
BOREL IRREDUCIBILITY BETWEEN TWO LARGE FAMILIES
OF BOREL EQUIVALENCE RELATIONS
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Abstract. We prove that if I is a Borel ideal, which includes a dense summable ideal, and E is a
Borel equivalence relation that can be obtained from Fin using certain elementary operations like
the Fubini product and countable power relation, then EI is not Borel reducible to E. The ideals
I in the scope of this theorem include, for instance, all Borel P-ideals except for I3 = 0 × Fin

and (trivial variations of) Fin.

§1. The result. Let E be the smallest class of Borel equivalence relations
(or ERs, for brevity) E on Polish spaces, containing the equality relations on
finite and countable sets and closed under the the following transformations:

(1) countable union (if it results in a ER) and countable intersection of ERs
on one and the same space;

(2) countable disjoint union E =
∨
k Ek of ERs Ek on pairwise disjoint

spaces Sk , that is, a ER on the union
⋃
k Sk defined by: x E y iff x, y

belong to the same Sk and x Ek y;
(3) the Fubini product Fin

⊗
k Ek of ERs Ek on spaces Sk , over the ideal Fin

of all finite subsets of N, that is, the ER on the product space
∏
k Sk

defined as follows: x E y iff x(k) Ek y(k) for all but finite k;

(4) product E =
∏
k Ek of ERs Ek on spaces Sk , that is, the ER on the

product space
∏
k Sk defined by: x E y iff x(k) Ek y(k) for all k;

(5) countable power ER E∞ of a ER E on a space S, that is, a ER on SN

defined as follows: x E∞ y iff {[x(k)]E : k ∈ N} = {[y(k)]E : k ∈ N},
where [z]E is the E-class of z ∈ S: thus, it is required that for any k there
is l with x(k) E y(l) and for any l there is k with x(k) E y(l).
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BOREL IRREDUCIBILITY OF BOREL EQUIVALENCE RELATIONS 101

Theorem 1 (The main result). If Z is a nontrivial1 Borel P-ideal on N and
E is a ER in E then EZ is not Baire-measurable reducible to E unless Z is
isomorphic2 to Fin, a trivial variation of Fin, or I3 = 0× Fin.
Special notions involved in this theorem (all of them known in this direction
of descriptive set theory, see, e.g., [1, 4]) are explained in the next section.

§2. Notation and comments. Recall that any ideal I on a set A induces an
ER EI on 2A: x EI y iff the set x Δ y = {i ∈ A : x(i) �= y(i)} belongs to I.

• An equivalence relation E on S is Borel or Baire measurable (BM, for
brevity) reducible to a ER E′ on S′ if there is a resp. Borel or BM reduction
E to E′, that is, a resp. Borel or BM map F : S → S′ such that we have
x E y ⇐⇒ F (x) E′ F (y) for all x, y ∈ S.

• P-ideals are those ideals Z which satisfy the requirement that for any
sequence of sets x0, x1, x2, . . . ∈ Z there is x ∈ Z with xn ⊆∗ x for all n,
where y ⊆∗ x means that y \ x is finite.

Borel P-ideals (in fact all of them belong to Borel class Π03) admit different
characterizations (see, e.g., the proof of Proposition 2 below) and form an
important and widely studied class, which includes, for instance,

(i) the ideal Fin of all finite subsets of N,
(ii) the ideal I3 = 0× Fin of all sets x ⊆ N×N such that every cross-section
(x)n = {k : 〈n, k〉 ∈ x} is finite,

(iii) trivial variations of Fin, i.e., by Kechris [5], ideals of the form
I = {x ⊆ N : x ∩W ∈ Fin}, where W ⊆ N is infinite and coinfinite
(all of them are isomorphic to each other).

Borel P-ideals also include summable ideals, density ideals, and many more
(see Farah [1], Solecki [7, 8]).
The class E of ERs contains, for instance, the equality D(2N) on 2N,3 it
also contains the ERs EFin and E0×Fin (usually denoted by resp. E0 and E3),
associated with the ideals Fin and I3 = 0 × Fin,4 as well as those associated
with trivial variations of Fin. Thus the exclusion of Fin, 0 × Fin, and trivial
variations of Fin in Theorem 1 is necessary and fully motivated.
Furthermore E contains all ERs associated with the iterated Frechet ideals,
i.e., the smallest family of ERs containing equality relations on finite and
countable sets and closed under (3). Class E also contains all ERs associ-
ated with the indecomposable ideals (Farah [1]) I� =

{
x ⊆ �� : otpx < ��

}
,

� < �1 (otpx is the order type of a set x ⊆ Ord), yet in this case it takes

1An ideal I ⊆ P(N) is nontrivial if it is not equal to P(X ) for some X ⊆ N.
2By isomorphism we mean isomorphism via a bijection between the underlying sets.
3To see that D(2N) belongs to E let each Ek be the equality on a 2-element set in (4).
4To see that EFin belongs to E let each Ek be the equality on a 2-element set in (3). To see

that E0×Fin belongs to E take each Ek to be EFin in (4).

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316755921.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 20 Apr 2018 at 15:46:51, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316755921.009
https://www.cambridge.org/core


102 VLADIMIR KANOVEI AND MICHAEL REEKEN

some effort to find a recursive construction of I� in terms of the transfor-
mations (1)–(4). Class E also contains all ERs Tα of Friedman and Stanley
[3, 2], obtained from the equality on N via operations (2) and (5): they can be
seen as all (modulo Borel reduction) ERs which, in some broad sense, admit
classification by countable structures.
Two earlier related results must be mentioned. Friedman and Stanley an-
nounced in [3] (Friedman gives a full proof in [2]) that EZ0 , the ER associated
with the density-0 idealZ0, is not BM reducible to any ER of the formTα (see
above). Kechris [5] proved (as a part of the proof of another result on ideals)
the particular case E = E3 = E0×Fin of Theorem 1.
The arguments of Kechris and (implicitly) Friedman were based on ideas
of Hjorth’s turbulence theory.5 So is our proof, its scheme is to show that
a certain stronger form of irreducibility (called: the generic ergodicity) is
preserved under the transformations of equivalence relations (1)–(5). Our
proof is self-contained and rather elementary, in particular, it makes no use
of model theory or facts related to topological group theory, yet it makes use
of forcing.

§3. “Special” ideals. Before themain part of the proof ofTheorem1begins,
we are going to simplify the task. This section reduces the problem to ideals
which include some kind of summable ideals. Recall that any sequence of
reals rn ≥ 0 produces an ideal

S{rn} =

{
x ⊆ N :

∑
n∈x
rn < +∞

}
.

Ideals of this kind are called summable, and S{rn} is nontrivial dense if {rn} → 0
and

∑
n rn = +∞ (then S{rn} �= P(N)). Say that an ideal I on N is “special”

if there is a nontrivial dense summable ideal S{rn} with S{rn} ⊆ I � P(N).
Proposition 2 (Essentially, Kechris [5]). LetZ be a nontrivial Borel P-ideal
on N, not isomorphic to one of Fin, I3 = 0× Fin, or a trivial variation of Fin.
Then there is a setW �∈ Z such that Z 	W = {x ∩W : x ∈ Z} is isomorphic
(via a bijectionW onto N) to a “special” Borel ideal.
Proof. Recall that a lower semicontinuous (l.s.c.) submeasure on N is any
map ϕ : P(N) → [0,+∞] satisfying ϕ(x) ≤ ϕ(x ∪ y) ≤ ϕ(x) + ϕ(y) for
all x, y ∈ P(N), ϕ(∅) = 0, and ϕ(x) = supn∈N ϕ(x ∩ [0, n)) for all x ∈
P(N). By Solecki [7, 8], as Z is a Borel P-ideal, there is an l.s.c. submeasure
ϕ : P(N)→ [0,+∞] such thatZ = {x ∈ P(N) : ϕ∞(x) = 0}, where ϕ∞(x) =
limn→∞ ϕ(x ∩ [n,∞)).
5For instance, Kechris observed, that any nontrivial Borel P-idealZ, with the same exceptions,

induces a turbulent Δ-action on P(N), while E0×Fin is induced by a continuous action of S∞,
the group of all permutations of N, which is enough, by the first turbulence theorem, for EZ to
be Borel irreducible to E0×Fin .
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BOREL IRREDUCIBILITY OF BOREL EQUIVALENCE RELATIONS 103

Put Un =
{
k : ϕ({k}) ≤ 1

n

}
, separately U0 = N, thus, Un+1 ⊆ Un for all n.

We claim that infm∈N ϕ(Um) > 0. Suppose otherwise. Then a set x ⊆ N be-
longs toZ iff x\Un is finite for any n. If the setN = {n : Un \Un+1 is infinite}
is empty then easily Z = P(N). If N is finite and nonempty then Z is iso-
morphic to either Fin (if eventually Un = ∅) or a trivial variation of Fin (if
Un is nonempty for all n). If finally N is infinite then easily Z is isomorphic
to 0 × Fin (for instance, if all sets Dn = Un \ Un+1 are infinite then x ∈ Z
iff x ∩ Dn is finite for all n). Thus we always have a contradiction to the
assumptions of the Proposition.
Thus there is ε > 0 such that ϕ(Um) > ε for all m. As ϕ is l.s.c., we
can define an increasing sequence of numbers n1 < n2 < n3 < . . . and for
any l a finite set wl ⊆ Unl \Unl+1 with ϕ(wl ) > ε. ThenW =

⋃
l wl �∈ Z and

obviously {rk}k∈W → 0 and
∑
k∈W rk ≥

∑
l ϕ(wl ) =∞, where rk = ϕ({k}).

Finally, if a set x ⊆W satisfies
∑
k∈x rk < +∞ then x ∈ Z : indeed, we have

ϕ∞(x) ≤
∑
k∈x rk because ϕ is a l.s.c. submeasure. �

It follows (indeed, EZ �W ≤B EZ) that the next theorem implies Theorem 1:
Theorem 3. If I is a “special” Borel ideal then EI is not BM reducible to any
ER E in E.

§4. Ergodicity and dense summable ideals. The next preliminary step is to
further reduce the task to summable ideals. This involves the following special
form of irreducibility.

Definition 4. Let E, F be ERs on Polish spaces, resp., X, Y. A map
ϑ : X → Y is

• a.e. E,F-invariant if there is a co-meager set D ⊆ X such that x E x′ =⇒
ϑ(x) F ϑ(x′) for all x, x′ ∈ D, and E,F-invariant if this holds forD = X.

• a.e. F-constant if there is a co-meager set D ⊆ S such that ϑ(x) F ϑ(x′)
holds for all x, x′ ∈ D.

Finally, following Kechris [6, 12.1] and Hjorth [4, 3.6], we say that E is
generically F-ergodic if every BM E,F-invariant map ϑ is a.e. F-constant. �

Remark 5. To see that E is generically F-ergodic, it suffices to demonstrate
that every Borel and a.e. E,F-invariant map ϑ is a.e. F-constant: indeed, any
BM map is continuous, hence, Borel, on a comeager set. �

Lemma 6. Suppose that I is a nontrivial Borel ideal on N and E is a Borel
ER. If EI is generically E-ergodic then EI is not BM reducible to E.
Proof. Assume, towards the contrary, that ϑ : P(N) → Y (where Y is the
domain of E) is a BM reduction of EI to E. There is a co-meager setD ⊆ P(N)
such that ϑ 	D is Borel (even continuous). Let ϑ′ : P(N) → Y coincide with
ϑ on D and be constant on P(N) \D. Then ϑ′ is a Borel a.e. EI ,E-invariant
map, therefore, it is a.e. E-constant, so that, by the ergodicity, we have a
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104 VLADIMIR KANOVEI AND MICHAEL REEKEN

comeager EI-equivalence class in P(N). It follows that I itself is comeager in
P(N), which easily implies that I = P(N), a contradiction to the nontriviality
of I. �
The remainder of the note contains the proof of the following theorem:

Theorem 7. For any nontrivial dense summable ideal S{rn} the equivalence
relation E{rn} = ES{rn} is generically E-ergodic for any ER E in E.

This implies Theorem 3, hence, Theorem 1. Indeed, first, if I is a “special”
Borel ideal then, by Proposition 2 there is a nontrivial dense summable ideal
S{rn} ⊆ I. The latter is generically E-ergodic for any ER E in E by Theorem 7,
hence, EI itself is generically E-ergodic because now any EI ,E-invariant map
is E{rn},E-invariant. It follows that EI is BM irreducible to E by Lemma 6, as
required.

§5. Preliminaries to the proof. In the proof of Theorem 7 we shall use the
following notation and keep the following agreements.

• For the course of the proof of Theorem 7, we fix a sequence of nonneg-
ative reals {rn} → 0 with

∑
n∈N rn = +∞.

• 2N is the Cantor space of all infinite dyadic sequences, with the ordinary
product topology.

• 2<� is the set of all finite dyadic sequences.
• For u ∈ 2<� we define Iu =

{
a ∈ 2N : u ⊂ a

}
, a basic clopen set in 2N.

• If X is a nonempty open set in a Polish space then the phrase “P(x)
holds for a.a. x ∈ X” will mean that {x ∈ X : P(x)} is comeager in X .

• We shall systematically identify sets X ⊆ N with their characteristic
functions, unless it becomes ambiguous. In particular, for a, b ∈ 2N we
define aΔb = {n : a(n) �= b(n)} (as a set) and (aΔb)(n) = |a(n)−b(n)|
(as an infinite dyadic sequence).

• E{rn} is ES{rn} , thus, for x, y ∈ 2
N, x E{rn} y iff

∑
x(n) �=y(n) rn < +∞.

• In accordance with Remark 5, we shall consider only Borel maps ϑ.

Definition 8. AER E is {rn}-irreducing if E{rn} is generically E-ergodic. �

The method of the proof of Theorem 7 will be to show, by induction on the
construction of ERs in E, that all ERs in E are {rn}-irreducing.

§6. Base of induction. To begin with, we prove
Lemma 9. If S is a Polish space thenDS, the equality on S, is {rn}-irreducing.
Proof. First of all, as all (uncountable) Polish spaces are Borel isomorphic,
we may assume that S = 2N. Furthermore, as any invariant ϑ : 2N → 2N splits
into a family of invariant “coordinate”maps ϑk : 2N → {0, 1}, we can suppose
that S = {0, 1}, a two-element discrete set. Assume, towards the contrary,
that an a.e. E{rn},DS-invariant Borel map ϑ : 2N → {0, 1} is not a.e. constant.
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BOREL IRREDUCIBILITY OF BOREL EQUIVALENCE RELATIONS 105

By definition there is a denseG� setD ⊆ P(N) with a E{rn} b =⇒ ϑ(a) = ϑ(b)
for all a, b ∈ D.
According to the contrary assumption, there exist sequences u, v ∈ 2<�
such that ϑ(a) = 0 and ϑ(b) = 1 for a.a. (in the sense of category) a ∈ Iu
and a.a. b ∈ Iv . We can assume that ϑ(a) = 0 and ϑ(b) = 1 actually for
all a ∈ D ∩ Iu and b ∈ D ∩ Iv , and that u, v ∈ 2m for one and the same m.
(Clearly u �= v.)
Let D =

⋂
n Dn, where each Dn is open dense. Put r =

∑
i<m,u(i) �=v(i) ri .

Using the assumption {rn} → 0, we can easily define an increasing sequence
m = m0 < m1 < m2 < . . . of natural numbers, and u = u0 ⊂ u1 ⊂ u2 ⊂ . . .
and v = v0 ⊂ v1 ⊂ v2 ⊂ . . . of tuples un, vn ∈ 2mi with

∑
i<mn ,un(i) �=vn(i) ri <

r+1and Iun∪Ivn ⊆ Dn for all n. Then a =
⋃
n un ∈ D∩Iu , b =

⋃
n vn ∈ D∩Iv ,

and a E{rn} b, but ϑ(a) = x �= y = ϑ(b), which is a contradiction. �
It remains to demonstrate that the property of {rn}-irreducibility is pre-
served under the transformations of ERs which produce the class E.

§7. Inductive step of the Fubini product. In this section, we show that the
Fubini product preserves {rn}-irreducibility.
Lemma 10. Suppose that Ek , k ∈ N, are Borel {rn}-irreducing ERs on Polish
spaces Sk . Then E = Fin

⊗
k∈N Ek is {rn}-irreducing as well.

Proof. Let S =
∏
k Sk , so that E is a ER on S. Let ϑ : 2N → S be a Borel

(according to Remark 5) function. It splits in the sequence of Borel functions

ϑk(x) = ϑ(x)(k) : 2N → Sk.

Suppose that ϑ is E{rn},E-invariant on a dense G� set D ⊆ 2N, so that

a E{rn} b =⇒ ∃k0∀k ≥ k0(ϑk(a) Ek ϑk(b))

for all a, b ∈ D. Our plan is to show that almost all ϑk are a.e. E{rn},Ek-
invariant.
In that we’ll make use of two topologies. The first one is the ordinary
product topology on 2N. The other one is the topology on the set S{rn} ⊆ 2N,
generated by the metric d{rn}(a, b) = ϕ{rn}(a Δ b) on S{rn}, where

ϕ{rn}(X ) =
∑
n∈X
rn for X ⊆ N, so that S{rn} =

{
X : ϕ{rn}(X ) < +∞

}
;

It is easy to verify (even in a much more general case, see [7]) that d{rn} 	S{rn}
is a Polish (i.e., complete separable) metric on S{rn}. The d{rn}-topology is
stronger than the product topology of 2N on S{rn}, yet it yields the same Borel
subsets of S{rn} as the product topology. Sets of the form

Uε(t) =
{
z ∈ S{rn} : d{rn}(z, t

∗) < ε
}
, t ∈ 2<�,
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106 VLADIMIR KANOVEI AND MICHAEL REEKEN

where t∗ ∈ 2N denotes the extension of t ∈ 2<� (a finite sequence) by infinitely
many zeros, and ε is a positive rational, provide a base of the d{rn}-topology
on S{rn}, and the countable set {t∗ : t ∈ 2<�} is d{rn}-dense in S{rn}.
Below, let P = 2<� be the ordinaryCohen forcing for 2N, and let P{rn} be the
Cohen forcing for

〈
S{rn}; d{rn}

〉
, which consists of all sets of the form Uε(t),

where t ∈ 2<� and ε > 0 is rational. (Smaller sets are stronger conditions.) Let
us fix a countable transitivemodelMof a big enough fragment ofZFC,6 which
contains all relevant objects or their codes, in particular, the sequence {rn}
and a code of the Borel map ϑ.

Claim 11. Suppose that 〈a, z〉 ∈ 2N × S{rn} is P× P{rn}-generic over M.
Then b = a Δ z is P-generic overM.

Proof of the Claim. Actually, b is P-generic even overM[z]: indeed, a is
such by the product forcing lemma, and, for any fixed z, the map a �−→ a Δ z
is a homeomorphism. �
Fix u ∈ 2<�. Then by the invariance of ϑ and Claim 11 there is another
sequence v ∈ 2<� with u ⊂ v, a number k0, and a non-empty d{rn}-nbhdUε(t)
in S{rn} (a condition in P{rn}), where ε > 0 and t ∈ 2<� , such that ϑk(a) Ek
ϑk(a Δ z) holds for any P× P{rn}-generic over M pair 〈a, z〉 of a ∈ Iv and
z ∈ Uε(t) and any k ≥ k0. We can assume that the length lh v is big enough
for i ≥ lh v =⇒ ri < ε.
Claim 12. If a, b ∈ Iv areP-generic overM and aE{rn}b then ϑk(a)Ek ϑk(b)
holds for all k ≥ k0.
Proof of the Claim. First consider the case when ϕ{rn}(a Δ b) < ε. Take
any z ∈ Z = Uε(t) with ϕ{rn}(z Δ t) < ε − ϕ{rn}(a Δ b), P{rn}-generic
overM[a, b].7 (This is possible as rn → 0.) Then z is P{rn}-generic overM[a],
hence, 〈a, z〉 is P× P{rn}-generic overM by the product forcing lemma, thus,
ϑk(a) Ek ϑk(a Δ z). Moreover, z′ = z Δ (a Δ b) still belongs to Z and is
P{rn}-generic overM[a, b], so that ϑk(b) Ek ϑk(b Δ z

′) by the same argument.
Yet we have a Δ z = b Δ z′.
Now consider the general case. By definitionX = aΔb satisfies

∑
n∈X rn =

ϕ{rn}(X ) < +∞, moreover, minX ≥ lh v, hence, by the choice of v, all rj
with j ∈ X satisfy rj < ε. In this case X has the formX = {j1, . . . , jn}∪X ′,
where ϕ{rn}(X

′) < ε, and rjm < ε for allm. Define am = a Δ {j1, . . . , jm} for
m = 1, . . . , n. Then a = a0, a1, a2, . . . , am, am+1 = b is a chain of P-generic,

6For instance, the first one million of ZFC axioms plus the Replacement for Σ100 formulas.
7By M[a, b], we understand a countable transitive model of the same fragment of ZFC as

mentioned in Footnote 6, which contains a, b, and all sets inM. This model may contain more
ordinals thanMbecause the pair 〈a, b〉 of two generic elements is not necessarily generic. On the
contrary, the modelsM[a] andM[b] are ordinary generic extensions ofM, containing the same
ordinals asM.
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BOREL IRREDUCIBILITY OF BOREL EQUIVALENCE RELATIONS 107

over M, elements of Iv with d{rn}(am, am+1) < ε for all m, so that we can
apply the particular case considered above. �
To summarize, we have shown that for any u ∈ 2<� there exist k0 and
v ∈ 2<� with u ⊂ v such that ϑk(a) is E{rn},Ek-invariant for all k ≥ k0
and all sufficiently P-generic a ∈ Iv , so that ϑk is a.e. E{rn},Ek-invariant
on Iv . Therefore, as all Ek are {rn}-irreducing, the map ϑk is a.e. Ek-constant
on Iv , for each k ≥ k0. (Indeed, we can trivially extend ϑk 	 Iv on the whole
domain 2N so that the invariance is preserved.) Thus ϑ is a.e. E-constant on Iv
as well.
In other words, for each u ∈ 2<� there is v ∈ 2<� with u ⊂ v such that
ϑ is a.e. E-constant on Iv . To complete the proof of Lemma 10, it remains
to demonstrate that these E-constants cannot be different. Thus assume that
s, t ∈ 2<� , lh s = lh t = m, x, y ∈ S, and ϑ(a) E x for a.a. a ∈ Is while
ϑ(b) E y for a.a. b ∈ It . We have to show that x E y. Indeed, the same
construction as in the proof of Lemma 9 yields a ∈ D∩ Is and b ∈ D∩ It with
a E{rn} b such that ϑ(a) E x and ϑ(b) E y. Then ϑ(a)E ϑ(b) by the invariance
of ϑ, hence, x E y, as required. �

§8. Other inductive steps. In this section, we show that all other operations
over ERs, defined in §1, also preserve {rn}-irreducibility.
Lemma 13. Suppose that E1,E2,E3, . . . are Borel {rn}-irreducing ERs on a
Polish space S, and E =

⋃
k Ek is a ER. Then E also is {rn}-irreducing.

Proof. Let ϑ : 2N → S be a Borel E{rn},E-invariantmap. For each u ∈ 2<� ,
by the invariance of ϑ, there exist: v ∈ 2<� with u ⊂ v, a number k, and a
non-empty d{rn}-nbhd Z = Uε(t) in S{rn} (a condition in P{rn}), where ε > 0
and t ∈ 2<� , such that ϑ(a) Ek ϑ(a Δ z) for any P× P{rn}-generic, overM,
pair 〈a, z〉 of a ∈ Iv and z ∈ Z. We can assume that lh v is big enough for
i ≥ lh v =⇒ ri < ε. Then, similarly to Claim 12, it is true that ϑ(a) Ek ϑ(b)
for any pair of P-generic, over M, elements a, b ∈ Iv . It follows, as in the
proof of Lemma 10, that ϑ is a.e. Ek-constant on Iv , hence, a.e. E-constant on
Iv as well. It remains to show that these E-constants are equal to each other,
which is demonstrated as in the end of the proof of Lemma 10. �
Corollary 14. Let E1,E2,E3, . . . be Borel {rn}-irreducing ERs on disjoint
Polish spaces S1,S2,S3, . . . . Then E =

∨
k Ek also is {rn}-irreducing.

Proof. Apply Lemma 13 for the relations E′
k defined on S =

⋃
k Sk as

follows: x E′
k y iff either x = y or x, y ∈ Sk and x Ek y. �

Lemma 15. Let E1,E2,E3, . . . be Borel {rn}-irreducingERs on a Polish space
S. Then E =

⋂
k Ek also is {rn}-irreducing.

Proof. Any E{rn},E-invariant map is E{rn},Ek-invariant for all k. �
Corollary 16. Let E1,E2,E3, . . . be Borel {rn}-irreducing ERs on Polish
spaces S1,S2,S3, . . . . Then E =

∏
k Ek also is {rn}-irreducing.
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Proof. Apply Lemma 15 for the relations x E′
k y iff x(k)Ek y(k) on

∏
k Sk .

�
Lemma 17. If a Borel ER E on a Polish space S is {rn}-irreducing then E∞ is
also {rn}-irreducing.
Proof. Suppose that a Borel map ϑ : 2N → SN is a.e. E{rn},E

∞-invariant,
that is, a E{rn} b =⇒ ϑ(a) E∞ ϑ(b) for all a, b ∈ D, where D ⊆ 2N is a dense
G� set. Let ϑk(a) = ϑ(a)k . The invariance of ϑ can be reformulated as
follows:

a E{rn} b =⇒ ∀k∃l(ϑk(a) E ϑl (b)) ∧ ∀l∃k(ϑk(a) E ϑl (b))

for all a, b ∈ D. As in the proof of Lemma 10, for any k and any u ∈ 2<� there
are: a number l , a sequence v ∈ 2<� with u ⊂ v, and a d{rn}-nbhdZ = Uε(t)
in S{rn} such that ϑk(a) = ϑl (a Δ z) for any P× P{rn}-generic, overM, pair
〈a, z〉 of a ∈ Iv and z ∈ Z. The same argument (Claim 12) shows that
ϑk(a) F ϑl (b) whenever a, b ∈ Iv are P-generic overM.
Thus for any u ∈ 2<� there is v ∈ 2<� with u ⊂ v such that ϑk(a) is

E{rn},E-invariant for all generic, over M, elements a ∈ Iv , in other words,
ϑk is a.e. E{rn},E-invariant on Iv . It follows, as above, that ϑk is a.e. E-
constant on Iv . It follows that there is a dense G� set D′ ⊆ D and a countable
set Y = {yj : j ∈ N} ⊆ S such that, for all k and a ∈ D′, we have ϑk(a) E yj
for some j. Let �k(a) be the least such an index j, thus, �k(a) is defined for
all a ∈ D′ and all k, and each �k : D′ → N is a Borel map. Now, by the
invariance of ϑ,

a E{rn} b =⇒ {�k(a) : k ∈ N} = {�k(b) : k ∈ N}

for all a, b ∈ D′. Lemma 9 then implies that there is a set Ξ ⊆ N such that
{�k(a) : k ∈ N} = Ξ for a.a. a ∈ D′. We conclude that ϑ, the given function,
is a.e. E∞-constant on D′, as required. �
Corollary 18. All ERs in E are {rn}-irreducing. �
Proof. Apply Lemma 9 and the results of this Section. �
This ends the proof of Theorems 7, 3, and 1. �(Main Theorem)

§9. A corollary and a question. Recall that an ER E is countable iff all
E-equivalence classes are countable. E is essentially countable iff E is Borel
reducible to a countable Borel ER.

Corollary 19. If Z is a nontrivial Borel P-ideal and EZ is an essentially
countable ER then Z is Fin or a trivial variation of Fin.

This is true even for Borel ideals which are not P-ideals: in such a general
form the result appears in [7, Corollary 4.2]. To derive this generalization
from Corollary 19, we can use the following two results:
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(1) If a Borel ideal Z is not a P-ideal then EFin×0 is Borel reducible to EZ
(Solecki [7, 8]. The ideal Fin × 0 = I1, consists of all sets x ⊆ N× N
such that x ⊆ {0, 1, . . . , m} × N for some m.)

(2) EFin×0 is not essentially countable.
Proof of Corollary 19. We first prove that

(3) Any countableBorelEREon aPolish spaceS is Borel reducible toD(S)∞.
This is enough to prove the corollary. Indeed, as D(S)∞ clearly belongs
to E, the ideal Z is either 0 × Fin or Fin or a trivial modification of Fin by
Theorem 1. Yet the first option is impossible as it is known that
(4) E0×Fin is not essentially countable.

To prove (3) note that, by a classical theorem of descriptive set theory,
E =

⋃
n En, where each En : S → S is a Borel map (identified with its

graph). For any x ∈ S let ϑ(x) ∈ SN be defined by ϑ(x)n = En(x). Then
{ϑ(x)n : n ∈ N} = [x]E, so that ϑ is a Borel reduction E to D(S)∞, as re-
quired. �

Question 20. Which ideals except for P-ideals satisfy Theorem 1? There
is an interesting Borel ideal whose relations in terms of Borel reducibility are
not yet clear. TheWeyl ideal ZW consists of those sets x ⊆ N which satisfy

lim
n→+∞

supk
#(x ∩ [k, k + n))

n
= 0.

Despite a semblance of the density-0 ideal Z0, ZW has quite different proper-
ties, in particular, it is not a P-ideal. Most likely, EZW is not Borel reducible
to any ER in E, but how to prove this claim?
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