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Abstract. We modify the definable ultrapower construction of Kanovei and Shelah (2004) to develop
a ZF -definable extension of the continuum with transfer provable using countable choice only, with an
additional mild hypothesis on well-ordering implying properness. Under the same assumptions, we also
prove the existence of a definable, proper elementary extension of the standard superstructure over the reals.

§1. Introduction. The usual ultrapower construction of a hyperreal field R
�/U

is not functorial (in the category of models of set theory) due to its dependence on
a choice of a free ultrafilter U, which can be obtained in ZFC only as an applica-
tion of the axiom of choice, but not as an explicitly definable set-theoretic object.
Kanovei and Shelah [12] developed a functorial alternative to this, by providing
a construction of a definable hyperreal field, which we refer to below as the KS
construction.
The KS construction was analyzed in [15], Section 1G of the Online 2007 edition,
and generalized in many ways in [5, 10, 13], [11, Chapter 4] among others. We give
[14] as the source of the problem of a uniquely definable nonstandard real line and
[3,7,18,24] as basic references in nonstandard matters.
Nonstandardanalysis is viewed by some as inherently nonconstructive.One of the
reasons is that nonstandard models are typically presented in terms of an unspec-
ified choice of a free ultrafilter, which makes the resulting ultrapower hopelessly
nondefinable. In fact, as Luxemburg [18] observed, if there is a nonstandard model
of the reals, then there is a free ultrafilter on the natural numbers �. The obser-
vation that elements of a nonstandard extension ∗A correspond to ultralters on A
was first exploited in detail by Luxemburg [17].
To circumvent the unspecified choice of a free ultrafilter, the KS construction
starts with the collection of ultrafilters U on � parametrized by surjective maps
from a suitable ordinal onto such ultrafilters U. Suchmaps are ordered lexicograph-
ically. This generates a definable linear ordering of ultrafilters in which each of them
is included in many copies. The tensor product is applied to merge the ultrafilters
into a definable ultrafilter in the algebra of finite support product sets.
Thus, the KS construction can be viewed as a functor which, given a model of
set theory, produces a definable extension of the reals in the model.
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TheKS construction in [12] (aswell as itsmodifications as in [5,13])was originally
designed to work in Zermelo–Fraenkel set theory ZFC with choice. However for it
prima facie to yield the expected result, it is sufficient to assume the well orderability
of the reals. Let WO(R) be the following statement: the continuum 2� = {X : X ⊆
�} is well orderable. Thus it emerges that the theory ZF+WO(R) is sufficient for
the KS construction to yield a definable proper elementary extension of the reals.
The goal of this note is to weaken this assumption.

§2. The result. Consider the following two consequences of the axiom of choice
in ZF :
AC�(R): countable AC for sets of reals, that is, any sequence {Xn}n<� of sets ∅ �=
Xn ⊆ R admits a choice function;
WOB: there exists a free ultrafilter over � with a well-orderable base. (A set B ⊆ U
is a base of an ultrafilter U over �, if and only if there is no ultrafilter U ′ �= U
over � with B ⊆ U ′. In such case we write U = [B].)
Theorem 2.1 (ZF ). There exists an extension ∗

R of the reals R, such that both ∗
R

and a canonical embedding x �−→ ∗x from R into ∗
R are presented by explicitly

definable set-theoretic constructions and in addition:
(i) AC�(R) implies that ∗

R is an elementary extension, in the sense of the
language L (R) with symbols for all finitary relations on R;

(ii) WOB implies that ∗
R is a proper extension of R, containing infinitesimals

and infinitely large numbers.
It follows by (i) that, instead of WO(R), the axiom AC�(R) can be used to
establish elementarity. It emerges that proving the transfer principle for the definable
extension requires no more choice than proving, for instance, the � -additivity of
the Lebesguemeasure; see [9]. Similarly, by (ii), WOB successfully replaces WO(R)
in the proof of properness.
Quite obviously WO(R) implies AC�(R) and WOB in ZF. The failure of the
inverse implication is dealt with in 4.1 below.
The proof of Theorem 2.1 appears in Section 3. We also show, in 4.3, how the
theorem can be generalized in order to obtain even a nonstandard superstructure
over ∗

R.

§3. What it takes: array of ultrafilters. Let an array of ultrafilters be any sequence
{Da}a∈A, where A = 〈A,<A〉 is a linearly ordered set and each Da is an ultrafilter
over �.

Proposition 3.1 (inZF+AC�(R)). Assume that {Da}a∈A is a definable array of
ultrafilters over �, with at least one free ultrafilter Da0 . Then there is a definable (as
in Theorem 2.1) proper extension ∗

R of R, elementary w. r. t. the language L (R)
containing all finitary relations on R.
Proof (Sketch, based on the proof in [12]). The following is defined:

− the index set I = �A = {x : x is a map A→ �};
− the algebra X = X (A) of finite-support subsets of I = �A , so that a
set X ⊆ �A is in X if and only if there is a finite u ⊆ A such that

∀x, y ∈ �A (
x � u = y � u =⇒ (x ∈ X ⇐⇒ y ∈ X ));
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− the collection F = F (A) of finite-support functions f : I → R, so that f :
I → R belongs to F if and only if there is a finite set u ⊆ A such that

∀x, y ∈ �A (
x � u = y � u =⇒ (f(x) = f(y))

)
.

The tensor, or Fubini product D =
⊗
a∈A Da consists then of all sets X ⊆ I such

that for a finite subset u = {a1 <A · · · <A an} ⊆ A we have:
Dankn . . . Da2k2 Da1k1 (〈k1, . . . , kn〉 ∈↑ X ),

where 〈k1, . . . , kn〉 ∈↑ X means that every x ∈ I satisfying x(a1) = k1, . . . ,
x(an) = kn belongs to X, and DakΦ(k) means that the set {k : Φ(k)} belongs
to Da. It turns out that D is an ultrafilter in the algebra X , which allows to define
the ultrapower ∗

R = F/D = {[f]D : f ∈ F } , where [f]D = {g ∈ F : f =D g}
and f =D g means that {x ∈ I : f(x) = g(x)} ∈ D. All finitary relations in
L (R) extend to ∗

R naturally.
In addition, we send every real r to the equivalence class ∗r = [cr ]D of the
constant function cr ∈ F with value r. The axiom AC�(R) is strong enough to
support the ordinary proof of the Łoś lemma, and hence r �−→ ∗r is an elementary
embedding in the sense of the language L (R). To prove that the embedding is
proper, make use of the assumption that at least one of Da is a free ultrafilter.
Finally, the extension ∗

R is definable since the given array of ultralters {Da}a∈A is
definable by hypothesis. 
Proof (Theorem 2.1). To define a suitable array of ultrafilters, let ϑ be the least
ordinal such that for anywell-orderable set Z ⊆ R there is a surjectivemap a : ϑ onto−→
Z. Let A consist of all maps a : ϑ → P(�) such that the set Ba = rana =
{a(�) : � < ϑ} is a base of an ultrafilter on � , and let Da = [Ba ] be this ultrafilter.
The set A is ordered lexicographically: a <A b, if and only if there exists an
ordinal � < ϑ such that a � � = b � � and a(�) < b(�), in the sense of the
lexicographical linear order < on P(�). Then {Da}a∈A is a definable array of
ultrafilters. Assuming WOB, it contains at least one free ultrafilter Da, and we
apply Proposition 3.1. 

§4. Remarks. Here we add some related remarks, starting with a model of
ZF+AC�+WOB in which the continuum is not well orderable. This demonstrates
that Theorem 2.1 is an actual strengthening of the key result of [12].

4.1. Separating WOB + AC� from WO(R) . Pincus and Solovay conjectured
in [20, p. 89] that iterated Sacks extensions may be useful in the construction of
choiceless models with free ultrafilters. Working in this direction, we let M be
an �1 -iterated Sacks extension of L, the constructible universe, as in [1]. Let N be
the class of all sets hereditarily definable froman � -sequence of ordinals inM. Then
WOB is true in N since some free ultrafilters in L (basically, all selective ultrafilters)
remain ultrafilter bases in M and in N by [1, Section 4], and AC� is true as well
(even the principle of dependent choices DC holds). Meanwhile, WO(R) fails in N
(2� is not well orderable) by virtue of arguments, based on the homogeneous
structure of the Sacks forcing, and similar to those used in the classical studies of
the choiceless Solovay model S′ as in [23, Part III, proof of Theorem 1].
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If we let M be an �2 -iterated Sacks extension of L, then the class N of all sets
that are hereditarily definable from an �1 -sequence of ordinals in M, still will be
a model of WOB + ¬WO(R), in which even DC�1 and AC�1 hold instead of the
simple DC and AC� . Longer iterations make little sense here as each further Sacks
real collapses all smaller cardinals down to �1.
We know nothing about any model ofWOB + AC�(R) in which WO(R) fails,
different from the ones just described. (However see Section 4.5 below.) This can be
a difficult problem, yet not uncommon in studies of choiceless models.

4.2. Keisler-style representation. Keisler’s influential monograph [15] contains
(in Section 1G) a somewhat modified exposition of the construction of a definable
nonstandard extension of [12], by an explicit amalgamation of all ultrapowers of R
via different ultrafilters on � into one large hyperreal field. A similar Keisler-style
modification of the construction readily works in theZF+AC�(R)+WOB setting.

4.3. Superstructure over ∗
R . Let V (R) =

⋃
n≥0 Vn(R) be the superstructure

over the reals, where V0(R) = R and Vn+1(R) = Vn(R) ∪ P(Vn(R)) for all n,
see [2, Section 4.4]. To build a nonstandard superstructure over ∗

R as in Section 3,
we let Fn be the set of all functions f : �A → Vn(R) of finite support, and then
define the ultrapower ∗Vn(R) = Fn/D and the elementary embedding x �−→ ∗x
from Vn(R) to ∗Vn(R) as above. (And we need AC� for subsets of Vn(R) to prove
the elementarity.) Then each element of ∗Vn(R) can be identified with a certain
subset of ∗Vn−1(R) or an element of ∗Vn−1(R), so that each ∗Vn(R) emerges as
a subset of Vn(∗R). This completes the nonstandard superstructure construction
underWOB+ AC�.

4.4. Another definable choiceless ultrapower. Consider the basic Cohen
model L(A), obtained by adding a set A = {an : n < �} of Cohen generic reals an
to L, [8, 5.3]. (Not to be confused with the Feferman model [4], adding all an but
not A. ) The set A belongs to L(A) but the map n �−→ an does not. AC� badly
fails in L(A) as A is an infinite Dedekind finite set. Yet L(A) contains a free
ultrafilter U over �, see [21] for a short proof.
Let ∗

R = R
�/U be the associated ultrapower. Then ∗

R is not an elementary
extension of R in the full relational language L (R) as in Theorem 2.1, since
the formula “∀n ∈ � ∃x (x codes an n -tuple of elements of A )” is true for R
but false for ∗

R. However ∗
R is an elementary extension of R with respect to

the sublanguage L ′(R) of L (R), containing only real-ordinal definable finitary
relations on R. Note that L ′(R) is a sufficiently rich language to enable an adequate
development of nonstandard real analysis.
Both U and ∗

R are definable in L(A) by a set theoretic formula with the only
parameter A. And this is probably all we can do in L(A) since the model contains
no real-ordinal definable elementary extensions of R.

4.5. A possibleWOBmodel. Onemay want to extend L(A) as in 4.4 by a P(U ) -
generic real c = c0 ∈ 2�, where P(U ) is theMathias forcingwith infinite conditions
in U. If L(A)[c0] happens to have an {A, a0} -definable ultrafilter U1 over �
with U ⊆ U1 then let c1 ∈ 2� be a P(U1) -generic real over L(A)[c0] . Extending
this forcing iteration as in [16, A10 in Chapter 8], one may hope to get a final
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extension of L(A) with a well-ordered ultrafilter base {c� : � < �1} but with A
still not well orderable.

4.6. Least cardinality. What is the least possible cardinality of a definable hyper-
real field? A rough estimate for the general definable extension in [12] under AC
yields ≤ exp3(ℵ0). As for the definable extension ∗

R in Section 3 of this paper,
if the ground set universe is the �2 -iterated Sacks extension of L as in 4.1.1 then
card(∗R) = 2ℵ0 = ℵ2, which is minimal.

§5. Conclusions. Analysis with infinitesimals presupposes the existence of an
extended mathematical universe which, in the tradition of Robinson and Zakon
[22], is typically understood as an extended superstructure over the reals, although
for some basic applications an extension of the set of reals suffices. Even for certain
more sophisticated applications, it is enough for this extension of the mathematical
universe to satisfy the Transfer Principle, which means that it is an elementary
extension in the sense of model theory.
We have shown that one can find definable extensions of both the set of reals
and the superstructure over the reals; more precisely, our extensions are definable
by purely set-theoretic means without recourse to well ordering and have the fol-
lowing properties: (I) one can prove the Transfer Principle for such extensions from
Zermelo–Fraenkel set theory with merely Countable Choice; (II) the existence of
infinitesimals and infinitely large numbers in those extensions follows from a mild
well-ordering assumption.
The property of countable saturation, important for some advanced applications,
is not asserted but can be achieved by the �1 -iteration of the given extension
construction, as described in [12, Section 4].
Our results may be of interest to practitioners working with fragments of non-
standard analysis. For instance, the Transfer Principle plus the existence of an
infinitely large integer is all that is required to develop Edward Nelson’s [19, p. 30]
minimal nonstandard analysis or the related minimal Internal Set Theory [6, pp. 3,
4, 104]. Such fragments of nonstandard analysis have the potential for applica-
tion in diverse fields, ranging from stochastic calculus and mathematical finance to
theoretical quantum mechanics [6].
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