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A DEFINABLE NONSTANDARD MODEL OF THE REALS 

VLADIMIR KANOVEIf AND SAHARON SHELAH * 

Abstract. We prove, in ZFC, the existence of a definable, countably saturated elementary extension of 

the reals. 

§1. Introduction. It seems that it has been taken for granted that there is no 
distinguished, definable nonstandard model of the reals. (This means a countably 
saturated elementary extension of the reals.) Of course if V = L then there is such 
an extension (just take the first one in the sense of the canonical well-ordering of 
L), but we mean the existence provably in ZFC. There were good reasons for this: 
without Choice we cannot prove the existence of any elementary extension of the 
reals containing an infinitely large integer.' 2 Still there is one. 

THEOREM 1.1 (ZFC). There exists a definable, countably saturated extension *M 
of the reals R, elementary in the sense of the language containing a symbol for every 
finitary relation on R. 

The problem of the existence of a definable proper elementary extension of M 
was communicated to one of the authors (Kanovei) by V. A. Uspensky. 

A somewhat different, but related problem of unique existence of a nonstandard 
real line *M has been widely discussed by specialists in nonstandard analysis.3 

Keisler notes in [3, § 11] that, for any cardinal n, either inaccesible or satisfying 
2K = K+ , there exists a unique, up to isomorphism, K-saturated nonstandard real 
line *R of cardinality K , which means that a reasonable level of uniqueness modulo 
isomorphism can be achieved, say, under GCH. Theorem 1.1 provides a countably 
saturated nonstandard real line *M, unique in absolute sense by virtue of a concrete 
definable construction in ZFC. A certain modification of this example also admits 
a reasonable model-theoretic characterization up to isomorphism (see Section 5). 
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t Partial support of RFFI grant 03-01-00757 and DFG grant acknowledged. 
' Supported by The Israel Science Foundation. Publication 825. 
1 In fact, from any nonstandard integer we can define a non-principal ultrafilter on N, even a Lebesgue 

non-measurable set of reals [4], yet it is consistent with ZF (even plus Dependent Choices) that there 
are no such ultrafilters as well as non-measurable subsets of M [5]. 

2It is worth mentioning that definable nonstandard elementary extensions of N do exist in ZF . For 
instance, such a model can be obtained in the form of the ultrapower F/U, where F is the set of all 
arithmetically definable functions / : N —• N while U is a non-principal ultrafilter in the algebra A of 
all arithmetically definable sets X C N. 

3 "What is needed is an underlying set theory which proves the unique existence of the hyperreal 
number system [... ]" (Keisler [3, p. 229]). 
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The proof of Theorem 1.1 is a combination of several known arguments. First of 
all (and this is the key idea), arrange all non-principal ultrafilters over N in a linear 
order A, where each ultrafilter appears repetitiously as Da, a e A. Although A is 
not a well-ordering, we can apply the iterated ultrapower construction in the sense 
of [1, 6.5] (which is "a finite support iteration" in the forcing nomenclature), to 
obtain an ultrafilter D in the algebra of all sets X C NA concentrated on a finite 
number of axes N. To define a D- ultrapower of R, the set F of all functions 
/ : NA —> M, also concentrated on a finite number of axes N, is considered. The 
ultrapower F/D is OD, that is, ordinal-definable, actually, definable by an explicit 
construction in ZFC, hence, we obtain an OD proper elementary extension of K. 
Iterating the D -ultrapower construction u>\ times in a more ordinary manner, i. e., 
with direct limits at limit steps, we obtain a definable countably saturated extension. 

To make the exposition self-contained and available for a reader with only frag­
mentary knowledge of ultrapowers, we reproduce several well-known arguments 
instead of giving references to manuals. 

§2. The ultrafilter. As usual, c is the cardinality of the continuum. 
Ultrafilters on N hardly admit any definable linear ordering, but maps a : c —> 

3P (N), whose ranges are ultrafilters, readily do. Let A consist of all maps a : c —• 
&>(N) such that the set Da = r a n a = {«(<?) : £ < c} is an ultrafilter on N. The 
set A is ordered lexicographically: a < i e x b means that there exists £, < c such 
that a \£ = b \£, and a(<J) <b{£) in the sense of the lexicographical linear order 
< on &>(N) (in the sense of the identification of any a C N with its characteristic 
function). 

For any set u, N" denotes the set of all maps / : u —> N. 
Suppose that u Cv C A. 
If X C N" then put X j u = {x \ u : x e X} . 
If Y C N" then put Y | v = {x e N" : x \ u e Y}. 
We say that a set X C NA is concentrated on u C A, if X = (X J. u) | A; in 

other words, this means the following: 

V x, y €NA (x \ u = y \ it =^ {x e X <=> y € X)). (*) 

We say that X is a set of finite support, if it is concentrated on a finite set u C A. 
The collection Sf of all sets X C NA of finite support is closed under unions, 
intersections, complements, and differences, i.e., it is an algebra of subsets of 
NA. Note that if (*) holds for finite sets u, v C A then it also holds for u f i u . 
(If x \ (w n v) = y \ (u n v) then consider z e N'4 such that z\u = x\u and 
z\v = y\v.) It follows that for any X £ %? there is a least finite u = | \X\ \ C A 
satisfying (*)• 

In the remainder, if U is any subset of ^ ( Z ) , where / is a given set, then UiO(i) 
(generalized quantifier) means that the set {i € I : <£(*')} belongs to U. 

The following definition realizes the idea of a finite iteration of ultrafilters. Sup­
pose that u = a\ < • • • < a„ C A is a finite set. We put 

DU = {XC W : Dankn ... Da2k2 Da,ki ((kuk2,... ,k„) € X)} ; 

D = {Xea>:Xl\\X\\€Dm}. 

The following is quite clear. 
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PROPOSITION 2.1. (i) Du isanultrafilter onW ; 
(ii) if u C v C A, v finite, X C W, then X £ Du iff X *\ v £ Dv \ 

(iii) £> C 3? is an ultrafilter in the algebra 3? ; 
(iv) if X £%f, uCA finite, and \\X\\Cu, then X £ D <̂ => X j u £ Du . 

§3. The ultrapower. To match the nature of the algebra Sf of sets X C N*4 of 
finite support, we consider the family F of all / : N-4 —• R, concentrated on some 
finite set w C ^ , in the sense that 

Vx, y£NA(x\u=y\u = > / ( * ) = / G O ) , (f) 

As above, for any / G F there exists a least finite u = \\f\\ c 4̂ satisfying (f). 
Let 9t be the set of all finitary relations on R. For any n-ary relation E £ M 

and any f\,...,f„ £ F, define 

ED{fu...Jn) «=* flxe^£(/,W /,W). 
The set X = {x G N'4 : E(fi(x),...,f„(x))} is obviously concentrated on 
w = | | / i | | U - " U | | / „ | | , hence, it belongs to ST, and ||A-|| C u = | | / i | |U- • - l_J | |y„ 11. 

In particular, f =D g means that D x G NA (f(x) = g(x)). The following is 
clear: 

PROPOSITION 3.1. =D is an equivalence relation on F, and any relation on F of 
the form ED is =D-invariant. 

Put [f]D = {geF:f=Dg},znd*R = F/D = {[f]D : f £ F}. For any n-
ary (« > 1) relation E £ Si, let *E be the relation on *R defined as follows: 

*E{[f1]D,...,\f„]D) iff ED{fx,...,fn) iff Dx£NAE(f1(x),...,fn(x)). 

The independence on the choice of representatives in the classes [/,]# follows 
from Proposition 3.1. Put "X = {*E : E £ 91). Finally, for any r £ R we put 
*r = [cr]o, where cr £ F satisfies cr(x) = r, Vx. 

Let S? be the first-order language containing a symbol E for any relation E G S%. 
Then (R;M) and (*R;*^) are ^-structures. 

THEOREM 3.2. The map r \—> *r is an elementary embedding {in the sense of the 
language %) of the structure (R; 9i) into (*R; *9i). 

PROOF. This is a routine modification of the ordinary argument. By S'lF] we 
denote the extension of S? by functions f £ F used as parameters. It does not 
have a direct semantics, but if <p is a formula of Sf[F] and x £ NA then <p[x] will 
denote the formula obtained by the substitution of f(x) for any f £ F which 
occurs in <p. Thus, <p[x] is an J?-formula with parameters in R. 

LEMMA 3.3 (Los). For any closed %\F~\-formula <p{f\,... ,f„) (allparameters 
fi £ F indicated), we have: 

<*R;*<5?)h¥>([/i]z>,.... [/„]/>) ^=* Z > * ( ( R ; # ) t = ¥>(/ i , . . . , /„)[*]) . 

PROOF. We argue by induction on the logic complexity of <p. For cp an atomic 
relation E{f\,...,f„), the result follows by the definition of *E. The only notable 
induction step is 3 in the direction <=. Suppose that (p is 3 y y/(y, f\ , . . . , / „ ) , 
and 

Z ) x « R ; . » > | = ¥>(/! , . . . , /„)[*]) , 
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that is, 

Dx{<pL;X)\=3yV(y,fu...,fn)[x]). 

Obviously there exists a function / G F, concentrated on u = | | / i | | U ••• U 
| | / „ | | , such that, for any x G NA, if there exists a real y satisfying (R; 91) \= 
y/(y,fi,...,f„)[x], then y = f{x) also satisfies this formula, i.e., (R;9!) \= 
V(L /i> • • •, fn)[x]. Formally, 

\/xeNA (3yeR{{R;X)\=y(y,fl,...,f*)[x]) = > 

(R;<%)\=y,(f,fu...,fn)[x]). 

This implies D x ((K; 91) f= i//(f, f\,..., /„)[.*]). Then, by the inductive assump­
tion, <*R; *X) h ^ ( [ / b . [ / i b . • • •. \fnh), hence (*R; ^ ) (= y>([/i]i>,..., [/»]z>), 
as required. H 

To accomplish the proof of Theorem 3.2, consider a closed J?-formula <p{ri,... ,r„) 
with parameters r\,...,r„ e l . We have to prove the equivalence 

(R;&)\=<p(n,...,rH) «*=• <*R; *<%) \= ^ ( V , , . . . ,*r„). 

Let /,- = cn, thus, /,- 6 F and /,-(JC) = r,-, Vx. Obviously <p{f\,...,fn)[x] 
coincides with ip(ri,...,rn) for any x G NA , hence y> (/•] ,...,r„) is equivalent to 
£> x tp(f\,..., f„)[x]. On the other hand, by definition, *r, = [fi]o. Now the 
result follows by Lemma 3.3. H 

§4. The iteration. Theorem 3.2 yields a definable proper elementary extension 
(*R; *9l) of the structure (K; 91). Yet this extension is not countably saturated due 
to the fact that the ultrapower *R was defined with maps concentrated on finite 
sets u C A only. To fix this problem, we iterate the extension used above a>i-many 
times. 

Suppose that (M \M) is an J?-structure, so that JC consists of finitary relations 
on a set M, and for any E G 91 there is a relation EM G J( of the same arity, 
associated with E. Let FM be the set of all maps / : NA —> M concentrated on 
finite sets u C A. The structure FM/D = (*M \M), defined as in Section 3, but 
with the modified F, will be called the D-ultrapower of (M; M). Theorem 3.2 
remains true in this general setting: the map x i—• *x (x G M) is an elementary 
embedding of (M; J?) in {*M;M). 

We define a sequence of J?-structures {Ma\Jta), a. < a>\, together with a 
system of elementary embeddings eap : {Ma ; Jta) —• (Mp ; J?p), a < /? < co\, so 
that 

(i) (M0;je0) = (R;&); 
(ii) (Ma+i; -^a+\) is the D-ultrapower of (Ma ; Jta), that is, (Ma+\; J?a+\) = 

Fa/D, where Fa = FMa consists of all functions / : NA —> Ma concentrated 
on finite sets u C A. In addition, ea,a+i is the associated *-embedding 
(Ma ; Jta) —• (Ma+i; Jta+\), while e7,a+i = ea,a+i ° eya for any y < a (in 
other words, e7_a+i(x) = eQ)Q+i(ej,a(x)) for all x G Ma)\ 

(iii) if A < co\ is a limit ordinal then {Mx; -#A) is the direct limit of the structures 
(Ma ; .#Q), a < X. This can be achieved by the following steps: 
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(a) Mx is defined as the set of all pairs (a, x) such that x e Ma and 
x £ r a n eya for all y < a. 

(b) If E £ 91 is an «-ary relation symbol then we define an «-ary relation Ex 
on Mx as follows. Suppose that *, = (a,, x;) G Mx for i = 1 , . . . , n. Let 
a = s u p { a i , . . . ,a„} and z, = eai,a(xi) for every / , so that a, < a < X 
and Zi G Ma. (Note that if on = a then .ea,,a is the identity.) Define 
Ex(x],...,x„) iff (Ma\Ma) \=E(zi,...,z„). 

(c) Put JZx = {Ex : E e 91} - then (Mx; ^ A ) is an .S^-structure. 
(d) Define an embedding eax : M a —> Mx (a < X) as follows. Consider 

any x G Ma . If there is a least y < a such that there exists an element 
y G My with x — eya{y) then let eax(x) = (y,y). Otherwise put 
eai.(x) = (a,x). 

A routine verification of the following is left to the reader. 

PROPOSITION 4.1. If a < fi < co\ then eap is an elementary embedding of 
(Ma ; Jta) to (Mp; Jtp). 

Note that the construction of the sequence of models (Ma ; Ma) is definable, 
hence, so is the last member {MWI ; J?mi) of the sequence. It remains to prove that 
the ^-structure (MMl; ^m,) is countably saturated. 

This is also a simple argument. Suppose that, for any k, tpk{pk,x) is an 5C-
formula with a single parameter pu G MWl (the case of many parameters does 
not essentially differ from the case of one parameter), and there exists an element 
Xk £ Me, such that f\i<k <piiPi>xk) is true in (M0}] ; J(m^) — in other words, we 
have (Ma,,; JtU{) (= <pi (/?,•, Xk) whenever k > i. Fix an ordinal y < a>\ such that 
for any k, i there exist (then obviously unique) yk, qi € My with Xk = eyo^{yk) 
and pi — eyi0l (</,). Then ipi{qt,yk) is true in {My; JCy) whenever k > i. 

Fix a e A such that Da is a non-principal ultrafilter, that is, all cofinite subsets 
of N belong to Da . Consider the structure (My+\; Jfy+\) as the D-ultrapower 
of {My \Jty). The corresponding set Fy consists of all functions / : NA —> My 

concentrated on finite sets u c A. In particular, the map f{x) = yk whenewer 
x(a) = k belongs to Fy. As any set of the form {k : k > i} belongs to Da , we have 
Dak {(My-,jry) \=<pi{qi,yk)), that is, D x e NA ({My; J?y) \= <Pi(qi,f)[x]), for 
any / e N. It follows, by Lemma 3.3, that ipi(*q(,y) holds in (My+\; J?y+\) for 
any / , where *q{ = eyj+\(qi) € My+i while y = [f]o G My+\ is the D-equivalence 
class of f in Fy. Put x = ey+\Ml(y); then ipi{pi,x) is true in (Mmx; Jtm^) for any 
/ because obviously pi = ey+i!(U| (*#,), V/. 

§5. Varia. By appropriate modifications of the constructions, the following can 
be achieved: 

1. For any given infinite cardinal n, a K-saturated elementary extension of R, 
definable with K as the only parameter of definition. 

2. A special elementary extension of R, of as large cardinality as desired. For 
instance, take, in stage a of the construction considered in Section 4, ul-
trafilters on 3a. Then the result will be a definable special structure of 
cardinality !]„, . Recall that special models of equal cardinality are isomor­
phic [1, Theorem 5.1.17]. Therefore, such a modification admits an explicit 
model-theoretical characterization up to isomorphism. 
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3. A class-size definable elementary extension of E, K-saturated for any cardinal 
K . 

4. A class-size definable elementary extension of the whole set universe, K-satu-
rated for any cardinal K . (Note that this cannot be strengthened to Ord-
saturation, i.e., saturation with respect to all class-size families. For in­
stance, Ord^-saturated elementary extensions of a minimal transitive model 
M (= ZFC, definable in M, do not exist — see [2, Theorem 2.8].) 

Acknowledgements. The authors thank the anonymous referee for valuable com­
ments and corrections. 
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