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DEFINABLE MINIMAL COLLAPSE FUNCTIONS AT ARBITRARY
PROJECTIVE LEVELS

VLADIMIR KANOVEI AND VASSILY LYUBETSKY

Abstract. Using a nonLaver modification of Uri Abraham’s minimal �13 collapse function, we define
a generic extension L[a] by a real a , in which, for a given n ≥ 3, {a} is a lightface �1n singleton, a
effectively codes a cofinal map � → �L1 minimal over L, while every �

1
n set X ⊆ � is still constructible.

§1. Introduction. It is well-known that all sets x ⊆ � of the lightface class �12 or
� 12 areGoedel-constructible. In fact this is an immediate corollary of the Shoenfield
absoluteness theorem. But one gets models with nonconstructible sets which belong
to the analytic hierarchy just above the mentioned threshold. In particular it is
consistent with ZFC that there exists a �13 real and a �

1
2 real singleton, see [12],

and such a real can be of minimal L-degree, [13].
Many more results on definable sets of different kind have been obtained on
the base of forcing methods invented in the abovementioned papers. Most of
them employ versions of the almost disjoint coding method of [12]. A recent
article [7] contains several powerful applications of almost disjoint coding, in
particular, to the construction of models with �13 well-orderings of the reals, in
which the reals have some very special properties. The paper also contains further
references.
Yet the almost disjoint coding technique is pretty useless in the case of models
containing definable generic objects andminimal over the groundmodelwith respect
to this or another property. The first example of such a model was presented by
Jensen [13]. Namely, Jensen’s forcing notion J ∈ L consists of perfect trees in �<�
(a subset of the Sacks forcing), and if a real a ∈ �� is J -generic over L then 1) it is
true in L[a] that {a} is a nonconstructible � 12 singleton, and 2) a is minimal over
L, in the sense that if b ∈ L[a] ∩ �� then either b ∈ L or a ∈ L[b]. (See also 28A
in [11] on this forcing.)
Several variations of Jensen’s forcing are known. In particular, a model in [15] in
which, for a given n ≥ 3 there exists a minimal nonconstructible � 1n singleton but
all �1n sets x ⊆ � are constructible, an �2-long iteration of Jensen’s forcing in [1],
a model in [17] in which there is an equivalence class of the equivalence relation
E0
1 (a E0-class, for brevity), which is a lightface � 12 set in �

� , not containing OD
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DEFINABLE COLLAPSE FUNCTIONS AT ANY PROJECTIVE LEVELS 267

elements, an extension of this result to arbitrary projective classes in [19], related
models in [9] (� 12 Groszek–Laver pairs of E0-classes), [18,20,21] (nonuniformizable
projective sets with countable vertical cross-sections), and a very recent [8] (a model
in which the axiom of dependent choices � 12 -DC fails, but the countable AC holds
for sets of reals).
The research of this paper was inspired by another minimal-style forcing con-
struction, a generic extension L[a] by Uri Abraham [2] such that 1) {a} is a
nonconstructible � 12 singleton in L[a], 2) �

L[a]
1 = �L2 (so a codes a collapse of

�L1 ), and 3) a is aminimal collapse over L, in the sense that if b ∈ L[a], b : � → �L1 ,
and b is cofinal in �L1 , then a ∈ L[b]. Abraham’s forcing in [2] consists of Laver-
style trees in �1<� , and its complicated construction in L, while having a certain
semblance of Jensen’s method in [13], involves some crucial novel ideas related to
the Laver forcing.
Our main result extends this research line. The next theorem asserts the existence
of a model of ZFC, in which, for a given number n ≥ 2, there exists a � 1n real sin-
gleton which codes the collapse of the ordinal �L1 in a minimal way, and in the same
time reals that belong to �1n do not code the collapse of �

L
1 . The abovementioned

result of [2] corresponds to the case n = 2 in this theorem, of course. We use the
blackboard n to distinguish the fixed number n in the theorem from other numbers
n in the text.

Theorem 1.1. Let n ≥ 2. There is a generic extension L[a] of L, by a real a ∈ �� ,
such that the following is true in L[a]:

(i) �L[a]1 = �L2 ;
(ii) (minimality) if b ∈ L[a], b : � → �L1 , b is cofinal in �L1 , then a ∈ L[b];
(iii) the singleton {a} is a (lightface) � 1n set;
(iv) (vacuous for n = 2) every �1n set x ⊆ � belongs to L.

§2. Structure of the proof. The proof of Theorem 1.1 is organized as follows:
Basic notions, related to �1-branching trees in �1<� (wide trees), are introduced
in Section 3. Unlike [2], we’ll not focus on Laver-style trees, which makes basic
constructions somewhat simpler. Every set P of wide trees T , closed under restric-
tions, is considered as a forcing by wide trees, aWT-forcing in brief, Section 4. Every
WT-forcing adjoins a P-generic element a ∈ �1�.
Section 6 presents a nonLavermodification of Uri Abraham’s method in [2, 2.14],
designed to define uncountable decreasing sequences of wide trees. Basically, any
collection F of wide trees, satisfying rather natural conditions of Definition 6.1,
yields a wide tree wr(F ), so that if F ⊆ F ′ then wr(F ′) ⊆ wr(F ). We apply the
method to prove Theorem 5.3 in Sections 7, 8, which allows, given a wide tree S
and a family of continuous functions fα : �1� → �1� , α < �L1 , to define a smaller
wide tree T ⊆ S , regular in some sense with respect to each fα .
Another technical device, also having its roots in [2], is introduced in Section 9. It
allows to shrink a given wide tree S to a smaller wide tree T such that any predense
set U ⊆ S in a given family of ℵ1-many such sets meets every infinite branch in T
except for a bounded set of them (Corollary 9.5).
Then, arguing in the constructible universe L, we define a forcing notion to prove
Theorem 1.1 in Section 11 in the form P =

⋃
α<�2

Pα . The summands Pα are

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.77
Downloaded from https://www.cambridge.org/core. University of New England, on 27 Mar 2019 at 09:56:20, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.77
https://www.cambridge.org/core


268 VLADIMIR KANOVEI AND VASSILY LYUBETSKY

ℵ1-large WT-forcings defined by induction. Any P-generic extension of L happens
to be a model for Theorem 1.1, which we prove in the remainder.
The inductive construction of Pα involves two key genericity ideas. The first
idea, essentially by Jensen [13], is to make every level Pα of the construction
generic in some sense over the union of lower levels P� , � < α . This is based on
a construction developed in Sections 10, 11, which includes the abovementioned
modification of Abraham’s method. The iterated genericity of the levels Pα implies
that the two sets are equal in any P-generic extension of L:

1) the singleton {a[G ]} of the principal generic element a[G ] ∈ �1� ,
2) the intersection

⋂
α<�2

⋃
T∈Pα

.

This equality is established in Sections 12, 13, on the base of studies of continuous
functions in Sections 7, 8. It will eventually lead to (ii) of Theorem 1.1.
The second idea goes back to old papers [10], [15]. In L, let WTF be the set of
all countable sequences P = 〈P�〉�<α (α < �1), compatible with the first genericity
idea at each step � < α . Then a whole sequence 〈Pα〉α<�1 can be interpreted
as a maximal chain in WTF. It happens that if such a chain is generic, in some
sense precisely defined in Section 11, (ii) of Theorem 11.4, with respect to all Σ1n−1
subsets of WTF, then the ensuing forcing notion P =

⋃
α<�1

Pα inherits some basic
forcing properties of the whole forcing by (all) wide trees, up to the n-th level
of projective hierarchy. This includes, in particular, the invariance of the forcing
relation with respect to some natural transformations of wide trees (the forcing
conditions), leading eventually to the proof of (iv) of Theorem 1.1 in Sections
15–18.

§3. Wide trees. Let �1<� be the set of all strings (finite sequences) of ordinals
� < �1—including the empty string Λ. If s ∈ �1<� then lh(s) < � is the length of a
string s , and max s < �1 is the largest term in s . Let �n1 = {s ∈ �1<� : lh(s) = n}
(strings of length n). If t ∈ �1<� and � < �1 , then t�� is the extension of t by �
as the rightmost term. If s, t ∈ �1<� then s ⊆ t means that the string t extends s ,
while s ⊂ t means a proper extension. A set T ⊆ �1<� is a tree iff s ∈ T =⇒ t ∈ T
whenever s, t ∈ �1<� and t ⊂ s . Then:
− if s ∈ T then succT (s) = {t ∈ T : s ⊂ t ∧ lh(t) = lh(s) + 1}, the set of all
successors of s in T . If succT (s) = ∅ then s is an endnode of T ;

− BN(T ) = {s ∈ T : card (succT (s)) ≥ 2}, all branching nodes of T , and
BNn(T ) = {s ∈ BN(T ) : card ({u ∈ BN(T ) : u ⊂ s}) = n};

− if u ∈ T then define T � u = {t ∈ T : u ⊆ t ∨ t ⊆ u}, a restricted tree;
− if T is not pairwise ⊆-compatible then there is a largest string u ∈ T such that
T � u = T , denoted by u = stem(T ), then {stem(T )} = BN0(T );

− define [T ] = {x ∈ �1� : ∀m (x�m ∈ T )}, a closed set in �1� .
Definition 3.1. A set U ⊆ T is dense in a tree T if ∀ s ∈ T ∃ u ∈ U (s ⊆ u),
open dense, if in addition s ∈ U holds whenever s ∈ T , u ∈ U , u ⊆ s , and predense,
if the set U ′ = {s ∈ T : ∃ u ∈ U (u ⊆ s)} is dene.
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DEFINABLE COLLAPSE FUNCTIONS AT ANY PROJECTIVE LEVELS 269

Definition 3.2. A tree ∅ �= T ⊆ �1<� is a wide tree, in symbol T ∈WT, if any
s ∈ T can be extended to a branching node t ∈ BN(T ), s ⊆ t , and if t ∈ BN(T )
then card (succT (s)) = ℵ1—that is, all branching nodes are �1-branching.
A bigger set WT′ consists of all trees ∅ �= T ⊆ �1<� such that each subtree of
the form T � s , s ∈ T , is uncountable. Clearly WT �WT′ , butWT is still dense in
WT′ , so that every tree T ∈WT′ contains a subtree S ∈WT, S ⊆ T .
Generally, WT andWT′ belong to the category of uncountably splitting versions
of the perfect set forcing. Similar forcing notions, as well as their Laver-style versions
(which require every node above the stem to be a wide-splitting node), have been
thoroughly studied in set theoretic papers, see e.g., Abraham [2], Bukovsky [4],
Bukovsky and Copláková-Hartová [5], Jech [11, Chapter 28], Kanamori [14],
Kurilić [22], Namba [23], to mention a few.

Lemma 3.3. Suppose that T ∈WT. If s ∈ T then T � s ∈ WT. If x ∈ X ⊆ [T ],
X is open in [T ], then there is s ∈ T such that s ⊂ x and T � s ⊆ X .
Definition 3.4. We introduce two notions of inclusion between trees which
partially honor the branching structure. If S,T ⊆ �1<� are trees then define:
− S ⊆n T iff BNn(T ) ⊆ S ⊆ T ;
− S ⊆′

n T iff S ⊆ T and BNn−1(S) = BNn−1(T ).
Lemma 3.5. (i) The relations ⊆0 and ⊆′

0 coincide with just ⊆;
(ii) S ⊆′

n+1 T =⇒ S ⊆n T =⇒ S ⊆′
n T ;

(iii) if S ⊆n T then ∀ u ∈ BNn(T )(there is a unique v ∈ BNn(S) with u ⊆ v);
(iv) if S ⊆′

n T then S ⊆n T iff ∀ u ∈ BNn−1(T ) (succT (u) = succS(u)).
Lemma 3.6. Let T ∈ WT, n < � . Assume that if u ∈ BNn(T ) then Tu ∈ WT,
Tu ⊆ T � u . Then the tree S =

⋃
u∈BNn(T ) Tu belongs to WT and satisfies S ⊆n T

and S� u = Tu for all u ∈ BNn(T ).
Note that under the conditions of the lemma, if u ∈ BNn(T ) then u ⊆ stem(Tu),
and in addition BNn(S) = {stem(Tu) : u ∈ BNn(T )}.
Lemma 3.7. Assume that · · · ⊆4 T4 ⊆3 T3 ⊆2 T2 ⊆1 T1 ⊆0 T0 is an infinite
decreasing sequence of trees in WT. Then the tree T =

⋂
n Tn belongs to WT, and

we have T ⊆n Tn , and hence BNn(T ) = BNn(Tn+1), for all n .

§4. Wide tree forcing notions and dense sets. A nonempty set P ⊆ WT is a
wide tree forcing, WT-forcing in brief, if we have T � u ∈ P whenever u ∈ T ∈ P .
Thus WT itself is a WT-forcing, and if S ∈ WT then the set {S� t : t ∈ S} is a
WT-forcing.

Remark 4.1. Any WT-forcing P can be considered as a forcing notion ordered
so that if T ⊆ T ′ , then T is a stronger condition. The forcing P adjoins a cofinal
element x ∈ �1� . More exactly if a set G ⊆ P is P-generic over a given set universe
V (and P ∈ V is assumed) then the intersection⋂T∈G [T ] contains a unique element
a[G ] ∈ (�V1 )� , and a[G ] satisfies G = {T ∈ P : a[G ] ∈ [T ]}, V[G ] = V[a[G ]], and
sup a[G ] = �V1 (cardinality collapse).
Elements a[G ] of this kind are called P-generic.
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270 VLADIMIR KANOVEI AND VASSILY LYUBETSKY

To prove Theorem 1.1 we’ll make use of a certain WT-forcing P ⊆WT.
Definition 4.2. A set D ⊆ P is dense in P if for any S ∈ P there is a tree T ∈ D ,
T ⊆ S , open dense, if in addition S ∈ D holds whenever S ∈ P, T ∈ D , S ⊆ T ,
and predense, if the set D′ = {S ∈ P : ∃T ∈ D(S ⊆ T )} is dense.
If T ∈WT and D ⊆WT then let D⇑T = {s ∈ T : ∃S ∈ D (T � s ⊆ S)}.
Lemma 4.3. Assume that P is a WT-forcing, and Dn ⊆ P is predense in P for all
n . Let S0 ∈ P. Then there is a tree T ∈WT (not necessarily in P!) such that T ⊆ S0
and if n < � then BNn(T ) ⊆ Dn⇑T .
Proof. We wlog assume that each Dn is open dense; otherwise replace it by
D′
n = {S′ ∈ P : ∃S ∈ Dn (S′ ⊆ S)}. Using Lemma 3.6 and the open density,
define a sequence · · · ⊆4 T4 ⊆3 T3 ⊆2 T2 ⊆1 T1 ⊆0 T0 ⊆ S0 , such that if n < �
and s ∈ BNn(Tn+1) then Tn+1� s ∈ Dn . By Lemma 3.7, the tree T =

⋂
n Tn is as

required: if s ∈ BNn(T ) then s ∈ BNn(Tn+1), so that T � u ⊆ Tn+1� u ∈ Dn . �
There is no way to directly extend Lemma 4.3 to the case of �1-sequences of
dense sets. But a somewhat weaker result of Lemma 9.4 will be possible.

§5. Bounded sets and continuous maps. It is known from descriptive set theory
that if a continuous map f : P → �� is defined on a perfect set P ⊆ �� then
f is a bijection or a constant on a suitable perfect subset P′ ⊆ P . A similar but
somewhatmore complicated dichotomy holds forwide trees. Say that a set X ⊆ �1�
is bounded, if there is an ordinal � < �1 such that X ⊆ �� . Note that if T ∈ WT
then the set [T ] is unbounded.

Lemma 5.1. Let S ∈ WT and f : [S] → �1
� be continuous. There is a tree

T ⊆ S , T ∈WT, such that either f ”[T ] is bounded or f� [T ] is a bijection.
Proof. Suppose that for no T ∈WT, T ⊆ S , f� [T ] is bounded. Then, as the set
BN1(S) is uncountable, by a simple cardinality argument there exist: an uncountable
set U ⊆ BN1(S), a number k , and for each t ∈ U—an ordinal �t < �1 and a
tree Ut ∈ WT satisfying Ut ⊆ S� t , f(x)(k) = �t for all x ∈ [Ut] (same k for all
t ∈ U !), and if t �= t′ belong to U then �t �= �t′ .
Then the tree S1 =

⋃
t∈U Ut belongs to WT and satisfies S1 ⊆′

1 S . In addition,
there is a number k = k1 such that if u �= u′ belong to BN1(S1) and x, x′ ∈ [S1],
u ⊂ x , u′ ⊂ x′ , then f(x)(k1) �= f(x′)(k1).
Similarly, there is a tree S2 ∈WT, S2 ⊆′

2 S1 , and a number k2 , such that if u �= u′
belong to BN2(S2) and x, x′ ∈ [S1], u ⊂ x , u′ ⊂ x′ , then 〈f(x)(k1), f(x)(k2)〉 �=
〈f(x′)(k1), f(x′)(k2)〉.
Iterating this construction appropriately by induction, we get a required tree
T =

⋂
n Sn ∈WT by Lemma 3.6. �

The next Theorem 5.3 presents a dichotomy somewhat different than the one
considered by Lemma 5.1, and related to the case of ℵ1-many maps.
Definition 5.2. If U,V ∈ WT and f : [U ] → �1� is a continuous map, then

H(U,f,V ) is the set of all strings s ∈ U such that
- either (1) [V ] ∩ (f ”[U � s ]) is bounded,
- or (2) f� [U � s ] is a total identity, that is, f(x) = x for all x ∈ [U � s ].
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DEFINABLE COLLAPSE FUNCTIONS AT ANY PROJECTIVE LEVELS 271

Note that (1) and (2) are incompatible provided U ⊆ V .
Theorem 5.3 (the proof will be given in Section 8). Assume that S ∈ WT, and,
for each α < �1 , fα : [S] → �1� is a continuous function. Then there exists a tree
T ∈WT, T ⊆1 S , such that, for every α < �1 , the set H(T,fα, T ) is dense in T.

§6. Iteration of wide trees. Here we develop another method of construction of
trees in WT, similar to a construction introduced in [2, 2.14], and designed for the
proof of Theorem 5.3.

Definition 6.1. A function J is an iteration (of wide trees), in symbol J ∈ IWT,
if its core C = domJ is a subtree of �1<� (possibly with endnodes and/or isolated
branches), all values J (u) are trees in WT, and in addition

(1) if u ⊆ v belong to C then v ∈ J (u) and J (v) ⊆ J (u)� v ;
(2) if u ⊂ v belong to C , lh(v) = lh(u) + 1, u /∈ BN(J (u)), then J (v) = J (u).
In this case we define the wrap of J ,

(3) wr(J ) = {s ∈ �1<� : ∀ u ∈ dom J (u ⊂ s =⇒ s ∈ J (u)}.
If P ⊆WT then let IWT(P) consist of all iterations J ∈ IWT with ran J ⊆ P. An
iteration J ∈ IWT is small if the core C = dom J is at most countable.

In particular ∅ ∈ IWT and wr(∅) = �1<� .
If C ⊆ �1<� is a tree and s ∈ �1<� then let projC (s) (the projection) be the
largest string in C with u ⊆ s ; in particular projC (s) = s provided s ∈ C .
Lemma 6.2. If J ∈ IWT then T = wr(J ) ∈WT, C = dom J ⊆ T , and
(i) if s ∈ C then s ⊆ stem(J (s)), T � s ⊆ J (s), and succT (s) = succJ (s)(s);
(ii) if s ∈ T � C and u = projC (s) then s ∈ J (u) and T � s = J (u)� s ;
(iii) if s ∈ C is an endnode in C then we have T � s = J (s).
Proof. If u ∈ C then u ∈ T by 6.1(1), so we have C ⊆ T .
(i) If s ∈ C then J (s) = J (s)� s by 6.1(1) with u = v = s , so that obviously
s ⊆ stem(J (s)). If now t ∈ T and s ⊆ t then t ∈ J (s) by 6.1(3), therefore
T � s ⊆ J (s). This implies succT (s) ⊆ succJ (s)(s). To get the equality, let
t = s�� ∈ succJ (s)(s). Then t ∈ T by 6.1(1),(3), so t ∈ succT (s), as
required.

(ii) If s /∈ C then by 6.1(1), (3) the criterion of s ∈ T = wr(J ) is just s ∈ J (u),
where u = projC (s). This easily implies the result. And (iii) is similar to (ii).

To prove T ∈ WT, let s ∈ T . We have to prove that (a) if s ∈ BN(T ) then
succT (s) is uncountable, and (b) there is a string s ′ ∈ BN(T ) with s ⊆ s ′ . By (i),
(ii) we have (a) immediately, so it remains to check (b).

Case 1. s ∈ T � C . Then T � s = J (u)� s by (ii), where u = projC (s). But
J (u)� s ∈WT by Lemma 3.3, which easily implies (b).
Case 2. s is an endnode in C , so T � s = J (s) ∈WT by (iii); follow Case 1.
Case 3. there is an endnode s ′ in C with s ⊆ s ′—apply Case 2 for s ′ .
Case 4. if all the above fails then there is an infinite branch in C containing s ,
that is, b ∈ �1� such that b�n ∈ C , ∀ n , and s = b�n0 , where n0 = lh(s). Then
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272 VLADIMIR KANOVEI AND VASSILY LYUBETSKY

b�n ∈ J (s) for all n by (i). Therefore, as J (s) ∈ WT, there is a least number
k ≥ n0 with t = b�k ∈ BN(J (s)). Then by the way J (t) = J (s) by 6.1(2), hence
t ∈ BN(J (t)), and finally t ∈ BN(T ) by (i), as required. �
Lemma 6.2 allows tomaintain infinite, even uncountable ⊆-decreasing sequences
of trees inWT, with the help of the following two rather obvious results.
Lemma 6.3. If J ⊆ J ′ are iterations in IWT then wr(J ′) ⊆ wr(J ).
If 〈J�〉�<	 is a ⊂-increasing sequence of iterations J� ∈ IWT then J =

⋃
�<	 J� ∈

IWT and wr(J ) =
⋂
� wr(J�).

Lemma 6.4. Let J ∈ IWT, dom J = C ⊆ C ′ ⊆ T = wr(J ), C ′ be a tree.

• Define a natural extension J ′ of J to C ′ by domJ ′ = C ′ , J ′(s) = J (s) for
s ∈ C , and if s ∈ C ′ � C and u = projC (s) then J

′(s) = J (u)� s .
Then J ′ ∈ IWT, J ⊆ J ′ , wr(J ′) = wr(J ).
Condition (2) of Definition 6.1 imposes important restrictions on the con-
struction of iterations, basically justifying proper reduction only at successors of
branching nodes. Nevertheless it leaves us enough freedom.

Lemma 6.5. Assume that P is a WT-forcing, J ∈ IWT(P), C = domJ , s ∈ T =
wr(J ), and s /∈ C or s is an endnode in C . Let U ∈ P, U ⊆ T � s . Then there exists
an iteration J ′ ∈ IWT(P) and a string s ′ ∈ dom J ′ such that J ⊆ J ′ , s ⊆ s ′ , and
J ′(s ′) ⊆ U .
Proof. Let t = stem(U ), thus s ⊆ t ∈ BN(U ) and all shorter strings v ⊂ t do
not belong toBN(U ). Pick any s ′ ∈ U with lh(s ′) = lh(t)+1; then t ⊂ s ′ /∈ C . Let
u = projC (s). Let J

′ ∈ IWT(P) be the extension of J to the domain C ′ = C ∪{v :
u ⊂ v ⊆ t} ∪ {s ′} by J ′(u) = J (s) = J (s)� u whenever s ⊂ u ⊆ t , and finally
J ′(s ′) = U � s′ . To see that 6.1(2) is satisfied for J ′ at u = t and v = s ′ , recall that
t ∈ BN(U ), hence t ∈ BN(J (s)) = BN(J (t)) as well. �

§7. Key dichotomy lemma.
Lemma 7.1. Assume that P ⊆ WT is a WT-forcing, J ∈ IWT(P) is a small
iteration, S = wr(J ), g0 ∈ C = dom J , and f : [S] → �1

� is continuous. There
is a small iteration J ′ ∈ IWT(P) and a string g ∈ C ′ = dom J ′ , such that g0 ⊆ g ,
J ⊆ J ′ , and g ∈ H(T,f,T ), where T = wr(J ′), that is,

(1) [T ] ∩ (f ”[T � g ]) is bounded, or
(2) f is a total identity on [T � g ].
The lemma will be crucial in the proof of Theorem 5.3 in Section 8.

Proof. Pick any g1 ∈ S�C satisfying g0 ⊆ g1 . Let u = projC (g1). Iff ”[S� g1 ] ⊆
[C ] (a bounded set) then let J1 ∈ IWT(P) be the natural extension of J to the
domain C1 = C ∪ {s : u ⊂ s ⊆ g1} by Lemma 6.4. Thus J ⊆ J1, domJ1 = C1,
J1(g1) = J (u)� g1 , and wr(J1) = S . Therefore J ′ = J1 and g = g1 satisfy (1).
Thus suppose that x1 ∈ [S� g1 ], and y1 = f(x1) ∈ [S]� [C ]. As f is continuous
while �1� � [C ] open, there is a longer string g2 ∈ S � C , g1 ⊂ g2 , such that
f(x) /∈ [C ] for all x ∈ S� g2 . If f is a total identity on [T � g2 ] then let J2 ∈ IWT(P)
be the natural extension of J to the domain C2 = C ∪ {s : u ⊂ s ⊆ g2} by
Lemma 6.4; now J ′ = J2 and g = g2 satisfy (2).
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Thus suppose that x2 ∈ [S� g2 ], and y2 = f(x2) �= x2. There is a yet longer string
g3 ∈ S � C , g2 ⊂ g3 , such that f(x) �= x and f(x) /∈ [C ] for all x ∈ S� g3 . If
(f ”[S� g3 ]) ∩ [S] = ∅ then let J3 ∈ IWT(P) be the natural extension of J to the
domain C3 = C ∪ {s : u ⊂ s ⊆ g3}; now J ′ = J3 , g = g3 satisfy (1).
Thus suppose that x3 ∈ S� g3 and y3 = f(g3) ∈ [S]. In addition, x3 �= y3 /∈ [C ]
holds as g2 ⊆ g3 , hence there is m ≥ lh(g3) such that t = y3�m ∈ BN(S) � C
and t �= s = x3�m . Let t′ = y3� (m + 1) (a successor of t in S). There is a string
h ∈ S such that t′ ⊂ h but h �= t′′ = y3� 
 , where 
 = lh(h). As f is continuous,
pick a number n ≥ n3 = lh(g3) such that t′′ ⊂ f(x) holds for all x ∈ [S� g ], where
g = x3�n . Recall that u = projC (g). Let v = projC (t),

C ′ = C ∪ {w ∈ �1<� : u ⊂ w ⊆ g} ∪ {w ∈ �1<� : v ⊂ w ⊆ t′},
and extend the iteration J to the domain C ′ by J ′(w) = J (u)� w whenever u ⊂
w ⊆ g , J ′(w) = J (v)� w whenever v ⊂ w ⊂ t , and J ′(t′) = J (v)� h .
Now it suffices to prove (1) in the form [T ] ∩ (f ”[T � g ]) = ∅. Let g ⊂ x ∈ [S].
Then y = f(x) satisfies t′′ ⊂ y , hence h �⊂ y . Let’s show that y /∈ [T ]. It suffices
to check t′′ /∈ T . Suppose otherwise. Then, as t′ ∈ C ′ , we have t′′ ∈ J ′(t′) by
6.1(3). However J ′(t′) = J (v)� h , so it follows that t′′ and h are compatible, which
contradicts to the construction, as required. �

§8. The proof of the restriction theorem.
Theorem 5.3. We argue under the assumptions of Theorem 5.3. The set P =

{S� t : t ∈ S} is aWT-forcing and S ∈ P. By Lemmas 7.1 and 6.3, 6.4, there is a ⊆-
increasing sequence of small iterations J� ∈ IWT(P), � < �1 , with domains C� =
dom J� and trees S� = wr(J�), such that C0 = {u : u ⊆ �}, where � = stem(S),
and J0(u) = S for all u ∈ C0 , the sets C =

⋃
�<�1
C� and T =

⋂
�<�1
T� coincide

(Lemma 6.4 is applied), and in addition (Lemma 7.1 is applied), if s0 ∈ C = T
and α < �1 then there is an index � = �(s0, α) < �1 and a string s ∈ C� such
that s0 ⊆ s and s ∈ H(T� ,fα, T�). Then J =

⋃
α Jα ∈ IWT(P), C = domJ ,

and T = wr(J ), by Lemma 6.3. Moreover, as T ⊆ T� , we have s ∈ H(T,fα, T )
as well. It follows that the set H(T,fα, T ) is dense in T , and obviously open
dense. And finally T ⊆1 S by Lemma 6.2(i) with s = � = stem(S). (Recall that
J0(�) = S .) �

§9. Belts and covering. Here we introduce the last major tool employed in the
definition of the forcing notion for Theorem 1.1. It is based on the following
definition.

Definition 9.1. A set H ⊆ �1<� :
− meets x ∈ �1� iff ∃m (x�m ∈ H );
− is a belt for a tree T ∈WT, if it meets every x ∈ [T ];
− weakly covers T , in symbol T ⊆w B , if there is an ordinal � < �1 such that H
is a belt for each subtree T � s , where s ∈ T and max s ≥ �—in other words,
we require H to meet every x ∈ [T ] with supx ≥ � .

For instance, if n < � then BNn(T ) is a belt for T ∈WT.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.77
Downloaded from https://www.cambridge.org/core. University of New England, on 27 Mar 2019 at 09:56:20, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.77
https://www.cambridge.org/core


274 VLADIMIR KANOVEI AND VASSILY LYUBETSKY

Lemma 9.2. Let H ⊆ T weakly cover T ∈WT with a parameter � < �1 . Then
(i) H is predense in T ;
(ii) H weakly covers any tree S ∈WT, S ⊆ T , with the same � ;
(iii) the set X = {x ∈ [T ] :H does not meet x} satisfies X ⊆ �� .
Proof. (iii) Let x ∈ [T ] � �� , x(j) ≥ � for some j . Let s = x� (j + 1). Then
H is a belt for T � s , hence H meets x . �

Remark 9.3. Being a belt is equivalent to the well-foundedness of the subtree
T ′ = {s ∈ T : ¬ ∃ t ∈ H (t ⊆ s)}, hence it is an absolute notion, in spite of an
explicit reference to the nonabsolute notion of [T ]. It follows that to weakly cover
with a parameter � is an absolute notion, too.
Now assume that H ⊆ T weakly covers T ∈WT with a parameter � < �1 . Let
x ∈ [T ] be an element cofinal in �1 (=�V1 of the given set universe V), which may
exist in an extension of V, Remark 4.1.We claim thatH meets x . Indeed, x /∈ �� by
the cofinality, and on the other hand, the absoluteness of the weak covering allows
to apply Lemma 9.2(iii) in the extension containing x .

Lemma 9.4. Assume that P is a WT-forcing, T ∈ P, and D� ⊆ P is open dense
in P for all � < �1 . Then there is a tree S ∈ WT such that S ⊆1 T , and each set
D�⇑S = {t ∈ S : ∃U ∈ D� (S� t ⊆ U )} weakly covers S .
Proof. If α < �1 then fix an enumeration of the countable set {D� : � ≤ α} =

{Dαk : k < �}. Using Lemma 3.6 and the open-density of each D� in P, define a
sequence . . . ⊆5 T4 ⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 = T of trees in WT, such that if
n ≥ 1 and u ∈ BNn(Tn) then Tn � u ∈

⋂
j,k≤n D

u(j)
k . The tree S =

⋂
n Tn belongs to

WT and satisfies S ⊆n+1 Tn and BNn(S) = BNn(Tn) for all n , by Lemma 3.7. In
particular S ⊆1 T . Now suppose that � < �1 .
We claim that � itself witnesses D�⇑S to weakly cover S . Let x ∈ [S] and
x(j) = α ≥ � for some j . Then D� = Dαk for some k . Let n = 1 + max{j, k}.
There is a number m ≥ n such that u = x�m belongs to BNn(S) = BNn(Tn). Then
S� u ⊆ Tn� u ∈ Du(j)k = Dαk = D� by construction, and we are done. �
Corollary 9.5. If T ∈ WT and H� ⊆ T is open dense in T for all � < �1 then
there is S ∈WT such that S ⊆1 T and each H� ∩ S weakly covers S.
Proof. Apply the lemma for the sets P = {T � s : s ∈ T } and D� = {T � s :
s ∈ H�}. �

§10. Refining wide tree forcing notions. The forcing notion to prove Theorem 1.1
will be defined in the form of an �1-union of its parts, that is, WT-forcings of
cardinality ≤ℵ1 .

Definition 10.1. LetM be any set and P be aWT-forcing. AnotherWT-forcing
Q is an M-refinement of P, in symbol P �M Q, if the following holds:

(A) Q is dense in P ∪Q;
(B) Q refines P: if Q ∈ Q then there exists T ∈ P satisfying Q ⊆ T ;
(C) if U ∈ Q, and a set D ∈ M, D ⊆ P is predense in P, then the set D⇑U =

{s ∈ U : ∃S ∈ D (U � s ⊆ S)} weakly covers U ;
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(D) if T0 ∈ P and 〈Dn〉n<� ∈ M is a sequence of predense sets Dn ⊆ P then
there is a tree T ∈ Q such that T ⊆ T0 , and BNn(T ) ⊆ Dn⇑T for all n ;

(E) if T0 ∈ P and f : �1� → �1� , f ∈ M, is continuous, then there is T ∈ Q
such that T ⊆ T0 , and either f ”[T ] is bounded or f� [T ] is a bijection;

(F) if f ∈ M, f : �1� → �1� is a continuous map, and U,V ∈ Q, then the set
H(U,f,V ), of all strings s ∈ U such that [V ] ∩ (f ”[U � s ]) is bounded or
f� [U � s ] is a total identity, weakly covers U .

If M = ∅ then we write P � Q instead of P �∅ Q; in this case (C)–(F) are
trivial. Generally, in the role of M, we’ll consider transitive models of the theory
ZFC′ which includes all ZFC axioms except for the Power Set axiom, but an axiom
is adjoined, which claims the existence of �1 and P (�1). (Then the existence of
sets like �1<� andWT easily follows.)

Lemma 10.2. Let P,Q,R beWT-forcings satisfying P � Q∧Q � R. Then P � R,
and if (K) is one of (C), (D), (E), (F) and the pair P � Q satisfies (K) with some
M, then the pair P � R satisfies (K) with the sameM.

Proof. (C) Let R ∈ R. As Q � R, there is a tree Q ∈ Q with R ⊆ Q . Then
D⇑Q weakly covers Q by (C) for P,Q. Then easily D⇑R weakly covers the
tree R.

(D) If T ′ ⊆ T and t ∈ BNn(T ′) then there is a string s ∈ BNn(T ) with s ⊆ s ′ .
(F) If U ′ ⊆ U and V ′ ⊆ V then H(U,f,V ) ∩U ′ ⊆ H(U ′, f,V ′). �

Lemma 10.3. Assume that M |= ZFC′ is a transitive model, and P ∈ M and Q
are WT-forcings satisfying P �M Q. Then

(i) if a set D ∈ M, D ⊆ P is predense in P then D is predense in P ∪Q;
(ii) if T,T ′ ∈ P are incompatible in P then T,T ′ are incompatible in P ∪Q.
Proof. (i) Let U ∈ Q. Then D⇑U weakly covers U by 10.1(C). Let s ∈ D⇑U .
Then U ′ = U � s ∈ Q, U ′ ⊆ U , and U ′ ⊆ S for some S ∈ D .
(ii) The sets D(T ) = {S ∈ P : S ⊆ T ∨ [S] ∩ [T ] = ∅} and D(T ′) belong toM
and are open dense in P by Lemma 3.3. ThereforeD = D(T )∩D(T ′) is open dense
either, and in fact S ∈ D =⇒ [S]∩ [T ] = ∅∨ [S]∩ [T ′] = ∅ by the incompatibility.
It follows that if U ∈ Q and, by (i), S ∈ D and U ′ ∈ Q, U ′ ⊆ U , U ′ ⊆ S ∩ U ,
then [U ′]∩ [T ] = ∅ or [U ′] ∩ [T ′] = ∅, hence U cannot witness the compatibility
of T,T ′ . �
We now establish the existence of refinements.

Theorem 10.4. Assume thatM |= ZFC′ is a transitive model of cardinality ≤ℵ1 ,
and P ∈ M is a WT-forcing, cardP ≤ ℵ1 in M. Then there exists a WT-forcing Q
of cardinality ℵ1 , satisfying P �M Q.

Proof. Step 1. If P ∈ P then by Lemma 9.4 there is a tree T (P) ∈ WT,
T (P) ⊆ P , such that D⇑T (P) weakly covers T (P) for each D ∈ M, D ⊆ P,
predense in P. The set P′ = {T (P)� s : P ∈ P ∧ s ∈ T (P)} is a WT-forcing of
cardinality ℵ1 and 10.1(A),(B),(C) hold for Q = P′ .
Step 2. To fulfill 10.1(E), if P′ ∈ P′ and f : �1� → �1� , f ∈ M is continuous,
then by Lemma 5.1 there is a tree T (P′, f) ∈ WT, such that T (P′, f) ⊆ T ,
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and either f ”[T (P′, f)] is bounded or f� [T (P′, f)] is a bijection. We let P′′ =
{T (P′, f)� s : P′ ∈ P′ ∧ s ∈ T (P′, f)}. Now 10.1(A),(B),(C),(E) hold for the
forcing Q = P′′ .
Step 3. To fulfill 10.1(D), note first of all that each set D ∈ M, D ⊆ P, predense
in P, remains predense in P∪P′′ by Lemma 10.3(i). If P′′ ∈ P′′ and d = 〈Dn〉n<� ∈
M is a sequence of predense sets Dn ⊆ P, then by Lemma 4.3 there is a tree
T (P′′, d) ∈ WT such that T (P′′, d) ⊆ P′′ , and if n < � and s ∈ BNn(T (P′′, d))
then ∃S ∈ Dn (T (P′′, d)� s ⊆ S). We let

P′′′ = {T (P′′, d)� s : P′′ ∈ P′′ ∧ d ∈ M} .

Now 10.1(A),(B),(C),(D),(E) hold for Q = P′′′ .
To fulfill 10.1(F), we begin with some notation. If S ∈ WT and α < �1 then
let α�S = {α�s : s ∈ S}; then α�S ∈ WT and 〈α〉 ⊆ stem(α�S). Conversely,
if W ∈ WT and 〈α〉 ⊆ stem(W ) then let W ↓ = {s ∈ �1<� : α�s ∈ W }; then
W ↓ ∈WT andW = α�(W ↓). We have (α�S)↓ = S , of course.
Step 4. Let P′′′ = {Rα : α < �1}. We convert P′′′ into a single tree

R = {Λ} ∪ ⋃
α<�1
(α�Rα) ∈WT ; then Rα = (R� 〈α〉)↓ , ∀α.

If f : �1� → �1
� is continuous and α, � < �1 then define fα� : �1� → �1

�

so that fα�(α�x) = ��f(x), fα�(��x) = α�f(x), and fα�(y) = y whenever
y(0) �= α, � . The set of continuous functions F = {fα� : f ∈ M ∧ α, � < �1} is
still of cardinality ℵ1 . By Theorem 5.3 there exists a tree T ∈ WT, T ⊆1 R, such
that if h ∈ F then the set H(T, h, T ) is open dense in T . Therefore by Corollary 9.5
there is a tree Q ∈ WT such that Q ⊆1 T (hence Q ⊆1 R as well) and if h ∈ F
then H(T, h, T ) weakly covers Q . Then H(Q, h,Q) weakly covers Q as well by
Lemma 9.2(ii) since H(T, h, T ) ∩Q ⊆ H(Q, h,Q).
Step 5. Note that if α < �1 then the one-term string 〈α〉 belongs to Q since
Q ⊆1 R. Now let Qα = (Q� 〈α〉)↓ = {q ∈ �1<� : α�q ∈ Q}. We claim that the
WT-forcing Q = {Qα� q : α < �1 ∧ q ∈ Qα} satisfies P �M Q.
First of all, P � P′ � P′′ � P′′′ � Q by construction, and hence P � Q holds,
and we have 10.1(C),(D),(E) for the pair P � Q by Lemma 10.2.
To check 10.1(F), let f ∈ M, f : �1� → �1

� be continuous, and U = Qα ,
V = Q� be trees in Q. To prove that H(U,f,V ) weakly covers U , let h = fα� .
Then H(Q, h,Q) weakly covers Q by Step 4. Thus there is an ordinal � < �1 such
that if x ∈ [Q] and supx ≥ � then H(Q, h,Q) meets x , so x�m ∈ H(Q, h,Q) for
some m. We claim that � witnesses that H(U,f,V ) weakly covers U .
Assume that y ∈ [U ] = [Qα ], maxy ≥ � . Then x = α�y ∈ [Q], so s =
x� (m + 1) ∈ H(Q, h,Q) for somem , by the above. Then s = α�t , where t = y�m.
It remains to prove that t ∈ H(U,f,V ).
Case 1. [Q] ∩ (h ”[Q� s ]) is bounded. However h = fα� and U = Qα , V = Q� ,
hence [Q] ∩ (h ”[Q� s ]) = ��([V ] ∩ (f ”[U � t])). Thus the set [V ] ∩ (f ”[U � t]) is
bounded, therefore t ∈ H(U,f,V ).
Case 2. h� [Q� s ] is a total identity, h(x) = x whenever x ∈ Q� s . Then � = α ,
U = V , and f� [U � t] is a total identity, thus still t ∈ H(U,f,V ). �
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§11. Blocking sequences and the forcing. We argue in the constructible universe L
in this section.
The forcing to prove Theorem 1.1 will be defined as the union of a �1-sequence
of WT-forcings of size ℵ1 , increasing in the sense of a relation � (Definition 10.1).
We here introduce the notational system to be used in this construction.

Definition 11.1. Let WTF be the set of all WT-forcings of cardinality ≤ℵ1.
If P = 〈Pα〉α<	 is a sequence of forcings Pα ∈ WTF, then let M(P) be the least
transitive model of ZFC− of the form Lϑ , containing P, in which both 	 and the
set

⋃
P =

⋃
α<	 Pα are of cardinality ≤ℵ1 .

If 	 ≤ �2 then let WTF	 be the set of all 	-sequences P = 〈Pα〉α<	 of forcings
Pα ∈ WTF, satisfying the following:

(∗) if � < 	 then ⋃
(P� �) �M(P� �) P� .

Let WTF =
⋃
	<�2

WTF	 .

The set WTF ∪ WTF�2 is ordered by the end-extension relations ⊂, ⊆.
Lemma 11.2. Assume that κ < 	 < �2 , and P = 〈Pα〉α<κ ∈ WTF. Then:
(i) the union P =

⋃
P belongs to WTF;

(ii) there is a sequence Q ∈ WTF such that dom(Q) = 	 and P ⊂ Q.
Proof. To prove (ii) apply Theorem 10.4 by induction on 	. �
Definition 11.3 (Key definition). A sequence P ∈ WTF blocks a set W ⊆ WTF
if either P ∈W or there is no sequence Q ∈W satisfying P ⊆ Q.
11.1. Sets Hκ and definability classes. Recall thatHκ is the set of all sets hereditar-
ily of cardinality <κ . Thus x ∈ Hκ if card(TC (x)) < κ . In particular HC = H�1
is the set of all hereditarily countable sets, while H�2 is the set of all sets hereditarily
of cardinality ≤ℵ1 ; HC = L�1 and H�2 = L�2 in L.
�n(Hκ), resp., �

Hκ
n is the class of all sets X ⊆ Hκ , definable in Hκ by a �n

formula with parameters in Hκ , resp., with no parameters. The classes �n(Hκ),
�Hκn have the samemeaning (with�n formulas), and �n(Hκ) = �n(Hκ)∩�n(Hκ),
�Hκn = �Hκn ∩ �Hκn , as usual. In particular, �0(Hκ) = �0(Hκ) = �0(Hκ) and
�Hκ0 = �

Hκ
0 = �

Hκ
0 (definability by bounded formulas, with/without parameters).

See more on ∈-definability in [3, Part B, Chapter 5, Section 4] or elsewhere.
In particular, we consider the classes �H�2n , �H�2n , �H�2n of definability in H�2
(parameters not allowed) and �n(H�2), �n(H�2), �n(H�2) (all parameters in
H�2 allowed)—this is the case κ = ℵ2 in the above definitions.
Theorem 11.4 (The blocking sequence theorem, in L). Let n ≥ 2. There exists a
sequence P = 〈Pα〉α<�2 ∈ WTF�2 satisfying the following two conditions:
(i) P, as the set of pairs 〈α, Pα〉, belongs to the definability class �H�2n−1;
(ii) if n ≥ 3 and W ⊆ WTF is a �n−2(H�2) set then there is an ordinal � < �2
such that the restricted sequence P� � = 〈Pα〉α<� ∈ WTF blocksW.

Proof. Let ≤L be the canonical �1 wellordering of L; thus its restriction to
H�2 = L�2 is �

H�2
1 . As n ≥ 3, there exists a universal �H�2n−2 set U

n ⊆ �2 ×H�2 .
That is, Un is �H�2n−2 (parameter-free �n−2 definable in H�2), and for every set
X ⊆ H�2 of type �n−2(H�2) (�n−2 definable in H�2 with arbitrary parameters)
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there is an ordinal � < �1 such that X = Un
� = {x : 〈�, x〉 ∈ Un}. The choice of �2

as the domain of parameters is validated by the assumption V = L, which implies
the existence of a �H�21 surjection �2

onto−→ H�2 .
Coming back to Definition 11.3, note that for any sequence P ∈ WTF and any
set W ⊆ WTF there is a sequence Q ∈ WTF which satisfies P ⊂ Q and blocks
W . This allows us to define Qα ∈ WTF by induction on α < �1 so that Q0 = ∅,
Q	 =

⋃
α<	Qα , and each Qα+1 is equal to the ≤L-least sequence Q ∈ WTF which

satisfies 1) Qα ⊂ Q and 2) if n ≥ 3 then Q blocks Un
α .

Then P =
⋃
α<�2

Qα ∈ WTF�2 . Condition (ii) holds by construction, while (i)
follows by a routine verification, based on the fact thatWTF ∈ �H�21 and Un ∈ �H�2n−2
(provided n ≥ 3). �

Definition 11.5 (In L). We fix a sequence P = 〈Pα〉α<�2 ∈ WTF�2 , given by
Theorem 11.4 for the number n ≥ 2, for which Theorem 1.1 is to be proved.
In particular P satisfies (i) and (ii) of Theorem 11.4.
If � < �2 then letM� =M(P� �), and P<� =

⋃
α<� Pα , P =

⋃
α<�2

Pα .

§12. Some forcing properties. The WT-forcing P ∈ L defined by 11.5 will be
the forcing notion for the proof of Theorem 1.1. The next lemma presents some
properties of P .We continue to argue in L under the conditions and following notation
of Definition 11.5.

Lemma 12.1. P is a WT-forcing, all sets Pα , P<� belong to WTF.
In addition:

(i) if α < �2 then P<� �M� P� ;
(ii) if α < �2 and the set D ∈ Mα , D ⊆ P<α is predense in P<α then it is
predense in P , too;

(iii) every set Pα is predense in P;
(iv) if α < �2 and trees T,T ′ ∈ P<α are incompatible in P<α then T,T ′ are

incompatible in P , too;
(v) if f : �1� → �1

� is continuous then the set of all trees T ∈ P such that
f ”[T ] is bounded or f� [T ] is a bijection, is dense in P;

(vi) if f : �1� → �1� is continuous then the set of all trees T ∈ P such that:

(1) f� [T ] is a total identity, or,
(2) for some � < �2 , f� [T ] avoids P� in the sense that if V ∈ P� then the
subset {s ∈ T : [V ] ∩ (f ”[T � s ] is bounded} weakly covers T,
is dense in P;

(vii) (very important!) if n ≥ 3 and a set Q ⊆ WT belongs to �n−2(H�2), then
P ∩ (Q ∪Q−) is dense in P , where Q− = {T ∈WT : ¬ ∃S ∈ Q (S ⊆ T )}.

Proof. (i) holds by (∗) of Definition 11.1.
(ii) We use induction on � , α ≤ � < �2 , to check that if D is predense in P<�
then it remains predense in P<� ∪ P� = P<�+1 by (i) and Lemma 10.3(i). Limit
steps, including the final step to P (� = �2) are routine.
(iii) Pα is dense in P<α+1 = P<α ∪ Pα by 10.1(A). It remains to refer to (ii).
(vi) Prove by induction on � that if α < � ≤ �1 then T,T ′ are incompatible in

P<� , using (i) and Lemma 10.3(ii).
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To prove (v) and (vi) let T0 ∈ P . There is an ordinal � < �2 such that T0 ∈ P<�
and f ∈ M� . We have P<� �M� P� by (i). Therefore by (E) of Definition 10.1 there
is a tree T ∈ P� such that T ⊆ T0 and f ”[T ] is bounded or f� [T ] is a bijection,
so we get (v). Further by (F) of Definition 10.1 if V ∈ P� then the set H(T,f,V ),
of all strings s ∈ T such that [V ] ∩ (f ”[T � s ]) is bounded or f� [T � s ] is a total
identity, weakly covers T . We have two cases.

Case 1. f� [T � s ] is a total identity for at least one s ∈ T . Then the corresponding
subtree T ′ = T � s satisfies (vi)(1).
Case 2. for each V ∈ P� , the set H (V ) of all strings s ∈ T such that [V ] ∩
(f ”[T � s ]) is bounded, weakly covers T , thus T itself satisfies (vi)(2).
(vii) Suppose that n ≥ 3. Let T0 ∈ P , that is, T0 ∈ P<α0 , α0 < �2 . The set W
of all sequences P ∈ WTF, such that P�α0 ⊆ P and ∃T ∈ Q ∩ (⋃P) (T ⊆ T0),
belongs to �n−2(H�2) along with Q . Therefore there is an ordinal α < �2 such
that P�α blocks W . We have two cases.
Case 1. P�α ∈W . Then the related tree T ⊆ T0 belongs to Q ∩ P .

Case 2. there is no sequence inW which extends P�α . Let � = max{α,α0}. Then
P<� �M� P� by (i). As α0 ≤ � , there is a tree T ∈ P� , T ⊆ T0 . We claim that
T ∈ Q− , which completes the proof in Case 2.
Suppose to the contrary that T /∈ Q− , thus there is a tree S ∈ Q , S ⊆ T .
The set R = P� ∪ {S� t : t ∈ S} is a WT-forcing and obviously P� � R, hence
still P<� �M� R holds by Lemma 10.2. It follows that the sequence R defined by
domR = � + 1, R� � = P� � , and R(�) = R, belongs to WTF, and even R ∈ W
since S ∈ Q ∩ R. Yet P�α ⊂ R, which contradicts to the Case 2 hypothesis. �
To prove a chain condition for P , we’ll need the following general lemma. See
Definition 11.5 on modelsMα .

Lemma 12.2 (In L). If X ⊆ H�2 = L�2 then the set OX of all ordinals α <
�2 such that the model 〈Lα ; X ∩ Lα〉 is an elementary submodel of 〈L�2 ;X 〉 and
X ∩ Lα ∈ Mα , is unbounded in �2 .

Proof. Let α0 < �2 . There is an elementary submodelM of 〈L�3 ; ∈〉, of cardi-
nality cardM = ℵ1, which contains α0 , �2 , X and is such that the set M ∩ L�2 is
transitive. Consider the Mostowski collapse φ : M onto−→ L	 . Let α = φ(�2). Then
α0 < α < 	 < �2 and φ(X ) = X ∩ Lα by the choice of M . We conclude that
〈Lα ;X ∩ Lα〉 is an elementary submodel of 〈L�2 ;X 〉. And cardα > ℵ1 in L	 ,
hence L	 ⊆ Mα . Then X ∩ Lα ∈ Mα , as X ∩ Lα ∈ L	 by construction. �
Corollary 12.3 (In L). (i) If A ⊆ P is an antichain then cardA ≤ ℵ1 .
(ii) Let Dn ⊆ P be predense in P , for each n . Then the set of all trees T ∈ P ,
satisfying ∀ n (BNn(T ) ⊆ Dn⇑T ), is dense in P .

Proof. (i) Let A ⊆ P be a maximal antichain. By Lemma 12.2 there is an
ordinal α such that 〈Lα ; P′, A′〉 is an elementary submodel of 〈L�2 ; P, A〉, where
P′ = P ∩Lα and A′ = A∩ P<α , and in addition P′, A′ ∈ Mα . By the elementarity,
we have P′ = P<α and A′ = A∩ P<α ∈ Mα , and A′ is a maximal antichain, hence
a predense set, in P<α . But then A′ is a predense set, hence, a maximal antichain,
in the whole set P by Lemma 12.1(ii). Thus A = A′ , and cardA = cardA′ ≤ ℵ1.
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(ii) We wlog assume that all Dn are open dense, for if not then replace Dn by the
set {T ∈ P : ∃S ∈ Dn (T ⊆ S)}. Let T0 ∈ P . Pick a maximal antichain An ⊆ Dn
in each Dn . Then all sets An are maximal antichains in P by the open density,
and cardAn ≤ ℵ1 by (i). Therefore there is an ordinal α < �2 such that the set
A =

⋃
n An satisfies A ⊆ P<α and A, T0 , and the sequence 〈An〉n<� belong toMα .

By the maximality of Dn and Lemma 12.1(iv), each D′
n = Dn ∩ P<α is dense in

P<α . It follows by Lemma 12.1(i) and (D) of Definition 10.1 that there is a tree
T ∈ Pα such that T ⊆ T0 and BNn(T ) ⊆ Dn⇑T for all n . �

§13. The model. This section presents some key properties of P-generic exten-
sions L[G ] of L obtained by adjoining a P-generic set G ⊆ P to L. Recall that the
forcing notion P ∈ L was introduced by Definition 11.5, along with some related
notation.

Corollary 13.1. If a set G ⊆ P is P-generic over L then �L1 < �
L[G ]
1 = �L2 .

Proof. That�L1 < �
L[G ]
1 follows from the fact thata[G ] is a cofinalmap� → �L1 .

To prove �L[G ]1 = �L2 use Corollary 12.3. �
Blanket agreement 13.2. Arguing in generic extensions of L, we’ll use standard
notation like �L� to denote L-cardinals. We also use (WT)

L to denote “the setWT
defined in L”. Thus for instance P ⊆ (WT)L .
We’ll make use of a coding system for continuous maps, helpful whenever “the
same” continuous f : �1� → Ord� is considered in different models.
Definition 13.3. Let ϑ ∈ Ord. A code of continuous function from (�L1 )� to
ϑ� is any map c : dom c → ϑ with dom c ⊆ (�L1 )<� × � , such that the sets Scn� =
{s ∈ (�L1 )<� : 〈s, n〉 ∈ dom c ∧ c(s, n) = �} satisfy the following for any n :
(1) if � �= � , u ∈ Scn� , v ∈ Scn� , then u, v are incompatible, and
(2) Scn =

⋃
� S
c
n� is a belt for (�

L
1 )
<� , i.e., ∀x ∈ (�L1 )� ∃m (x�m ∈ Scn).

Let CCFϑ be the set of all such codes. If c ∈ CCFϑ then a continuous fc : (�L1 )� →
ϑ� is defined as follows. If x ∈ (�L1 )� and n < � , then by definition there is a
unique � < ϑ such that x�k ∈ Scn� for some k . Let fc(x)(n) = � .
If f : (�L1 )

� → ϑ� is continuous then its code c = code(f) ∈ CCFϑ is defined
by Scn� = {s ∈ (�L1 )<� : ∀x ∈ (�L1 )� (s ⊂ x =⇒ f(x)(n) = �)}; then fc = f .
Remark 13.4 (Absoluteness). Being a code in CCFϑ is absolute since so is the
condition of being a belt, see Remark 9.3.

Lemma 13.5. If G ⊆ P is generic over L, ϑ ∈ Ord, y ∈ ϑ� ∩ L[G ], then
(i) there is a code c ∈ CCFϑ ∩ L such that y = fc(a[G ]);
(ii) if ϑ = �L1 then y is bounded in �

L
1 or G ∈ L[y];

(iii) if ϑ = �L1 and y is unbounded in �
L
1 then y = a[G ] or there is an ordinal

� < �L2 such that y /∈
⋃
V∈P�

[V ].

Proof. (i) There is a P-name t ∈ L satisfying y = t[G ] (the G-valuation of t).
It can be assumed that P forces that t is valuated as an element of ϑ� .
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Arguing in L, let �n� = {T ∈ P : T forces t(n) = �} (n < � and � < ϑ).
The sets �n =

⋃
� �n� are open dense in P . It follows by Corollary 12.3(ii)

that there is a tree T ∈ G such that T � s ∈ �n whenever n < � and
s ∈ BNn(T ). This allows us to define, still in L, a continuous f′ : [T ] → ϑ�

by f′(x)(n) = � iff the only string s ∈ BNn(T ) with s ⊂ x belongs to �n� . Let
f : �1� → ϑ� be a continuous extension of f′ . Then c = code(f) ∈ CCFϑ ∩ L,
and easily y = fc(a[G ]).
(ii) Let, by (i), c ∈ CCF�L1 ∩ L and y = fc(a[G ]). By Lemma 12.1(v), there is a
tree T ∈ G such that, in L, fc”[T ] is bounded or fc� [T ] is a bijection.
Case 1. in L, fc”[T ] is bounded, that is, there is an ordinal � < �L1 satisfying
fc(x) ∈ �� for all x ∈ [T ] ∩ L. But fc is continuous while [T ] ∩ L is dense in
[T ] in L[G ]. It follows that fc(x) ∈ �� for all x ∈ [T ] ∩ L[G ]. In particular
y = fc(a[G ]) ∈ �� since a[G ] ∈ [T ] (because T ∈ G ), so y is bounded.
Case 2. in L, fc� [T ] is a bijection. The bijectivity is equivalent to the well-
foundedness of the tree Wc of all pairs 〈s, t〉 of strings s, t ∈ T such that lh(s) =
lh(t) and there exist no strings u, v satisfying: u ⊆ s , v ⊆ t , and u ∈ Scn� , v ∈ Scn�
for some n and � �= � . Therefore the bijectivity of fc� [T ] is an absolute property
of c, T . Thus fc� [T ] is a bijection in L[G ], and we have a[G ] = f−1

c (y) ∈ L[y], as
required.
(iii) We still assume that, by (i), y = fc(a[G ]), where c ∈ CCF�L1 ∩ L. By
Lemma 12.1(vi), there is a tree T ∈ G such that, in L, fc� [T ] is a total identity or,
for some � < �L2 , fc� [T ] avoids P� in the sense of 12.1(vi).
Case 1. in L, fc� [T ] is a total identity, that is, fc(x) = x for all x ∈ [T ] ∩ L.
By the same simple continuity/density argument, we have fc(x) = x for all x ∈
[T ] ∩ L[G ], in particular y = fc(a[G ]) = a[G ].
Case 2. � < �L2 and, in L: fc� [T ] avoids P� , that is, if V ∈ P� then the subset
T (V ) = {s ∈ T : [V ] ∩ (f ”[T � s ]) is bounded} (defined in L) weakly covers T .
Now let V ∈ P� and check that y /∈ [V ]. By the Case 2 assumption, T (V )
weakly covers T . Therefore, as a[G ] ∈ [T ] is definitely unbounded, there is a string
s ∈ T (V ) satisfying s ⊆ a[G ]. Then S = T � s ∈ G and [V ]∩ (f ”[S]) is bounded,
so that there is an ordinal � < �L1 satisfying: if x ∈ [S] ∩ L and fc(x) ∈ [V ] then
fc(x) ∈ �� . We claim that the implication fc(x) ∈ [V ] =⇒ fc(x) ∈ �� also holds
for all x ∈ [S] ∩L[G ]. Assume that this is established. As x = a[G ] ∈ [S] (because
S ∈ G ), we then have y ∈ [V ] =⇒ y ∈ �� . (Recall that y = fc(a[G ]).) But y is
unbounded, hence y /∈ [V ], as required.
To prove the claim, let x0 ∈ [S] ∩ L[G ] be a counterexample, so y0 = fc(x0) ∈
[V ] but y0(n0) = � for some n0 and � ≥ � . The existence of such x0 is equivalent to
the non–well-foundedness of the treeW of all strings s ∈ S such that s ∈ Scn0� for all
� �= � , and there is no string u /∈ V satisfying: ∀ j < lh(u) (s ∈ Sc

ju(j)). Therefore
the existence of x0 is an absolute property of c, S, V . Thus such an x0 ∈ [S] exists
already in L, contrary to the Case 2 assumption. �
Corollary 13.6. Let G ⊆ P be generic over L. Then it holds in L[G ] that

(i) a[G ] is the only member of the intersection
⋂
�<�1

⋃
T∈P�

[T ];

(ii) the set {a[G ]} is a �HCn−1 singleton;
(iii) there is a � 1n real singleton {r}, r ∈ �� , such that L[r] = L[a[G ]].
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Proof. (i) Every set P� is predense in P by Lemma 12.1(iii). It is implied by the
genericity that a[G ] ∈ ⋃

T∈P�
[T ]. The uniqueness follows from Lemma 13.5(iii).

(ii) The sequence P = {〈�, P�〉 : � < �L2 } is of type �H�2n−1 in L by Defini-
tion 11.5. However H�2 in the sense of L coincides with the constructible part
of HC (=hereditarily countable sets) in the sense of L[G ], because �L[G ]1 = �L2 by
Corollary 13.1. It easily follows that P is �HCn−1 in L[G ]. On the other hand,

{a[G ]} = {x : ∀ � ∀ Q (〈�, Q〉 ∈ P =⇒ ∃T ∈ Q (x ∈ [T ])}
by (i). This yields the result since ∃T ∈ Q is a bounded quantifier.
(iii) If r ∈ �� then let (r)n(k) = r(2n(2k + 1)− 1), thus (r)n ∈ �� . Let W be
the � 11 set of all reals which code an ordinal, and let |w| < �1 be the ordinal coded
by w ∈ W . Let r ∈ �� be defined so that each (r)n belongs to W ∩ L and is ≤L-
minimal of all w ∈ W ∩ L satisfying |w| = a[G ](n). Thus r is a real in L[G ]. The
singleton {r} is defined in HC of L[G ] by the following formula:

∀ n , (r)n ∈W ∩ L and (r)n is ≤L-minimal of all w ∈W ∩ L with |w| = |(r)n |,
and ∀x ∈ Ord� (∀ n (x(n) = |(r)n |) =⇒ x = a[G ]).

It easily follows by the result of (ii) that {r} is a �HCn−1 singleton as well, hence a �
1
n

singleton. �
Corollary 13.1 and Corollary 13.6(ii), (iii) account for items (i), (ii), (iii) of
Theorem 1.1. Item (iv) of the theorem is based on different ideas related to claim
(vii) of Lemma 12.1. From now on we work towards this goal.

§14. Shoenfield’s transformation of �12 formulas. The following known transfor-
mation of �12 formulas involves an idea in the proof of the Shoenfield absoluteness
theorem. We present it here in a form useful for our purposes.

Blanket agreement 14.1. From now on p, q, r denote reals in �� .

Theorem 14.2. Let ϕ(p1, . . . , pn) be a �12 formula of the form

ϕ(p1, . . . , pn) := ∃ q ∀ r ∃mR(q�m, r�m,p1�m, . . . , pn�m) ,
where R ⊆ (�<�)n+2, R ∈ L, and q, r, pi are variables over ��

}
, (∗)

and ϑ ≥ ℵL1 a cardinal in L. Then there is a relation Q = Qϑ(R) ⊆ ϑ<� × (�<�)n+1 ,
Q ∈ L, such that Q is �Hϑ0 (R) as a subset of Hϑ in L 2, and it holds in any generic
extensionM of L with ϑ ≥ �M1 that: if p1, . . . , pn ∈ �� then
ϕ(p1, . . . , pn) ⇐⇒ ∃� ∈ ϑ� ∃ q ∈ �� ∀mQ(��m, q�m,p1�m, . . . , pn�m) .
Proof. ϕ(p1, . . . , pn) is equivalent to ∃ q (Wq,p1,...,pn is wellfounded) , where
Wq,p1,...,pn = {u ∈ �<� : ∀ j ≤ lh(u)¬R(q�j, u� j, p1�j, . . . , pn�j)} ,

hence—in any universeM as in the theorem—to the formula:

∃ q ∈ �� ∃f :Wq,p1 ,...,pn → ϑ (f is order-preserving) .
2 Meaning that the equality Q = {w ∈ Hϑ : �(w)} holds in L, where � is a bounded formula with

R as the only parameter.
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By “order-preserving”wemean: if u, v ∈Wq,p1,...,pn then u ≤LS v⇐⇒f(u) ≤ f(v),
where ≤LS is the Lusin–Sierpinski (= Kleene–Brouwer) order on strings.
Fix a recursive bijection k �→ sk : � onto−→ �<� , with the inverse bijection num :
�<� → � , so that s = snum(s) . We assume that lh(s) ≤ num(s), ∀ s . Let

Wm
q,p1,...,pn = {s ∈Wq,p1 ,...,pn : num(s) < m} ,

a finite set. Then ϕ(p1, . . . , pn) is equivalent to the formula

∃ q ∈ �� ∃� ∈ ϑ� ∀m (� ◦ num is order-preserving onWm
q,p1,...,pn ) .

(� ◦ num is the superposition.) The subformula in brackets depends on ��m and
q�m,p1�m, . . . , pn�m only. In other words, we have a relation Q = Qϑ(R) ⊆
ϑ<� × (�<�)n+1, still Q ∈ L, such that ϕ(p1, . . . , pn) is equivalent to the formula

∃� ∈ ϑ� ∃ q ∈ �� ∀mQ(��m, q�m,p1�m, . . . , pn�m) . (†)
Namely Q contains all tuples 〈�, v, u1, . . . , un〉 of strings � ∈ ϑ<� and v, ui ∈ �<�
of same length lh(�) = lh(v) = lh(ui) = some m, such that the superposition
� ◦ num (defined on the set Sm = {sj : j < m}) is order-preserving on the set

Wm
v,u1 ,...,un = {u ∈ Sm : ∀ j ≤ lh(u)¬R(v�j, u� j, u1�j, . . . , un�j)} .

To see that Q is �Hϑ0 (R), note first that ϑ = Ord∩Hϑ , which eliminates ϑ and ϑ<�
from the list of parameters. In the rest, we skip a routine verification of all elements
of the definition of Q being expressible by bounded formulas. �

§15. Auxiliary forcing relation. Here we introduce a key tool for the proof of
claim (iv) of Theorem 1.1. This is a forcing-like relation forc. It is not explicitly
connected with the forcing notion P (but rather connected with the full wide tree
forcingWT), however it will be compatible with P for formulas of certain quantifier
complexity (Theorem 17.1). The crucial advantage of forc will be its invariance
under a certain group of transformations (Lemma 16.3), a property that cannot be
expected for P . This will be the key argument in the proof of Theorem 1.1 below in
Section 18.

Blanket agreement 15.1. From now on, we let Θ = �L2 , so Θ = �2 in L but
Θ = �1 in P-generic extensions of L.

We argue in L. We consider a language L whose elementary formulas, called
L�12 (in spite that they are looking more like �

1
1 ), are those of the form

ϕ(p1, . . . , pn) := ∃� ∈ Θ� ∃ q ∈ �� ∀mQ(��m, q�m,p1�m, . . . , pn�m) ,
where Q ∈ L, Q ⊆ Θ<� × (�<�)n+1, Q is a �0(H�2) set,
and q, pi are variables over ��.

⎫⎪⎬
⎪⎭ (1)

The dual class L� 12 consists of formulas

ϕ(p1, . . . , pn) := ∀� ∈ Θ� ∀ q ∈ �� ∃mQ(��m, q�m,p1�m, . . . , pn�m) ,
with the same specifications.

}
(2)

Higher classes L�1k and L� 1k are defined naturally, e.g., L�
1
5 contains formulas

of the form ∃ q1 ∀ q2 ∃ q3 Φ(q1, q2, q3), where Φ is L� 12 and qi vary over �
� .
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We allow codes c ∈ CCF� to substitute free variables over �� . If ϕ :=
ϕ(c1, . . . , cn) is an L -formula, and x ∈ �1� , then ϕ[x] denotes the formula
ϕ(fc1 (x), . . . , fcn (x)), where all fci (x) are reals in �

� , of course.

Definition 15.2 (In L). We define a relation T forcϕ between trees T ∈ WT
and closed L -formulas in

⋃
k≥2(L�

1
k ∪ L� 1k ). Recall that Θ = �2 (in L).

(A) Let ϕ(c1, . . . , cn) be a L�12 formula as in (1), and c1, . . . , cn ∈ CCF� . Let
finally T ∈ WT. We define T forcϕ iff there exist codes c ∈ CCF� and
d ∈ CCFΘ such that the following holds for all x ∈ [T ]:

∀mQ(fd(x)�m,fc(x)�m,fc1 (x)�m, . . . , fcn (x)�m).
(B) If ϕ is a closed L� 1k formula, k ≥ 2, then T forcϕ iff there is no tree
S ∈ WT such that S ⊆ T and S forcϕ− , where ϕ− is the result of
canonical transformation of ¬ ϕ to L�1k form.

(C) If ϕ := ∃x �(x) is a closed L�1k+1 formula, k ≥ 2 (� being of typeL� 1k ),
then T forcϕ iff there is a code c ∈ CCF� such that T forc�(c).

If ϕ(p1, . . . , pn) is an L -formula then let

Forc(ϕ) = {〈T, c1, . . . , cn〉 : T ∈WT ∧ ci ∈ CCF� ∧ T forcϕ(c1, . . . , cn)}.
In particular if ϕ is closed then Forc(ϕ) = {T ∈WT : T forcϕ}. We also define
Des(ϕ) = Forc(ϕ) ∪ Forc(ϕ−) in this case.

Theorem 15.3 (In L). If k ≥ 2 and ϕ is a formula in L�1k , resp., L�
1
k , then the

set Forc(ϕ) belongs to �k−1(H�2), resp., �k−1(H�2).

Proof. The proof goes on by induction on k . We begin with L�12 formulas.
We argue under the assumptions and following notation of (1) above. According
to definition 15.2(A), the existence quantifiers over c and d comply with the �1
definability, but we have to prove that the set

W = {〈d, c, c1, . . . , cn, T,m〉 ∈ CCFΘ × (CCF�)n+1 ×WT× � :
∀x ∈ [T ]Q(fd(x)�m,fc(x)�m,fc1 (x)�m, . . . , fcn (x)�m)}

belongs to �1(H�2). Recall that Q is �0(H�2) by (1). It can also be mentioned
that CCFΘ ∪ CCF� ∪WT ⊆ H�2 , so thatW ⊆ H�2 anyway.
The hostile elements in the definition ofW , which do not allow it to be �1(H�2)
straightaway, are the quantifier ∀x ∈ [T ] in the second line, and the quantifier
∀x ∈ �1� in (2) of Definition 13.3. (As we argue in L, the upper index L as
in 13.3 is removed.) But, �1� ∈ H�2 (under V = L), hence, as we don’t care
here about the choice of parameters in H�2 , 3 we can pick up �1� as the extra
parameter. The quantifier ∀x ∈ �1� in (2) of 13.3 then immediately becomes
bounded, while the quantifier ∀x ∈ [T ] (. . . x . . . ) in the definition of W changes
to ∀x ∈ �1� (x ∈ [T ] =⇒ . . . x . . . ), hence becomes bounded as well, and overall
we get evenW ∈ �0(H�2), as required.
The induction steps are easy applications of 15.2(B),(C). �
Recall that a number n ≥ 2 is fixed by Definition 11.5.
3 If we do care then the result holds too but by means of more thoroughful arguments.
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Lemma 15.4 (in L). Let ϕ be a closed formula in L�1k ∪ L� 1k , k ≥ 2. Then the
set Des(ϕ) is dense inWT. If k < n, then Des(ϕ) ∩ P is dense in P .

Proof. The first claim is a simple application of Definition 15.2(B). The second
claim follows from the first one by Lemmas 15.3 and 12.1(vii). �

§16. Invariance. It happens that the relationforc is invariant under somenatural
transformations of wide trees. Here we prove the invariance. We still argue in L.
Let S ∈ WT. To define a canonical homeomorphism hS : [S] onto−→ �1� , assume
that x ∈ [S]. Let k < � . Then x�mk ∈ BNk(T ) for some (unique) numbermk . The
set Ξ(x, k) = {� < �1 : (x�mk)�� ∈ S} has cardinality card (Ξ(x, k)) = ℵ1 ; let
Ξ(x, k) = {�� : � < �1} be the enumeration in the increasing order. In particular,
x(mk) = �� for some (unique) � = �(x, k). Define y = hS(x) ∈ �1� by y(k) =
�(x, k), ∀ k . The map hS is a required homeomorphism.
It follows that if T ∈WT is another tree then hST = hT−1◦hS (the superposition)
is a homeomorphism of [S] onto [T ]. Moreover, in this case, if U ⊆ S is a subtree
then the according subtree hST ·U = {hST (x)�m : x ∈ [U ]∧m < �} ⊆ T satisfies
U ∈WT iff hST ·U ∈WT, and [hST ·U ] = {hST (x) : x ∈ [U ]}.
Lemma 16.1 (In L). If S,T ∈ WT and U ∈ WT, U ⊆ S , then V = hST · U ∈
WT, V ⊆ T , and hUV = hST � [U ]. �
If 	 ∈ Ord and f : [S] → 	� then a function hST · f = f ◦ h−1ST : [T ] → 	� is
defined by (hST · f)(x) = f(hST (x)), equivalently, (hST · f)(hST (x)) = f(x). If
c, c′ ∈ CCF	 then we symbolically write c′�T = hST · (c�S), in case the associated
functions fc and fc′ satisfy: fc′ � [T ] = hST · (fc� [S]).
Lemma 16.2 (In L). If S,T ∈ WT, 	 ∈ Ord, and c ∈ CCF	 then there is a code
c′ ∈ CCF	 satisfying c′�T = hST · (c�S).
Proof. The map f = fc� [S] : [S] → 	� is continuous, hence so is the trans-
formed map f′ = hST · f : [T ] → 	� . Let g : �1� → 	� be any continuous
extension of f′ , and let c′ = code(g). �
Finally if ϕ := ϕ(c1, . . . , cn) is a L -formula, and ϕ′ := ϕ(c′1, . . . , c

′
n), where

c′1, . . . , c
′
n is another set of codes c

′
i ∈ CCF� , then we symbolically write ϕ′�T =

hST · (ϕ�S), in case c′i �T = hST · (ci �S) holds for each i = 1, . . . , n .
Lemma 16.3 (In L). Let S,T ∈ WT and let ϕ,ϕ′ be closed formulas in L�1k ∪

L� 1k , k ≥ 2, and finally ϕ′�T = hST · (ϕ�S). Then S forcϕ iff T forcϕ′ .

Proof. We argue by induction. Let ϕ,ϕ′ beL�12 , so that ϕ := ϕ(c1, . . . , cn) and
ϕ′ := ϕ(c′1, . . . , c

′
n), where c1, . . . , c

′
n, c

′
1, . . . , c

′
n are codes in CCF� , and

ϕ(p1, . . . , pn) := ∃� ∈ Θ� ∃ q ∈ �� ∀mQ(��m, q�m,p1�m, . . . , pn�m)
is a formula as in (1) of Section 15, and c′i �T = hST · (ci �S) holds for each i .
Assume that S forcϕ . Then by definition (Definition 15.2(A)) there are codes
c ∈ CCF� and d ∈ CCFΘ such that

∀x ∈ [S] ∀mQ(fd(x)�m,fc(x)�m,fc1 (x)�m, . . . , fcn (x)�m).
Pick, by Lemma 16.2, codes c′ ∈ CCF� and d′ ∈ CCFΘ with c′�T = hST · (c�S)
and d′�T = hST · (d�S). Then we obtain

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.77
Downloaded from https://www.cambridge.org/core. University of New England, on 27 Mar 2019 at 09:56:20, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.77
https://www.cambridge.org/core


286 VLADIMIR KANOVEI AND VASSILY LYUBETSKY

∀ y ∈ [T ] ∀mQ(fd′(y)�m,fc′(y)�m,fc′1 (y)�m, . . . , fc′n (y)�m) ,
and hence the codes c′ and d′ witness T forcϕ′ .
Step L�1k → L� 1k . Let ϕ be a closed formula in L� 1k , so that ϕ is �

− ,
where � is L�1k , and accordingly ϕ

′ is (�′)− , �′�T = hST · (��S). Assuming
that S forcϕ , prove that T forcϕ′ . Suppose to the contrary that T forcϕ′ fails.
Then, by Definition 15.2(B), there is a tree V ∈ WT, V ⊆ T , V forc�′ . We
let U = hST · V , so that U ∈ WT, U ⊆ S , V = hST · U . And, by the way,
hUV = hST � [U ] by Lemma 16.1, thus still �′�V = hUV · (�� [U ]). It follows that
U forc� , by the inductive hypothesis, which contradicts to S forcϕ .
StepL� 1k → L�1k+1 .Let ϕ be a closed formula inL�1k+1, so that ϕ is ∃ q �(q),
where �(q) is L� 1k , and accordingly ϕ

′ is ∃ q �′(q), �′�T = hST ·(��S). Assum-
ing that S forcϕ , prove that T forcϕ′ . By Definition 15.2(C), there is a code
c ∈ CCF� satisfying S forc�(c). By Lemma 16.2, there exists a code c′ ∈ CCF�
such that c′�T = hST · (c�S). Then �′(c′)�T = hST · (�(c)�S). It follows that
T forc�′(c′), by the inductive hypothesis, hence T forcϕ′ . �
Corollary 16.4. Let S,T ∈WT and let ϕ be a closed formula in L�1k ∪ L� 1k ,
k ≥ 2, with no codes in CCF� as parameters. Then S forcϕ if and only if T forcϕ .

§17. Forcing and truth. Recall that n ≥ 2 is fixed by Definition 11.5.
Moreover we’ll assume that n ≥ 3, because we now focus on the proof of claim
(iv) of Theorem 1.1, vacuous in the case n = 2.
The last part of the proof of Theorem 1.1 will be the next theorem which con-
nects the forcing relation forc with the truth in P-generic extensions. This will be
the key ingredient of the proof of Theorem 1.1(iv): we use the invariant relation
forc to surprisingly approximate the forcing P , definitely noninvariant under the
transformations considered in Section 16.

Theorem 17.1. Assume that 2 ≤ k < n, ϕ ∈ L is a closed formula in L� 1k ∪
L�1k+1 , and a set G ⊆ P is generic over L. Then the sentence ϕ[a[G ]] is true in L[G ]
if and only if ∃T ∈ G (T forcϕ).
Proof. We argue in L[G ]. Base of induction: ϕ is a closed L�12 formula,

ϕ := ϕ(c1, . . . , cn) := ∃� ∈ Θ� ∃ q ∈ �� ∀mQ(��m, q�m, c1�m, . . . , cn �m) ,
as in 15.2(A) and (1) of Section 15. Assume that T ∈ G and T forcϕ . Then by
Definition 15.2(A) there are codes c ∈ CCF� ∩ L and d ∈ CCFΘ ∩ L such that

∀m ∀x ∈ [T ] ∩ LQ(fd(x)�m,fc(x)�m,fc1 (x)�m, . . . , fcn (x)�m).
(Recall Remark 13.4 on the absoluteness of being a code in any CCF	 .) However
all functions fd, fc, fci are continuous. It follows that the last displayed formula
can be strengthened to

∀x ∈ [T ] ∀m Q(fd(x)�m,fc(x)�m,fc1 (x)�m, . . . , fcn (x)�m).
Therefore, as a[G ] ∈ [T ] (because T ∈ G ), we obtain

∀m Q(fd(a[G ])�m,fc(a[G ])�m,fc1 (a[G ])�m, . . . , fcn (a[G ])�m).
Thus elements � = fd(a[G ]) and q = fc(a[G ]) witness ϕ[a[G ]] to be true.
To establish the inverse, suppose that ϕ[a[G ]] is true in L[G ], that is,
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∀m Q(��m, q�m,fc1 (a[G ])�m, . . . , fcn (a[G ])�m)
true for some � ∈ Θ� and q ∈ �� in L[G ]. By Lemma 13.5 there are codes
d ∈ CCFΘ ∩L and c ∈ CCF� ∩L such that � = fd(a[G ]) and q = fc(a[G ]). Thus
there is a tree T ∈ G which P-forces the formula

∀m Q(fd(a[G ])�m,fc(a[G ])�m,fc1 (a[G ])�m, . . . , fcn (a[G ])�m) (∗)
over L. We claim that the codes c and d witness T forcϕ as in 15.2(A). Indeed
otherwise there are x ∈ [T ] and m such that

¬ Q(fd(x)�m,fc(x)�m,fc1 (x)�m, . . . , fcn (x)�m). (†)
But, the maps fd, fc, fci are continuous. It follows that there is a string u = x�j
for some j such that (†) holds for all x ∈ [S], where S = T � u ∈ P . But then clearly
T cannot P-force (∗) as S forces the opposite.
Step L�1k =⇒ L� 1k , k < n. Let ϕ be a L� 1k formula. By Lemma 15.4, there is
a tree T ∈ G such that either T forcϕ or T forcϕ− . Assume that T forcϕ ; we
have to prove that ϕ[a[G ]] is true. Suppose otherwise. Then ϕ−[a[G ]] is true. By
the inductive hypothesis, there is a tree S ∈ G such that S forcϕ− . But the trees
S,T belong to the same generic set G , hence they are compatible, which leads to a
contradiction with the assumption T forcϕ , according toDefinition 15.2(B). Now
assume that T forcϕ− . Then ϕ−[a[G ]] is true by the inductive hypothesis, hence
ϕ[a[G ]] is false. On the other hand, there is no tree S ∈ G such that S forcϕ− ,
just as above.
Step L� 1k =⇒ L�1k+1 , k < n. Let ϕ be ∃x �(x) where � is L� 1k . Assume
that T ∈ G and T forcϕ . Then by Definition 15.2(C) there is a code c ∈ CCF∩L
such that T forc�(c). By the inductive hypothesis, the formula �(c)[a[G ]], that
is, �[a[G ]](fc(a[G ])), is true in L[G ]. But then ϕ[a[G ]] is true as well.
Conversely assume that ϕ[a[G ]] is true. Then there is a real y ∈ L[G ] ∩�� such
that �[a[G ]](y) is true. By Lemma 13.5(i), y = fc(a[G ]) for a code c ∈ CCF� ∩L.
But then �(c)[a[G ]] is true in L[G ]. By the inductive hypothesis, there is a tree
T ∈ G satisfying T forc�(c). Then T forcϕ as well. �

§18. The final argument.
Theorem 1.1, the main theorem. We assert that any P-generic extension L[G ] =
L[a[G ]] satisfies conditions (i), (ii), (iii), (iv) of the theorem. Regarding (i), (ii), (iii)
see a summary in the very end of Section 13. Let’s concentrate on (iv). Let Φ(j) be
a parameter-free �1n formula. (The case when Φ has real parameters in L can also
be handled with some extra care.) Thus

Φ(j) := ∃ r1 ∀ r2 · · · ∀(∃)rn ∃(∀)m Rj(r1�m, r2�m, . . . , rn�m) ,
where ri are variables over �� , Rj ⊆ (�<�)n , Rj ∈ L, and the map j �→ Rj is
arithmetically definable in L. Applying Theorem 14.2 in L with Θ = �L2 = �

L[G ]
1

andM = L[G ], we get relations Qj = QΘ(Rj), and closed L�1n formulas

ϕj := ∃ r1 ∀ r2 · · · ∃(∀)rn−2 ∀ (∃)� ∈ Θ� ∀ (∃) q ∃ (∀)m
Qj(��m, q�m, r1�m, r2�m, . . . , rn−2�m) ,

satisfying Φ(j) ⇐⇒ ϕj , ∀ j , both in L and in any P-generic extension L[G ] of
L. It follows, by Theorem 17.1, that the set X = {j : Φ(j)L[G ]} (defined in L[G ])
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satisfies X = {j : ∃T ∈ G (T forcϕj)}. Furthermore, as the formulas ϕj do not
contain codes in CCF� , it follows, by Corollary 16.4, that X = {j : T forcϕj },
where T is any particular tree in (WT)L , one and he same for all j . We conclude
that X ∈ L, as required. �
§19. A problem. It is a challenge to figure out what kind of models the method
of the proof of Theorem 1.1 gives for forcing notions with trees with the splitting
parameter bigger than ℵ1 . For instance, let WT�2 be the set of all trees T ⊆ �2<�
with no isolated branches, whose all branching nodes are �2-branching nodes. This
is a non-Laver version of the Namba forcing; the Namba forcing per se requires
that in addition every node above the stem is a branching node. The forcing WT�2
(or an equivalent forcing) is considered e.g., in [4], [11, Section 28], or [6, 18.4].
ClearlyWT�2 adds a cofinal infinite sequence, say �a = 〈αn〉n<� , in �V2 .Moreover,
if CH holds in the ground universe then, essentially by Namba–Bukovsky, WT�2
does not add new reals, hence, does not collapse �V1 . (See [11, Section 28] for a
simple proof.) Thus �a ∈ H	 in the extension V[�a], where 	 = �V[�a]2 > �V2 . (Where
V is the ground set universe, as usual.)
It is then an interesting problem to check whether there are results for the defin-
ability of �a in H	 similar to the results in [2] and those of this paper, and first of
all whether there is a subforcing P ⊆ WT�2 which retains the above properties of
WT�2 and such that in addition any P-generic sequence �a is definable in V[�a]. The
argument presented in this paper fails in this setting at Lemma 9.4 though.
It will also be interesting to accomodate the methods used in this paper to the
(more complex) case of iterated extensions as e.g., in [16].
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