þ x2

4p2

� �
1 þ x

i
þ x2

16p2

� �

1 þ x

i
þ x2

36p2

� �
1 þ x

i
þ x2

64p2

� �
� � � ;

ð11Þ

where i is an infinite integer, Euler notes that a summand given by an infinitesimal frac-

tion x
i
occurs in each factor. One may be tempted therefore to discard it. The reason such an

infinitesimal summand cannot be discarded according to Euler, is because it affects infi-

nitely many factors:

through the multiplication of all factors, which are 1
2

i in number [i being an infinitely

large integer], there is a produced term x
2
, so that x

i
cannot be omitted. (Euler

1748, §156)

In more detail, when one has a single factor, one can typically neglect the infinitesimal x
i
.

However, in this case one has i
2

factors, and the linear term in the product will be the sum

of the linear terms in each factor. This is one of the Vieta rules that still holds when i is

infinite by the law of continuity. Altogether there are i
2

factors, each of which contains a

linear term x
i
. Therefore altogether one obtains a contribution of i

2
� x

i
¼ x

2
, which is

appreciable (noninfinitesimal) and therefore cannot be neglected.

Euler’s comment in 1748 shows that he clearly realizes that the infinitesimal x
i
present in

each of the factors of (11) cannot be discarded at will. While in 1755, the preliminary

status of the infinitesimal is officially ‘‘zero’’, in actual calculations Euler does not rely on

such preliminary declarations, as noted by Bos (see Sects. 4.5, 4.10).
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Leibniz’s differentials dx were infinitesimals, and while Leibniz did also consider non-

infinitesimal differentials, he always denoted them by the symbol (d)x rather than dx;8 see

Sect. 3.2 for a discussion of Leibnizian infinitesimals. There does not seem to be a

compelling reason to think that Euler’s dx’s were not infinitesimals, either. Ferraro appears

to acknowledge this point when he writes: ‘‘Euler often simply treats differentials and

infinitesimals as the same thing (for instance, see Euler [1755, 70])’’ (Ferraro 2004, 35,

note 2). Indeed, the formula x ¼ dx appears in (Euler 1755, §118).

Note that Euler explicitly refers to the number of factors in his infinite product,

expressed by a specific infinite integer. Similarly, when he applies the binomial for-

mula ða þ bÞi
with an infinite exponent i, there is an implied final term, or terminal

summand, such as bi, though it never appears explicitly in the formulas (see Sect. 4.9). We

will analyze Euler’s proof in detail in ‘‘Appendix’’.

3.7 The Original Rule of l’Hôpital

Euler’s use of l’Hôpital’s rule needs to be understood in its historical context. Most calculus

courses today present the so-called l’Hôpital’s rule in a setting purged of infinitesimals. It is

important to set the record straight as to the nature of the original rule as presented by

l’Hôpital in his Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes.

Two points should be kept in mind here. First, L’Hôpital did not formulate his rule in terms

of accumulation points, limits, epsilons, and deltas, but rather in terms of infinitesimals:

Cela posé, si l’on imagine une appliquée bd infiniment proche de BD, & qui ren-

contre les lignes courbes ANB, COB aux points f, g; l’on aura bd ¼ AB�bf
bg

, laquelle�

ne diffère pas de BD. (l’Hôpital 1696, 145, emphasis added)

A note in the right margin at the level of the asterisk following the word laquelle reads

‘‘�Art. 1.’’ The asterisk refers the reader to the following item:

I. Demande ou Supposition.

... On demande qu’on puisse prendre indifféremment l’une pour l’autre deux quan-

tités qui ne different entr’elles que d’une quantité infiniment petite. (l’Hôpital

1696, 2, emphasis added)

Clearly, Euler relied on l’Hôpital’s original version of the rule rather than any modern

paraphrase thereof. The original version of l’Hôpital’s rule exploited infinitesimals. It

seems reasonable therefore that if one were to seek to understand Euler’s procedures in a

modern framework, it would be preferable to do so in a modern framework that features

infinitesimals rather than in one that doesn’t.

Our second point is that Euler’s procedures admit a B-track intrepretation in terms of an

infinitesimal value of z, and a relation

k � 1 � xz

z
ð12Þ

of being infinitely close, or Euler’s geometric comparison; see Sect. 3.4. These concepts

are, on the one hand, closer to Euler’s world, and, on the other, admit rigorous proxies in

8 Note that Bos (1974) used the notation dx for Leibniz’s (d)x.
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the context of a modern B-continuum (such as the hyperreals), namely the rela-

tion k ¼ st 1�xz

z

� �
involving the standard part function ‘‘st’’. Arguably, the B-track for-

mula (12) is a better proxy for understanding Euler’s infinitesimal argument than is

Ferraro’s A-track formula (13).

3.8 Euclid’s Quantity

The classical notion of quantity is Euclid’sl�ece#o1 (magnitude). The general term magnitude

covers line segments, triangles, rectangles, squares, convex polygones, angles, arcs of circles

and solids. A general theory of magnitude is developed in the Elements, Book V. In fact, Book

V is a masterpiece of deductive development. By formalizing its definitions (see below the

formalisation of Definition V.4) and the tacit assumptions behind its proofs, one can recon-

struct Book V and its 25 propositions as an axiomatic theory. Beckmann (1967/1968) and

Błaszczyk and Mrówka (2013, 101–122) provide detailed sources for the axioms below in the

primary source (Euclid 2007). See also Mueller (1981, 118–148), who mostly follows

Beckmann’s development. Heiberg (1883–1888) is the standard modern edition of Elements.

As a result, Euclid’s magnitudes of the same kind (line segments being of one kind,

triangles being of another, etc.) can be formalized as an ordered additive semigroup with a

total order\ characterized by the following five axioms:

E1 ð8x; yÞð9n 2 NÞ½nx[ y	;
E2 ð8x; yÞð9zÞ½x\y ) x þ z ¼ y	;
E3 ð8x; y; zÞ½x\y ) x þ z\y þ z	;
E4 ð8xÞð8n 2 NÞð9yÞ½x ¼ ny	;
E5 ð8x; y; zÞð9vÞ½x : y :: z : v	.
Here axiom E1 formalizes Elements, Definition V.4. More specifically, Euclid’s definition

reads:

Magnitudes [such as a, b] are said to have a ratio with respect to one another which,

being multiplied [i.e., na] are capable of exceeding one another [i.e., na[ b].

The definition can be formalized as follows: ð8a; bÞð9nÞðna[ bÞ. This reading of

Euclid V.4 is a standard interpretation among historians; see Beckmann (1967/1968,

31–34), Mueller (1981, 139), De Risi (2016, section II.3).

The early modern mathematics developed largely without reference to the Archimedean

axiom. Some medieval editions of Elements simply omitted the definition V.4; more pre-

cisely, they give Proportion is a similarity of ratios instead of definition V.4 of our modern

editions; see Grant (1974, 137). The same applies to C. Clavius’ Euclidis Elementorum, one

of the most popular seventeenth century edition of Elements; see (Clavius 1589, 529).

We do not find any explicit reference to the Archimedean axiom in the works of Stevin,

Descartes, Newton though there is a mention of Euclid’s axiom in Leibniz’s letter to

l’Hôpital (Leibniz 1695, 288), nor in the works of Euler. Even the classical constructions of

the real numbers provided in 1872 by Heine, Cantor and Dedekind contain no explicit

mention of the Archimedean axiom, as it was recognized as such only in 1880s by Stolz;

see Sect. 3.9. The Archimedean axiom follows from the continuity axiom (Dedekind

axiom) and is equivalent to both the absence of infinitesimals and the cofinality of the

integers within the reals defined in those constructions. It took time for mathematicians to

understand the precise relation between the continuity axiom and the Archimedean axiom.

It was not until 1901 that Hölder proved that the continuity axiom (more precisely,

Dedekind axiom) implies the Archimedean axiom; see Hölder (1901, 1996).
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3.9 Stolz and Heiberg

Stolz (1885) rediscovered the Archimedean axiom for mathematicians, making it one of his

axioms for magnitudes. The Archimedean axiom was studied earlier in Stolz (1883), while

Stolz (1885) was a popular and widely read book. Stolz coined the term Archimedean

axiom. As the source of this axiom he points out Archimedes’ treatises On the sphere and

cylinder and The quadrature of the parabola. As regards Euclid, Stolz refers to books X

and XII. He does not seem to have noticed that definition 4 of book V is related to the

axiom of Archimedes. Johan L. Heiberg in his comment on the Archimedean axiom

(lemma) cites Euclid’s definition V.4 and observes that ‘‘these are the same axioms’’

(Heiberg 1881, 11). Possibly as a result of his comment Euclid’s definition V.4 is called

the Archimedean axiom.

At the end of the nineteenth century, Euclid’s theory of magnitude was revived by Stolz

(1885), Weber (1895), and Hölder (1901). These authors developed axiomatic theories of

magnitude. For a modern account of these theories see Błaszczyk (2013). Despite certain

differences, they all accept axioms E1–E4 of Sect. 3.8 as a common characterisation of

magnitude. Instead of E5, some authors tend to use the Dedekind axiom of continuity,

which implies E5. Hölder was the first one to show that E1 follows from E2–E4 and the

Dedekind continuity axiom.

Thus, while axiom E1 is a feature of the classic and modern notion of magnitude, it is

absent from Euler’s characterisation of quantity. Moreover, Euler is explicit about the

existence of infinite quantities; see Sect. 3.10.

In the Eulerian context, a magnitude, or quantity, is not (yet) a number. Euler’s

quantities are converted to numbers once one specifies an arbitrary quantity as the unit, or

unity. In addition to a unity, Euler needs a notion of a ratio. Euler’s definition is similar to

Newton’s:

the determination, or the measure of magnitude of all kinds, is reduced to this: fix at

pleasure upon any one known magnitude of the same species with that which is to be

determined, and consider it as the measure or unit; then, determine the proportion

[ratio] of the proposed magnitude to this known measure. This proportion [ratio] is

always expressed by numbers; so that a number is nothing but the proportion [ratio]

of one magnitude to another arbitrarily assumed as the unit. (Euler 1771, §4)

However, neither Newton nor Euler provided a definition of ratio. The term proportion

corresponds to the term Verhältnis (ratio) in the German edition of Euler’s Algebra, and to

rapport (ratio) in the French edition (Euler 1807).

3.10 Euler on Infinite Numbers and Quantities

Euler is explicit about the existence of infinite (and therefore non-Archimedean) quantities

and numbers:

not only is it possible to give a quantity of this kind, to which increments are added

without limit, a certain character, and with due care to introduce it into calculus, as

we shall soon see at length, but also there exist real cases, at least they can be

conceived, in which an infinite number actually exists. (Euler 2000, §75)

Euler’s important qualification ‘‘at least they can be conceived’’ with regard to the

existence of infinite numbers is consistent with the Leibnizian idea of them as useful

fictions; see Sect. 3.3.
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4 Critique of Ferraro’s Approach

Ferraro’s recent text on Euler seeks to steer clear of certain interpretive approaches to

Euler:

‘‘My point of view is different from that of some recent papers, such as McKinzie-

Tuckey (1997) and Pourciau (2001). In this writing the authors recast the early

procedures directly in terms of the modern foundation of analysis or interpret the

earlier results in terms of modern theory of non-standard analysis and understand the

results in the light of this later context.’’ (Ferraro 2012, 2).

Ferraro’s 2012 piece has significant textual overlap with his article from 2004. Here

Ferraro asserts that ‘‘one can see in operation in their writings a conception of mathematics

which is quite extraneous to that of Euler ... the attempt to specify Euler’s notions by

applying modern concepts is only possible if elements are used which are essentially alien

to them, and thus Eulerian mathematics is transformed into something wholly different’’

(Ferraro 2004, 51f., emphasis added). In 2004 Ferraro included two articles by Laugwitz in

the list of such allegedly ‘‘extraneous’’ and ‘‘alien’’ approaches: the article Laugwitz

(1989) in Archive for History of Exact Sciences, as well as Laugwitz (1992).

Ferraro’s comments here betray an insufficient sensitivity to the distinction analyzed in

Sect. 2.4, namely, isolating methodological concerns from obvious problems of ontology as

far as Euler’s infinitesimals are concerned. Granted, modern set-theoretic frameworks,

customarily taken to be an ontological account of the foundations of mathematics, are alien to

Euler’s world. But is Laugwitz’s approach to Euler’s methodology really ‘‘extraneous’’ or

‘‘alien’’ to Euler? Interpretive approaches seek to clarify Euler’s mathematical procedures

through the lens of modern formalisations. In the passage cited above, Ferraro appears

initially to reject such approaches, whether they rely on modern �; d interpretations à la

Weierstrass, or on infinitesimal interpretations à la Robinson. Yet in 2004, Ferraro writes:

I am not claiming that 18th-century mathematics should be investigated without con-

sidering modern theories. Modern concepts are essential for understanding eighteenth

century notions and why these led to meaningful results, even when certain procedures,

puzzling from the present views, were used. (Ferraro 2004, 52, emphasis added)

Thus, in the end Ferraro does need modern theories to ‘‘understand’’ (as he puts it) Euler,

even though such procedures are ‘‘meaningless’’ to the latter. Ferraro’s position needs to be

clarified, since any modern attempt to understand Euler will necessarily interpret him, as

well. While rejecting Laugwitz’s interpretive approach to Euler, Ferraro does seek to

understand, and therefore interpret, Euler by modern means. To pinpoint the difference

between Laugwitz’s interpretive approach (rejected by Ferraro) and Ferraro’s own

interpretive approach, let us examine a sample of Ferraro’s reading of Euler.

4.1 From l’Hôpital and Euler to Epsilon and Delta

Ferraro deals with an infinitesimal calculation in (Euler 1730–1731, 11–12) where Euler

sought the value of

1 � x
g

fþg

g
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for f ¼ 1 and g ¼ 0 by applying l’Hôpital’s rule to 1�xz

z
. Ferraro proceeds to present the

problem ‘‘from a modern perspective’’ by analyzing the function f ðzÞ ¼ 1�xz

z
and its

behavior near z ¼ 0 in the passage already cited in Sect. 2.1, featuring the formula

k ¼ lim
z!c

f ðzÞ ð13Þ

(as already noted, c must be replaced by 0). Here the formula label (13) is added for later

reference.

On the face of it, Ferraro merely explains what it means to a modern reader to extend a

function by continuity at a point where the function is undefined. However, Ferraro’s

presentation of a modern explanation, with its talk of accumulation points, limits, epsilons,

and deltas, is firmly grounded in an A-track interpretation of the Eulerian calculation using

l’Hôpital’s rule. But why should one seek to ‘‘understand’’ Euler using A-methodology?

In Sect. 3.7 we placed Euler’s use of l’Hôpital’s rule in its historiacal context. What

Ferraro presents here is an ð�; dÞ à la Weierstrass formalisation of Euler’s procedure. He

goes on to point out that such an approach would be ‘‘meaningless’’ to Euler. Nevertheless,

Ferraro goes on to make the following remarkable claim:

there is something in common between the Eulerian procedure and the modern one

based upon the notion of limit: evanescent quantities and endlessly increasing

quantities were based upon an intuitive and primordial idea of two quantities

approaching each other. I refer to this idea as ‘‘protolimit’’ to avoid any possibility of

a modern interpretation. (Ferraro 2004, 46)

Thus according to Ferraro, there is ‘‘something in common between the Eulerian procedure

and the modern one’’, after all. Ferraro’s protolimit is intended to be different from the (A-

track) limit. But shouldn’t we rather interpret Eulerian infinitesimals in terms of, say, a

protoshadow? The term shadow is sometimes employed to refer to the (B-track) standard

part function, discussed in Sect. 4.2.

4.2 Shadow

In any totally ordered field extension E of R, every finite element x 2 E is infinitely close

to a suitable unique element, namely its standard part x0 2 R.9

Ferraro finds fault with the standard part function as a tool in intepreting Euler’s

equality i�1
i
¼ 1. Ferraro writes that the equality ‘‘should not be intended as i�1

i
� 1’’

(Ferraro 2004, 49) and provides the following clarification in footnote 36 on page 49:

‘‘By a � b, I mean that the difference a � b is an infinitesimal hyperreal number.’’ The

criticism recurs in (Ferraro 2012, 10) where the standard part function is mentioned

explicitly. However, this criticism only raises an issue if one assumes that Euler’s

equalities were not approximate but rather exact equalities. Such an assumption may be too

simplistic a reading of Euler’s stance on arithmetic and geometric comparisons; see

Sect. 3. See also ‘‘Appendix’’, Step 5 and formula (28) where Euler wrote that the

term x2=i2 is negligible in each of the factors of ex � e�x only because the number of the

said factors is small compared to i2.

9 Indeed, via the total order, the element x defines a Dedekind cut on R. By the usual procedure, the cut
specifies a real number x0 2 R � E. The number x0 is infinitely close to x 2 E. The subring Ef � E con-

sisting of the finite (i.e., limited) elements of E therefore admits a map st : Ef ! R; x7!x0, called the
standard part function, or shadow, whose role is to round off each finite (limited) x to the nearest real x0.
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Ferraro wrote that ‘‘from the modern perspective, the problem of extending the func-

tion’’ is interpreted in terms of accumulation points, A-track limits, epsilons, and deltas.

But couldn’t we perhaps surmise, instead, that ‘‘from a modern perspective, the problem

of extending the function may involve infinitesimals, the relation of being infinitely close,

and standard part’’?

Ferraro’s claim that Eulerian infinitesimals ‘‘were symbols that represented a primordial

and intuitive idea of limit’’ (Ferraro 2004, 34), with its exclusive focus on the limit concept

in its generic meaning, tends to blur the distinction between the rival Weierstrassian and

modern-infinitesimal methodologies (see Sect. 2.5). Eulerian infinitesimals are intrinsically

not Archimedean but rather follow the methodology of his teacher Bernoulli, co-founder

with Leibniz of what we refer to as the B-track. A better methodological proxy for Eulerian

infinitesimals than Ferraro’s ‘‘primordial limit’’ is provided by a modern B-track approach

to analysis, fundamentally different from Ferraro’s A-track (proto)limit.

Meanwhile, Laugwitz sought to formalize Euler’s procedures in terms of modern

infinitesimal methodologies. It emerges that, while Ferraro’s own A-track reading is

deemed ‘‘essential for understanding eighteenth-century notions and why these led to

meaningful results’’ as claimed in Ferraro (2012, 2), Laugwitz’s infinitesimal interpretation

is rejected by Ferraro as being both ‘‘extraneous’’ and ‘‘alien’’ to Euler’s mathematics. In

short, Laugwitz’s interpretation does not fit Ferraro’s Procrustean A-track way of, as he put

it, ‘‘understanding’’ Euler (Ferraro 2012, 2).

4.3 B-track Reading in Felix Klein

Laugwitz’s interpretation accords with Felix Klein’s remarks on the dual tracks for the

development of analysis as found in Klein (1932, 214). In 1908, Felix Klein described a

rivalry of the dual approaches as we saw in Sect. 2.5. Klein went on to formulate a

criterion for what would qualify as a successful theory of infinitesimals. A similar criterion

was formulated in Fraenkel (1928, 116f.). For a discussion of the Klein–Fraenkel criterion

see (Kanovei et al. 2013, section 6.1). The criterion was formulated in terms of the mean

value theorem. Klein concluded:

I will not say that progress in this direction is impossible, but it is true that none of

the investigators have achieved anything positive. (Klein 1932, 219)

Thus, the B-track approach based on notions of infinitesimals is not limited to ‘‘the work of

Fermat, Newton, Leibniz and many others in the seventeenth and eighteenth centuries’’, as

implied by Katz (2014). Rather, it was very much a current research topic in Felix Klein’s

mind. See Ehrlich (2006) for detailed coverage of the work on infinitesimals around 1900.

Of course, Klein had no idea at all of Robinson’s hyperreal framework as first devel-

oped in Robinson (1961). What Klein was referring to is the procedural issue of how

analysis is to be presented, rather than the ontological issue of a specific realisation of an

infinitesimal-enriched field in the context of a traditional set theory; see Sect. 2.4.

Finally, we note that A-track readings of Euler tend to be external to Euler’s proce-

dures, whereas infinitesimal readings are internal,10 in the sense that it provides proxies for

both the procedures and the results of the historical infinitesimal mathematics. This is

possible because modern infinitesimal procedures incorporate both infinitesimals and

infinite numbers as do Eulerian procedures. Meanwhile, the Weierstrassian approach tends

10 This use of the term internal is not to be confused with its technical meaning in the context of
enlargements of superstructures; see Goldblatt (1998).
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to provide proxies for the results but not the procedures, since both infinitesimals and

infinite numbers have been eliminated in this approach.

4.4 Hidden Lemmas and Principle of Cancellation

Laugwitz argued that Euler’s derivation of the power series expansion of ax contains a

hidden lemma, to the effect that a certain infinite sum of infinitesimals is itself infinitesimal

under suitable conditions; see Laugwitz (1989, 210). Namely, let i be infinite. Consider

Euler’s formula

1 þ kz

i

� �i

¼ 1 þ kz þ i � 1

2i
k2z2 þ ði � 1Þði � 2Þ

2i � 3i
k3z3 þ . . .;

or alternatively

1 þ kz

i

� �i

¼ 1 þ i

i
kz þ iði � 1Þ

i � 2i
k2z2 þ iði � 1Þði � 2Þ

i � 2i � 3i
k3z3 þ . . . ð14Þ

There are infinitely many summands on the right. (Euler 1748, §115–116) goes on to make

the substitutions

i � 1

i
¼ 1;

i � 1

2i
¼ 1

2
;

i � 2

3i
¼ 1

3
; . . . ð15Þ

which he justifies by invoking the fact that i is infinite. The result is the exponential series.

The effect of these changes is cumulative, since the products involved contain an ever

increasing number of factors. Thus, one needs to make the substitution

ði � 1Þði � 2Þ � � � ði � nÞ ¼ in

for each finite n in the righthand side, but there are still infinitely many summands affected.

Each of these substitutions entails an infinitesimal change but there are infinitely many

substitutions involved in evaluating (14).

Ferraro takes issue with Laugwitz’s contention in the following terms:

It is evident that Laugwitz’s remark arises from the interpretation of i�1
i
¼ 1

as i�1
i
� 1. This interpretation contrasts with the Eulerian statement that a þ dx ¼ a

is an exact equality and not an approximate one. (Ferraro 2004, 49)

Ferraro goes on to assert that, contrary to Laugwitz’s claim, Euler

did not see gaps in the proof of [the series expansion of ax], and this was due to the

fact that he understood i�1
i
¼ 1 as a formal equality involving fictitious entities.

(Ferraro 2004, 50)

Indeed, if i�1
i
¼ 1 were an exact equality along with the other expressions in (15), the

evaluation of the righthand side of (14) to the exponential series would be immediate and

free of any gaps, as Ferraro contends.

Alas, Ferraro underestimates Euler’s perceptiveness here. Ferraro does not explain how

an invocation of ‘‘a formal equality involving fictitious entities’’ deflects Laugwitz’s

contention that Euler’s proof contains a hidden lemma. Ferraro’s insistence on the ‘‘exact

equality’’ i�1
i
¼ 1 suggests that the infinitesimal ‘‘error’’ in i�1

i
¼ 1, or
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1 � 1

i
¼ 1; ð16Þ

is to be understood as exactly zero. Declaring the infinitesimal ‘‘error’’ 1
i

to be exactly zero

would obviate the need for justifying the hidden lemma, since an infinite sum of zeros is

still zero, or at any rate so Ferraro appears to interpret Euler’s argument. We will return to

Ferraro’s ‘‘fictitious entities’’ in Sect. 4.8.

4.5 Two Problems with Ferraro’s Reading

There are two problems with Ferraro’s claim that Euler is invoking an exact equality with

no infinitesimal error. First, Euler explicitly writes otherwise (see Sect. 3.6 on the issue of

disappearing infinitesimals), and in fact in the calculation under discussion, Euler exploits

the relation z ¼ xi (Euler 1748, §115) with infinitesimal x and finite z, which would be

quite impossible if x were literally zero.

The second problem is that, as Ferraro himself noted in his recent text, Euler expressed

the integral as ‘‘the sum of an infinite number of infinitesimals’’ (Ferraro 2012, 10). Euler

expresses the integral in terms of the expression

aðA þ A0 þ A00 þ A000 þ � � � þ XÞ ð17Þ

in (Euler 1768–1770, chapter VII, 184), where a is an infinitesimal step of a suit-

able partition, while A, A0, A00, A000; . . . are the (finite) values of the integrand at (infinitely

many) partition points. The quantities

aA; aA0; aA00; aA000; . . .

are still infinitesimal, and therefore would be exactly zero, so that their infinite sum (17)

would be paradoxically zero as well. Thus, such a reading of Euler’s reasoning attributes to

him an alarming paradox not dealt with in Ferraro’s approach.

Ferraro mentions Euler’s interpretation of the integral as an infinite sum of infinitesi-

mals in Ferraro (2004, 50, footnote 39), but fails to explain how the paradox mentioned in

the previous paragraph could be resolved (other than implying that infinitesimals are

sometimes zero, and sometimes not).

In sum, we agree with Bos’ evaluation of Euler’s preliminary remarks on ‘‘infinitesimals

as zeros’’ as being at variance with his actual mathematical practice (see Sect. 4.10). It is

unlikely that a literal interpretation of Euler’s preliminary remarks (that the infinitesimal is

exactly zero) could give a fruitful way of interpreting Euler’s mathematics. Ferraro’s

rejection of Laugwitz’s analysis of Euler’s argument in terms of a hidden lemma (requiring

further justification) is therefore untenable.

4.6 Generality of Algebra

It was known already to Cauchy that some of Euler’s doctrines are unsatisfactory. More

specifically, Cauchy was critical of Euler’s and Lagrange’s generality of algebra, to the

effect that certain relations involving variable quantities are viewed as being valid even

though they can fail for certain specific values of the variables. By the time mathematicians

started analyzing Fourier series in the 1820s it became clear that some applications of the

generality of algebra are untenable. Cauchy specifically rejects this principle in the

introduction to his Résumé des Leçons (Cauchy 1823).
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In the context of a discussion of Euler’s principle of the generality of algebra, Ferraro

notes that the Eulerian ‘‘general quantity’’

was represented by graphic signs which were manipulated according to appropriate

rules, which were the same rules that governed geometrical quantities or true

numbers. (Ferraro 2004, 43)

The idea that ‘‘the same rules’’ should govern ideal/fictional numbers and ‘‘true numbers’’

is consonant with the Leibnizian law of continuity. The latter is arguably a fruitful

methodological principle. It was formalized as the transfer principle in Robinson’s

framework.11

Meanwhile, Ferraro fails to distinguish between, on the one hand, a historically fruitful

law of continuity, and, on the other, the generality of algebra that was found to be lacking

in the 19th century, as he continues in the next sentence:

The principle of the generality of algebra held: the rules were applied in general,

regardless of their conditions of validity and the specific values of quantity. (ibid.)

Cauchy’s critique of Euler’s principle of the generality of algebra is well known to

historians; it is an uncontroversial statement that certain elements of Euler’s oeuvre need to

be reinterpreted if one is to develop a consistent interpretation thereof. Another such

element is the zero infinitesimal, as discussed in Sect. 4.7.

4.7 Unsettling Identity

The claim that the infinitesimal is exactly equal to zero occasionally does appear in Euler’s

writing, such as in the Institutiones in reference to dx. On the other hand, Euler specifically

discusses varieties of the notion of equality, with the geometric notion being similar to the

generalized relation of equality implied in the Leibnizian transcendental law of homo-

geneity (see Sect. 3.4). Even though at times Euler insists that his equality is exact equality,

at other times he does envision more general modalities of comparison. Ferraro himself

implicitly acknowledges this when he describes Euler’s equality a þ dx ¼ a as a ‘‘prin-

ciple of cancellation’’ (Ferraro 2004, 47). The term principle of cancellation would appear

to imply that there is something to cancel: not merely an exact zero, but a nonzero

infinitesimal dx.

On an even more basic level, if for infinite i one has 1
i
¼ 0 as in (16), then multiplying

out by i we obtain 1 ¼ 0 � i, but 0 times any number is still 0, so that we would obtain an

unsettling identity 1 ¼ 0 (at least if we interpret ‘‘¼’’ as literal equality), in addition to the

paradox with the integral mentioned above.

Similarly, Euler seeks to divide by an infinitesimal dx so as to obtain the differential

ratio dy
dx

. It follows that dx cannot be an exact zero if one is to have any hope for a consistent

account of Euler’s procedures. A notion of zero infinitesimal interpreted literally is

arguably as problematic as some aspects of the principle of the generality of algebra

11 The transfer principle is a type of theorem that, depending on the context, asserts that rules, laws or
procedures valid for a certain number system, still apply (i.e., are ‘‘transfered’’) to an extended number
system. Thus, the familiar extension Q � R preserves the properties of an ordered field. To give a negative
example, the extension R � R [ f�1g of the real numbers to the so-called extended reals does not
preserve the properties of an ordered field. The hyperreal extension R � �R preserves all first-order

properties, such as the identity sin2 x þ cos2 x ¼ 1 (valid for all hyperreal x, including infinitesimal and
infinite values of x 2 �R). For a more detailed discussion, see Keisler (1986).
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already found to be lacking by Cauchy (see Sect. 4.6). It can be reinterpreted in terms of

the distinction between cyphra and nihil as discussed in Sect. 3.2.

4.8 Fictitious Entities

Ferraro described the Eulerian substitution i�1
i
¼ 1 as a ‘‘formal equality involving ficti-

tious entities’’ in his text (Ferraro 2004, 50). It is not entirely clear how such an evocation

of fictionality resolves the delicate mathematical problem posed by this substitution.

Two scientific generations earlier, Leibniz described infinitesimals as ‘‘useful fictions,’’

yet he did not think that just because infinitesimals are ‘‘fictions’’ one is allowed to set them

equal to zero at will.

Ferraro further claimed that ‘‘The use of fictions made Eulerian mathematics extremely

different from modern mathematics’’ in his text (Ferraro 2007, 64). The plausibility of the

claim depends on equivocation on procedure/ontology as discussed in Sect. 2.4. The fact

that what Ferraro has in mind here is ontology is made clear on the previous page where he

writes: ‘‘The rules that Euler uses upon [sic] infinite and infinitesimal quantities constitute

an immediate extrapolation of the behaviour of a finite variable i tending to 1 or 0’’,

(Ferraro 2007, 63) and adds: ‘‘what is wholly missing is the complex construction of �R
and the assumptions upon which it is based’’ (ibid., emphasis added.). But this ontological

complaint is utterly irrelevant to procedure.

The infinitesimals in Leibniz and Euler may have been fictions. However, they were not

fictive or purely rhetorical, as Ferraro appears to imply. Rather, they pose subtle issues of

interpretation that are not resolved by an appeal to ‘‘formal equality involving fictitious

entities’’; see further in Sect. 4.12.

On occasion, Euler specifically wrote that his infinitesimals are unequal to zero: ‘‘Let x
be a number infinitely small, or a fraction so tiny that it is just not equal to zero (tantum

non nihilo sit aequalis)’’ (Euler 1988, §114). This passage refers specifically to the

infinitesimal x in formula (1) used in the derivation of the power series of the exponential

function (see Sect. 3.1 on the exponential function), showing that error estimates are

indeed required even if one takes Euler literally.

4.9 Finite, Infinite, and Hyperfinite Sums

Euler’s use of infinite integers and their associated infinite products (such as the product

decomposition of the sine function) were interpreted in Robinson’s framework in terms of

hyperfinite expressions. Thus, Euler’s product of i-infinitely many factors in (10) is

interpreted as a hyperfinite product in Kanovei and Reeken (2004, 74). A hyperfinite

formalisation of Euler’s argument involving infinite integers and their associated products

illustrates the successful formalisation of the arguments (and not merely the results) of

classical infinitesimal mathematics.

In a footnote on eighteenth century notation, Ferraro presents a novel claim that ‘‘for

eighteenth century mathematicians, there was no difference between finite and infinite

sums’’ (Ferraro 1998, 294, footnote 8). Far from being a side comment, the claim is

emphasized a decade later in the preface to his book: ‘‘a distinction between finite and

infinite sums was lacking, and this gave rise to formal procedures consisting of the infinite

extension of finite procedures’’ (Ferraro 2008, viii). The clue to decoding Ferraro’s claim is

found in the same footnote, where Ferraro distinguishes between sums featuring a final

term after the ellipsis, such as

Interpreting the Infinitesimal Mathematics of Leibniz and… 221

123



a1 þ a2 þ � � � þ an; ð18Þ

and ‘‘infinite sums’’ without such a final term, as in

a1 þ a2 þ � � � þ an þ � � � ð19Þ

Note that A-track syntax is unable to account for terminating infinite expressions which

routinely occur in Euler. To be sure, Euler does not use his infinite i as a final index in

infinite sums of type a1 þ � � � þ ai common in modern infinitesimal frameworks. However,

his binomial expansions with exponent i play the same role as the modern infinite

sums a1 þ � � � þ ai. The final term ai is hinted upon by means of Euler’s notation ‘‘&c.’’

but does not appear explicitly. Nonetheless, procedurally speaking his infinite sums play

the same role as the modern a1 þ � � � þ ai.

From an A-track viewpoint, a terminating sum (18) is necessarily a finite one, whereas

only expressions of the form (19) ending with an ellispis allow for a possibility of an

‘‘infinite sum.’’ No other option is available in the A-track; yet Euler appears recklessly to

write down infinite terminating expressions, as in the proof of the product formula for sine

(see Sect. 3.6 for a discussion of terminal summands in infinite sums in Euler).

Meanwhile, the B-track approach allows one to account both for Euler’s infinite inte-

ger i and for terminating expressions containing i terms (see ‘‘Appendix’’ for an instance

of Euler’s use of polynomials of infinite degree). Euler discusses the difference between

finite and infinite sums in Introductio (Euler 1748, §59). Terminating infinite sums are

easily formalized in Robinson’s framework in terms of hyperfinite expressions (see

‘‘Appendix’’).

In a subsequent article, Ferraro and Panza write: ‘‘Power series were conceived of as

quasi-polynomial entities (that is, mere infinitary extensions of polynomials)’’ (Ferraro and

Panza 2003, 20, emphasis added), but don’t mention the fact that such an extension can be

formalized in terms of hyperfinite expressions, perhaps out of concern that this may be

deemed ‘‘alien’’ or ‘‘extraneous’’ to Euler.

Euler’s formula aix ¼ ð1 þ kxÞi
is analyzed in Ferraro (2004, 48). Ferraro reformulates

Euler’s formula in terms of modern Sigma notation as follows:

aix ¼ ð1 þ kxÞi ¼
X1

r¼0

i

r

� �
ðkxÞr:

The formula

ax ¼
X1

r¼0

1

r!
ðkxÞr ð20Þ

appears in (Ferraro 2004, 48) and is attributed to Euler. The Sigma notation
P1

r¼0 appears

several times in Ferraro’s analysis and is clearly not a misprint; it appears again in (Ferraro

2007, 48, 54). Similarly, Ferraro exploits the modern notation
P1

i¼1 ai for the sum of the

series, in Ferraro (2008, 5), while discussing late 16th (!) century texts of Viète. The Sigma

notation (20) is familiar modern notation for infinite sums defined via the modern concept

of limit in a Weierstrassian context. Note that formula (20) attributed by Ferraro to Euler

involves assigning a sum to the series, namely ax, and therefore is not merely a formal

power series. The summation of an infinite series via the concept of limit (namely, limit of

the sequence of partial sums) is not accessory but rather a sine qua non aspect of such

summation (alternatively, one could take the standard part of a hyperfinite sum, but such an
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approach is apparently not pursued by Ferraro). The symbol 1 appears in (20) as a kind of

subjunctive. It has no meaning other than a reminder that a limit was taken in the definition

of the series. In modern notation, the symbol 1 does not stand for an infinite integer

(contrary to the original use of this symbol by Wallis).

Thus, Ferraro reformulates Euler’s calculation using the Sigma notation for infinite sum,

including the modern somewhat subjunctive use of the superscript 1. However, such a

procedure is extraneous to Euler’s mathematics, since Euler specifically denotes the (in-

finite) power by i. Applying the binomial formula with exponent i, one would obtain, not

Ferraro’s (20), but rather a sum from 0 to i, namely

Xi

r¼0

i

r

� �
ðkxÞr: ð21Þ

Euler’s derivation of the exponential series is analyzed in more detail in Sect. 4.4. Infinite

sums of type (21) are perfectly meaningful when interpreted in Robinson’s framework (see

‘‘Appendix’’). Ferraro’s anachronistic rewriting of Euler’s formula betrays a lack of sen-

sitivity to the actual mathematical content of Euler’s work.

4.10 Bos–Ferraro Differences

In this section we compare Ferraro’s take on Euler with the approaches by other scholars,

more compatible with our reading of Euler. We will first compare the approaches of Bos

and Ferraro to Euler scholarship, and then those of Ferraro and Laugwitz. Bos summarized

Euler’s preliminary discussion of infinitesimals in the following terms:

Euler claimed that infinitely small quantities are equal to zero, but that two quan-

tities, both equal to zero, can have a determined ratio. This ratio of zeros was the real

subject-matter of the differential calculus. (Bos 1974, 66)

Bos goes on to note that Euler’s preliminary discussion is at variance with Euler’s actual

mathematical practices even in the Institutiones (and not merely in the Introductio as

discussed in Sect. 3.6), where the properties of the infinitely small are similar to those of

finite differences:

After having treated, in the first two chapters, the theory of finite difference sequences,

he defined the differential calculus as the calculus of infinitesimal differences:

The analysis of infinites, with which I am dealing now, will be nothing else than a

special case of the method of differences expounded in the first chapter, which

occurs, when the differences, which previously were supposed finite, are taken

infinitely small. (Euler 1755, §114)

which is rather at variance with his remarks quoted above, a contradiction which shows

that his arguments about the infinitely small did not really influence his presentation of the

calculus (Bos 1974, 67f., emphasis added).

Before analyzing Ferraro’s reaction to this position, we note that Bos’ focus on Euler’s

‘‘presentation of the calculus’’ indicates a concern for methodological issues related to the

nature of Euler’s procedures, rather than focusing on the ontological nature of the objects

(the infinitely small) that Euler utilizes, in line with the distinction between procedure and

ontology that we explored in Sect. 2.4.

Interpreting the Infinitesimal Mathematics of Leibniz and… 223

123



Ferraro disagrees with Bos’ perception of a ‘‘contradiction’’ in Euler’s writing:

According to Bos, there is ‘‘a contradiction which shows that his arguments about the

infinitely small did not really influence his presentation of calculus’’ [Bos, 1974,

68–69]. However, I would argue that one may see a contradiction in the Institutiones

only if, in contrast to Euler, [1] one distinguishes between limits and infinitesimals

and [2] neglects the nature of evanescent quantities as fictions, [3] the role of formal

manipulations and [4] the absence of a separation between semantics and syntax in

the Eulerian calculus. (Ferraro 2004, 54, emphasis and numerals [1], [2], [3], [4]

added)

Ferraro appears to suggest that Bos’ position is problematic with regard to the four items

enumerated above. We will not analyze all four, but note merely that in his item

½1	 ‘‘one distinguishes between limits and infinitesimals’’; ð22Þ

Ferraro commits himself explicitly to the position that ‘‘distinguish[ing] between limits and

infinitesimals,’’ as Bos does, is an inappropriate approach to interpreting Euler. Rather,

Ferraro sees a conceptual continuity between limits and infinitesimals in Euler, or more

precisely what he refers to as a ‘‘continuous leap’’ (see Sect. 4.11).

We argue that Bos’s position on this aspect of Euler’s oeuvre is more convincing than

Ferraro’s. Note that Euler’s insistence on the similarity of the properties of the finite and

infinitesimal differences, in the passage cited by Bos, is consonant with a Leibnizian law of

continuity, which requires two types of quantities to be compared: assignable and inas-

signable (e.g., infinitesimal); see Sect. 3.3.

4.11 Was Euler Ambiguous or Confused?

Ferraro postulated a conceptual continuity between limits and infinitesimals in Euler’s

work, as expressed in Ferraro’s comment (22) meant to be critical of Bos’ position.

Ferraro’s criticism of Bos’ approach emanates from Ferraro’s tendency to blur the

distinction between A-track and B-track approaches. A further attempt to blur this dis-

tinction is found in Ferraro’s ‘‘continuous leap’’ comment:

Eulerian infinitesimals ...when interpreted using the conceptual instruments available

to modern mathematics, seem to be an ambiguous mixture of different elements, a

continuous leap from a vague idea of limit to a confused notion of infinitesimal.

(Ferraro 2004, 59, emphasis added)

Ferraro’s comment appears in the ‘‘Conclusion’’ section in 2004. A virtually identical

comment appears in the abstract in 2012, and yet again in the ‘‘Conclusion’’ section in

Ferraro (2012, 24).

We argue however that Euler was far less ‘‘ambiguous’’ or ‘‘confused’’ than is often

thought. Ferraro claims that when we allow our interpretation of Euler to be informed by

modern mathematical concepts, we have no choice but to see Euler as fluidly moving from

vague limits to confused infinitesimals. Let us now compare the interpretations by Ferraro

and Laugwitz.

Ferraro’s opposition to Laugwitz’s interpretation is based on a conflation of ontology

and practice (see Sect. 2.4). Laugwitz is not trying to read ontological foundations based

on modern theories into Euler (which would indeed be ‘‘alien’’ to Euler’s notions, to

borrow Ferraro’s terminology), but is rather focusing on Euler’s mathematical practice.
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Furthermore, Ferraro’s own reading, with its emphasis on alleged continuity between

limits and infinitesimals, is not sufficiently sensitive to the distinction between dual

approaches (as analyzed by both Klein and Bos), which we refer to as A-track and B-track

approaches.

Laugwitz’s interpretation showed that drawing upon modern concepts allows us to see

Euler’s reasoning as clear and incisive. Indeed, we know since Robinson (1961) that Felix

Klein’s hunch concerning the dual approaches to the foundations of analysis in Klein

(1932, 214) was right on target (see Sect. 4.3). In short, Ferraro assimilates two distinct

approaches to the problem of the continuum without historical or mathematical evidence.

4.12 Rhetoric and Modern Interpretations

In his 2004 article (Ferraro 2004, 51, footnote 46) Ferraro sought to enlist the support of

(Bos 1974, Appendix 2) for his (Ferraro’s) opposition to interpretating Euler in terms of

modern theories of infinitesimals. However, Henk Bos himself has recently distanced

himself from the said Appendix 2 (part of his Doctoral thesis) in a letter sent in response to

a question from one of the authors of the present text:

An interesting question, what made me reject a claim some 35 years ago? I reread the

appendix and was surprised about the self assurance of my younger self. I’m less

definite in my opinions today – or so I think. You’re right that the appendix was not

sympathetic to Robinson’s view. Am I now more sympathetic? If you talk about

‘‘historical continuity’’ I have little problem to agree with you, given the fact that one

can interpret continuity in historical devlopments in many ways; even revolutions

can come to be seen as continuous developments. (Bos 2010)

The letter is reproduced with the author’s permission. The shortcomings of Bos’s

Appendix 2 are analyzed in detail in Katz and Sherry (2013, section 11.3) and in Sect. 2.7

here. The clarification provided by Bos in 2010 weakens the claim of Bos’s support for

Ferraro’s position on Robinson. Ferraro claims that

[Laugwitz and other] commentators use notions such as set, real numbers, continuum

as a set of numbers or points, functions as pointwise relations between numbers,

axiomatic method, which are modern, not Eulerian. (Ferraro 2004, 51)

Certainly, sets, real numbers, the punctiform continuum, and the modern notion of function

are no Eulerian concepts. But has Laugwitz really committed the misdemeanors attributed

to him by Ferraro? Ferraro does not provide any evidence for his claim, and one searches in

vain the two articles Laugwitz (1989, 1992) cited by Ferraro for clues of such

misdemeanors. On the contrary, Laugwitz warns the reader: ‘‘But one should have in

mind that such concepts did not appear before set theory was established’’ (Laugwitz

1989, 242); and again:

Modern mathematicians should find of interest the fact that he [Cauchy] succeeded

by using only very few concepts of an intensional quality, whereas we have become

accustomed to using a great many extensional concepts based on set theory. (ibid.)

Laugwitz is clearly aware of the point that modern set theory is alien to Euler’s ontology.

However, as discussed in Sect. 2.4, Laugwitz is concerned with Euler’s procedures rather

than his ontology. Ferraro has surely committed a strawman fallacy in describing

Laugwitz’s scholarship as being ‘‘alien’’ to Euler.
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To be sure, rhetorical and formal aspects of historical mathematics can be fruitfully

studied in their own right. Yet an overemphasis on the rhetorical aspect to a point of

dismissing as ‘‘extraneous’’ scholarly work that chooses to focus on the Eulerian mathe-

matics per se, is untenable.

One may well wonder whether it sheds more light on Euler to observe, as Laugwitz

does, that Euler’s infinitesimal procedures (Reeder’s inferential moves) turn out to depend

on hidden lemmas (such as those concerning estimates for infinite sums of infinitesimals)

but are otherwise remarkably robust and formalizable in modern infinitesimal mathemat-

ics; or whether it sheds more light to assert nonchalantly, as Ferraro does, that Euler

considered infinitesimals to be exactly zero as a kind of rhetorical device, and that

therefore there are neither ‘‘gaps’’ nor ‘‘hidden lemmas’’ in his proofs. Relating to Euler’s

substitution

i � 1

i
¼ 1

as a rhetorical device as Ferraro does fails to explain why Euler sometimes disallows this

type of substitution, as when Euler explains that

1 þ x

i

cannot be replaced by 1 in factors of an infinite product in the passage from Euler

(1748, §156) cited in Sect. 3.6. This passage from Euler explicitly contradicts Ferraro’s

rhetorical reading.

4.13 Euler versus Berkeley, H. M. Edwards, and Gray

Cleric Berkeley’s critique tends to receive exaggerated attention in the literature. We

second Fraser’s assessment to the effect that ‘‘Berkeley’s critique seems to have limited

intrinsic merit’’ (Fraser 1999, 453, note 3). We now examine Ferraro’s approach to this

critique. Ferraro states that

a [sic] unproblematic translation of certain chapters in the history of mathematics

into modern terms tacitly assumes that the same logical and conceptual framework

guiding work in modern mathematics also guided work in past mathematics. (Ferraro

2012, 2)

Here Ferraro expresses a legitimate concern. Certainly one shouldn’t project the conceptual

framework guiding modern mathematics, upon an eighteenth century text. However, in the

very next paragraph, Ferraro proceeds to state: ‘‘[Berkeley] did not cast any doubt upon the

usefulness of the calculus in solving many problems of physics or geometry; nevertheless,

he believed that it did not possess solid foundations’’ (ibid., emphasis added). Let us now

examine the said foundations.

Berkeley’s ‘‘foundations,’’ if any are to be found, amount to an empiricist postulation of

a minimal perceptual magnitude below which one cannot descend, and a consequent

rejection of an infinitely divisible ‘‘extension’’ (i.e., continuum). This is clearly not the

sense of the term mathematical foundations that Ferraro has in mind. Rather than being

concerned with the latter, Berkeley voiced two separate criticisms: a metaphysical and a

logical one; see Sherry (1987). The logical criticism concerns the alleged inconsistency

expressed by the conjunction ðdx 6¼ 0Þ ^ ðdx ¼ 0Þ; see Sect. 3.3. The metaphysical
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criticism is fueled by Berkeley’s empiricist doubts about entities that are below any finite

perceptual threshold.

Ferraro’s description of Berkeley’s criticism in terms of ‘‘foundations’’ falls prey to the

very shortcoming he seeks to criticize, namely grafting modern concepts upon ones

exploited in historical mathematics.

A related attempt by H. M. Edwards to sweep Euler’s infinitesimals under an Archi-

medean rug in Edwards (2007) was analyzed in Kanovei et al. (2015). Edwards recently

attempted to defend his comment that Euler’s infinitesimal computations

will not find a receptive audience today, when students are taught to shrink from differ-

entials as from an infectious disease (Edwards 2015, 52, emphasis added).

against our criticism in Kanovei et al. (2015). In recent years it has become popular to

interpret differentials as 1-forms. This is fine, but it is not Euler’s view, as we show in

Kanovei et al. (2015) and in the present work. In his response to that article, Edwards

clarifies that he does not dismiss Euler’s use of differentials the way many others do. But

it is not Edwards’ disposition toward differentials that is the problem, but rather his

interpretation of Euler’s differentials. In his response, Edwards again fails to acknowl-

edge that Euler’s use of bona fide infinitesimals is not reducible to a purely algebraic

algorithm.

Instead, Edwards indulges in rhetorical non-sequiturs against Robinson’s framework,

accusing it of being ‘‘far stranger than anything Euler could have imagined.’’ Edwards

further accuses the authors of Kanovei et al. (2015) of ‘‘entertain[ing] strange ideas about

the concept of the infinite’’ (emphasis added). However, Edwards’ remarks amount to a

baseless ad hominem attack, since the article in question said not a word about either

Robinson or his framework, focusing instead on the shortcomings of Edwards’ take on

Euler’s work, including a forced constructivist paraphrase thereof and an anachronistic

misattribution of the notion of derivative to Euler.

The book Edwards (1979) (unrelated) presents a sympathetic view of Robinson’s

framework, as does the book Tao (2014) which presents ultraproducts as a bridge between

discrete and continous analysis.

A year after the publication of H. Edwards’ misguided analysis of Euler in Edwards

(2007), J. Gray claimed that ‘‘Euler’s attempts at explaining the foundations of calculus in

terms of differentials, which are and are not zero, are dreadfully weak’’ (Gray 2008, 6).

Prisoner of A-track methodology, Gray does not fail to succumb to Weierstrass’s ghost

when he claims in his Plato’s ghost that Cauchy ‘‘defined what it is for a function ...to be

continuous ...using careful, if not altogether unambiguous, limiting arguments’’ (Gray

2008a, 62, emphasis added). Pace Gray, it is inaccurate to claim that Cauchy defined

continuity using limiting arguments. The word limit does appear in Cauchy’s infinitesimal

definition of continuity (reproduced only two pages later in Plato’s ghost): ‘‘the func-

tion f(x) is continuous with respect to x between the given limits if, between these limits,

an infinitely small increment in the variable always produces an infinitely small increment

in the function itself’’ (Bradley and Sandifer 2009, 26). Evidently, limits do appear in

Cauchy’s definition (though they are replaced by bounds in Gray 2008a, 64). However,

they appear only in the sense of the endpoints of the interval, rather than any sense related

to the Weierstrassian notion of the limit.

Gray’s grafting of Weierstrassian limits upon Cauchy’s definition of continuity comes at

a high price in anachronism. For a recent study of Cauchy based on Robinson’s framework

see Ciesielski and Miller (2016).
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Ferraro could have used another term in place of foundations; however, the exaggerated

significance attached to Berkeley’s allegedly foundational critique becomes apparent when

Ferraro declares that

The crux of the question lay in knowing what meaning to attribute to the equa-

tion a þ dx ¼ a. The exactness of mathematics required, according to Euler, that the

differential dx should be precisely equal to 0: simply by assuming that dx ¼ 0, the

outrageous attacks on the calculus would be shown to lack any basis. (Ferraro 2012,

3, emphasis added)

Is this really the ‘‘crux of the question’’ as Ferraro contends? As discussed in Sect. 4.4, the

exact zero infinitesimals are untenable and lead to insoluble paradoxes. Meanwhile, the

answer to Berkeley’s logical criticism lies elsewhere, namely the generalized notion of

equality implied by both the Leibnizian transcendental law of homogeneity and the

Eulerian geometric comparison (see Sect. 3.4) dubbed the principle of cancellation by

Ferraro. Characterizing Berkeley’s logical criticism as the ‘‘crux of the question’’

exaggerates the significance of his flawed empiricist critique of infinitesimals.

4.14 Aristotelian Continuum?

Euler defined quantity as that which could be increased or reduced in his Elements of

Algebra: ‘‘Whatever is capable of increase or diminution, is called magnitude, or quantity’’

(Euler 1810, 1).

This may have been a common definition in Euler’s time, but it was not the classical

definition of quantity. What is called today the Archimedean axiom characterizes the

ancient Greek notion of quantity, but it does not appear in modern mathematics until 1885

when it was rediscovered in Stolz (1885). Ferraro claims that

(1) Euler did not have the mathematical concept of set, nor the theory of real

numbers nor the modern notion of function. (2) He based the calculus on the classic

notion of quantity. (3) Quantity was conceived of as that which could be increased or

reduced. (Ferraro 2012, 7, emphasis and numericals added)

Ferraro’s first and last claims are beyond dispute, but his intermediate claim (italicized

above) is dubious. Namely, the claim that Euler’s notion of quantity was a ‘‘classic’’ one is

unsupported by evidence. Ferraro seeks to connect Euler’s quantity to the notion of

quantity of unspecified ancient Greeks as well as to the classical Aristotelian conception:

‘‘[T]he Eulerian continuum is a slightly modified version of the Leibnizian continuum, as

described by Breger [1992, 76–84], which, in turn, has many aspects in common with the

classical Aristotelian conception’’ (Ferraro 2004, 37). Here Ferraro is referring to Breger

(1992). Breger does write on page 76 that ‘‘Leibniz reprend la théorie aristotélicienne du

continu’’ but in the same sentence he continues: ‘‘en y apportant trois modifications.’’ One

of these modifications, according to Breger, is ‘‘l’emploi des grandeurs infinitésimales.’’

Ferraro’s claim that Breger’s description of the Leibnizian continuum has ‘‘many aspects

in common’’ with the Aristotelian one appears to misrepresent Breger’s position as far as

infinitesimals are concerned.

Thus, while the Archimedean axiom belongs to the classical and modern notions of

magnitude, it is found neither in Euler’s characterisation of quantity as cited above, nor in

Leibniz’s view of quantity. See Sects. 3.8, 3.9, and 3.10 for a discussion of quantity from

Euclid to Euler.
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5 Conclusion

In his essay for the collection Euler reconsidered, Ferraro writes:

‘‘Euler’s tripartite division of analysis was also the manifestation of his aim to reduce

analysis as far as possible to algebraic notions; this latter term is used here to refer to

notions deriving from an infinitary extension of the principles of analysis of finite

quantities’’. (Ferraro 2007, 45, emphasis added)

5.1 Cantor’s Ghost

Ferraro’s reference to Euler’s infinitary extension of the principles of analysis of finite

quantities alludes to concepts such as infinite numbers and the associated infinite sums, or

series, and infinite products. Infinite series and products are familiar syntactic features of

modern, A-track, analysis as formalized by Cantor, Dedekind, and Weierstrass starting in

the 1870s. We would like to comment on syntactic features that are noticeably absent from

the said analysis. Cantor’s own position can be briefly summarized as follows:

Infinity, yes.

Infinitesimals, no.

In more detail, J. Dauben wrote:

Cantor devoted some of his most vituperative correspondence, as well as a portion of

the Beiträge, to attacking what he described at one point as the ‘infinitesimal Cholera

bacillus of mathematics’, which had spread from Germany through the work of

Thomae, du Bois Reymond and Stolz, to infect Italian mathematics. (Dauben 1980,

216–217)

Dauben continues:

Any acceptance of infinitesimals necessarily meant that his own theory of number

was incomplete. Thus to accept the work of Thomae, du Bois-Reymond, Stolz and

Veronese was to deny the perfection of Cantor’s own creation. Understandably,

Cantor launched a thorough campaign to discredit Veronese’s work in every way

possible. (ibid.)

Ferraro elaborates on his infinitary comment cited above as follows: ‘‘Euler was not

entirely successful in achieving his aim, since he introduced infinitesimal considerations in

various proofs; however, algebraic analysis, as a particular field of mathematics, was

clearly set out in the Introductio’’ (Ferraro 2007, 45, emphasis added). Given Ferraro’s

acknowledgment that Euler exploits an infinitary extension of the principles of analysis of

finite quantities as cited above, one might have expected that such an infinitary extension

involves both infinite numbers and infinitesimals.

Yes Ferraro appears to feel, apparently following Cantor, that infinite series constitute

legitimate and successful infinitary extensions, whereas inferences involving infinitesimals

do not. However, infinite numbers i and infinitesimals x in Euler are related by the simple

equation
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x ¼ 1

i

or more generally ix ¼ k where k is finite. Why would one be successful and the other not

entirely successful? A possible source of the distinction is the reliance on a conceptual

framework where infinite series admit suitable A-track proxies, whereas infinitesimals do

not. Ferraro continues: ‘‘At the end of the eighteenth century, Euler’s plan to undertake an

algebraic treatment of the broadest possible part of analysis of infinity had far-reaching

consequences when Lagrange tried to reduce the whole of calculus to algebraic notions...’’

(Ferraro 2007, 45). Such a broadest possible algebraic framework is apparently not broad

enough, in Ferraro’s view, to encompass Eulerian infinitesimals.

5.2 Primary Point of Reference?

In a similar vein, Fraser claims that

... classical analysis developed out of the older subject and it remains a primary point

of reference for understanding the eighteenth-century theories. By contrast, non-

standard analysis and other non-Archimedean versions of calculus emerged only

fairly recently in somewhat abstruse mathematical settings that bear little connection

to the historical developments one and a half, two or three centuries earlier. (Fraser

2015, 27, emphasis added)

For all his attempts to distance himself from Boyer’s idolisation of the triumvirate,12 Fraser

here commits himself to a position similar to Boyer’s. Namely, Fraser claims that modern

punctiform A-track analysis is a primary point of reference for understanding the analysis

of the past. His sentiment that modern punctiform B-track analysis bears little connection

to the historical developments reveals insufficient attention to the procedure/ontology

dichotomy. A sentiment of the inevitability of classical analysis is explicitly expressed by

Fraser who feels that ‘‘classical analysis developed out of the older subject and it remains a

primary point of reference for understanding the eighteenth-century theories’’ yet his very

formulation involves circular reasoning. It is only if one takes classical analysis as a

primary point of reference that it becomes plausible to conclude that it inevitably

developed out of the older subject.

Such a position amounts to an unconditional adoption of the teleological butterfly model

for the evolution of analysis, where infinitesimals are seen as an evolutionary dead-end.

Elaborating an application of his butterfly/Latin dichotomy (see Sect. 2.6) to the case of

infinitesimals, Ian Hacking writes:

If analysis had stuck to infinitesimals in the face of philosophical nay-sayers like

Bishop Berkeley, analysis might have looked very different. Problems that were

pressing late in the nineteenth century, and which moved Cantor and his colleagues,

might have received a different emphasis, if any at all. This alternative mathematics

might have seemed just as ‘successful’, just as ‘rich’, to its inventors as ours does to

us. In that light, as Mancosu argued, transfinite set theory now looks much more like

the result of one of Zeilberger’s random walks than an inevitable mathematical

development. (Hacking 2014, 119)

12 Historian Carl Boyer described Cantor, Dedekind, and Weierstrass as the great triumvirate in Boyer
(1949, 298); the term serves as a humorous characterisation of both A-track scholars and their objects of
adulation.
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5.3 Paradigm Shift

Laugwitz’s pioneering articles from the 1980s such as Laugwitz (1987a, b, 1989) built

upon earlier studies, particularly Robinson (1966) and Lakatos (1978). This work ushered

in a new era in Euler and Cauchy scholarship. It became possible to dispense with, and go

beyond, the worn clichés about unrigorous infinitesimalists and their inconsistent manip-

ulations with mystical infinitesimals. In the case of Euler, it became possible to formalize

and interpret some of his finest achievements in a way that sheds new light on the methods

he used. This work points to a coherence of his formerly disparaged procedures based on

the principle of cancellation, infinitesimals, and infinite numbers, and establishes a his-

torical continuity in the procedures of infinitesimalists from Leibniz and Euler to Robinson.

Such a paradigm shift in Euler scholarship has encountered resistance from Ferraro,

Fraser, Gray and other historians, who often cling to Procrustean (and often slavishly post-

Weierstrassian) frameworks of Euler interpretation. Thus, Gray finds Euler’s explanations

‘‘dreadfully weak’’ but such a dismissive attitude toward Euler comes at a high price in

anachronism when applied to the eighteenth century. Failing to distinguish clearly between

procedural and ontological issues, these historians focus on the latter and stress the obvious

point that modern set theory is alien to Euler’s ontology, thus falling back on strawman

misrepresentions of the new wave of scholarship. The new scholarship accepts the obvious

ontological point, and focuses rather on the methodological issues of the compatibility of

Euler’s inferential moves and their proxies provided by procedures available in modern

infinitesimal frameworks.

Seeing with what dexterity Leibniz and Euler operated on infinite sums as if they were

finite sums, a modern scholar is faced with a stark choice. He can either declare that they

didn’t know the difference between finite and infinite sums, or detect in their procedures a

unifying principle (explicit in the case of Leibniz, and more implicit in the case of Euler)

that, under suitable circumstances, allows one to operate on infinite sums as on finite sums.

The former option is followed by Ferraro, and is arguably dictated by self-imposed lim-

itations of an A-track interpretive framework. The latter option is the pioneering route of

Robinson, Lakatos, Laugwitz, and others in interpreting the infinitesimal mathematics of

Leibniz, Euler, and Cauchy.

Appendix: Analysis of Euler’s Proof

In Sect. 3.5 we summarized Euler’s derivation of the product decomposition for sine. The

derivation of infinite product decompositions (9) and (10) as found in (Euler 1748, §156)

can be broken up into seven steps as follows. Recall that Euler’s i is an infinite integer.

Step 1 Euler observes that

2 sinh x ¼ex � e�x ¼ 1 þ x

i

� �i

� 1 � x

i

� �i

; ð23Þ

where i is an infinitely large natural number. To motivate the next step, note that the

expression xi � 1 ¼ ðx � 1Þð1 þ x þ x2 þ � � � þ xi�1Þ can be factored further as a product
Qi�1

k¼0ðx � fkÞ, where f ¼ e2p
ffiffiffiffiffi
�1

p
=i; conjugate factors can then be combined to yield a

decomposition into real quadratic terms.

Step 2 Euler uses the fact that ai � bi is the product of the factors
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a2 þ b2 � 2ab cos
2kp

i
; where 1
 k\

i

2
; ð24Þ

together with the factor a � b and, if i is an even number, the factor a þ b, as well.

Step 3 Setting a ¼ 1 þ x
i

and b ¼ 1 � x
i

in (23), Euler transforms expression (24) into

the form

2 þ 2
x2

i2
� 2

�
1 � x2

i2

�
cos

2kp
i

: ð25Þ

Step 4 Euler then replaces (25) by the expression

4k2p2

i2

�
1 þ x2

k2p2
� x2

i2

�
; ð26Þ

justifying this step by means of the formula

cos
2kp

i
¼ 1 � 2k2p2

i2
: ð27Þ

Step 5 Next, Euler argues that the difference ex � e�x is divisible by the expression

1 þ x2

k2p2
� x2

i2
ð28Þ

from (26), where ‘‘we omit the term x2

i2
since even when multiplied by i, it remains infi-

nitely small’’ Euler (1988).

Step 6 As there is still a factor of a � b ¼ 2x=i, Euler obtains the final equality (9),

arguing that then ‘‘the resulting first term will be x’’ (in order to conform to the Maclaurin

series for sinh x).

Step 7 Finally, formula (10) is obtained from (9) by means of the substitution x 7!
ffiffiffiffiffiffiffi
�1

p
x.

Euler’s argument in favor of (9) and (10) was formalized in terms of a proof in

Robinson’s framework in Luxemburg (1973). However, Luxemburg’s formalisation

deviates from Euler’s argument beginning with steps 3 and 4, and thus circumvents the

most problematic steps 5 and 6. A proof in Robinson’s framework, formalizing Euler’s

argument step-by-step throughout, appeared in the article Kanovei (1988); see also

McKinzie and Tuckey (1997) as well as the monograph (Kanovei and Reeken

2004, section 2.4a). This formalisation interprets problematic details of Euler’s argument

on the basis of general principles in Robinson’s framework, as well as general analytic

facts that were known in Euler’s time. Such principles and facts behind some early proofs

exploiting infinitesimals are sometimes referred to as hidden lemmas in this context; see

Laugwitz (1987a, 1989), McKinzie and Tuckey (1997).

For instance, a hidden lemma behind Step 4 asserts, on the basis of the evaluation of the

remainder R of the Taylor expansion

cos
2kp

i
¼ 1 � 2k2p2

i2
þ R ;

that the quadratic polynomial TkðxÞ ¼ 2 þ 2 x2

i2
� 2

�
1 � x2

i2

�
cos 2kp

i
as in (25) admits the

representation

TkðxÞ ¼ Ck

�
UkðxÞ þ pk � x2

�
;
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where Ck and pk do not depend on x while

UkðxÞ ¼ 1 þ x2

k2p2
� x2

i2
;

and for any standard real x and any finite or infinitely large integer k 
 i
2

the following

holds:

(1) if k is finite then pk is infinitesimal, and

(2) there is a real c such that jpkj\c � k�2 for any infinitely large k 
 i
2

.

This allows one to infer that the effect of the transformation of step 4 on the product of

factors (25) is infinitesimal. See (Kanovei 1988, §4) as well as equation (11) on page 75 in

Kanovei and Reeken (2004) for additional details.

Some hidden lemmas of a different kind, related to basic principles of nonstandard

analysis, are discussed in McKinzie and Tuckey (1997, 43ff; see below).

What clearly stands out of Euler’s argument is his explicit use of infinitesimal quantities

such as (25) and (26), as well as the approximate formula (27) which holds ‘‘up to’’ an

infinitesimal of higher order. Thus, Euler exploited bona fide infinitesimals, rather than

merely ratios thereof, in a routine fashion in some of his best work.

We now provide further technical details on a hyperreal interpretation of Euler’s proof

of the product formula for the sine function. Our goal here is to indicate how Euler’s

inferential moves find modern proxies in a hyperreal framework.

We discuss the hidden lemmas related to basic principles of nonstandard analysis fol-

lowing McKinzie and Tuckey (1997, 43ff), where it is argued that the Euler sine fac-

torisation and similar constructions are best understood in the context of the following

hidden definition in terms of modern nonstandard analysis. The following definition is

borrowed from McKinzie and Tuckey (1997, 44).

Definition. A sum a1 þ a2 þ a3 þ � � � is Euler-convergent (E-convergent) if and only

if

(i) ak is defined by an elementary function,13

(ii) for all infinite14 J, the sum a1 þ a2 þ � � � þ aJ is finite, and

(iii) for all infinite pairs J\K, the sum aJ þ aJþ1 þ . . .þ aK is infinitesimal.

Similarly, a product ð1 þ blÞð1 þ b2Þð1 þ b3Þ. . . is Euler-convergent if and only if

(i) bk is defined by an elementary function, (ii) for all infinite J, the pro-

duct ð1 þ b1Þð1 þ b2Þ. . .ð1 þ bJÞ is finite, and (iii) for all infinitely large J\K, the

product ð1 þ bJÞð1 þ bJþ1Þ. . .ð1 þ bKÞ differs infinitesimally from 1.

Next, McKinzie and Tuckey present a series of hidden lemmas implicit in Euler’s

argument. The first such hidden lemma asserts that if the sums a1 þ a2 þ � � �
and b1 þ b2 þ � � � are E-convergent and ak ’ bk (meaning that ak � bk is infinitesimal)

for all finite k, then

a1 þ a2 þ � � � þ aN ’ b1 þ b2 þ � � � þ bN

13 The precise meaning of the modern term elementary function is discussed in McKinzie and Tuckey
(1997, 43, footnote 23).
14 Here the terms finite and infinite correspond to limited and infinitely large in the terminology of
McKinzie and Tuckey (1997).
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for all N finite and infinite. To prove this lemma, it suffices to note that if ak ’ bk holds for

all finite k, then, by Robinson’s lemma (see e. g. Theorem 2.2.12, in Kanovei and Reeken

2004, 62), there is an infinite K such that a1 þ � � � þ ak ’ b1 þ � � � þ bk holds for

all k 
K.

The second hidden lemma asserts a similar property for products. The third hidden

lemma asserts that if, for all finite x, the sums

f ðxÞ ¼ a0 þ a1x þ a2x2 þ � � � and gðxÞ ¼ b0 þ b1x þ b2x2 þ � � �

are E-convergent and we have [f ðxÞ ’ gðxÞ]. This means that a0þ a1x þ a2x2 þ � � � þ
aJxJ ’ b0 þ b1x þ b2x2 þ � � � þ bKxK for all infinite J, K. Note that the choice of J, K is

immaterial by (ii) and (iii) of the definition of E-convergence. Then an ’ bn for all n finite

and infinite. A detailed analysis in McKinzie and Tuckey (1997) shows that these three

lemmas, together with an additional sublemma, suffice to formalize Euler’s derivations

step-by-step in a hyperreal framework.
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