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BOREL REDUCIBILITY AS AN ADDITIVE PROPERTY OF DOMAINSV. G. Kanovei∗ and V. A. Lyubetsky∗ UDC 510.225
We prove that under certain requirements, if E and F are Borel equivalence relations, X =

⋃
n

Xn is a countable

union of Borel sets, and E ↾ Xn is Borel reducible to F for all n, then E ↾ X is Borel reducible to F. Thus the
property of Borel reducibility to F is countably additive as a property of domains. Bibliography: 19 titles.

1. IntroductionRe
all that if E and F are Borel equivalen
e relations on Borel sets X and Y , respe
tively, then E ≤B F (theBorel redu
ibility of E to F) means that there exists a Borel map # : X → Y su
h that the equivalen
exEx′ ←→ f(x)Ff(x′)holds for all x; x′ ∈ X . Borel maps are those satisfying the requirement that the preimage of every Borel set isa Borel set. For Polish spa
es this is equivalent to the 
ondition that the graph of a map is a Borel set in theprodu
t spa
e (for more detail on Borel redu
ibility, see [5℄ and [1, 6, 3℄).Assume that E is a Borel equivalen
e relation on a Borel set X in a Polish spa
e. We 
onsider restri
tedequivalen
e relations of the form E ↾ Y , where Y is a Borel subset of X . These restri
ted equivalen
e relations
an satisfy E ↾ Y ≤B F, where F is another �xed Borel equivalen
e relation. It is quite 
lear that if E ↾ Y ≤B Fand Y ′ ⊆ Y is a Borel set, then we still have E ↾ Y ′ ≤B F. In other words, the 
ondition E ↾ Y ≤B F as a propertyof Y (and with E and F �xed) is a smallness-type property. In su
h a 
ase, it is a typi
al problem to �gure outto whi
h extent this property is additive. Our main theorem proves that under 
ertain 
onditions the propertyis 
ountably additive.
2. The main theoremWe begin with several te
hni
al de�nitions. Assume that F is an equivalen
e relation on a set X . For anyinteger n, let nF denote the equivalen
e relation de�ned on the set n ×X = {〈k; x〉 : k < n ∧ x ∈ X} so that

〈k; x〉nF〈j; y〉 if and only if k = j and xFy. Thus nF 
an be viewed as the union of n independent 
opies Fk,k < n, of the relation F on pairwise disjoint sets. These sets are Xk = {k}×X , and the 
opies Fk are de�ned sothat 〈k; x〉Fk〈k; y〉 if and only if xFy.A

ordingly, under the same 
onditions, NF is the equivalen
e relation de�ned on the set N × X so that
〈k; x〉NF〈j; y〉 if and only if k = j and xFy. This NF 
an be viewed as the union of 
ountably many independent
opies Fk of F on pairwise disjoint sets.Theorem 1. Assume that F is a Borel equivalen
e relation satisfying NF ≤B F, all F-equivalen
e 
lasses are�-
ompa
t, and E is a Borel equivalen
e relation on a Borel set X = ⋃kXk, where all Xk are Borel sets. Assumethat E ↾ Xk ≤B F for all k. Then E ≤B F.Proof. It suÆ
es to prove the following somewhat more elementary lemma. It shows that a pair of, perhaps,in
ompatible redu
tion maps 
an be 
onverted to a redu
tion map on the 
ommon domain.Lemma 2. Assume that E is a Borel equivalen
e relation de�ned on the union X ∪ Y of disjoint Borel sets Xand Y , while F is a Borel equivalen
e relation with �-
ompa
t equivalen
e 
lasses on the union P ∪ Q of twodisjoint Borel sets P and Q, F-independent in the sense that pF/q for all p ∈ P , q ∈ Q.In this 
ase, if f and g are Borel redu
tions of E ↾ X, E ↾ Y to F ↾ P and F ↾ Q, respe
tively, then there is aBorel redu
tion h : X ∪ Y → P ∪Q of E to F su
h that h ↾ X = f .To dedu
e the theorem from the lemma, let Y = dom F (the Borel domain of F). Then NF is an equivalen
erelation on N× Y , and 〈k; x〉NF〈j; y〉 if and only if k = j and xFy. We prove the theorem under the assumptionthat the sets Xk are pairwise disjoint. (Otherwise 
onsider the sets X ′k = Xk\⋃j<kXj , obviously pairwisedisjoint. Their union is obviously equal to the union of the given sets Xk.)
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Put Yk = {k} × Y . Then N × Y is the pairwise disjoint union of Borel sets Yk , and we have a 
opy Fk of Fde�ned on Yk, that is, 〈k; x〉Fk〈k; y〉 if and only if xFy. Then Fk 
oin
ides with the restri
tion NF ↾ Yk of NF toYk, and the sets Yk and Yj are NF-independent whenever k 6= j. Put Y ′n = Y0 ∪ · · · ∪Yn and X ′n = X0 ∪ · · · ∪Xn.We de�ne a system of Borel maps hn : X ′n → Y ′n satisfying the following two 
onditions:(i) hn is a redu
tion of E ↾ X ′n to NF ↾ Y ′n;(ii) hn+1 extends hn.If su
h a sequen
e {hn} has been de�ned, then h = ⋃n hn is obviously a Borel redu
tion of the relation E (de�nedon the set X = ⋃nXn) to NF; therefore E ≤B NF and E ≤B F.The de�nition of the system of maps hn goes on by indu
tion. First of all, for every k, sin
e E ↾ Xk ≤B F,there is a Borel redu
tion #k : Xk → Yk of the relation E ↾ Xk to Fk, that is, to NF ↾ Yk. This allows us toimmediately de�ne h0 = #0.Now we 
arry out the step n→ n+ 1. Assume that a Borel map hn : X ′n → Y ′n satisfying (i) has been de�ned.The sets Y ′n and Yn+1 are NF-independent by the above. In addition, the NF-equivalen
e 
lasses are essentiallythe same as the F-
lasses, and hen
e they are �-
ompa
t sets. Therefore Lemma 2 is equally appli
able to NFand to F. It follows that there is a Borel redu
tion � : X ′n+1 → Y ′n+1 of E ↾ X ′n+1 to NF ↾ Y ′n+1 extending hn. Itremains to put hn+1 = �. This 
ompletes the step and the derivation of Theorem 1 from Lemma 2.Proof of Lemma 2. The diÆ
ulty 
onsists in the fa
t that the sets X; Y are not ne
essarily E-independent, thatis, there 
an exist points x ∈ X and y ∈ Y with xEy. In this 
ase, we have to de�ne h(y) not from g(y), butrather as a point in P that is F-equivalent to f(x) in P for some x ∈ X satisfying xEy.Thus the key problem is to �nd an appropriate de�nition of the values h(y) for elements y ∈ Y satisfyingg(y) ∈ ranU , where U = {〈p; q〉 ∈ P ×Q : ∃x ∈ X ∃y ∈ Y (xEy ∧ f(x)Fp ∧ g(y)Fq)}and, as usual, ranU = {q : ∃p (〈p; q〉 ∈ U)}. In general, it would suÆ
e to �nd a map ' de�ned on the setY ′ = {y ∈ Y : ∃x ∈ X (xEy)};and with values in X , su
h that '(y)Ey for all y ∈ Y ′, and then put h(y) = f('(y)) for y ∈ Y ′. Yet the
onstru
tion of su
h a map ' amounts to the problem of uniformization of the set
{〈y; x〉 ∈ Y ×X : xEy};whi
h is not always possible in the 
lass of Borel uniformizations. Therefore we apply a more 
ompli
atedargument.Note that U is a �11 set (that is, a Suslin set, see [2, 4℄ (in Russian) on the modern theory of �11 and �11sets). Moreover, sin
e the maps f and g are redu
tions of the relation E to F, we 
on
lude that U is a subset ofthe �11 set W = {〈p; q〉 ∈ P ×Q : ∀〈p′; q′〉 ∈ U (pFp′ ←→ qFq′)}:Indeed, assume that 〈p; q〉 ∈ U . There exist x ∈ X and y ∈ Y su
h that xEy and f(x)Fp, f(y)Fq. Consider anyother pair 〈p′; q′〉 ∈ U , and let x′ ∈ X and y′ ∈ Y satisfy x′Ey′, as well as f(x′)Fp′, f(y′)Fq′. If, for instan
e,pFp′, then we have xEx′ be
ause f is a redu
tion, and hen
e yEy′ and qFq′.Therefore, by the Luzin �rst separation theorem (see [15℄ or, for instan
e, [2, 3℄), there is an intermediateBorel set V satisfying U ⊆ V ⊆ W .Moreover, it turns out that V 
an be 
hosen among invariant sets. Indeed, the sets U and W are F-invariant,in the sense that if pFp′ and qFq′, then the pairs 〈p; q〉 and 〈p′; q′〉 either simultaneously belong to U , or simul-taneously do not belong to U , and the same for W . In this 
ase, the invariant separation theorem holds (see,e.g., [8, 11℄), that is, there exists a Borel set V that satis�es U ⊆ V ⊆W and is F-invariant in the same sense.1

1The following is a simple proof of the invariant separation theorem in the case under consideration, given here for the reader’s
convenience. By the ordinary separation theorem, there is a Borel set V0 such that U ⊆ V0 ⊆ W . The set

U1 = [V0]F = {〈p, q〉 ∈ P × Q : ∃〈p′, q′〉 ∈ V0 (pFp′ ∧ qFq′)}

obviously belongs to Σ
1

1
and is F-invariant, and V0 ⊆ U0 ⊆ W because W is F-invariant too. Once again, by the separation theorem,

there is a Borel set V1 such that U1 ⊆ V1 ⊆ W . Consider the Σ
1

1
set U2 = [V1]F, and so on. This results in an infinite increasing

sequence of sets Un and Vn such that the set U ′ =
⋃

n

Un =
⋃

n

Vn is Borel (by the Vn-representation) and F-invariant (by the

Un-representation) and still satisfies V ⊆ U ′ ⊆ W .
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The se
ond important property of the set U is that it is a bije
tion modulo F, in the sense that the equivalen
epFp′ ←→ qFq′holds for any two pairs 〈p; q〉 and 〈p′; q′〉 in U . (Indeed, suppose that pairs 〈p; q〉 and 〈p; q〉 belong to U , so thatthere exist points x; x′ ∈ X and y; y′ ∈ Y su
h that xEy, x′Ey′, and also f(x)Fp and f(y)Fq, and, a

ordingly,f(x′)Fp′ and f(y′)Fq′. If pFp′, then f(x)Ff(x′), therefore xEx′, sin
e f is a redu
tion. Thus yEy′, and hen
e qFq′.)The sets W and V do not ne
essarily satisfy this requirement, sin
e there 
an exist pairs 〈p; q〉 su
h that p isnot F-equivalent to any p′ = f(x), x ∈ X . We are going to de�ne su
h a Borel set V that satis�es the requirementand still is a superset of U . Note that U ⊆ R, where the �11 set R is de�ned as follows:R = {〈p′; q′〉 ∈ V : ∀〈p; q〉 ∈ V (pFp′ ←→ qFq′)}:The set R is obviously F-invariant together with V . Therefore, again by the invariant separation theorem, thereis an F-invariant Borel set S su
h that U ⊆ S ⊆ R.Yet the set R, and hen
e S as well, are bije
tions modulo F. (Indeed, if pairs 〈p′; q′〉 and 〈p′′; q′′〉 belong to V ,and say p′Fp′′, then taking the se
ond pair as 〈p; q〉 in the de�nition of R, we obtain q′Fq′′.) Therefore, by the
F-invarian
e of S (see above), we have: if q ∈ Q, then the 
ross-se
tion Sq = {p : 〈p; q〉 ∈ S} is either empty orequal to the F-equivalen
e 
lass [p′℄F = {p : pFp′} of a suitable element p′ ∈ P satisfying 〈p′; q〉 ∈ S. Thereforeevery 
ross-se
tion Sq is �-
ompa
t under the 
onditions of the lemma.It follows, by the known Arsenin{Kunugui{Sh
hegolkov theorem for Borel sets with �-
ompa
t 
ross-se
tions,the set Z = ranS = {q : ∃p (〈p; q〉 ∈ R)} is Borel and, moreover, there exists a uniformizing Borel map # : Z → P ,that is, 〈#(q); q〉 ∈ S for all q ∈ Z (for more on this theorem, see, e.g., [15, 35.H℄ and also the papers [7, 17℄).However, by de�nition we have ranU ⊆ Z and pF#(q) for every pair 〈p; q〉 ∈ U . In addition, Z is an F-invariantset, that is, q ∈ Z ∧ q′Fq, q′ ∈ Z. This allows us to a

omplish the proof of the lemma (and the theorem) withthe following de�nition of a Borel redu
tion of E to F. We naturally put h(x) = f(x) for all x ∈ X . If y ∈ Y andg(y) 6∈ Z, then put h(y) = g(y). But if g(y) ∈ Z, then we de�ne h(y) = #(g(y)). �The 
ondition of the �-
ompa
tness of the equivalen
e 
lasses somewhat redu
es the �eld of appli
ations ofTheorem 1, but the latter still remains rather substantial, see below. The role of this 
ondition is 
lear: itguarantees a suitable 
hoi
e of an element in an F-equivalen
e 
lass by means of a Borel fun
tion (the fun
tion# at the end of the proof of Lemma 2). Here we make use of the uniformization theorem for Borel sets with�-se
tions, the strongest known uniformization theorem appli
able in this 
ontext.2 It hardly 
an be expe
tedin the 
ase under 
onsideration that uniformization theorems for sets with \large" 
ross-se
tions (for instan
e,those of positive measure, or nonmeager; for su
h theorems, see [15℄) are appli
able in a reasonable way, sin
e itis 
lear that any equivalen
e relation has only 
ountably many \large" equivalen
e 
lasses.Another opportunity would be to apply the uniformization theorem for sets with �-
ompa
t se
tions for theequivalen
e relation E rather than F. Namely, to obtain a Borel map ' : Y ′ → X satisfying '(y)Ey for all y ∈ Y ′in the proof of Lemma 2. But this would require the �-
ompa
tness of all sets of the form [x℄ ∩X , that is, allsets of the form [x℄ ∩Xk, in the 
ontext of Theorem 1. But su
h a 
ondition provides restri
tions to both E andthe sets Xk. Yet su
h a version works and 
an be useful in the 
ase where all E-equivalen
e 
lasses are 
ountable.In this 
ase, the 
ountability and hen
e the �-
ompa
tness as well do not depend on the nature of the sets Xk.

3. ApplicationsNote that the requirement NF ≤B F in the theorem holds for typi
al Borel equivalen
e relations F. (Borelequivalen
e relations with in�nitely many equivalen
e 
lasses that do not satisfy this 
ondition were originallyde�ned in [14℄. A somewhat simpli�ed 
onstru
tion is given in [18℄. Yet all 
ounterexamples known so far arerather arti�
ial and quite 
ompli
ated.) The requirement of the �-
ompa
tness of the F-equivalen
e 
lasses ismore restri
tive, of 
ourse. Yet it holds for all 
ountable equivalen
e relations F (those with �nite and 
ountableequivalen
e 
lasses), in parti
ular, for E0, as well as for (non
ountable) equivalen
e relations E1 and `∞.Re
all that E0 is de�ned on the set 2N of all in�nite dyadi
 sequen
es so that {in}E1{jn} if and only if in = jnfor almost all (ex
ept for �nitely many) n. The equivalen
e relation E1 is de�ned similarly on the set R
N of allin�nite real sequen
es: {xn}E1{yn} if and only if xn = yn for almost all n. The relation `∞ is de�ned di�erently

2Recall that an arbitrary Borel set is not necessarily uniformizable by a Borel set. The Novikov–Kondo theorem states that it is
uniformizable by sets in a wider class Π

1

1
, but this would lead to non-Borel maps h in the proof of the lemma.
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on the same set: {xn}`∞{yn} if and only if there is a number C > 0 su
h that |xn − yn| < C for all n. It isknown that E0 <B E1 <B `∞ (see [5℄ or [10℄ for a wider spe
trum of similar equivalen
e relations).It is worthwhile to mention the equality �R on the real line, whi
h 
an be regarded as an equivalen
e relationand obviously satis�es both 
onditions of Theorem 1 as F.There are three types of Borel equivalen
e relations E related to �R, E0, E1:smooth: those satisfying E ≤B �R, i.e., Borel redu
ible to �R;hyper�nite: those satisfying E ≤B E0 and 
ountable (that is, all equivalen
e 
lasses are at most 
ountable),see [9℄;hypersmooth: those satisfying E ≤B E1, see [16℄.All smooth equivalen
e relations are hyper�nite, while all hyper�nite ones are hypersmooth, and neither ofthe two in
lusions is invertible.Corollary 3. For ea
h of these three 
lasses of Borel equivalen
e relations (smooth, hyper�nite, hypersmooth),the following holds.Assume that E is a Borel equivalen
e relation on a Borel set X = ⋃kXk, where all Xk are Borel sets, too. Iffor every k the restri
ted relation E ↾ Xk belongs to any of the three mentioned 
lasses, then the relation E itselfbelongs to the same 
lass.This 
ase of Theorem 1 has been known for hyper�nite (and, most likely, for smooth) equivalen
e relationssin
e long ago. Indeed, it is mentioned in [9℄, although we are not able to lo
ate a referen
e.Theorem 1 and Corollary 3 
an be useful for upper estimates of the 
omplexity of Borel equivalen
e relationsin 
ases where, in the 
ontext of the problem under 
onsideration, the domain of a given equivalen
e relation issplit into 
ountably (or �nitely) many parts on whi
h this equivalen
e relation 
an be investigated separately.This happens in the proofs of some 
ompli
ated di
hotomy theorems (see, e.g., [6, 12, 13℄), where the �rst 
ase,i.e., the 
ase of a regular domain, implies a partition into subdomains de�ned in a

ordan
e with the positionat whi
h the regularity begins in a 
ertain representation of a given point as a sequen
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