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BOREL REDUCIBILITY AS AN ADDITIVE PROPERTY OF DOMAINS
V. G. Kanovei* and V. A. Lyubetsky* UDC 510.225

We prove that under certain requirements, if E and F are Borel equivalence relations, X = Un X, s a countable
union of Borel sets, and E | X,, is Borel reducible to F for all n, then E | X is Borel reducible to F. Thus the
property of Borel reducibility to F is countably additive as a property of domains. Bibliography: 19 titles.

1. INTRODUCTION

Recall that if E and F are Borel equivalence relations on Borel sets X and Y, respectively, then E <p F (the
Borel reducibility of E to F) means that there exists a Borel map ¢ : X — Y such that the equivalence

rEx’ «—— f(z)Ff(x))

holds for all z,2’ € X. Borel maps are those satisfying the requirement that the preimage of every Borel set is
a Borel set. For Polish spaces this is equivalent to the condition that the graph of a map is a Borel set in the
product space (for more detail on Borel reducibility, see [5] and [1, 6, 3]).

Assume that E is a Borel equivalence relation on a Borel set X in a Polish space. We consider restricted
equivalence relations of the form E [ Y, where Y is a Borel subset of X. These restricted equivalence relations
can satisfy E [ Y <p F, where F is another fixed Borel equivalence relation. It is quite clear that if E[ Y <g F
and Y/ C Y is a Borel set, then we still have E [ Y/ <g F. In other words, the condition E | Y <g F as a property
of Y (and with E and F fixed) is a smallness-type property. In such a case, it is a typical problem to figure out
to which extent this property is additive. OQur main theorem proves that under certain conditions the property
is countably additive.

2. THE MAIN THEOREM

We begin with several technical definitions. Assume that F is an equivalence relation on a set X. For any
integer n, let nF denote the equivalence relation defined on the set n x X = {(k,z) : k < n Az € X} so that
(k,z)nF(j,y) if and only if k¥ = j and zFy. Thus nF can be viewed as the union of n independent copies Fy,
k < n, of the relation F on pairwise disjoint sets. These sets are X} = {k} x X, and the copies Fj are defined so
that (k,z)Fy(k,y) if and only if zFy.

Accordingly, under the same conditions, NF is the equivalence relation defined on the set N x X so that
(k,z)NF(j,y) if and only if k¥ = j and zFy. This NF can be viewed as the union of countably many independent
copies Fy of F on pairwise disjoint sets.

Theorem 1. Assume that F is a Borel equivalence relation satisfying NF <g F, all F-equivalence classes are
o-compact, and E is a Borel equivalence relation on a Borel set X = |J,, X, where all X}, are Borel sets. Assume
that E | Xy, <g F for all k. Then E <g F.

Proof. 1t suffices to prove the following somewhat more elementary lemma. It shows that a pair of, perhaps,
incompatible reduction maps can be converted to a reduction map on the common domain.

Lemma 2. Assume that E is a Borel equivalence relation defined on the union X UY of disjoint Borel sets X
and Y, while F is a Borel equivalence relation with o-compact equivalence classes on the union P U Q of two
disjoint Borel sets P and @), F-independent in the sense that pfq for allp € P, q € Q.

In this case, if f and g are Borel reductions of E| X, ETY to F | P and F | QQ, respectively, then there is a
Borel reduction h: X UY — PUQ of E to F such that h | X = f.

To deduce the theorem from the lemma, let Y = domF (the Borel domain of F). Then NF is an equivalence
relation on N x Y, and (k, z)NF(j,y) if and only if ¥ = j and zFy. We prove the theorem under the assumption
that the sets X} are pairwise disjoint. (Otherwise consider the sets X; = Xj\ ;. X;, obviously pairwise
disjoint. Their union is obviously equal to the union of the given sets Xj.)
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Put Y = {k} x Y. Then N x Y is the pairwise disjoint union of Borel sets Y}, and we have a copy Fy, of F
defined on Y}, that is, (k,x)Fi(k,y) if and only if zFy. Then Fj, coincides with the restriction NF [ Y}, of NF to
Y}, and the sets Y}, and Y are NF-independent whenever k # j. Put V) =YyU---UY, and X, = XoU---UX,.

We define a system of Borel maps h,, : X/ — Y/ satisfying the following two conditions:

(i) hy, is a reduction of E [ X/, to NF [ Y.;

(ii) hp41 extends hy,.
If such a sequence {h,,} has been defined, then h = J,, hy, is obviously a Borel reduction of the relation E (defined
on the set X = (J,, X,,) to NF; therefore E <g NF and E <g F.

The definition of the system of maps h,, goes on by induction. First of all, for every k, since E [ X <p F,
there is a Borel reduction ¢ : X — Y} of the relation E | X}, to Fg, that is, to NF [ Y. This allows us to
immediately define hy = .

Now we carry out the step n — n + 1. Assume that a Borel map h,, : X, — Y, satisfying (i) has been defined.
The sets Y, and Y,,+1 are NF-independent by the above. In addition, the NF-equivalence classes are essentially
the same as the F-classes, and hence they are o-compact sets. Therefore Lemma 2 is equally applicable to NF
and to F. It follows that there is a Borel reduction n: X/, — Y, of E| X, to NF [ Y, extending h,. It
remains to put h,41 = 1. This completes the step and the derivation of Theorem 1 from Lemma 2.

Proof of Lemma 2. The difficulty consists in the fact that the sets X, Y are not necessarily E-independent, that
is, there can exist points z € X and y € Y with zEy. In this case, we have to define h(y) not from g(y), but
rather as a point in P that is F-equivalent to f(z) in P for some z € X satisfying zEy.
Thus the key problem is to find an appropriate definition of the values h(y) for elements y € Y satisfying
g(y) € ranU, where
U={{pg) ePxQ:3xc X3y (zEy A f(z)Fp A g(y)Fq)}

and, as usual, ranU = {¢ : 3p ({p,q) € U)}. In general, it would suffice to find a map ¢ defined on the set
YV ={yeY :3z € X (zEy)},

and with values in X, such that ¢(y)Ey for all y € Y’ and then put h(y) = f(p(y)) for y € Y'. Yet the
construction of such a map ¢ amounts to the problem of uniformization of the set

{{y,z) €Y x X : zEy},

which is not always possible in the class of Borel uniformizations. Therefore we apply a more complicated
argument.

Note that U is a X1 set (that is, a Suslin set, see [2, 4] (in Russian) on the modern theory of £1 and IT}
sets). Moreover, since the maps f and g are reductions of the relation E to F, we conclude that U is a subset of
the I} set

W ={(pq) e PxQ:V(p,q¢)cU@Fp « qFq)}.

Indeed, assume that (p,q) € U. There exist z € X and y € Y such that zEy and f(z)Fp, f(y)Fg. Consider any
other pair (p/,¢’) € U, and let 2’ € X and ¢’ € Y satisfy «’Ey’, as well as f(a')Fp/, f(y')Fq¢’. If, for instance,
pFp’, then we have xEz’ because f is a reduction, and hence yEy’ and ¢Fq’.

Therefore, by the Luzin first separation theorem (see [15] or, for instance, [2, 3]), there is an intermediate
Borel set V' satisfying U CV C W.

Moreover, it turns out that V' can be chosen among invariant sets. Indeed, the sets U and W are F-invariant,
in the sense that if pFp’ and gFq’, then the pairs (p,q) and (p/,q’) either simultaneously belong to U, or simul-
taneously do not belong to U, and the same for W. In this case, the invariant separation theorem holds (see,
e.g., [8, 11]), that is, there exists a Borel set V that satisfies U C V C W and is F-invariant in the same sense.!

IThe following is a simple proof of the invariant separation theorem in the case under consideration, given here for the reader’s
convenience. By the ordinary separation theorem, there is a Borel set Vp such that U C Vo C W. The set

Ur = [Volp ={{p,9) € Px Q: 3, ¢') € Vo (Fp’ AgqFq)}

obviously belongs to 2% and is F-invariant, and Vp C Uy C W because W is F-invariant too. Once again, by the separation theorem,
there is a Borel set V1 such that Uy C V3 C W. Consider the 2% set Ug = [V1]F, and so on. This results in an infinite increasing
sequence of sets U, and V,, such that the set U’ = Un U, = Un Vi is Borel (by the Vj,-representation) and F-invariant (by the
Un-representation) and still satisfies V. C U’ C W.
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The second important property of the set U is that it is a bijection modulo F, in the sense that the equivalence
pFp’ —— qFq

holds for any two pairs (p,q) and (p/,¢’) in U. (Indeed, suppose that pairs (p,q) and (p, q¢) belong to U, so that
there exist points z,2’ € X and y,y’ € Y such that zEy, 2'Ey’, and also f(z)Fp and f(y)Fq, and, accordingly,
f(2")Fp' and f(y')Fq'. If pFp/, then f(z)Ff(x'), therefore xE2’, since f is a reduction. Thus yEy’, and hence ¢Fq’.)

The sets W and V' do not necessarily satisfy this requirement, since there can exist pairs (p, ¢) such that p is
not F-equivalent to any p’ = f(z), z € X. We are going to define such a Borel set V' that satisfies the requirement
and still is a superset of U. Note that U C R, where the ITi set R is defined as follows:

R={{(',qd) eV :¥p,q) €V (pFp' — ¢Fq)}.

The set R is obviously F-invariant together with V. Therefore, again by the invariant separation theorem, there
is an F-invariant Borel set S such that U C S C R.

Yet the set R, and hence S as well, are bijections modulo F. (Indeed, if pairs (p’,q’) and (p”,q") belong to V,
and say p'Fp”, then taking the second pair as (p,¢) in the definition of R, we obtain ¢'F¢”’.) Therefore, by the
F-invariance of S (see above), we have: if ¢ € @), then the cross-section S; = {p: (p,q) € S} is either empty or
equal to the F-equivalence class [p']g = {p : pFp'} of a suitable element p’ € P satisfying (p',q) € S. Therefore
every cross-section S, is o-compact under the conditions of the lemma.

It follows, by the known Arsenin—-Kunugui—Shchegolkov theorem for Borel sets with o-compact cross-sections,
theset Z =ranS = {¢: Ip((p,q) € R)} is Borel and, moreover, there exists a uniformizing Borel map ¢ : Z — P,
that is, (#(q),q) € S for all ¢ € Z (for more on this theorem, see, e.g., [15, 35.H] and also the papers [7, 17]).

However, by definition we have ran U C Z and pFi(q) for every pair (p,q) € U. In addition, Z is an F-invariant
set, that is, ¢ € Z A ¢Fq, ¢’ € Z. This allows us to accomplish the proof of the lemma (and the theorem) with
the following definition of a Borel reduction of E to F. We naturally put h(z) = f(z) forallz € X. If y € Y and
9(y) € Z, then put h(y) = g(y). But if g(y) € Z, then we define h(y) = d(g(y)). O

The condition of the o-compactness of the equivalence classes somewhat reduces the field of applications of
Theorem 1, but the latter still remains rather substantial, see below. The role of this condition is clear: it
guarantees a suitable choice of an element in an F-equivalence class by means of a Borel function (the function
¥ at the end of the proof of Lemma 2). Here we make use of the uniformization theorem for Borel sets with
o-sections, the strongest known uniformization theorem applicable in this context.? It hardly can be expected
in the case under consideration that uniformization theorems for sets with “large” cross-sections (for instance,
those of positive measure, or nonmeager; for such theorems, see [15]) are applicable in a reasonable way, since it
is clear that any equivalence relation has only countably many “large” equivalence classes.

Another opportunity would be to apply the uniformization theorem for sets with o-compact sections for the
equivalence relation E rather than F. Namely, to obtain a Borel map ¢ : Y' — X satisfying ¢(y)Ey for all y € Y’
in the proof of Lemma 2. But this would require the o-compactness of all sets of the form [z] N X, that is, all
sets of the form [z] N X, in the context of Theorem 1. But such a condition provides restrictions to both E and
the sets Xj. Yet such a version works and can be useful in the case where all E-equivalence classes are countable.
In this case, the countability and hence the o-compactness as well do not depend on the nature of the sets Xj.

3. APPLICATIONS

Note that the requirement NF <p F in the theorem holds for typical Borel equivalence relations F. (Borel
equivalence relations with infinitely many equivalence classes that do not satisfy this condition were originally
defined in [14]. A somewhat simplified construction is given in [18]. Yet all counterexamples known so far are
rather artificial and quite complicated.) The requirement of the o-compactness of the F-equivalence classes is
more restrictive, of course. Yet it holds for all countable equivalence relations F (those with finite and countable
equivalence classes), in particular, for Eg, as well as for (noncountable) equivalence relations E; and £°°.

Recall that Ey is defined on the set 2V of all infinite dyadic sequences so that {i, }E;{j,} if and only if i, = ji,
for almost all (except for finitely many) n. The equivalence relation E; is defined similarly on the set RY of all
infinite real sequences: {z, }E1{y,} if and only if &, = y, for almost all n. The relation £* is defined differently

2Recall that an arbitrary Borel set is not necessarily uniformizable by a Borel set. The Novikov—Kondo theorem states that it is
uniformizable by sets in a wider class H%, but this would lead to non-Borel maps h in the proof of the lemma.
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on the same set: {z,}£*°{y,} if and only if there is a number C' > 0 such that |x,, — y,| < C for all n. It is
known that Eg < E; < £ (see [5] or [10] for a wider spectrum of similar equivalence relations).

It is worthwhile to mention the equality Ar on the real line, which can be regarded as an equivalence relation
and obviously satisfies both conditions of Theorem 1 as F.

There are three types of Borel equivalence relations E related to Ag, Eg, E;:

smooth: those satisfying E <g Ag, i.e., Borel reducible to Ag;

hyperfinite: those satisfying E <p Eg and countable (that is, all equivalence classes are at most countable),
see [9];
hypersmooth: those satisfying E <g E;, see [16].

All smooth equivalence relations are hyperfinite, while all hyperfinite ones are hypersmooth, and neither of
the two inclusions is invertible.

Corollary 3. For each of these three classes of Borel equivalence relations (smooth, hyperfinite, hypersmooth),
the following holds.

Assume that E is a Borel equivalence relation on a Borel set X = J,, X, where all X}, are Borel sets, too. If
for every k the restricted relation E [ Xy belongs to any of the three mentioned classes, then the relation E itself
belongs to the same class.

This case of Theorem 1 has been known for hyperfinite (and, most likely, for smooth) equivalence relations
since long ago. Indeed, it is mentioned in [9], although we are not able to locate a reference.

Theorem 1 and Corollary 3 can be useful for upper estimates of the complexity of Borel equivalence relations
in cases where, in the context of the problem under consideration, the domain of a given equivalence relation is
split into countably (or finitely) many parts on which this equivalence relation can be investigated separately.
This happens in the proofs of some complicated dichotomy theorems (see, e.g., [6, 12, 13]), where the first case,
i.e., the case of a regular domain, implies a partition into subdomains defined in accordance with the position
at which the regularity begins in a certain representation of a given point as a sequence.

The first author acknowledges support from RFBR, grants 06-01-00608 and 07-01-00445. The second author
acknowledges support from RFBR 07-01-00445 and MNTC 2766.
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