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BOREL REDUCIBILITY AS AN ADDITIVE PROPERTY OF DOMAINSV. G. Kanovei∗ and V. A. Lyubetsky∗ UDC 510.225
We prove that under certain requirements, if E and F are Borel equivalence relations, X =

⋃
n

Xn is a countable

union of Borel sets, and E ↾ Xn is Borel reducible to F for all n, then E ↾ X is Borel reducible to F. Thus the
property of Borel reducibility to F is countably additive as a property of domains. Bibliography: 19 titles.

1. IntroductionReall that if E and F are Borel equivalene relations on Borel sets X and Y , respetively, then E ≤B F (theBorel reduibility of E to F) means that there exists a Borel map # : X → Y suh that the equivalenexEx′ ←→ f(x)Ff(x′)holds for all x; x′ ∈ X . Borel maps are those satisfying the requirement that the preimage of every Borel set isa Borel set. For Polish spaes this is equivalent to the ondition that the graph of a map is a Borel set in theprodut spae (for more detail on Borel reduibility, see [5℄ and [1, 6, 3℄).Assume that E is a Borel equivalene relation on a Borel set X in a Polish spae. We onsider restritedequivalene relations of the form E ↾ Y , where Y is a Borel subset of X . These restrited equivalene relationsan satisfy E ↾ Y ≤B F, where F is another �xed Borel equivalene relation. It is quite lear that if E ↾ Y ≤B Fand Y ′ ⊆ Y is a Borel set, then we still have E ↾ Y ′ ≤B F. In other words, the ondition E ↾ Y ≤B F as a propertyof Y (and with E and F �xed) is a smallness-type property. In suh a ase, it is a typial problem to �gure outto whih extent this property is additive. Our main theorem proves that under ertain onditions the propertyis ountably additive.
2. The main theoremWe begin with several tehnial de�nitions. Assume that F is an equivalene relation on a set X . For anyinteger n, let nF denote the equivalene relation de�ned on the set n ×X = {〈k; x〉 : k < n ∧ x ∈ X} so that

〈k; x〉nF〈j; y〉 if and only if k = j and xFy. Thus nF an be viewed as the union of n independent opies Fk,k < n, of the relation F on pairwise disjoint sets. These sets are Xk = {k}×X , and the opies Fk are de�ned sothat 〈k; x〉Fk〈k; y〉 if and only if xFy.Aordingly, under the same onditions, NF is the equivalene relation de�ned on the set N × X so that
〈k; x〉NF〈j; y〉 if and only if k = j and xFy. This NF an be viewed as the union of ountably many independentopies Fk of F on pairwise disjoint sets.Theorem 1. Assume that F is a Borel equivalene relation satisfying NF ≤B F, all F-equivalene lasses are�-ompat, and E is a Borel equivalene relation on a Borel set X = ⋃kXk, where all Xk are Borel sets. Assumethat E ↾ Xk ≤B F for all k. Then E ≤B F.Proof. It suÆes to prove the following somewhat more elementary lemma. It shows that a pair of, perhaps,inompatible redution maps an be onverted to a redution map on the ommon domain.Lemma 2. Assume that E is a Borel equivalene relation de�ned on the union X ∪ Y of disjoint Borel sets Xand Y , while F is a Borel equivalene relation with �-ompat equivalene lasses on the union P ∪ Q of twodisjoint Borel sets P and Q, F-independent in the sense that pF/q for all p ∈ P , q ∈ Q.In this ase, if f and g are Borel redutions of E ↾ X, E ↾ Y to F ↾ P and F ↾ Q, respetively, then there is aBorel redution h : X ∪ Y → P ∪Q of E to F suh that h ↾ X = f .To dedue the theorem from the lemma, let Y = dom F (the Borel domain of F). Then NF is an equivalenerelation on N× Y , and 〈k; x〉NF〈j; y〉 if and only if k = j and xFy. We prove the theorem under the assumptionthat the sets Xk are pairwise disjoint. (Otherwise onsider the sets X ′k = Xk\⋃j<kXj , obviously pairwisedisjoint. Their union is obviously equal to the union of the given sets Xk.)
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Put Yk = {k} × Y . Then N × Y is the pairwise disjoint union of Borel sets Yk , and we have a opy Fk of Fde�ned on Yk, that is, 〈k; x〉Fk〈k; y〉 if and only if xFy. Then Fk oinides with the restrition NF ↾ Yk of NF toYk, and the sets Yk and Yj are NF-independent whenever k 6= j. Put Y ′n = Y0 ∪ · · · ∪Yn and X ′n = X0 ∪ · · · ∪Xn.We de�ne a system of Borel maps hn : X ′n → Y ′n satisfying the following two onditions:(i) hn is a redution of E ↾ X ′n to NF ↾ Y ′n;(ii) hn+1 extends hn.If suh a sequene {hn} has been de�ned, then h = ⋃n hn is obviously a Borel redution of the relation E (de�nedon the set X = ⋃nXn) to NF; therefore E ≤B NF and E ≤B F.The de�nition of the system of maps hn goes on by indution. First of all, for every k, sine E ↾ Xk ≤B F,there is a Borel redution #k : Xk → Yk of the relation E ↾ Xk to Fk, that is, to NF ↾ Yk. This allows us toimmediately de�ne h0 = #0.Now we arry out the step n→ n+ 1. Assume that a Borel map hn : X ′n → Y ′n satisfying (i) has been de�ned.The sets Y ′n and Yn+1 are NF-independent by the above. In addition, the NF-equivalene lasses are essentiallythe same as the F-lasses, and hene they are �-ompat sets. Therefore Lemma 2 is equally appliable to NFand to F. It follows that there is a Borel redution � : X ′n+1 → Y ′n+1 of E ↾ X ′n+1 to NF ↾ Y ′n+1 extending hn. Itremains to put hn+1 = �. This ompletes the step and the derivation of Theorem 1 from Lemma 2.Proof of Lemma 2. The diÆulty onsists in the fat that the sets X; Y are not neessarily E-independent, thatis, there an exist points x ∈ X and y ∈ Y with xEy. In this ase, we have to de�ne h(y) not from g(y), butrather as a point in P that is F-equivalent to f(x) in P for some x ∈ X satisfying xEy.Thus the key problem is to �nd an appropriate de�nition of the values h(y) for elements y ∈ Y satisfyingg(y) ∈ ranU , where U = {〈p; q〉 ∈ P ×Q : ∃x ∈ X ∃y ∈ Y (xEy ∧ f(x)Fp ∧ g(y)Fq)}and, as usual, ranU = {q : ∃p (〈p; q〉 ∈ U)}. In general, it would suÆe to �nd a map ' de�ned on the setY ′ = {y ∈ Y : ∃x ∈ X (xEy)};and with values in X , suh that '(y)Ey for all y ∈ Y ′, and then put h(y) = f('(y)) for y ∈ Y ′. Yet theonstrution of suh a map ' amounts to the problem of uniformization of the set
{〈y; x〉 ∈ Y ×X : xEy};whih is not always possible in the lass of Borel uniformizations. Therefore we apply a more ompliatedargument.Note that U is a �11 set (that is, a Suslin set, see [2, 4℄ (in Russian) on the modern theory of �11 and �11sets). Moreover, sine the maps f and g are redutions of the relation E to F, we onlude that U is a subset ofthe �11 set W = {〈p; q〉 ∈ P ×Q : ∀〈p′; q′〉 ∈ U (pFp′ ←→ qFq′)}:Indeed, assume that 〈p; q〉 ∈ U . There exist x ∈ X and y ∈ Y suh that xEy and f(x)Fp, f(y)Fq. Consider anyother pair 〈p′; q′〉 ∈ U , and let x′ ∈ X and y′ ∈ Y satisfy x′Ey′, as well as f(x′)Fp′, f(y′)Fq′. If, for instane,pFp′, then we have xEx′ beause f is a redution, and hene yEy′ and qFq′.Therefore, by the Luzin �rst separation theorem (see [15℄ or, for instane, [2, 3℄), there is an intermediateBorel set V satisfying U ⊆ V ⊆ W .Moreover, it turns out that V an be hosen among invariant sets. Indeed, the sets U and W are F-invariant,in the sense that if pFp′ and qFq′, then the pairs 〈p; q〉 and 〈p′; q′〉 either simultaneously belong to U , or simul-taneously do not belong to U , and the same for W . In this ase, the invariant separation theorem holds (see,e.g., [8, 11℄), that is, there exists a Borel set V that satis�es U ⊆ V ⊆W and is F-invariant in the same sense.1

1The following is a simple proof of the invariant separation theorem in the case under consideration, given here for the reader’s
convenience. By the ordinary separation theorem, there is a Borel set V0 such that U ⊆ V0 ⊆ W . The set

U1 = [V0]F = {〈p, q〉 ∈ P × Q : ∃〈p′, q′〉 ∈ V0 (pFp′ ∧ qFq′)}

obviously belongs to Σ
1

1
and is F-invariant, and V0 ⊆ U0 ⊆ W because W is F-invariant too. Once again, by the separation theorem,

there is a Borel set V1 such that U1 ⊆ V1 ⊆ W . Consider the Σ
1

1
set U2 = [V1]F, and so on. This results in an infinite increasing

sequence of sets Un and Vn such that the set U ′ =
⋃

n

Un =
⋃

n

Vn is Borel (by the Vn-representation) and F-invariant (by the

Un-representation) and still satisfies V ⊆ U ′ ⊆ W .
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The seond important property of the set U is that it is a bijetion modulo F, in the sense that the equivalenepFp′ ←→ qFq′holds for any two pairs 〈p; q〉 and 〈p′; q′〉 in U . (Indeed, suppose that pairs 〈p; q〉 and 〈p; q〉 belong to U , so thatthere exist points x; x′ ∈ X and y; y′ ∈ Y suh that xEy, x′Ey′, and also f(x)Fp and f(y)Fq, and, aordingly,f(x′)Fp′ and f(y′)Fq′. If pFp′, then f(x)Ff(x′), therefore xEx′, sine f is a redution. Thus yEy′, and hene qFq′.)The sets W and V do not neessarily satisfy this requirement, sine there an exist pairs 〈p; q〉 suh that p isnot F-equivalent to any p′ = f(x), x ∈ X . We are going to de�ne suh a Borel set V that satis�es the requirementand still is a superset of U . Note that U ⊆ R, where the �11 set R is de�ned as follows:R = {〈p′; q′〉 ∈ V : ∀〈p; q〉 ∈ V (pFp′ ←→ qFq′)}:The set R is obviously F-invariant together with V . Therefore, again by the invariant separation theorem, thereis an F-invariant Borel set S suh that U ⊆ S ⊆ R.Yet the set R, and hene S as well, are bijetions modulo F. (Indeed, if pairs 〈p′; q′〉 and 〈p′′; q′′〉 belong to V ,and say p′Fp′′, then taking the seond pair as 〈p; q〉 in the de�nition of R, we obtain q′Fq′′.) Therefore, by the
F-invariane of S (see above), we have: if q ∈ Q, then the ross-setion Sq = {p : 〈p; q〉 ∈ S} is either empty orequal to the F-equivalene lass [p′℄F = {p : pFp′} of a suitable element p′ ∈ P satisfying 〈p′; q〉 ∈ S. Thereforeevery ross-setion Sq is �-ompat under the onditions of the lemma.It follows, by the known Arsenin{Kunugui{Shhegolkov theorem for Borel sets with �-ompat ross-setions,the set Z = ranS = {q : ∃p (〈p; q〉 ∈ R)} is Borel and, moreover, there exists a uniformizing Borel map # : Z → P ,that is, 〈#(q); q〉 ∈ S for all q ∈ Z (for more on this theorem, see, e.g., [15, 35.H℄ and also the papers [7, 17℄).However, by de�nition we have ranU ⊆ Z and pF#(q) for every pair 〈p; q〉 ∈ U . In addition, Z is an F-invariantset, that is, q ∈ Z ∧ q′Fq, q′ ∈ Z. This allows us to aomplish the proof of the lemma (and the theorem) withthe following de�nition of a Borel redution of E to F. We naturally put h(x) = f(x) for all x ∈ X . If y ∈ Y andg(y) 6∈ Z, then put h(y) = g(y). But if g(y) ∈ Z, then we de�ne h(y) = #(g(y)). �The ondition of the �-ompatness of the equivalene lasses somewhat redues the �eld of appliations ofTheorem 1, but the latter still remains rather substantial, see below. The role of this ondition is lear: itguarantees a suitable hoie of an element in an F-equivalene lass by means of a Borel funtion (the funtion# at the end of the proof of Lemma 2). Here we make use of the uniformization theorem for Borel sets with�-setions, the strongest known uniformization theorem appliable in this ontext.2 It hardly an be expetedin the ase under onsideration that uniformization theorems for sets with \large" ross-setions (for instane,those of positive measure, or nonmeager; for suh theorems, see [15℄) are appliable in a reasonable way, sine itis lear that any equivalene relation has only ountably many \large" equivalene lasses.Another opportunity would be to apply the uniformization theorem for sets with �-ompat setions for theequivalene relation E rather than F. Namely, to obtain a Borel map ' : Y ′ → X satisfying '(y)Ey for all y ∈ Y ′in the proof of Lemma 2. But this would require the �-ompatness of all sets of the form [x℄ ∩X , that is, allsets of the form [x℄ ∩Xk, in the ontext of Theorem 1. But suh a ondition provides restritions to both E andthe sets Xk. Yet suh a version works and an be useful in the ase where all E-equivalene lasses are ountable.In this ase, the ountability and hene the �-ompatness as well do not depend on the nature of the sets Xk.

3. ApplicationsNote that the requirement NF ≤B F in the theorem holds for typial Borel equivalene relations F. (Borelequivalene relations with in�nitely many equivalene lasses that do not satisfy this ondition were originallyde�ned in [14℄. A somewhat simpli�ed onstrution is given in [18℄. Yet all ounterexamples known so far arerather arti�ial and quite ompliated.) The requirement of the �-ompatness of the F-equivalene lasses ismore restritive, of ourse. Yet it holds for all ountable equivalene relations F (those with �nite and ountableequivalene lasses), in partiular, for E0, as well as for (nonountable) equivalene relations E1 and `∞.Reall that E0 is de�ned on the set 2N of all in�nite dyadi sequenes so that {in}E1{jn} if and only if in = jnfor almost all (exept for �nitely many) n. The equivalene relation E1 is de�ned similarly on the set R
N of allin�nite real sequenes: {xn}E1{yn} if and only if xn = yn for almost all n. The relation `∞ is de�ned di�erently

2Recall that an arbitrary Borel set is not necessarily uniformizable by a Borel set. The Novikov–Kondo theorem states that it is
uniformizable by sets in a wider class Π

1

1
, but this would lead to non-Borel maps h in the proof of the lemma.
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on the same set: {xn}`∞{yn} if and only if there is a number C > 0 suh that |xn − yn| < C for all n. It isknown that E0 <B E1 <B `∞ (see [5℄ or [10℄ for a wider spetrum of similar equivalene relations).It is worthwhile to mention the equality �R on the real line, whih an be regarded as an equivalene relationand obviously satis�es both onditions of Theorem 1 as F.There are three types of Borel equivalene relations E related to �R, E0, E1:smooth: those satisfying E ≤B �R, i.e., Borel reduible to �R;hyper�nite: those satisfying E ≤B E0 and ountable (that is, all equivalene lasses are at most ountable),see [9℄;hypersmooth: those satisfying E ≤B E1, see [16℄.All smooth equivalene relations are hyper�nite, while all hyper�nite ones are hypersmooth, and neither ofthe two inlusions is invertible.Corollary 3. For eah of these three lasses of Borel equivalene relations (smooth, hyper�nite, hypersmooth),the following holds.Assume that E is a Borel equivalene relation on a Borel set X = ⋃kXk, where all Xk are Borel sets, too. Iffor every k the restrited relation E ↾ Xk belongs to any of the three mentioned lasses, then the relation E itselfbelongs to the same lass.This ase of Theorem 1 has been known for hyper�nite (and, most likely, for smooth) equivalene relationssine long ago. Indeed, it is mentioned in [9℄, although we are not able to loate a referene.Theorem 1 and Corollary 3 an be useful for upper estimates of the omplexity of Borel equivalene relationsin ases where, in the ontext of the problem under onsideration, the domain of a given equivalene relation issplit into ountably (or �nitely) many parts on whih this equivalene relation an be investigated separately.This happens in the proofs of some ompliated dihotomy theorems (see, e.g., [6, 12, 13℄), where the �rst ase,i.e., the ase of a regular domain, implies a partition into subdomains de�ned in aordane with the positionat whih the regularity begins in a ertain representation of a given point as a sequene.The �rst author aknowledges support from RFBR, grants 06-01-00608 and 07-01-00445. The seond authoraknowledges support from RFBR 07-01-00445 and MNTC 2766.Translated by V. G. Kanovei. REFERENCES1. J. Barwise (ed.), Handbook of Mathematial Logi. Part II. Set Theory [Russian translation, with a supple-ment by V. G. Kanovei℄, Nauka, Mosow (1982).2. A. M. Vershik, \Theory of orbits," in: Dynamial Systems { 2, Vol. 2, Itogi Nauki i Tekhniki, VINITI, Mosow(1985), pp. 89{105.3. V. Kanovei, \Supplement. Luzin's projetive hierarhy: the urrent state of the theory," in: Handbook ofMathematial Logi. Part II. Set Theory [Russian translation℄, J. Barwise (ed.), Nauka, Mosow (1982), pp.273{364.4. V. Kanovei, \Topologies generated by e�etively Suslin sets and their appliations in desriptive set theory,"Uspekhi Mat. Nauk, 51, No. 3, 385{417 (1996).5. V. G. Kanovei and V. A. Lyubetsky, \On some lassial problems in desriptive set theory," Uspekhi Mat.Nauk, 58, No. 5, 839{927 (2003).6. V. G. Kanovei and V. A. Lyubetsky, Modern Set Theory: Foundations of Desriptive Dynamis [in Russian℄,Nauka, Mosow (2007).7. V. Kanovei and M. Reeken, \Some new results on the Borel irreduibility of equivalene relations," Izv. Ross.Akad. Nauk Ser. Mat., 67, 59{82 (2003).8. E. Shhegolkov, \On the uniformization of ertain B-sets," Dokl. Akad. Nauk SSSR, 59, 1065{1068 (1948).9. J. Burgess and D. Miller, \Remarks on invariant desriptive set theory," Fund. Math., 90, No. 1, 53{75(1975).10. R. Dougherty, S. Jakson, and A. S. Kehris, \The struture of hyper�nite Borel equivalene relations,"Trans. Amer. Math. So., 341, No. 1, 193{225 (1994).11. Su Gao, \Equivalene relations and lassial Banah spaes," in: Mathematial Logi in Asia. Proeedings ofthe 9th Asian Logi Conferene, Novosibirsk, Russia (2005), pp. 70{89.
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