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A definable pair of disjoint non-OD sets of reals (hence, indiscernible sets) exists in the
Sacks and E0 -large generic extensions of the constructible universe L. More specifically,
if a ∈ 2ω is either Sacks generic or E0 -large generic real over L, then it is true in L[a]
that there is a lightface Π1

2 equivalence relation Q on the Π1
2 set U = 2ω

� L with
exactly two equivalence classes, and both those classes are non-OD sets.
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1. Introduction

Let a twin partition be any partition of a given set U into two nonempty cells A

and B . We refer to U as the universe of discourse, and each of A and B as a
twin. Assume that some robust notion of definability D is chosen in advance, i.e.
D might be ordinal definability OD, or D might be Δ1

1 definability, or something
similar. In this context, a twin partition U = A ∪B of a D-definable set U can be
called D-definable in one of two senses:

— strongly D-definable, i.e. each of the twins A and B is D-definable;
— weakly D-definable, meaning that the partition {A, B} of U , considered as

an unordered pair, is D-definable.

∗Corresponding author.
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Strong D-definability clearly implies weak D-definability. The “twin problem” for
a given notion of definability D is whether the converse holds. The twin problem
obviously has a positive answer provided D is some notion of definability closed
under complements and the domain of discourse U contains at least one D-definable
element x, then one cell of the partition consists of those x′ that share the same
cell of the partition as x, and the other cell is just the complementary set. This
provides a trivial positive solution for the twin problem when U = ω , or when U

is the class of ordinals, and generally when U admits a D-definable well-ordering.
Now let’s focus on the case when U is a subset of the real numbers.

The twin problem admits a positive solution in the case of Δ1
1 definability.

Indeed it follows from Theorem 4.1 below that if a Δ1
1 equivalence relation E on a

Δ1
1 set U of reals has precisely two (or even countably many) equivalence classes

then each E-class is itself a Δ1
1 set. The problem also admits a positive solution in

the case of Δ1
2 definability. This follows from the previous paragraph and the fact

that if U is Δ1
2 , then U has a Δ1

2 element (see, e.g. [20, 4E.5]). a But slightly above
Δ1

2 there is a significant obstacle, as indicated by the following theorem.

Theorem 1.1. (the Sacks part originally by Solovayb) Let a ∈ 2ω be either Sacks
generic or E0 -large genericc over L. Then it is true in L[a] that

(i) there is a lightface Π1
2 equivalence relation Qd on the Π1

2 set U = 2ω
� L with

exactly two equivalence classes, both being non-OD sets,
(ii) and hence the quotient U/Q is a weakly definable, but not strongly definable,

partition of the Π1
2 set U into two non-OD sets.

Under the assumptions of the theorem, let A, B be those equivalence classes. As
the relation Q is lightface Π1

2 , the unordered pair {A, B} is an OD set, basically,
a definable set, whose two elements (disjoint nonempty pointsets A, B ⊆ 2ω with
A∪B = 2ω

�L) are non-OD, hence, are OD-indiscernible. This is somewhat unex-
pected, especially with respect to the Sacks extensions. Indeed, the latter are seen
as extremely homogeneous, with every nonconstructible real being Sacks-generic,
therefore to have two distinct but indiscernible populations of nonconstructible reals
in such a model looks rather surprising.

We reiterate that Π1
2 in (i) of Theorem 1.1 is the best possible for such an

example, because if E is a Σ1
2 equivalence relation on a subsequently Σ1

2 set X ⊆ 2ω,

then X contains a Δ1
2 real (see above), hence X/E contains an OD equivalence class.

aThis argument holds as well in the case of Δ1
n definability for any n ≥ 3 under the axiom of

constructibility V = L or simply under the assumption 2ω ⊆ L (all reals are constructible),

because the latter implies that Δ1
n is a basis for Σ1

n , see [20, 5A.4]. The argument also holds
under the axiom of projective determinacy in the case of Δ1

2k+2 definability for any k, because

PD implies that Δ1
2k+2 is a basis for Σ1

2k+2 , see [20, 6C.6].
bSee Sec. 12 on the history of the result.
cSee Sec. 4 on the E0 -large forcing.
dIn fact Q will be equal to the restriction B�U of a Σ1

2 relation B on U = 2ω �L.
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Note also that under V = L nothing like (i) of Theorem 1.1 is possible because of
the basis result mentioned in Footnote a.

2. On Some Indiscernible Pairs of Pointsets in Different Models

Models of ZF or ZFC containing OD indiscernible pairs of (non-OD) disjoint sets of
reals are well-known. Such is e.g. any Sacks×Sacks extension L[a, b] of L, where an
OD pair of non-OD sets consists of the L-degrees [a]L = {x ∈ 2ω : L[x] = L[a]} and
[b]L of the Sacks reals a, b, and in this case {[a]L, [b]L} = all minimal L-degrees, an
OD set in the model L[a, b], see [7] and also [3, 5]. Another model with an OD pair
of countable disjoint non-OD sets of reals is defined in [6]. Yet those examples fail
to fulfill the property that the union of the two sets is equal to the whole domain
of nonconstructible reals.

Generally, OD-indiscernible pairs (not necessarily OD-definable pairs) of disjoint
sets of reals can be extracted from early works on Cohen forcing. In particular, if
〈a, b〉 is a Cohen-generic, over L, pair of a, b ∈ 2ω , then the L-degrees [a]L and [b]L
are OD-indiscernible in L[a, b] [5], and so are the countable E0 equivalence classes
[a]E0 , [b]E0 (essentially by Feferman [4]).

Speaking of countable OD-indiscernible sets of reals, another relevant model
is a Jω -generic extension L[〈ak〉k<ω ] of L, first considered in [3], where J is the
Jensen forcing of [10], Jω is the finite-support product, and 〈ak〉k<ω is a sequence of
J -generic reals. It follows from some results in [12] that the sets A = {a2k : k < ω}
and B = {a2k+1 : k < ω} are OD-indiscernible in this model. Another model with
an even more relevant example can be defined by means of an invariant version
of J , which adjoins a E0-equivalence class [a]E0 of generic reals. This set [a]E0 is
a countable lightface Π1

2 set in L[a], and the subrelation E
even
0 (see Example 3.2)

splits [a]E0 into two nonempty E
even
0 -equivalence classes, OD-indiscernible in L[a].

See [14] on this example.
Note that all the above examples are disjoint sets of nonconstructible reals, but

very far from covering the whole set 2ω
� L of all nonconstructible reals in the

models considered. In this sense, Theorem 1.1 contains a certain novelty.
On the other hand, it is established in [13] that, in some models of ZFC, includ-

ing the Sacks extension of the constructible universe L, it is true that any countable
OD (ordinal-definable) set of reals necessarily consists of OD elements. A similar
result in much more general setting is known from [1, Theorem 4.8] under a strong
large cardinal hypothesis.

3. Outline of the Proof

To prove Theorem 1.1, the required equivalence relation will be obtained as the
union of an increasing transfinite sequence 〈Bα〉α<ω1

of countable Borel equiva-
lence relations. The sequence is defined in L, the ground universe. The following is
the principal definition related to this construction.
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Definition 3.1. A double-bubble pair, DBP for brevity, is a pair of countable Borel
equivalence relations 〈B, E〉 on 2ω , such that each E-class is the union of a pair of
distinct B-classes.

A DBP 〈B′, E′〉 extends 〈B, E〉, in symbol 〈B, E〉 � 〈B′, E′〉, if B ⊆ B′ , E ⊆ E′ ,
and for any x, y ∈ 2ω, if x E y but x �B y then we still have x �B′ y .

Example 3.2. An elementary example consists of the equivalence relation E0 ,
defined on 2ω so that x E0 y if and only if the set Δ(x, y) = {k : x(k) �= y(k)}
is finite, and its subrelation E

even
0 , defined so that x E

even
0 y if and only if the set

Δ(x, y) has a finite even number of elements; 〈Eeven
0 , E0〉 is a DBP.

Thus the extension of DBPs assumes that the equivalence classes of the original
equivalence relations are merged in countable groups, in such a way that the two
B-classes within the same E-class are not merged. In particular, given a Borel set
X ⊆ 2ω and a Borel map f : X → 2ω , we will have to extend a given DBP 〈B, E〉 to
a DBP 〈B′, E′〉 such that x E′ f(x) for all x. This construction needs to overcome
some obstacles explained in the beginning of Sec. 5, which we circumvent with the
help of some canonization theorems of descriptive set theory, related to the two
forcing notions of Theorem 1.1.

Anyway, to prove Theorem 1.1, we’ll define a certain �-increasing sequence
〈〈Bα, Eα〉〉α<ω1

of DBPs 〈Bα, Eα〉 in L, the ground universe, starting with the pair
〈Eeven

0 , E0〉 and eventually corralling all suitable Borel maps, and then the relation
B=

⋃
α Bα will lead to the equivalence relation Q required. This takes some effort.

4. Canonization Results Used in the Proof

Here we present some well-known results of modern descriptive set theory involved
in the proof of Theorem 1.1. We begin with the Silver Dichotomy theorem and a
canonization corollary. See e.g. [21, Theorem 2.2] or [11, Sec. 10.1] for a proof of
the “moreover” lightface version of Theorem 4.1.

Theorem 4.1 (Silver’s Dichotomy [22]). Suppose that E is a Π1
1 equivalence

relation on an uncountable Borel set X ⊆ 2ω. Then either E has at most countably
many equivalence classes, or there exists a perfect partial E-transversale.

If moreover X is lightface Δ1
1 and E is lightface Π1

1 then all equivalence classes
are lightface Δ1

1 in the “either” case.

Corollary 4.2. Suppose that E is a Π1
1 equivalence relation on a Borel set X ⊆ 2ω.

Then there is a perfect set Y ⊆ X such that E coincides on Y with:

— either (I) the total equivalence TOT making all reals equivalent;
— or (II) the equality, so that Y is a partial E-transversal.

If in addition E is a countablef equivalence relation then (I) is impossible.

eA partial transversal is a set of pairwise inequivalent elements. A full transversal requires that
in addition it has a nonempty intersection with any equivalence class in a given domain.
f An equivalence relation is countable if and only if all its equivalence classes are at most countable.
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Proof. In the “or” case of Theorem 4.1 we have (II). In the “either” case pick an
uncountable equivalence class C and let Y ⊆ C be any perfect set.

Corollary 4.3. If X ⊆ 2ω is a perfect set, and f : X → 2ω a Borel map, then
there is a perfect set Y ⊆ X such that f �Y is a bijection or a constant.

Proof. This is a well-known fact, of course, yet it immediately follows from Corol-
lary 4.2. Indeed define a Borel equivalence relation E on X such that x E y if and
only if f(x) = f(y). Apply Corollary 4.2.

Now we recall some definitions and results related to E0-large sets. A Borel
set X ⊆ 2ω is called E0-large if E0�X is still a non-smoothg equivalence relation.
For instance 2ω itself is E0-large, while any Borel partial E0-transversal is not. If
u = 〈ui

n〉n<ω,i=0,1 is a double sequence of strings ui
n ∈ 2<ω, satisfying lh(u0

n) =
lh(u1

n) ≥ 1 and u0
n �= u1

n for all n, then we call u a E0-matrix, let

xa
u = u

a(0)
0

�u
a(1)
1

�u
a(2)
2

� . . . �ua(n)
n

� . . . ∈ 2ω .

for any a ∈ 2ω , and define a canonical E0-large set Xu = {xa
u : a ∈ 2ω}. Each

canonical E0-large set Xu is perfect, and E0-large since the map a 
→ xa
u is a Borel

reduction of E0 into E0�Xu . On the other hand, it is known (see e.g. [15, Sec. 7.1])
that each (Borel) E0-large set X ⊆ 2ω contains a canonical E0 -large subset Y ⊆ X .

Also if v = 〈vi
n〉n<ω,i=0,1 is another E0-matrix, then we define a map

huv : Xu
onto−→ Xv such that huv(xa

u) = xa
v for all a ∈ 2ω . Note that huv is a homeo-

morphism and E0-isomorphism, in the sense that x E0 y ⇐⇒ huv(x) E0 huv(y),
for all x, y ∈ Xu . Maps of the form huv will be called canonical E0-large maps.

Theorem 4.4 ([15, Theorem 7.1], or else [19]). Suppose that E is a Borel
equivalence relation on 2ω, and X ⊆ 2ω is a E0-large set. Then there is a canonical
E0-large set Y ⊆ X such that E coincides on Y with:

— either (I) the total equivalence relation TOT ;
— or (II) the relation E0;
— or (III) the equality.

In addition, if E is a countable equivalence relation then (I) is impossible, while if
E0 ⊆ E then (III) is impossible.

Corollary 4.5. If X ⊆ 2ω is a Borel E0-large set, and Z ⊆ X a Borel set, then
there is a canonical E0-large set Y ⊆ X such that Y ⊆ Z or Y ∩ Z = ∅.

Proof. Define a Borel equivalence relation E on X such that x E y if and only
if x, y ∈ Z or x, y ∈ X � Z . Apply Theorem 4.4. As E has just two equivalence
classes, only (I) is possible.

gAn equivalence relation E on a Borel set X is smooth if there is a Borel map f : X → 2ω such
that we have x E y if and only if f(x) = f(y) for all x, y ∈ X . The equivalence relation E0 is
non-smooth, meaning that such a Borel f does not exist. See [17, Example 6.5].
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Corollary 4.6. If X ⊆ 2ω is a Borel E0-large set, and f : X → 2ω a Borel map,

then there exists a canonical E0 -large set Y ⊆ X such that f �Y is a bijection or a
constant.

Proof. Define a Borel equivalence relation E on X such that x E y if and only if
f(x) = f(y). Apply Theorem 4.4. We have to prove that (II) is impossible. Suppose
to the contrary that E = E0 on a canonical E0 -large set Y ⊆ X . In other words, we
have f(x) = f(y) if and only if x E0 y for all x, y ∈ Y . Thus f is a Borel reduction
of E0�Y to the equality, which contradicts the assumption that Y is E0-large.

As forcing notions, both the set Sacks of all perfect sets (the Sacks forcing)
and the set PE0 of all canonical E0-large sets (the E0-large forcing) adjoin reals
of minimal degree, preserve ℵ1 , are bounding, and have some other remarkable
properties, see e.g. [15, Sec. 7.1], or [25, 2.3.10], including the following.

Lemma 4.7. Both Sacks and PE0 satisfy the property of continuous reading of
names, i.e. if a ∈ 2ω is Sacks-generic or PE0 -generic over L, and x ∈ 2ω ∩ L[a],
then x = f(a), where f : 2ω → 2ω is a continuous map coded in L.

Proof. In the Sacks case, given X ∈ Sacks and a name t for a real in 2ω, we define,
in L, a splitting scheme 〈Xu〉u∈2<ω of conditions Xu ∈ Sacks, satisfying

(i) XΛ ⊆ X (Λ is the empty string),
(ii) Xu�i ⊆ Xu and stem(X)�i ⊆ stem(Xu�i) for all i = 0, 1 and u ∈ 2<ω, where

r = stem(Y ) ∈ 2<ω (the stem) is the largest string satisfying r ⊂ y for all
y ∈ Y — it follows that Xu�0 ∩ Xu�1 = ∅,

(iii) each Xu decides the value of t(n), where n = lh(u) (the length).

Then Y =
⋂

n

⋃
lh(u)=n Xu ⊆ X is a perfect set, and the map f0 : Y → 2ω, defined

by f0(x)(n) = i if and only if Xu Sacks-forces t(n) = i, where u is the only string
with lh(u) = n such that x ∈ Xu, is continuous. In L, let f : 2ω → 2ω be the
continuous extension of f0 . Then Y forces that t is equal to f(aG), where aG is
the name for the Sacks-generic real.

The above is a standard construction present, in this or another way, in many
papers on the Sacks forcing and related forcing notions. Its more sophisticated
version, designed in [8] (see also, e.g. [11, pp. 129–130]) yields a canonical E0-large
set Y =

⋂
n

⋃
lh(u)=n Xu ⊆ X , and hence proves the lemma for PE0 . Another proof

for the PE0 case can be derived from two results in Zapletal [26], namely, that PE0

has the bounding property (pp. 214–215) and that the bounding property implies
continuous reading of names (Theorem 3.3.2).
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5. Corralling Maps, Sacks Case

The following general result will be applied below in some key arguments.

Lemma 5.1. If R ⊆ 2ω → 2ω is a Borel relation and all vertical and horizontal
cross-sections of R are countable, then the least equivalence relationE satisfying
R ⊆ E (the equivalence hull of R) is countable and Borel.

Proof. That E is countable (i.e. all E-classes are countable) is clear, so it remains
to check the Borelness. Note that x E y is equivalent to:

(�) there exists a string �z = 〈x = z0, z1, . . . , zn = y〉 of reals xi satisfying
〈xi, xi+1〉 ∈ R or 〈xi+1, xi〉 ∈ R for all i < k.

It follows from the condition of countable cross-sections that for any pair of reals
x, y there exist at most countably many strings �z satisfying (�). Therefore E as a
set of pairs is equal to the projection of a Borel set with countable cross-sections.
(We skip details related to coding of strings of reals by reals themselves.) But any
such a projection is a Borel set, see e.g. [16, 18.10].

Now a principal definition follows.

Definition 5.2. Given a set X ⊆ 2ω and a map f : X → 2ω , a DBP 〈B, E〉 :

— corralls f if E contains f , that is, f(x) ∈ [x]E for all x ∈ X ;

— positively corralls f if B contains f , that is, f(x) ∈ [x]B for all x ∈ X ;

— negatively corralls f if f(x) ∈ [x]E � [x]B for all x ∈ X .

Let 〈B, E〉 be a DBP and f : 2ω → 2ω be a one-to-one Borel map. Is there a
DBP 〈B′, E′〉 extending 〈B, E〉 and corralling f ? The first step is obvious: merge
each E-class [x]E , x ∈ 2ω, with [f(x)]E . To be more precise, let E′ be the smallest
equivalence relation including both E and the graph of f . (Note that E′ is still
a countable equivalence relation provided E is such and f is one-to-one or even
countable-to-1, and is Borel by Lemma 5.1 provided E and f are such.) However how
do we then merge B-subclasses of E-classes? One may want to use the same idea,
that is, to merge each [x]B with [f(x)]B , but this does not necessarily work. Indeed
assume that x B x′ , while the values y = f(x) and y′ = f(x′) are E-equivalent
but not B-equivalent. If we make x, y B′-equivalent and x′, y′ B′-equivalent then
we get y B′ y′ as well since x B x′ . But this contradicts the definition of extension
of DBPs since y E y′ but y �B y′ .

To circumvent this difficulty, we allow the domain of the map f considered to
be reduced to a smaller set (which still belongs to the forcing considered, i.e. the
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Sacks forcing in this Section) on which B, E, f behave exceptionally well. This is
where the canonization results of Sec. 4 will play the key role.

Lemma 5.3. Assume that 〈B, E〉 is a DBP, X ⊆ 2ω is a perfect set,ss and f : X →
2ω is Borelh and one-to-one. There exist a perfect set Y ⊆ X and a DBP 〈B′, E′〉
which extends 〈B, E〉 and corralls f �Y .

Proof. The sets X ′ = {x ∈ X : x E f(x)} and X ′′ = {x ∈ X : x �E f(x)} are
Borel, hence there is a perfect set X0 with either X0 ⊆ X ′ or X0 ⊆ X ′′. But if
X0 ⊆ X ′ then 〈B, E〉 already corralls f �X0 , and we are done. Thus, we assume
that X0 ⊆ X ′′ , that is, x �E f(x) for all x ∈ X0 .

By Corollary 4.2, there is a perfect set X1 ⊆ X0 such that E, B coincide with
the equality on X1 . Define an equivalence relation Ê on X1 such that x Ê y if and
only if f(x) E f(y), and define B̂ similarly. Consider the ⊆-minimal equivalence
relation F defined on 2ω such that E ⊆ F and if x, y ∈ 2ω and f(x) E y then x F y .
Thus Ê, B̂, F are countable Borel equivalence relations on X1 . (The Borelness of F

holds by Lemma 5.1.) By Corollary 4.2, there is a perfect set Y ⊆ X1 such that
Ê, B̂, F coincide with the equality on Y , along with E, B. It follows, by the choice
of X0 and using the fact that F on Y is the equality relation, that if x, y ∈ Y

(whether equal or not) then x �E f(y).
We define the equivalence relations E′, B′ as follows.
If x ∈ 2ω does not belong to the critical domain Δ = [Y ∪ {f(x) : x ∈ Y }]E,

then put [x]E′ = [x]E and [x]B′ = [x]B , so such an E-class and its B-subclasses are
not changed. But within Δ some classes will be merged. Namely, if x ∈ Y then we
have to merge [x]E with [f(x)]E , hence put

[x]E′ = [x]E ∪ [f(x)]E and [x]B′ = [x]B ∪ [f(x)]B,

and define the other B′-class within [x]E′ as [x]E′ � [x]B′ .
Note that the domain Δ and the subdomains Δ1 = [Y ]E and Δ2 = [Y2]E , where

Y2 = {f(x) : x ∈ Y }, are Borel sets. Indeed Y2 is Borel because f is Borel and one-
to-one. Further, as E is a Borel countable equivalence relation, the Lusin–Novikov
theorem (see [16, 18.10]) implies the existence of a sequence of Borel countable-to-1
maps hn : 2ω → 2ω such that [x]E = {hn(x) : n < ω}. It follows that e.g.Δ1 =⋃

n Zn , where each Zn = {hn(z) : z ∈ Y } is Borel by [16, Lemma 18.12] since Y is
Borel and each hn is Borel and countable-to-1. Now to conclude that E′ is a Borel
relation, we note that by definition x E′ y if and only if

— either (1) (x, y /∈ Δ ∨ x, y ∈ Δ1 ∨ x, y ∈ Δ2) and x E y ,
— or (2) x ∈ Δ1 , y ∈ Δ2 , and ∃x′ ∈ Y (x′ E x ∧ y E f(x′)),
— or (3) vice versa, y ∈ Δ1 , x ∈ Δ2 , and ∃ y′ ∈ Y (y′ E y ∧ x E f(y′)).

hLemmas 5.3, 5.4, 6.1 and 6.2 will be applied below essentially only in the case of continuous
maps f via Lemma 4.7, yet we decided to slightly increase generality in the lemmas.
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Here case (1) is clearly expressed in a Borel way. The last condition in (2) can be
rewritten in a Borel way by ∃n (hn(x) ∈ Y ∧ y E f(hn(x))), so (2) is Borel too.
Ditto for (3). Thus indeed E′ is a Borel equivalence relation.

A routine further verification shows that B′ is Borel as well, and the pair 〈B′, E′〉
is a DBP which extends 〈B, E〉 and positively corralls f �Y (because we have f(x) ∈
[x]B′ for all x ∈ Y simply by construction).

Lemma 5.4. Let 〈B, E〉 be a DBP, and R, X ⊆ 2ω be perfect sets. There exist: a
perfect set Y ⊆ X, Borel one-to-one maps f, g : Y → R, and a DBP〈B′, E′〉 which
extends 〈B, E〉, positively corralls f �Y, and negatively corralls g�Y .

Proof. By Corollary 4.2, there exist perfect partial E-transversals X0 ⊆ X and
R0 ⊆ R. Let R0 = R1 ∪R2 be a partition into two disjoint perfect sets. Then [R1]E
and [R2]E are disjoint, hence there is a perfect set Y ⊆ X0 such that [Y ]E does not
intersect either [R1]E or [R2]E . Let say [Y ]E ∩ [R1]E = ∅.

Let R1 = R′ ∪ R′′ be a partition into two disjoint perfect sets. It follows by
construction that (*) the Borel sets Y, R′, R′′ are pairwise disjoint and the union
Δ = Y ∪ R′ ∪ R′′ is a partial E-transversal. Let f : Y → R′ and g : Y → R′′ be
arbitrary Borel one-to-one maps.

We define the equivalence relations E′, B′ as follows.
If x ∈ 2ω does not belong to the critical domain Δ = [Y ∪ R′ ∪ R′′]E, then

put [x]E′ = [x]E and [x]B′ = [x]B , so such a E-class and its B-subclasses are not
changed. But within Δ some classes will be merged. Namely if x ∈ Y then we have
to merge [x]E with [f(x)]E and [g(x)]E , hence we put [x]E′ = [x]E∪ [f(x)]E ∪ [g(x)]E .
We further define

[x]B′ = [x]B ∪ [f(x)]B ∪ ([g(x)]E � [g(x)]B) ,

and let ([x]E � [x]B)∪([f(x)]E � [f(x)]B)∪[g(x)]B be the other B′-class within [x]E′ .
A routine verification using (*) shows that the relations E′, B′ are Borel (see the
proof of Lemma 5.3), and the pair 〈B′, E′〉 is a DBP that extends 〈B, E〉, positively
corralls f �Y , and negatively corralls g�Y .

6. Corralling Maps, E0-Large Case

We prove two lemmas similar to Lemmas 5.3 and 5.4, yet with a bit more complex
proofs.

Lemma 6.1. Assume that 〈B, E〉 is a DBP, E0 ⊆ E, X ⊆ 2ω is a canonical E0-
large set, and f : X → 2ω is Borel and one-to-one. There exist a canonical E0-large
set Y ⊆ X and a DBP 〈B′, E′〉 which extends 〈B, E〉 and corralls f �Y .

Proof. First of all, arguing as in the proof of Lemma 5.3 (but using Corollary 4.5),
we get a canonical E0-large set X0 ⊆ X with x �E f(x) for all x ∈ X0 . By Theo-
rem 4.4, there is a canonical E0-large perfect set X1 ⊆ X0 such that the relations
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E, B coincide with E0 on X1 . Define an equivalence relation Ê on X1 such that
x Ê y if and only if f(x) E f(y), and define B̂ similarly. Consider the ⊆-minimal
equivalence relation F defined on 2ω such that E ⊆ F and if x, y ∈ 2ω and f(x) E y

then x F y . Thus Ê, B̂, F are countable Borel equivalence relations on X1 . (F is
Borel by Lemma 5.1.) By Theorem 4.4, there is a canonical E0-large perfect set
Y ⊆ X1 such that each of these three equivalence relations is either of type (I) or of
type (II) on Y . However, as each E-class contains two B-classes, Ê has to coincide
with B̂ on Y . Finally, as E ⊆ F, we have F = E0 on Y. It follows by the choice of
X0 that if x, y ∈ Y (whether equal or not) then x �E f(y).

To conclude, E = B = F = E0 on Y , and also either Ê = B̂ is the equality on
Y , or Ê = B̂ = E0 on Y . This leads to the following two cases.

In each case, we are going to define the equivalence relations E′, B′ required. If
x ∈ 2ω does not belong to the critical domain Δ = [Y ∪ {f(x) : x ∈ Y }]E, then
put [x]E′ = [x]E and [x]B′ = [x]B , so such a E-class and its B-subclasses are not
changed. But within Δ some classes will be merged. In particular, we are going to
merge [x]E with [f(x)]E for any x ∈ Y .

Case 1. Ê = B̂ is the equality on Y while B = E = F = E0 on Y , thus if
x, y ∈ Y then first, x �= y implies f(x) �E f(y) and f(x) �B f(y), and second,
[x]E ∩ Y = [x]B ∩ Y = [x]E0 ∩ Y . If x ∈ Y then put

[x]E′ = [x]E ∪
⋃

y∈Y ∩[x]E0

[f(y)]E and [x]B′ = [x]B ∪
⋃

y∈Y ∩[x]E0

[f(y)]B,

and define the other B′-class within [x]E′ as [x]E′ � [x]B′ .

Case 2. E = B = Ê = B̂ = F = E0 on Y , that is, if x, y ∈ Y then

x E0 y ⇐⇒ x E y ⇐⇒ x B y ⇐⇒ f(x) E f(y) ⇐⇒ f(x) B f(y).

Assume that x ∈ Y. Put [x]E′ = [x]E ∪ [f(x)]E = [y]E ∪ [f(y)]E for any other
y ∈ Y ∩ [x]E0 , and [x]B′ = [x]B ∪ [f(x)]B = [y]B∪ [f(y)]B for any other y ∈ Y ∩ [x]E0 .
Define the other B′-class within [x]E′ as [x]E′ � [x]B′ .

A routine verification shows that in either case the relations E′, B′ are Borel (as
in the proof of Lemma 5.3), and the pair 〈B′, E′〉 is a DBP which extends 〈B, E〉 and
corralls f �Y (because we have f(x) ∈ [x]E′ for all x ∈ Y simply by construction).

Lemma 6.2. Let 〈B, E〉 be a DBP with E0 ⊆ E, and R, X ⊆ 2ω be canonical E0-
large sets. There exist: a canonical E0-large set Y ⊆ X, canonical E0-large maps
f, g : Y → R, and a DBP〈B′, E′〉 that extends 〈B, E〉, positively corralls f �Y, and
negatively corralls g�Y.

Proof. By Theorem 4.4, we without loss of generality assume that E = B = E0

on R. By definition, R = Xr for a E0-matrix r = 〈ri
n〉n<ω,i=0,1 . Now let p =

〈pi
n〉n<ω,i=0,1 , q = 〈qi

n〉n<ω,i=0,1 , where pi
n = r0

2n
�ri

2n+1 and qi
n = r1

2n
�ri

2n+1 .
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Thus p,q are E0-matrices, and the sets Xp , Xq satisfy Xp ∪ Xq ⊆ Xr = R and
[Xp]E0 ∩ [Xq]E0 = ∅, hence, [Xp]E ∩ [Xq]E = ∅ by the assumption above. It follows
by Corollary 4.5 that there is a canonical E0-large set X0 ⊆ X satisfying [X0]E ∩
[Xp]E = ∅ or [X0]E ∩ [Xq]E = ∅. Assume, for instance, that [X0]E ∩ [Xp]E = ∅.
As just above, there exist E0-matrices p′,p′′ such that the canonical E0-large sets
R′ = Xp′ , R′′ = Xp′′ satisfy R′ ∪ R′′ ⊆ Xp and [R′]E ∩ [R′′]E = ∅.

To conclude, we have canonical E0-large sets X0 ⊆ X and R′, R′′ ⊆ R satisfying
(*) [R′]E ∩ [R′′]E = [X0]E ∩ [R′]E = [X0]E ∩ [R′′]E = ∅. As E, B are countable
equivalence relations and E0 ⊆ E, Theorem 4.4 yields a canonical E0-large set
Y = Xu ⊆ X0 such that E = E0 on Y while B coincides with either E0 or the
equality on Y . Then since B splits E-classes into two pieces, we conclude that B

on Y also agrees with E0 , so that E = B = E0 on Y .
Consider the canonical E0 -large maps f = hup′ : Y onto−→ R′ and g = hup′′ : Y onto−→

R′′ . We define the equivalence relations E′, B′ as follows.
If x ∈ 2ω does not belong to the critical domain Δ = [Y ∪ R′ ∪ R′′]E, then put

[x]E′ = [x]E and [x]B′ = [x]B , so such a E-class and its B-subclasses are not changed.
But within Δ, if x ∈ Y then we have to merge [x]E with [f(x)]E and [g(x)]E , and
[x]B with [f(x)]B but not with [g(x)]B , hence we put

[x]E′ = [x]E ∪ [f(x)]E ∪ [g(x)]E,

[x]B′ = [x]B ∪ [f(x)]B ∪ ([g(x)]E � [g(x)]B),

and define the other B′-class within [x]E′ as

[x]E′ � [x]B′ = ([x]E � [x]B) ∪ ([f(x)]E � [f(x)]B) ∪ [g(x)]B.

The definition of [x]E′ and [x]B′ is suitably invariant, so that if x, y ∈ Y and x E y

then [f(x)]E′ = [f(y)]E′ and [f(x)]B′ = [f(y)]B′ , because 1) x E0 y and x B y since
E = B = E0 on Y , therefore 2) f(x) E0 f(y) and g(x) E0 g(y) since f, g are E0-
isomorphisms, and further 3) [f(x)]E = [f(y)]E , [g(x)]E = [g(y)]E , [f(x)]B = [f(y)]B ,
[g(x)]B = [g(y)]B , since E = B = E0 on R′ ∪ R′′ ⊆ R.

Note also that if x, y ∈ Y and x �E y then x �E0 y , and it follows by approx-
imately the same arguments (plus (*) above) that the sets [x]E , [f(x)]E , [g(x)]E ,
[y]E , [f(y)]E , [g(y)]E are pairwise disjoint. Using this observation, a routine verifi-
cation shows that the relations E′, B′ are Borel (as in the proof of Lemma 5.3), and
the pair 〈B′, E′〉 is a DBP that extends 〈B, E〉, corralls f �Y positively, and corralls
g�Y negatively.

7. Definability Aspects

The following Theorem 8.1 asserts the existence of a certain transfinite sequence of
Borel equivalence relations. We have to explain how definability properties of such
sequences can be considered. In particular, we consider ∈-definability in the set HC
of all hereditarily countable sets. We’ll make use of the following well-known fact:
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Proposition 7.1 (see, e.g. [9, Lemma 25.25]). Let n ≥ 1. A set of reals is
Σ1

n+1 if and only if it is ΔHC
n . The same for Π and Δ .

Note that HC = Lω1 as long as V = L is assumed. Let <L be Gödel’s ΔHC
1

wellordering of HC. The next result exploits the “goodness” of <L .

Proposition 7.2 (V = L). Let W ⊆ HC × HC be a ΔHC
n relation, n ≥ 1. For

any x ∈ X = domW let yx be the <L-least y satisfying W (x, y). Then the set
W ′ = {〈x, yx〉 : x ∈ X} is ΔHC

n as well.

Proof. Make use of the well-known fact, called the “goodness” of <L that bounded
quantifiers ∃x <L y , ∀x <L y preserve the property of being ΔHC

1 . This property
of bounded quantifiers is similar and essentially equivalent, via Proposition 7.1, to
the fact that ∃ a <L b, ∀ a <L b (where a, b vary over 2ω) preserve the property
of being Δ1

n . See, e.g.[20, 5A.2 and 8F.7], or the proof of [9, Lemma 25.27] on this
descriptive set theoretic form of the “goodness” result.

Borel coding and effective descriptive set theory. The following are useful
technicalities. See, e.g.[9, Sec. 25; 23, Sec. II.1], or [11, Sec. 2.9] on Borel coding.

(I) Let E ⊆ 2ω be a Π1
1 set of all Borel codes for Borel subsets of 2ω × 2ω , and

if ε ∈ E then let Eε ⊆ 2ω × 2ω be the Borel set coded by ε. There exist
two ternary Σ1

1 relations E, E′ on 2ω such that if ε ∈ E and x, y ∈ 2ω then
〈x, y〉 ∈ Eε if and only if E(ε, x, y) if and only if ¬ E′(ε, x, y).

(II) Let F ⊆ 2ω be a Π1
1 set of all Borel codes for Borel maps 2ω → 2ω , and

if ϕ ∈ F then let �ϕ : 2ω → 2ω be the Borel map coded by ϕ. There exist
two ternary Σ1

1 relations F, F′ on 2ω such that if ϕ ∈ E and x, y ∈ 2ω then
�ϕ(x) = y if and only if F(ε, x, y) if and only if ¬ F′(ε, x, y).

(III) Let T ⊆ P(2<ω) be the set of all perfect trees in 2<ω , and if τ ∈ T then let
[τ ] ⊆ 2ω be the corresponding perfect set.

(IV) If x ∈ 2ω and Y ⊆ 2ω is a countable Σ1
1(x) set (i.e. Σ1

1 -definable with x as
a parameter) then Y ⊆ Δ1

1(x), see, e.g. [11, 2.10.5].
(v) If Φ(x, y, . . .) is a Π1

1 formula then so is ∃ y ∈ Δ1
1(x)Φ(x, y, . . .), see, e.g.[20,

4D.3] or [11, 2.8.6].

Lemma 7.3. The following sets and relations are Π1
1 , hence ΔHC

1 by Proposi-
tion 7.1:

(i) the set Ecnt = {ε ∈ E : Eεis a countable equivalence relation on 2ω};
(ii) the sets {〈δ, ε〉 ∈ E × E : Eδ ⊆ Eε} and {〈δ, ε〉 ∈ E × E : Eδ = Eε} ;
(iii) the set EDBP = {〈δ, ε〉 : δ, ε ∈ Ecnt ∧ 〈Eδ, Eε〉 is a DBP} and the relation of

extension of coded DBP, as in Definition 3.1;
(iv) the set {〈τ, ϕ〉 : τ ∈ T ∧ ϕ ∈ F ∧ �ϕ� [τ ] is one-to-one};
(v) the set {〈τ, ρ, ϕ〉 : τ, ρ ∈ T ∧ ϕ ∈ F ∧ �ϕ”[τ ] ⊆ [ρ]};
(vi) the set {〈δ, ε, ϕ, τ〉 : τ ∈ T ∧ϕ ∈ F ∧ 〈δ, ε〉 ∈ EDBP ∧ 〈Eδ, Eε〉 corralls �ϕ� [τ ]},

the same goes for positive and negative corralling.
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It follows that all those sets and relations belong to ΔHC
1 .

Proof. (i) Let ε ∈ E . For Eε to be an equivalence relation is equivalent to the
following sentence:

∀x¬E′(ε, x, x) ∧ ∀x, y (E(ε, x, y) =⇒ ¬ E′(ε, y, x)) ∧
∧∀ x, y, z(E(ε, x, y) ∧ E(ε, y, z) =⇒ ¬ E′(ε, x, z)),

}
which is a Π1

1 relation. Further, by (IV), Eε is a countable equivalence relation if
and only if

∀x, y (E(ε, x, y) =⇒ y ∈ Δ1
1(ε, x)),

which is equivalent to

∀x, y (E(ε, x, y) =⇒ ∃ y′ ∈ Δ1
1 (ε, x) (y′ = y)),

and this is a Π1
1 relation by (V).

(iii) If δ, ε ∈ Ecnt and Eδ ⊆ Eε , then 〈Eδ, Eε〉 is a DBP if and only if, first,
among any triple of Eε -equivalent elements there is a pair that is Eδ -equivalent,
and second, ∀x ∃ y, y′ ∈ Δ1

1(ε, x) (y Eε y′ ∧ ¬ y Eδ y′), which is Π1
1 by (V).

Claims (ii), (iv)–(vi) are established similarly.

8. Increasing Systems of Equivalence Relations

Theorem 8.1 (in L). There is an �-increasing sequence of DBPs 〈Bα, Eα〉, α <

ω1, beginning with 〈B0, E0〉 = (Eeven
0 E0) of Example 3.2 and such that

(i) if X ⊆ 2ω is perfect and f : X → 2ω Borel and one-to-one, then there exist: a
perfect X ′ ⊆ X and an ordinal α < ω1 such that 〈Bα, Eα〉 corralls f �X ′ ;

(ii) if X, R ⊆ 2ω are perfect sets, then there exist: a perfect set Y ⊆ X, an ordinal
α < ω1, and Borel one-to-one maps f, g : Y → R, such that 〈Bα, Eα〉 corralls
f positively and corralls g negatively;

(iii) the sequence of pairs 〈Bα, Eα〉 is ΔHC
1 , in the sense that there exists a ΔHC

1

sequence of codes for Borel sets Bα and Eα.

Proof. We argue in L. The following is a straightforward inductive construction
using Lemmas 5.3 and 5.4 and taking the Gödel-least code amongst all possible
extensions fitting the given inductive step. Let’s carry out this plan in detail.

(∗) Fix an enumeration 〈X̂α, R̂α, f̂α〉α<ω1
of all triples 〈X, R, f〉, where X, R ⊆ 2ω

are perfect sets and f : 2ω → 2ω is a Borel map.

The base. Take E0 and B0 = E
even
0 as indicated.

The successor step. Suppose that α < ω1 and a DBP 〈Bα, Eα〉 is defined. If f̂α� X̂α is
not one-to-one then let Y ′ = X̂α and 〈B′, E′〉 = 〈Bα, Eα〉. Otherwise, by Lemma 5.3,
there exist: a perfect set Y ′ ⊆ X̂α and a DBP 〈B′, E′〉, such that 〈B′, E′〉 extends
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〈Bα, Eα〉 and positively corralls f̂α�Y ′. By Lemma 5.4, there exist: a perfect set
Y ′′ ⊆ Y ′, Borel maps g, h :, 2ω → 2ω, and a DBP 〈B′′, E′′〉, such that g�Y ′′ , h�Y ′′

are one-to-one maps into R̂α , 〈B′′, E′′〉 extends 〈B′, E′〉, positively corralls g�Y ′′ and
negatively corralls h�Y ′′. Let Yα+1 , gα+1 , hα+1 , 〈Bα+1, Eα+1〉 be any particular
choice of such Y ′′ , g , h, 〈B′′, E′′〉. Thus the relationships between the αth and
(α + 1)th steps, in terms of (∗) are as follows:

(†) Y ′′ ⊆ X̂α, 〈B′′, E′′〉 is a DBP and extends 〈B, E〉,
either f̂α� X̂α is not one-to-one or 〈B′′, E′′〉 positively corralls f̂α�Y ′′ ,
g�Y ′′ and h�Y ′′ are one-to-one Borel maps from Y ′′ to R̂α,
〈B′′, E′′〉 corralls g�Y ′′ positively and h�Y ′′ negatively.

The limit step. If λ < ω1 is limit then put Eλ=
⋃

α<λ Eα , Bλ=
⋃

α<λ Bα .

Conclusion. Whatever way different choices are made during the course of the
above construction, the result satisfies (i), (ii). It remains to fulfill (iii). This will
be achieved by making the construction more precise.

Complexity evaluation. In the remainder of the proof of Theorem 8.1 in this section,
we shall freely use special notation of Sec. 7, like e.g.T ,F , <L, EDBP et cetera. Let
〈τα, ρα, ϕα〉 be the αth element of the set T × T × F , in the sense of Gödel’s
wellordering <L . We define X̂α = [τα], R̂α = [ρα], f̂α = �ϕα .

Corollary 8.2 (by Proposition 7.2). 〈τα, ρα, ϕα〉α<ω1
is a ΔHC

1 sequence, and
the sequence 〈X̂α, R̂α, f̂α〉α<ω1

satisfies (∗).

Now let P (〈α, δ, ε〉, 〈δ′, ε′, τ, ζ, η〉) say:

(‡) α < ω1 ; both 〈δ, ε〉 and 〈δ′, ε′〉 belong to EDBP ; τ ∈ T ; ζ, η ∈ F , and the pairs
〈B, E〉 = 〈Eδ, Eε〉, 〈B′′, E′′〉 = 〈Eδ′ , Eε′ 〉 satisfy (†) with Y ′′ = [τ ], the Borel
maps g = �ζ and h = �η , and X̂α , R̂α , f̂α provided by 8.2.

It follows from Corollary 8.2 and Lemma 7.3 that P has definability class ΔHC
1 .

In addition domP = ω1×EDBP (see the successor step in the beginning of the proof
of Theorem 8.1). If α < ω1 and 〈δ, ε〉 ∈ EDBP then let

πα(δ, ε) = 〈δ′α(δ, ε), ε′α(δ, ε), τα(δ, ε), ζα(δ, ε), ηα(δ, ε)〉

be the <L-least tuple 〈δ′, ε′, τ, ζ, η〉 satisfying P (〈α, δ, ε〉, 〈δ′, ε′, τ, ζ, η〉). The map
α, δ, ε 
→ πα(δ, ε) is ΔHC

1 by Lemma 7.2, and hence so are all five component maps,
in particular, the mappings α, δ, ε 
→ δ′α(δ, ε) and α, δ, ε 
→ ε′α(δ, ε), because the
domain domP = ω1 × EDBP is a ΔHC

1 set.
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To complete the proof of Theorem 8.1, define a sequence 〈〈δα, εα〉〉α<ω1
of pairs

〈δα, εα〉 ∈ EDBP by transfinite induction. Let δ0, ε0 ∈ Ecnt be any recursive codes
for the equivalence relations, respectively, E

even
0 and E0 , so 〈δ0, ε0〉 ∈ EDBP . On

successor steps, if 〈δα, εα〉 ∈ EDBP is defined, then let δα+1 = δ′α(δ, ε) and εα+1 =
ε′α(δ, ε). On limit steps, if λ < ω1 is limit and 〈δα, εα〉 ∈ EDBP is defined for all α <

λ, then let 〈δλ, ελ〉 be the <L-least pair of codes in Ecnt satisfying Eδλ
=

⋃
α<λ Eδα

and Eελ
=

⋃
α<λ Eεα . It follows by Proposition 7.2 and the choice of the maps

α, δ, ε 
→ δ′α(δ, ε) and α, δ, ε 
→ ε′α(δ, ε) via standard estimation, that the sequence
〈〈δα, εα〉〉α<ω1

is ΔHC
1 , so we have (iii) of Theorem 8.1.

(Theorem 8.1)

Theorem 8.3 (in L). There is an �-increasing sequence of DBPs 〈Bα, Eα〉, α <

ω1, beginning with 〈B0, E0〉 = 〈Eeven
0 , E0〉 of Example 3.2, and such that

(i) if X ⊆ 2ω is a Borel E0-large set and f :X → 2ω Borel and one-to-one, then
there exist: a canonical E0-large set Y ⊆ X and α < ω1 such that 〈Bα, Eα〉
corralls f �Y ;

(ii) if X, R ⊆ 2ω are E0-large sets, then there exist: a canonical E0-largeset Y ⊆
X, an ordinal α < ω1, and canonical E0-large maps f, g : Y → R, such that
〈Bα, Eα〉 corralls f positively and g negatively;

(iii) the sequence of pairs 〈Bα, Eα〉 is ΔHC
1 , in the sense that there exists a ΔHC

1

sequence of codes for Borel sets Bα and Eα .

Proof. Similar to Theorem 8.1.

9. Proof of the Main Theorem in the Sacks Case

We prove Theorem 1.1 separately in the Sacks case (this Section) and in the E0-
large case (the next Section).

To begin the Sacks case proof, let us fix, in L, an �-increasing sequence of DBPs
〈Bα, Eα〉, α < ω1 , satisfying conditions (i)–(ii) of Theorem 8.1.

Arguing in a Sacks-generic extension L[a0], we define a relation B=
⋃

α<ω1
Bα

on 2ω ; thus x B y if and only if x Bα y for some α < ω1 . (We identify Borel sets
Bα , Eα , formally defined in L, with their extensions, Borel sets in L[a0] with the
same codes.) Define a relation E=

⋃
α<ω1

Eα on 2ω similarly. Define a subdomain
U = 2ω

�L of all new reals. Then a0 ∈ U and all reals in U have the same L-degree
by the minimality property of Sacks reals, see, e.g.[9, Theorem 15.34].

Lemma 9.1. It is true in L[a0] that

(i) E and B are equivalence relations and B is a subrelation of E;
(ii) all reals x, y ∈ U = 2ω

� L are E-equivalent;
(iii) there are exactly two B-classes intersecting U — call them M, N ;
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(iv) B is lighface Σ1
2 but B�U is lighface Π1

2 ;
(v) the sets M, N are not ODi , and we have M ∪ N = U .

Proof. (i) To see that E is an equivalence relation, let a, b, c ∈ U and suppose
that a E b and a E c. Then by definition we have a Eα b and a Eα c for some α <

ω1 . However being an equivalence relation is absolute by Shoenfield’s absoluteness
theorem [9, Theorem 25.20]. Therefore b Eα c and hence b E c holds, as required.
The proof for B is similar.

(ii) Let b ∈ U ; prove that a0 E b. By Lemma 4.7, there is a continuous map
f : 2ω → 2ω with a code in L, such that b = f(a0). By the genericity of a0 and
Corollary 4.3, there is a perfect set X ⊆ 2ω, coded in L, such that a0 ∈ X and
the restricted map f �X is one-to-one or a constant. However if f �X is a constant,
say f(x) = z0 ∈ 2ω for all x ∈ X , then f(a0) = b = z0 ∈ L, which contradicts
b /∈ L. (Since f and X are coded in L, if f �X is a constant function taking value
z0 , then z0 must be a constructible real.) Thus f �X is one-to-one. It follows then
from Theorem 8.1(i) that there exists a perfect set Y ⊆ 2ω, coded in L and such
that a0 ∈ Y and Eα corralls f �Y for some α. In particular, 〈a0, b〉 ∈ Eα, hence we
have a0 E b as required.

(iii) Let a, b, c ∈ U ; prove that two of these reals are B-equivalent. Note that
a E b E c by (ii), and hence there is an ordinal α < ω1 such that a Eα b Eα c.
But containing exactly two Bα-classes in each Eα-class is absolute by Shoenfield.
Therefore at least one pair among a, b, c is Bα-equivalent, and hence B-equivalent.
Therefore there are at most two B-classes in U . Due to the construction, if x, y ∈ U

are not E
even
0 -equivalent, then x and y are not B-equivalent, so there are exactly

two B-classes intersecting U , as required.

(iv) That B as a whole is Σ1
2 holds by Theorem 8.1(iii) Next we prove that B�U

is Π1
2 . If y ∈ 2ω then define y− ∈ 2ω by y−(0) = 1− y(0) but y−(k) = y(k) for all

k ≥ 1. Then y E0 y− but ¬(y E
even
0 y−). It follows by construction that y �B y− in

L[a0] for all y . Thus if x, y ∈ U then x B y if and only if x �B y− by (iii).

(v) Suppose to the contrary that M is OD. Then M is Sacks-forced over L,
meaning that there is a perfect set R ⊆ 2ω, coded in L and such that R ∩ U ⊆ M

in L[a0]. By Theorem 8.1(ii), there exist: a perfect set Y ⊆ 2ω coded in L and
containing a0 , an ordinal α < ω1 , and Borel one-to-one maps f, g : Y → R, also
coded in L and such that Eα corralls f �Y positively and g�Y negatively. In other
words the reals b = f(a0) and c = g(a0) in U ∩ R satisfy a0 Bα b, a0 Eα c, but
a0 �Bα c. It easily follows that b �B c, which contradicts the fact that b, c belong to
one and the same B-class.

iNote that M, N are indiscernible in a stronger sense: if R(M, N) holds for some OD relation R,
then R(N, M) holds. Indeed, otherwise M can be distinguished from N by the property: “R(·, A)
holds but R(A, ·) fails, where A is the other element of {M, N}”.
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Thus M is not OD in L[a0]. We conclude that M cannot contain any con-
structible reals since constructible reals are ordinal definable. In other words M ⊆ U

and M is a B-class inside of U . Similarly for N . Since (iii) states there are only
two B-classes touching U , we finally have U = M ∪ N , as required.

To conclude, it is true in the Sacks extension L[a0] that the restricted relation
Q := B�U is a Π1

2 equivalence relation on the nonconstructible domain U = 2ω
�L

(a Π1
2 set), and the quotient U/Q contains exactly two classes, both of which are

non-OD.

(Theorem 1.1, Sacks case)

10. Proof of the Main Theorem in the E0-Large Case

Rather similar to the proof of the Sacks case above. Arguing in an E0-large-
generic extension L[a0], we define relations B=

⋃
α<ω1

Bα , E=
⋃

α<ω1
Eα on

2ω, and the subdomain U = 2ω
� L; a0 ∈ U .

Lemma 10.1. It is true in L[a0] that

(i) E and B are equivalence relations and B is a subrelation of E;
(ii) all reals x, y ∈ U are E-equivalent;
(iii) there are exactly two B-classes intersecting U — call them M, N ;
(iii) B is lighface Σ1

2 but B�U is lighface Π1
2 ;

(iv) the sets M, N are not OD, and we have M ∪ N = U .

Proof. The proof of claims (i), (iv), (ii) and (iii) is similar to the proofs of the
corresponding claims in Lemma 9.1, with some obvious changes mutatis mutandis,
in particular, the reference to Corollary 4.3 has to be replaced by Corollary 4.6 in
the proof of (ii), Proposition 8.1 has to be replaced by Proposition 8.3, and so on.
But the last claim needs special attention because not all new reals in L[a0] are
E0-large-generic unlike the Sacks case.

(v) First of all let’s prove that each of the classes M, N of (iii) contains a real
b ∈ 2ω

E0-large-generic over L. Indeed in view of (iii) it suffices to prove that (*)
there are E0-large-generic, but not B-equivalent, reals b, c ∈ L[a0]∩ 2ω. Emulating
the proof of Theorem 9.1(v), but using Theorem 8.3(ii) instead of Theorem 8.1(ii),
we find a canonical E0-large set Y ⊆ 2ω, coded in L and containing a0 , an ordinal
α < ω1 , and canonical E0-large maps f, g :Y → 2ω , also coded in L and such
that Eα corralls f �Y positively and g�Y negatively. We conclude that the reals
b = f(a0) and c = g(a0) in U satisfy a0 Bα b, a0 Eα c, but a0 �Bα c, so that b �B c.
And finally, it is clear that b, c are E0-large-generic along with a0 . (Basically any
image of a E0 -large-generic real a ∈ 2ω via a canonical E0-large map h, coded in
L, with a ∈ domh, is E0-large-generic by an easy argument.)

Now suppose to the contrary that M is OD. Let ϕ(·) be an ∈-formula, with
ordinals as parameters, such that M = {x : ϕ(x)} in L[a0]. By (*), there is a real

2150014-17



September 23, 2021 6:42 WSPC/S0219-0613 153-JML 2150014

A. Enayat & V. Kanovei

b0 ∈ M (in L[a0]), such that b0 is E0-large-generic over L. Then it is true in
L[a0] = L[b0] that ϕ(b0), and any real x satisfying ϕ(x) also satisfies x B b0 . This
is E0-large-forced over L, meaning that there is a canonical E0-large set R ⊆ 2ω,

coded in L and satisfying the following: (1) b0 ∈ R, (2) if b ∈ R ∩ L[b0] and b is
E0-large-generic over L, then ϕ(b) holds in the model L[b] = L[b0] = L[a0], and
hence we have b B b0 .

However, emulating the proof of Theorem 9.1(v) as above, we find a canonical
E0-large set Y ⊆ 2ω, coded in L and containing b0 , an ordinal α < ω1 , and
canonical E0 -large maps f, g : Y → R, also coded in L and such that Eα corralls
f �Y positively and g�Y negatively. Then the reals b = f(b0) and c = g(b0) are
E0-large-generic over L and satisfy b0 Bα b and b0 Eα c but b0 �Bα c, hence b �B c,
which contradicts (2) above.

(Theorem 1.1, E0-large case)

11. Final Remarks and Questions

We proceed with two questions, also containing some related remarks.

Question 11.1. It is interesting to figure out whether Theorem 1.1 holds in other
extensions of L by a single generic real, e.g.in extensions by a single Cohen-genericj,
or a single Solovay-random, or a single Silver real, et cetera.

The Silver case is especially interesting as it is close to the Sacks case in some
forcing details like the property of continuous reading of names or the minimality of
generic reals. The major technical obstacle is that one is not able to prove an analog
of the corralling lemmas (Lemmas 5.3 and 6.1) for the Silver perfect sets due to
the lack of an appropriate canonization result. Indeed, comparable to Theorem 4.4,
the Silver-related canonization theorem [15, Theorem 8.6] weakens case (II) to the
following: “or (II) a Borel subrelation E′ ⊆ E0”. One can try to circumvent this by
beginning the construction of a sequence of DBPs as in Theorems 8.1 and 8.3 with
the pair 〈E0, Ê0〉 rather than 〈Eeven

0 , E0〉, where Ê0 extends E0 by connecting each
pair of x, x̂, where x̂ is defined by x̂(k) = 1 − x(k) for all k. Then we still have
E = B = F = E0 on Y in the context of Case 2 of Lemma 6.1, but still there is no
way to accordingly simplify Ê and B̂ to maintain the merger of equivalence classes.

On the positive side, we have been able to verify that Theorem 1.1 also holds
for forcing by perfect non-σ-compact sets in ωω (the Miller forcing).

jSince adding a single Cohen reals is equivalent to adding many Cohen reals, it is fairly easy to
show that there are indiscernible sets of reals in Cohen extensions, e.g.[a]L and [b]L for any Cohen-
generic pair of reals 〈a, b〉, as shown in [3, Theorem 3.1]. On the other hand, such indiscernibles
hardly form an OD pair, or, equivalently, arise as equivalence classes of an OD equivalence relation
E with only two equivalence classes.
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Question 11.2. In view of Theorem 1.1, one may ask whether there is a model of
ZFC in which, to the contrary, the following holds:

(¶) every finite, or even countablek, OD set X �= ∅ contains an OD element, and,
to avoid trivialities, there is no OD wellordering of the universe.

In particular, could the Lévy-collapse model V[G], obtained by adjoining a collapse-
generic set G (up to an inaccessible cardinal) to a ground universe V, as in [23, Sec.
I.3], be such a model?

(A) Assuming that V = L, this question has a positive answer in L[G] for
countable OD sets of reals, since it is known from [23] that any OD set of reals
in L[G], containing at least one non-OD real, contains a perfect subset. A minor
further step was achieved in [13]: it is true in L[G] that any nonempty countable
OD set of sets of reals still contains an OD element.

(B) Let now N1 ⊆ L[G] consist of all sets hereditarily definable in L[G] from an
ω-sequence of ordinals, as in [23, Sec. III.2.4]. (This is the Solovay model, in which
all sets of reals are measurable.) Then N1 |= ZF + DC, and it is true in N1 that
there exists an OD surjection of Ord×R onto the whole universe L[G]. In addition
the result mentioned in (A) above remains true in N1 . Therefore (¶) is true in N1

in full generality. (This observation was kindly communicated by Hugh Woodin.)
But the problem with (¶) remains open for L[G] itself.

The following notes (C), (D), (E) also were kindly communicated to the authors
by Hugh Woodin; they contain references to his unpublished results.

(C) If one assumes AD+ and V = L(P(R)), then every countable OD set X

contains only OD elements, and moreover, either X has an OD wellordering or
there is 1-to-1 map from R to X . Note that AD+ holds in all known models of
AD, and (assuming ZF+DC) it is implied by ADR , the axiom of real determinacy.
See [24] or [1, 2] on AD+ and related issues.

(D) Even in case V �= L, one can consider a Solovay-style submodel L(R) ⊆
V[G] in the Lévy extension V[G]. If suitable large cardinals exist in V, then L(R)
models AD, and subsequently (¶) holds in L(R). But without the assumption of AD
in L(R), or V �= L, it’s still probably open whether (¶) holds in L(R), even if one
assumes that X is finite. The trouble of course is the current limited knowledge of
the analysis of ordinal definability in the Solovay model L(R) obtained by collapsing
over some arbitrary V.

(E) A good candidate for a positive answer to Problem 11.2 is the Pmax-
extension of L(R). See [24] or elsewhere on Pmax .l

kThe question is less interesting for uncountable sets X because if R 	⊆ OD then the uncountable
OD set X = R � OD of all non-OD reals gives an obvious counterexample.
lUpon the completion of the revision of the paper, we received another relevant note from
Hugh Woodin. It follows verbatim. Here is probably the best version of 11.2. Assume determi-
nacy. Thus the theory of L[x] is constant on a cone. So what happens on a cone? Does every
countable OD-L[x] set contain only L[x] members? Rephrased: in L[x] if E is an OD equivalence
relation on R with only countably many equivalence classes, must each class be OD? Note by
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12. History of this Result

The proof of Theorem 1.1 given above was written in January 2020, after a short
discussion of the following excerpt from an old email message from Robert M.
Solovay to Ali Enayat, quoted here thanks to Solovay’s generous permission.

[Solovay to Enayat 25.10.2002:] Here’s a freshly minted theorem.
Consider the Sacks extension of a model of V = L + ZFC. Then LA does not

hold.m

My proof is a bit involved. Here’s a high level — view.
By a transfinite construction of length ℵ1 I construct a P-namen E such that

the following are forcedo :

(1) E is an equivalence relation on the set of nonconstructible reals.
(2) E has precisely two equivalence classes.
(3) In each perfect set with constructible code there are representatives of both

equivalence classes.
(4) E is ordinal definable.

The two distinct but indiscernable members of the generic extension are the two
equivalence classes of E.

The proof is a bit too involved to type in using a web-interface like yahoo.
(Shades of Fermat’s margin!) The proof uses one standard but relatively deep fact
from descriptive set theory. If B is an uncountable Borel set, then B contains a
perfect subset.

– Bob
P.S. I don’t use much about L. Just that it satisfies V = OD and is uniformly

definable in any extension and that it satisfies CH.p

[End]
The above proof of Theorem 1.1 in the Sacks case follows Solovay’s outline from

the point of view of the general flow of the argument.q

Kechris–Solovay: OD-determinacy holds in L[x] on a cone so probably the answer is yes. The
reference to Kechris–Solovay is [18, Theorem 3.1].
mIn the context of this exchange, LA is the Mycielski axiom, the axiom formulated by Mycielski
and investigated in Enayat’s paper [3], in which it is referred to as the Leibniz–Mycielski axiom LM.
The axiom LM states that given any pair of distinct sets a and b, there is some ordinal α, and some
first order formula φ(x), such that Vα contains a and b, and Vα satisfies φ(a) but does not satisfy
φ(b), that is, in brief, that any sets a 	= b are OD-discernible. The motivation for establishing
Theorem 1.1 was the guess (privately communicated by Enayat to Solovay) that the consistency
of ZFC + LM + “V 	= HOD” can be shown by verifying that LM holds in the extension of the
constructible universe by a Sacks real. The question of consistency of ZFC + LM + “V 	= HOD”
has proved to be more difficult than meets the eye, and remains open.
nIn the context of this paper, P is the Sacks forcing.
oEnumeration (1)–(4) is ours. — AE and VK.
pThis is equally true for our proof.
qAll technical arrangements made in the proofs, beyond the literal content of Solovay’s email
message to Enayat cited above, are our own, of course.
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In particular our Lemmas 5.3 and 6.1 were designed to take care of Solovay’s item
(1), Lemmas 5.4 and 6.2 — to take care of Solovay’s item (3), and the key notion
of DBP — to take care of Solovay’s item (2). However, we were not able to work
strictly within the descriptive set theoretic instrumentarium explicitly restricted by
Solovay to the perfect subset property of Borel sets. In light of the key role of the
canonization theorems (Corollary 4.2 and Theorem 4.4), presented here in the proof
of Theorem 1.1, but not mentioned by Solovay, we don’t know to what degree our
proof really coincides with the original proof by Solovay in all important details.

Upon the completion of the proof, the co-authors contacted Solovay, with an
invitation to join as a co-author of this note, but he unfortunately did not accept
our invitation.
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Added in proof

During the course of proofreading, W. Hugh Woodin informed us that, starting with
PD, an iterated extension, say W , of L can be constructed, such that it is true
in the subextension (L(P(ω1)))W that ZFC + MA and V �= HOD hold, and in
addition, every OD set of cardinality at most ω1 , contains only OD members. This
answers Question 11.2 above.
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