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Abstract: We propose a novel linear time algorithm which, given any directed weighted graphs a
and b with vertex degrees 1 or 2, constructs a sequence of operations transforming a into b. The total
cost of operations in this sequence is minimal among all possible ones or differs from the minimum
by an additive constant that depends only on operation costs but not on the graphs themselves;
this difference is small as compared to the operation costs and is explicitly computed. We assume
that the double cut and join operations have identical costs, and costs of the deletion and insertion
operations are arbitrary strictly positive rational numbers.

Keywords: discrete optimization; exact algorithm; additively exact algorithm; graph transformation;
graph of degree 2; chain-cycle graph; operation cost; minimization of total cost

1. Introduction and Basic Definitions

We consider the problem of constructing an algorithm for efficient solution of the below problem.
We are given directed graphs a and b in which each vertex has degree either 1 or 2 and each edge is
assigned with its unique name, a natural number (in this sense, a graph is referred to as a weighted
graph with unique names). We consider a vertex in a graph as two joined (identified) endpoints of
the adjacent edges. The following operations over such graphs are well known: cut any vertex (Cut)
or join two currently free (i.e., of degree 1) ends (OM); cut a vertex and join one of the thus formed
free ends with any currently free end (SM); cut two vertices and join the four thus formed free ends
(DM). The latter two operations are compositions of the two former ones, but they are considered as
independent operations. These four operations were defined in [1] and are traditionally referred to as
DCJ (i.e., double cut and join) operations; they were depicted in [2] (Figure 1).
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aspects, were overviewed in [5] (Chapter 10) and [6]. A principal distinction between our Theorem 1 
and preceding results is the fact that we do not assume the condition of equal costs of deletion and 
insertion operations, which essentially simplified the problem. In our paper, we assume no 
restrictions on costs of these operations. As before, we still keep the condition of equal costs of DCJ 
operations. Thus, in this paper we prove the following: 

Theorem 1. If DCJ operations have the same cost w and the deletion and insertion operations have arbitrary 
costs wd and wi, then the Algorithm described below in Sections 2, 4, and 5 outputs an additively shortest 
sequence of operations and has linear time complexity. 

We denote the additive exactness constant by k. The proof of the exactness splits into three cases: 
(I) both costs wd and wi are not less than w (then, k ≤ 2w), (II) both are not greater than w (then k = 0), 
or (III) one of them is less and the other greater than w (an expression for k is given at the beginning 
of Section 4). From the description of a problem equivalent to this (Section 2, Stage 0), it follows that 
the two possibilities in the last case are symmetric and, therefore, do not differ from each other. In 
each of the cases, the description of the Algorithm, given in Section 2, slightly changes. The linear 
time complexity of each of these versions of the Algorithm directly follows from its description. The 
arXiv publication [2] is preparatory to the present paper and contains figures illustrating the 
algorithm operation. 

 
Figure 1. Cutting out a conventional b-edge. Singular vertices are marked by large circles. The cases 
differ by the form of edges adjacent to the edge to be cut out. From top to bottom: singular nonhanging 
and conventional; hanging and conventional; both singular nonhanging; hanging and singular 
nonhanging; both hanging; only one singular nonhanging; only one hanging; no adjacent edges. 

2. Description of the Algorithm for Case II 

We list the stages of this algorithm, which are then explained in sequence and in detail below, 
in this section (see also Table 1). 

Stage 0: Transform initial given graphs a and b into the new graph, denoted by a + b below. 
Stage 1.: Cut out conventional edges in a + b. 
Stage 2.0: Solve the integer linear programming problem which outputs the set of disjoint 

elements (each of them consisting of pairs, triples, or quadruples of chains of the current graph) with 
the largest aggregate quality. 

Figure 1. Cutting out a conventional b-edge. Singular vertices are marked by large circles. The cases
differ by the form of edges adjacent to the edge to be cut out. From top to bottom: singular nonhanging
and conventional; hanging and conventional; both singular nonhanging; hanging and singular
nonhanging; both hanging; only one singular nonhanging; only one hanging; no adjacent edges.

There are two more operations: remove (Rem) a connected fragment of edges with names in a but
not in b or, vice versa, insert (Ins) such a fragment with names not in a but in b. When removing a
fragment, the arising free ends are joined; when inserting a fragment, first, some vertex is cut (if it is
not extreme) and, then, after the insertion, two pairs of arising free ends are joined. These operations
are analogous to standard deletion of a subword in a word and to insertion of a word as a subword.
Each operation is assigned with its cost, a strictly positive rational number.

It is required to find a sequence (composition) of these operations with the minimum total cost
which transforms the given graphs a and b, the first into the second. Such a sequence is said to be the
shortest. In [2], previously obtained results were stated in detail and references on this problem were
presented. Among these references, we point out the two latest papers [3,4], which, in turn, contain
further historical references. The previous results concerning this problem and including its applied
aspects, were overviewed in [5] (Chapter 10) and [6]. A principal distinction between our Theorem 1
and preceding results is the fact that we do not assume the condition of equal costs of deletion and
insertion operations, which essentially simplified the problem. In our paper, we assume no restrictions
on costs of these operations. As before, we still keep the condition of equal costs of DCJ operations.
Thus, in this paper we prove the following:

Theorem 1. If DCJ operations have the same cost w and the deletion and insertion operations have arbitrary
costs wd and wi, then the Algorithm described below in Section 2, Section 4, and Section 5 outputs an additively
shortest sequence of operations and has linear time complexity.

We denote the additive exactness constant by k. The proof of the exactness splits into three cases:
(I) both costs wd and wi are not less than w (then, k ≤ 2w), (II) both are not greater than w (then k = 0),
or (III) one of them is less and the other greater than w (an expression for k is given at the beginning of
Section 4). From the description of a problem equivalent to this (Section 2, Stage 0), it follows that
the two possibilities in the last case are symmetric and, therefore, do not differ from each other. In
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each of the cases, the description of the Algorithm, given in Section 2, slightly changes. The linear
time complexity of each of these versions of the Algorithm directly follows from its description.
The arXiv publication [2] is preparatory to the present paper and contains figures illustrating the
algorithm operation.

2. Description of the Algorithm for Case II

We list the stages of this algorithm, which are then explained in sequence and in detail below,
in this section (see also Table 1).

Table 1. Basic parameters predefined in or computed by the Algorithm for Case II. OM, single merging;
SM, sesquialteral intermerging; DM, double intermerging.

Notation Meaning

w Equal costs of the Cut, OM, SM, and DM operations

wd = wa Cost of the Rem operation

wi = wb Cost of the Ins operation

xs
Number of elements corresponding to the 2-interaction

s in the sought-for domain M

t Type of an argument in any 2-interaction; this t is one of
the following types:1a, 1b, 2a, 2b*, 2b’, 3a*, 3a’, 3b, 2, 3.

cts
Number of occurrences of the type t in arguments of

the 2-interaction s

lt
Number of chains of the type t in the breakpoint graph

G’

P(s) Quality of the 2-interaction s

Stage 0: Transform initial given graphs a and b into the new graph, denoted by a + b below.
Stage 1.: Cut out conventional edges in a + b.
Stage 2.0: Solve the integer linear programming problem which outputs the set of disjoint elements

(each of them consisting of pairs, triples, or quadruples of chains of the current graph) with the largest
aggregate quality.

Stage 2.1: For each element in this set, perform the interaction between its chains; the interaction
is uniquely determined by the element and combines the chains of the element into a single chain.

Stage 3: Circularize chains of sizes strictly larger than 0 into cycles, and then break all cycles into
many cycles of size 2; then, remove all singular vertices and loops.

Now, we pass to a detailed description of each stage.
Stage 0: An initial pair of graphs a and b is transformed in linear time into a new («breakpoint»)

graph a + b such that the original problem is equivalent to the problem of reducing a + b to the simplest
form, referred to as final. A final form is a graph consisting of cycles of length 2 (one edge of each cycle is
labeled by a, and the other, by b) and isolated conventional vertices; the definition of «conventional» is
given below. The proof of the equivalence of these two problems literally repeats the proof of Corollary
5 in [7]; that proof used the equality of costs of DCJ operations only, which is assumed in Theorem 1.
In [7], there was also given a linear time algorithm that transforms a solution of the second problem
into a solution of the first (and vice versa).

The definition of the graph a + b is given in [7]; in other variants, it was known from earlier
works, for instance, from [8,9]. We recall the definition from [7], which describes vertices and edges of
a + b. Vertices in a + b are all endpoints of edges that occur in both a and b (they are denoted by ni,
where n is the edge name, i = 1 for a tail of an edge, and i = 2 for its head) and also vertices uniquely
corresponding to every maximal connected segment of edges («block») in either a\b or b\a, which we
label by a or b, respectively. Vertices of the first type are referred to as conventional, and those of the
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second type are referred to as singular. Edges in a + b connect vertices whenever the latter are joined in
a or in b or if an extremity of a block is joined with a vertex in a or in b; edges are labeled by a or b,
respectively. Edges of the first type are said to be conventional, and those of the second type are said to
be singular. If a singular endpoint in a + b is of degree 1, then both the edge and the endpoint itself are
said to be hanging.

An operation o’ over a + b is defined through an operation o over a by commutativity: o’(a + b)
= o(a) + b. Thus, over a breakpoint graph, the five operations listed below are allowed, which are
shown in Figure 5 in [2]. In fact, the number of operations is six, since the fifth one, removal of a
singular vertex, divides into removal of an a-singular vertex, which corresponds to deleting a block in a,
and removal of a b-singular vertex, which is inverse to inserting a block in b.

Double intermerging (DM): deletion of two edges with the same label and joining the four thus
formed endpoints by two new edges with this label. If the operation involves a loop, then its vertex
is regarded as having two endpoints. If two adjacent singular vertices are formed, then the edge
connecting them is deleted and they are merged into a single vertex.

Sesquialteral intermerging (SM): deletion of an edge and adding an edge with the same label
connecting one of the thus formed free ends with a free end of an edge with an alternative label, or with
a hanging or singular isolated vertex with the same label (with possible merging of adjacent singular
vertices).

Single merging (OM): adding an a-edge between free vertices such that each of them is either a
conventional vertex incident to a b-edge or an isolated vertex, a-hanging or a-isolated, with possible
merging of adjacent singular vertices. A similar definition is given with b instead of a.

Cut (Cut): deletion of any edge.
The above-listed operations are referred to as DCJ (or sometimes standard) operations.

A supplementary operation is removal (Rem) of a singular vertex. Namely, if it is of degree 2,
it is removed and the edges incident to it are joined into an edge with the same label; if it is hanging,
it is removed together with the edge incident to it; if it isolated or has a loop, the vertex and the loop
are removed.

Each standard operation is assigned with its original cost w; removal of an a-singular vertex has
original cost wa = wd, and removal of a b-singular vertex has original cost wb = wi.

An inclusion-maximal connected fragment of conventional edges is called a segment; depending
on its length, it can be either even or odd.

The size of a component in a + b is the number of conventional edges plus half the number of
singular nonhanging edges in it. For conventional isolated vertices and loops, the size is defined to be
0, and, for singular isolated vertices, the size is defined to be −1.

Our algorithm successively generates graphs G starting from a + b; all these G are of the form c +

d for their initial graphs c and d; all these G together form a sequence that begins with a + b and ends
with a graph of a final form. Now, we pass to the description of the Algorithm, which consists of three
consecutive stages.

Stage 1: From all components other than cycles of size 2, cut out conventional edges, i.e., apply a
DM to a pair of edges adjacent to the edge to be cut out, or similarly apply an SM or OM if one or two
of the adjacent edges do not exist. Such a derived operation is called cutting out (conventional edges)
(Figure 1).

A chain of an odd (even) size is called odd (even); 0 is an even number, and −1 is odd. The definition
of a type of a chain plays a crucial role. First, assume that a chain does not contain conventional edges.
Then, 1a is an odd chain with one hanging b-edge; 2a* is an odd chain with two hanging b-edges; 2a’ is
a b-singular isolated vertex; 2a denotes type 2a* or 2a’. Type 3a* is an odd chain without hanging edges,
with two extremal a-edges, and having a b-singular vertex; 3a’ is a chain aa; 3a denotes type 3a* or 3a’.
Type 1a* is an even chain with one hanging a-edge that has a b-singular vertex; 1a’ is a hanging a-edge;
1a denotes type 1a* or 1a’. Similar definitions are given with b instead of a. Type 2* is an even chain
with two hanging edges nonincident to each other; 2’ is two hanging edges incident to a common
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conventional vertex; 2 denotes type 2* or 2’. Type 3 is an even chain without hanging edges but having
singular vertices; 0 is a chain without singular vertices. The chain types were presented in Figure 6
in [2]. The type of a chain with conventional edges is defined as the type of a chain obtained by cutting
them out; it does not depend on the order of cuttings (see Lemma 6 in [7]).

A hanging extremity of a chain not of type 0 is an extremity with an adjacent hanging edge or odd
segment. After cutting out this segment, a hanging edge appears. A chain 2a (or 2b, 3a, 3b) is a chain of
type 2a’ (respectively, 2b’, 3a’, 3b’) if and only if it contains b-singular vertices only (a-singular only,
a-singular only, b-singular only). A chain of type 2 is a chain of type 2’ if and only if it contains a
conventional vertex with only a-singular vertices on one side and only b-singular vertices on the other.

An interaction in G is a chain of operations successively applied to G. In Section 3, we introduce
a key notion of P(s), the quality of an interaction s. We also give there a convenient formula for
computing it; see Equation (1b), which is consistent with Equation (1a). A term equality 1a + 1b = 1*

b
means that an interaction is applied to two chains of types 1a and 1b and outputs a chain of type 1*

b.
The same applies for other term equalities that are defined with the help of type designations, the +

sign, and parentheses. Each interaction below corresponds to its term equality, which can be regarded
as a designation (name) of this interaction. In square brackets, we give the interaction quality.

Stage 2: 2-interactions are SM applied to two different chains with the following term equalities
(a cut chain is always given the first; on the right-hand side, we do not present conventional isolated
vertices): 1a + 1b = 1*

b [wa + wb], 3a* + 2b* = 1a [wb], 3a* + 2b’ = 1a [wa], 3a’ + 2b* = 1a [wa], 3a’ + 2b’ =

1’a [wa], 3b + 2a = 1b [wb], 3 + 2 = 1*
b [wa + wb − 1], (1a + 2b*) + 3=1*

b [wa + 2wb − 1], (1a + 2b’) + 3 = 1*
b

[2wa + wb − 1], (1b + 2a) + 3=1*
b [wa + 2wb − 1], (3a* + 1b) + 2 = 1*

b [wa + 2wb − 1], (3a’ + 1b) + 2=1*
b

[2wa + wb − 1], (3b + 1a) + 2=1*
b [wa + 2wb − 1], 1a + 2=2a* [wa + wb − 1], 1b + 2 = 2b* [wa + wb − 1], 3 +

1a = 3a* [wa + wb − 1], 3 + 1b = 3b* [wa + wb − 1], (3b + 1a) + (1a + 2b*) = 1*
b [wa + 3wb − 1], (3b + 1a) +

(1a + 2b’) = 1*
b [2wa + 2wb − 1], (3a* + 1b) + (1b + 2a) = 1*

b [wa + 3wb − 1], (3a’ + 1b) + (1b + 2a) = 1*
b

[2wa + 2wb − 1], 1a + (1a + 2b*) = 2a* [wa + 2wb − 1], 1a + (1a + 2b’) = 2a* [2wa + wb − 1], 1b + (1b + 2a) =

2b* [wa + 2wb − 1], (3b + 1a) + 1a = 3a* [wa + 2wb − 1], (3a* + 1b) + 1b = 3b* [wa + 2wb − 1], (3a’ + 1b) + 1b
= 3b* [2wa + wb − 1], 1a + 2b* = 2 [wb], 1a + 2b’ = 2 [wa], 1b + 2a = 2 [wb], 3a* + 1b = 3 [wb], 3a’ + 1b = 3
[wa], 3b + 1a = 3 [wb], 3 + ((3 + 2b*) + 2a) = 1*

b [wa + 3wb − 2], 3 + ((3 + 2b’) + 2a) = 1*
b [2wa + 2wb − 2],

(3a* + (3b + 2)) + 2 = 1*
b [wa + 3wb − 2], (3a’ + (3b + 2)) + 2 = 1*

b [2wa + 2wb − 2], (3a* + 2) + 2 = 2a* [wa +

2wb − 2], (3a’ + 2) + 2 = 2a* [2wa + wb − 2], (3b + 2) + 2 = 2b* [wa + 2wb − 2], 3 + (3 + 2a) = 3a* [wa + 2wb
− 2], 3 + (3 + 2b*) = 3b* [wa + 2wb − 2], 3 + (3 + 2b’) = 3b* [2wa + wb − 2], (3 + 2b*) + 2a = 2* [2wb − 1],
(3 + 2b’) + 2a = 2* [wa + wb − 1], 3a* + (3b + 2) = 3 [2wb − 1], 3a’ + (3b + 2) = 3 [wa + wb − 1], and OM
with the equalities 1a + 1a = 3a* [wa + wb − 1], 1b + 1b = 3b* [wa + wb − 1].

Two additional 2-interactions are SM with the equalities 3a* + 3b = 3 [wb − wa] and 2a + 2b* = 2*+

1’a [wb − wa] (see Figure 2). Lemma 1 below demonstrates that the quality of a 2-interaction depends only
on types of chains on the left-hand side of a term equality.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 28 

 

Two additional 2-interactions are SM with the equalities 3a* + 3b = 3 [wb − wa] and 2a + 2b* = 2* + 1’a 
[wb − wa] (see Figure 2). Lemma 1 below demonstrates that the quality of a 2-interaction depends only on 
types of chains on the left-hand side of a term equality. 

 
Figure 2. Interactions 3a* + 3b’ = 3 and 2a’ + 2b* = 2 + 1’a. In both cases, sesquialteral intermerging (SM) 

is applied. 

Unlike the algorithms in [2,7], where interactions are performed in the same order as they are 
listed, now, the order of interactions is described in the following nontrivial way: 

Notice 1. Denote the graph obtained after Stage 1 by G’. For each of the above-listed 2-
interactions s, we call its element an unordered pair, triple, or quadruple (depending on the number 
of arguments in the composition of s, which we also denote by s) of chains in G’ that have the same 
types as the types of arguments in s. The pairs, triples, and quadruples of such types themselves will 
be referred to as a polytypes; a type of a chain in a polytype may occur several times. For instance, for 
the interaction f = (1a + 1b = 1*b), its element is any pair of chains of types 1a and 1b, and its polytype 
is the pair {1a,1b} of these types. To each element, precisely one 2-interaction corresponds, which is 
specified by its polytype. The quality of an element is defined to be the quality of this 2-interaction. By 
a domain, we call any set of elements (usually, from different interactions) where the elements are 
disjoint. The quality of a domain M is the aggregate quality of its elements. A domain with the 
maximum quality is called maximal. 

Thus, Stage 2 consists of applying, simultaneously and independently of each other, 2-
interactions corresponding to some maximal domain M for G’ to elements of M.  

Let us find a maximal domain M for G’. To this end, we use integer linear programming (ILP) 
with at most 51 variables and at most 10 nontrivial (i.e., not of the form x ≥ 0) constraints. Namely, to 
each 2-interaction s we assign a nonnegative integer-valued variable xs whose value must be equal to 
the number of elements of this 2-interaction in the sought-for domain M. This condition on the vector 
{xs} is expressed by the following linear relations: for every type t of a chain occurring in G’ and 
corresponding to an argument of one of the 2-interactions, we impose the constraint ts s t

s
c x l⋅ ≤ , 

where cts is the number of occurrences t in the arguments of any 2-interaction s (cts can be 0, 1, or 2), and 
lt is the number of chains of type t in G’. Maximize the target function ({ }) ( )s s

s
F x P s x= ⋅ , where 

P(s) is the quality of a 2-interaction s and the summation is over all 2-interactions. A solution to this 
ILP problem gives a maximal domain M.  

Define autonomous reduction as the following sequence of operations: cut out all conventional 
edges. Circularize chains of sizes strictly larger than 0 into cycles using an OM or SM operation (after 
SM, there remains one extremal vertex or one extremal edge) (see Figure 3a). When circularizing a 
chain of type 2*, choose a variant with joining two b-singular vertices; after circularizing a chain of 
type 3a* or 3b*, cut out the arising conventional edge. Then, break all cycles into cycles of size 2 using 
a DM operation, which cuts out a cycle of size 2 with an a-singular vertex from a cycle (see Figure 
3b). Remove all singular vertices and loops. The autonomous cost A(G) of a graph G is defined as the 
total cost of the sequence of operations in the autonomous reduction of G (see Lemma 1 below).  

Stage 3: Perform autonomous reduction of the remaining components to a final form.  
End of the Algorithm description. 
It follows from the proof presented in Section 3 that, for the graph G’’ obtained after Stage 2, 

there exists no interaction with a strictly positive quality, which is by no means evident a priori. 

Figure 2. Interactions 3a* + 3b’ = 3 and 2a’ + 2b* = 2 + 1’a. In both cases, sesquialteral intermerging (SM)
is applied.

Unlike the algorithms in [2,7], where interactions are performed in the same order as they are
listed, now, the order of interactions is described in the following nontrivial way:

Notice 1. Denote the graph obtained after Stage 1 by G’. For each of the above-listed 2-interactions
s, we call its element an unordered pair, triple, or quadruple (depending on the number of arguments in
the composition of s, which we also denote by s) of chains in G’ that have the same types as the types
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of arguments in s. The pairs, triples, and quadruples of such types themselves will be referred to as a
polytypes; a type of a chain in a polytype may occur several times. For instance, for the interaction
f = (1a + 1b = 1*

b), its element is any pair of chains of types 1a and 1b, and its polytype is the pair
{1a,1b} of these types. To each element, precisely one 2-interaction corresponds, which is specified by its
polytype. The quality of an element is defined to be the quality of this 2-interaction. By a domain, we call
any set of elements (usually, from different interactions) where the elements are disjoint. The quality
of a domain M is the aggregate quality of its elements. A domain with the maximum quality is called
maximal.

Thus, Stage 2 consists of applying, simultaneously and independently of each other, 2-interactions
corresponding to some maximal domain M for G’ to elements of M.

Let us find a maximal domain M for G’. To this end, we use integer linear programming (ILP)
with at most 51 variables and at most 10 nontrivial (i.e., not of the form x ≥ 0) constraints. Namely, to
each 2-interaction s we assign a nonnegative integer-valued variable xs whose value must be equal
to the number of elements of this 2-interaction in the sought-for domain M. This condition on the
vector {xs} is expressed by the following linear relations: for every type t of a chain occurring in G’
and corresponding to an argument of one of the 2-interactions, we impose the constraint

∑
s

cts · xs ≤ lt,

where cts is the number of occurrences t in the arguments of any 2-interaction s (cts can be 0, 1, or 2), and
lt is the number of chains of type t in G’. Maximize the target function F({xs}) =

∑
s

P(s) · xs, where P(s)

is the quality of a 2-interaction s and the summation is over all 2-interactions. A solution to this ILP
problem gives a maximal domain M.

Define autonomous reduction as the following sequence of operations: cut out all conventional
edges. Circularize chains of sizes strictly larger than 0 into cycles using an OM or SM operation
(after SM, there remains one extremal vertex or one extremal edge) (see Figure 3a). When circularizing
a chain of type 2*, choose a variant with joining two b-singular vertices; after circularizing a chain of
type 3a* or 3b*, cut out the arising conventional edge. Then, break all cycles into cycles of size 2 using a
DM operation, which cuts out a cycle of size 2 with an a-singular vertex from a cycle (see Figure 3b).
Remove all singular vertices and loops. The autonomous cost A(G) of a graph G is defined as the total
cost of the sequence of operations in the autonomous reduction of G (see Lemma 1 below).
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Stage 3: Perform autonomous reduction of the remaining components to a final form.
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End of the Algorithm description.
It follows from the proof presented in Section 3 that, for the graph G” obtained after Stage 2,

there exists no interaction with a strictly positive quality, which is by no means evident a priori.
Below, we consider the case wa ≤ wb, since the description of the Algorithm (up to interchanging a

and b) and the subsequent proof do not depend on which of the removal costs is smaller, wa for an
a-singular vertex or wb for a b-singular vertex.

3. Proof of Theorem 1 (Case II)

First, we make an obvious remark concerning the linear runtime of the Algorithm. For Stage 0,
this follows from the fact that a + b is constructed by one-time examination of all components in a
and b. Stage 1 requires one-time examination of all components in a + b. The number of interactions
executed at Stage 2 is linear, since each of them reduces the number of chains in the corresponding
graph, and each interaction is executed in constant time. Similarly, the number of operations executed
at Stage 3 is linear, since each of them reduces the number of singular vertices or the number of
chains. Linear runtime of solving the ILP problem at Stage 2 follows from [10], where it was shown
that the time required for solving an ILP problem with a fixed number of variables and constraints is
polynomial in the logarithm of the maximum absolute value of a coefficient of the problem. In our
problem, this coefficient is not greater than the problem size.

The rest of this section is devoted to the proof of additive exactness of the Algorithm.
If, when executing a standard operation, singular vertices are joined, the operation is said to be
special; otherwise, it is nonspecial; a removal operation is special by definition.

Clearly, we may assume that w = 1. For a graph G, we use the following notation: d is the total size
of all components in it (we call it the size of G), f is the number of odd chains, c is the number of cycles
(excluding loops), B is the number of singular vertices, S is the sum of integral parts of halved segment
lengths plus the number of extremal (on a chain) odd segments minus the number of cyclic segments,
D is the number of chains of types 1a, 1b, 3a, 3b, and 3, and Kb is the number of components containing
a b-singular vertex.

Lemma 1. Let wa and wb be the removal costs for singular a- and b-vertices, wa ≤ wb, and let all other operations
have cost 1. Then, the autonomous cost A(G) of a graph G is

A(G) = (1 − wa)·(0.5d + 0.5f − c) + wa·(B + S+D) + (wb − wa)·Kb. (1a)

Proof. Denote the right-hand side of this equality by A’(G). Let us check the equality for each component
of the graph separately and then sum up the obtained equalities. Denote by Ib the indicator function
which is 1 if G contains a b-singular vertex and 0 otherwise. �

(1) For a conventional isolated vertex, the equality is trivial, since A’(G) is equal to wa for an a-loop
and wb for a b-loop. For a singular isolated vertex (odd chain), we have d = −1, f = 1, and B = 1; for a
b-isolated vertex, Kb = 1 and the other quantities are zero. A’(G) is equal to wa for an a-isolated vertex
and wb for a b-isolated vertex, as well as A(G).

(2) For a cycle without singular edges (and hence without singular vertices), we have d > 0 and d
even, c = 1, S = 0.5d – 1; the other quantities are zero, and A’(G) = 0.5d − 1. Autonomous reduction
includes only cutting out conventional edges by a DM operation. Each cutting reduces a large cycle by
2 edges; the last cycle requires no operation. Therefore, 0.5d − 1 DM operations are executed.

(3) For a cycle with singular edges, we have d > 0 and d even, B > 0, S ≥ 0, c = 1, Kb = Ib, and the
other quantities are zero; A’(G) = (1 − wa)(0.5d − 1) + wa(B + S) + (wb − wa)Ib. When cutting out
conventional edges, the size d of a graph does not change. Each cutting out a conventional edge or a
cycle of size 2 reduces the size of a large cycle by 2; the last cycle requires no operation. Thus, 0.5d −
1 DM operations are executed. The number of nonspecial operations among them is S, since every
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segment of length l for an even l requires 0.5l nonspecial cuttings, and, for an odd l, l − 0.5(l − 1)
nonspecial cuttings and one special cutting. Therefore, the number of Rem operations is B − (0.5d − 1
− S) (the number of b-removals among them is Ib), and A(G) = 0.5d − 1 + wa(B − (0.5d − 1 − S) − Ib) +

wbIb = A’(G).
(4) For an odd chain without singular edges, we have d > 0 and d odd, f = 1, S = 0.5(d + 1) (such

a chain is an extremal odd segment), and the other quantities are zero. Its autonomous reduction
requires only DM operations, i.e., cutting out conventional edges, and, at the end, when a conventional
edge without adjacent conventional edges remains, one OM. Each DM separates a final ab cycle from a
current chain, and the chain length (equal to its size) reduces by 2. Therefore, 0.5(d + 1) operations are
required in total, which equals A(G), since the cost of a standard operation is 1. For A’(G), we obtain the
same quantity.

(5) For an odd chain with singular edges, we have d > 0 and d odd, f = 1, B > 0, D is either 0 or 1, S
≥ 0, Kb = Ib, and the other quantities are zero. Cutting out conventional edges requires S nonspecial
DM or SM operations. After the cuttings, a chain either has an odd size strictly greater than 0 or
turns into a singular isolated vertex. In the first case, the chain is circularized into a cycle by a special
OM (if D = 0) or by a nonspecial OM (if D = 1), after which the obtained cycle is finalized by special
operations (this cycle may contain only one conventional edge, namely, the one by which the chain was
circularized into a cycle). Every standard operation in autonomous reduction increases the number of
cycles in the graph by 1, an OM increases the graph size by 1, and a DM or SM does not change it.
Thus, finally, the graph size becomes d + 1, and it contains 0.5(d + 1) cycles of size 2. In the second case,
the graph size remains to be d, and it also contains 0.5(d + 1) cycles of size 2 formed when making
cuttings (a singular isolated vertex is of size −1 and D = 0). Since the initial graph had no cycles, 0.5(d +

1) standard operations are made in total, S + D among them being nonspecial. Therefore, the number
of Rem operations is B − (0.5d + 0.5 − S − D) (the number of b-removals among them is Ib), and A(G) =

0.5(d + 1) + wa(B − (0.5d + 0.5 − S − D) − Ib) + wbIb = A’(G).
(6) For an even chain without singular edges, we have d > 0 and d even, S = 0.5d, and the other

quantities are zero. Its autonomous reduction requires only DM operations, cuttings of conventional
edges. Each of them separates an ab cycle from the current chain; therefore, the length of the chain,
equal to its size, reduces by 2. Therefore, in total, A(G) = 0.5d operations are executed. For A’(G),
we obtain the same quantity.

(7) For an even chain with singular edges, we have d > 0 and d even, B > 0, D is either 0 or 1, S ≥ 0,
Kb = Ib, and the other quantities are zero. Cutting out conventional edges requires S nonspecial DM or
SM operations. After a cutting, the chain has an even size either strictly greater than 0 or equal to 0. In
the first case, the chain is circularized by a special SM (if D = 0) or a nonspecial SM (if D = 1), after which
the obtained cycle is finalized by special operations. Every standard operation in the autonomous
reduction increases the number of cycles in the graph by 1, and a DM or SM does not change the size
of the graph. Therefore, finally, the graph size remains to be d, and it contains 0.5d cycles of size 2.
The same happens in the second case. Since the initial graph had no cycles, in total, 0.5d standard
operations are applied, S + D among them being nonspecial. Thus, the number of Rem operations is B
− (0.5d − S − D) (the number of b-removals among them is Ib), and A(G) = 0.5d + wa(B − (0.5d − S − D)
− Ib) + wbIb = A’(G).

Recall that an interaction in G is a sequence s of operations successively applied to G. The quality
P(s) of an interaction s is defined as

P(G,s) = A(G) − A(s(G)) − c(s), (1b)

where s(G) is the graph obtained after applying the composition s to G, and c(s) is the total cost of
operations in s. The quality shows what total cost can be saved by using the interaction s as against the
autonomous reduction of G, i.e., without using s. By examining all 2-interactions (see the example
below), we check that P(G,s) is determined by the polytype of the 2-interaction, consisting of the types
of its arguments or, equivalently, by the corresponding term equality. Accordingly, the quality of an
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element α (for the substitution in s) is determined by its polytype, which coincides with the polytype
of s itself.

In this way, we computed the qualities of 2-interactions that were presented above, after each
of them, in square brackets. For instance, let us find the quality of the interaction 1a + 1b = 1b

*

(Figure 4), c(s) = 1, and the operation is special (generally, all operations of Stage 2 are special). This
2-interaction does not change the values of d, c, and S, reduces B and Kb by 1, and reduces D and f by 2.
Hence, P(s) = wa + wb.
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Let E be any reducing sequence for a graph G, which is arbitrarily divided into connected
fragments of operations; we call them interactions here and denote by s. Denote by T(R,E) the total
cost of operations in a reducing subsequence which starts in E with some intermediate graph R and
continues to a final form. Denote by P(R,E) the aggregate quality of all interactions in E starting from
R, where P(s) is formally defined in Equation (1b).

Lemma 2. For any graph G, we have T(G,E) = A(G) − P(G,E).

Proof. It suffices to check A(R) − T(R,E) = P(R,E). This is proven by induction on the number of
interactions from the end of the sequence E. If R is of a final form, all the three quantities are zero.
Let A(R’) − T(R’,E) = P(R’,E) for a subsequence starting with a graph R’ next to R. Let s be an interaction
taking R into R’, c(s) be the total cost of its operations, and P(s) be its quality, defined formally by (1’).
Then P(R,E) = P(R’,E) + P(s), T(R,E) = T(R’,E) + c(s), and P(s) = A(R) − A(R’) − c(s). Hence, A(R) −
T(R,E) = A(R’) + c(s) + P(s) − T(R’,E) − c(s) = A(R’) − T(R’,E) + P(s) = P(R’,E) + P(s) = P(R,E). �

If E is a sequence of operations constructed by the Algorithm, then it contains 2-interactions,
and all other operations (i.e., those from Stages 1 and 3) by Equation (1b) have formal
quality 0 (for uniformity, these operations can be viewed as formal interactions).

Notice 2. Thus, P(G) is the aggregate quality of 2-interactions (equivalently, interactions in all
stages of the algorithm), equal (!) to the quality of the maximal domain on chains in the initial a + b
(equivalently, on chains after all cuttings of Stage 1).

By Lemmas 1 and 2,

T = T(G) = (1 − wa)·(0.5d + 0.5f − c) + wa·(B + S+D) − P(G) + (wb − wa)·Kb (2)

is the total cost of operations of the algorithm on a graph G. Denote the first and second term in this
expression by T’ and T” respectively.

Now, we use the following important equivalence:
Exactness of the algorithm is equivalent to the triangle inequality: for any operation o and any

graph G, we have
c(o) ≥ T(G) − T(o(G)),

where o(G) is the result of applying o to G.
The proof is performed by induction on C(G), the minimum total cost over all reducing sequences.

If G is of a final form, then T(G) ≤ C(G) (let a reducing sequence be empty). Consider some nonempty
shortest reducing sequence for G, and denote the first operation in it by o. By the induction hypothesis,
T(o(G)) ≤ C(o(G)). Then, by this inequality, T(G) = c(o) + T(o(G)) ≤ c(o) + C(o(G)) = C(G), i.e., T(G) =

C(G). The converse is even simpler, but we use only this implication. Note that this argument works
for any algorithm, not only for the one described above.
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Thus, to complete the proof of Theorem 1, it remains to check the triangle inequality for each of
the above-mentioned operations o.

1. o is the Rem operation. When passing from G to o(G), B reduces by 1. Consider several cases.
1.1. An isolated singular vertex is removed (chain of type 2a’ or 2b’). Then S, D, and c do not

change; d increases by 1; f reduces by 1. P does not increase when removing any chain. Therefore, T’ +

T” − P reduces by at most wa. If a b-vertex is removed, then Kb reduces by 1 and T reduces by at most
wb.

1.2. A singular vertex is removed from a cycle, or a loop is removed. Then, S does not reduce.
1.3. An interior singular vertex (i.e., on both sides of it there are other singular vertices) is removed

from a chain. The type of the chain does not change, changes from 3b* to 3b’, or changes from 2a* to 2a’.
Then, P does not increase, since no element increases its quality when making this change.

1.4. A hanging vertex which is the only singular vertex in a chain is removed from the chain.
Then, S and D do not reduce, and Kb reduces by 1 if a b-vertex is removed.

1.5. A hanging vertex that is not unique in a chain is removed from the chain. If, when passing
from G to o(G), S does not change (the segment adjacent to the hanging edge is even), then the
hanging extremity becomes nonhanging, and the following changes in the type of the chain are
possible: 1a changes into 3a, 1b changes into 3b, 2 changes into 1, 2a changes into 1a, 2b changes into
1b, or 1 changes into 3. In the first three cases, D does not change and P does not increase. Indeed,
all elements containing type 1a do not increase their quality when making the change from 1a to 3a;
the same applies to the two other changes. In the last three cases, D increases by 1, P either does not
change or increases by at most wa (consider the inverse change), and all other quantities do not change.
Then, T’ + T” − P reduces by at most wa. If S increases by one (the segment adjacent to the hanging
edge is odd), then the hanging extremity remains to be hanging, and the type of the chain does not
change. Therefore, D and P do not change.

1.6. A nonhanging exterior singular vertex (on the right or on the left of it there are no other
singular vertices) is removed from a chain, and it is the only singular vertex in the chain. Then, the
chain has one of the types 3a, 3b, 2a, 2b, or 1, since, after cutting out conventional edges, we obtain a
chain with one singular vertex, and P does not increase. If the chain is of type 3a or 3b, then S increases
by 1, since both segments adjacent to the removed vertex are even and the resulting segment is odd,
and D reduces by 1. If the chain is of type 2a, 2b, or 1, then D and S do not change (in the cases of 2a or
2b, two odd segments are replaced with one odd; in the case of 1, one even and one odd segments are
replaced with one even). Therefore, T’ + T” − P reduces by at most wa.

1.7. A nonhanging exterior singular vertex is removed from a chain, and it is not a unique singular
vertex in the chain. If, when passing from G to o(G), S does not change (the extremal segment is
odd, and the next one is even), then the hanging extremity becomes nonhanging, and we repeat
the arguments from case 1.5. If S increases by 1, then either the type of the chain does not change
(then, T’ + T” − P does not change) or (if both segments adjacent to the removed vertex are even) the
nonhanging extremity becomes hanging. Then, one of the following changes in the type of the chain is
possible: 1a changes into 2a, 1b changes into 2b, 3 changes into 1, 3a changes into 1a, 3b changes into 1b,
or 1 changes into 2. In the first three cases, D reduces by 1 and P does not increase. In the last three
cases, D does not change and P either does not change or increases by at most wa. Thus, in all cases,
T’ + T” − P reduces by at most wa.

2. o is an OM.
2.1. Extremities of one chain are joined. This is possible for odd chains only. Then, d increases by

1, f reduces by 1, and c either increases by 1 or does not change, such that T’ either reduces by 1 − wa or
does not change. Consider possible chain types. For a chain of type 0, S reduces by 1, since an odd
segment turns into a cyclic one of length greater by 1. Then, T reduces by 1 (now, c(o) = 1). For a
chain of type 1a or 1b, B and S do not change, D reduces by 1, and P either does not change or reduces
by at most wa + wb. Therefore, T changes by at most 1. For types 2a or 2b, D does not change and P
either does not change or reduces by at most wb. If at both ends of the chain there are hanging edges,
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then after joining their endpoints, B reduces by 1 and S does not change. If at least on one side there is
an odd extremal segment, then B does not change and S reduces by 1. For types 3a or 3b, B and S do not
change, D reduces by 1, and P either does not change or reduces by at most wb. Therefore, T changes
by at most 1.

2.2. Extremities of different chains are joined. In Table 2, we present results of joining the endpoints
of nonhanging edges labeled with a or of hanging edges labeled with b (the added edge is labeled by b).
Such a join is referred to as a b-join (similarly for an a-join). The result of an a-join coincides with the
result of a b-join obtained by interchanging the labels a and b in chains.

Table 2. Results of joining extremities of chains with types specified in a row and column; the type of
resulting chain is given at the bottom of a cell.

0a 0 1a 1a’ 2a*,2a’ 3a*,3a’ 1,1\b 1’,1’\b 2 3

0a
(0)
[0]
0a

(0)
[0]
0

(0)
[0]
1a

(0)
[0]
1a’

(0)
[0]

2a*,2a’

(0)
[0]

3a*,3a’

(0)
[0]
1

(0)
[0]
1

(0)
[0]
2

(0)
[0]
3

0
(0)
[0]
0

(+1)
[0]
0b

(0 . . . +1)
[0 . . . –1]

3

(0 . . . +1)
[0 . . . –1]

2

(0 . . .
+wba)
[0 . . .
–wba]

1

(0 . . .
+wba)
[0 . . .
–wba]

1

(+1 . . .
1–wba)
[0 . . .
+wba]
3b*,3b’

(+1 . . .
1–wba)
[0 . . .
+wba]
2b*,2b’

(+1 . . . 0)
[0 . . .
+1]
1b

(+1 . . . 0)
[0 . . .
+1]
1b

1a
(0)
[0]
1a

(0 . . . +1)
[0 . . . –1]

3

(–1 . . .
+wa)

[1–wa–wb
. . .

–wa–1]
3a*

(–wb . . .
+wa)
[0 . . .

–wa–wb]
1a

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
+wab)
[0 . . .

–wa–wb]
3a*

(–wba . . .
1–wba)

[0 . . . –1]
3

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

(–wb . . .
+wa)
[0 . . .

–wa–wb]
3

1a’
(0)
[0]
1a’

(0 . . . +1)
[0 . . . –1]

2

(–wb . . .
+wa)
[0 . . .

–wa–wb]
1a

(–1 . . .
+wa)

[1–wa–wb
. . .

–wa–1]
2a*

(–wba . . .
+wab)
[0 . . .

–wa–wb]
2a*

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–wba . . .
1–wba)

[0 . . . –1]
2

(–wb . . .
+wa)
[0 . . .

–wa–wb]
2

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

2a*,2a’
(0)
[0]

2a*2a’

(0 . . .
+wba)
[0 . . .
–wba]

1

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
+wab)
[0 . . .

–wa–wb]
2a*

(–wba . . .
0)

[0 . . .
–wba]
2a*,2a’

(–wba . . .
wa)

[wa . . .
–wba]

1a

(–wba . . .
0)

[0 . . .
–wba]

1

(wab . . .
–wba)

[–wba . . .
wab]

2

(–wba . . .
0)

[0 . . .
–wba]

2

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

3a*,3a’
(0)
[0]

3a*3a’

(0 . . .
+wba)
[0 . . .
–wba]

1

(–wba . . .
+wab)
[0 . . .

–wa–wb]
3a*

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
wa)

[wa . . .
–wba]

1a

(–wba . . .
0)

[0 . . .
–wba]
3a*,3a’

(wab . . .
–wba)

[–wba . . .
wab]

3

(–wba . . .
0)

[0 . . .
–wba]

1

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

(–wba . . .
0)

[0 . . .
–wba]

3

1,1\b
(0)
[0]
1

(+1 . . .
1–wba)
[0 . . .
+wba]
3b*,3b’

(–wba . . .
1–wba)

[0 . . . –1]
3

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–wba . . .
0)

[0 . . .
–wba]

1

(wab . . .
–wba)

[–wba . . .
wab]

3

(1–wba
. . .

1–2wba)
[0 . . .
+wba]
3b*,3b’

(1–wba+wa
. . .

1–wba–wb)
[0 . . .

wa+wb]
1b

(1–wba
. . . –wba)

[0 . . .
+1]
1b

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

3b

1’,1’\b
(0)
[0]
1

(+1 . . .
1–wba)
[0 . . .
+wba]
2b*,2b’

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–wba . . .
1–wba)

[0 . . . –1]
2

(wab . . .
–wba)

[–wba . . .
wab]

2

(–wba . . .
0)

[0 . . .
–wba]

1

(1–wba+wa
. . .

1–wba–wb)
[0 . . .

wa+wb]
1b

(1–wba
. . .

1–2wba)
[0 . . .
+wba]
2b*,2b’

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

2b*

(1–wba
. . . –wba)

[0 . . .
+1]
1b

2
(0)
[0]
2

(+1 . . . 0)
[0 . . .
+1]
1b

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

(–wb . . .
+wa)
[0 . . .

–wa–wb]
2

(–wba . . .
0)

[0 . . .
–wba]

2

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

(1–wba
. . . –wba)

[0 . . .
+1]
1b

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

2b*

(1–wb . . .
–1)

[–wa . . .
2–wa–wb]

2b*

(–wb . . .
wa)

[1 . . .
1–wa–wb]

1b

3
(0)
[0]
3

(+1 . . . 0)
[0 . . .
+1]
1b

(–wb . . .
+wa)
[0 . . .

–wa–wb]
3

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

(–wba . . .
0)

[0 . . .
–wba]

3

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

3b

(1–wba
. . . –wba)

[0 . . .
+1]
1b

(–wb . . .
wa)

[1 . . .
1–wa–wb]

1b

(1–wb . . .
–1)

[–wa . . .
2–wa–wb]

3b
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Define types of extremities: 0a is an extremity of an odd chain of type 0, 0 is an extremity of an even
chain of type 0, 1a is a hanging extremity of a chain of type 1a, 1a’ is a nonhanging extremity of a chain
of type 1a, 2a* is an extremity of a chain of type 2a* (respectively, 2a’), 3a* is an extremity of a chain
of type 3a* (respectively, 3a’), 1 is a hanging extremity of a chain of type 1 with singular b-vertices,
1’ is a nonhanging extremity of a chain of type 1 with singular b-vertices (respectively, 1\b and 1’\b
are extremities of chains of type 1 without singular b-vertices), 2 is an extremity of a chain of type
2, and 3 is an extremity of a chain of type 3.

Denote by ∆X the increment of X, i.e., the difference of values of X when passing from G to o(G),
∆X= X(o(G)) − X(G). In Table 2, we present number segments which contain all possible increments of
T (in parentheses) and P (in square brackets) from Equations (1a)–(2) when joining an extremity of
a chain with the row name and an extremity of a chain with the column name, i.e., when passing
from G to o(G). These segments are merely lower and upper estimates for T and P, which is sufficient
for the following step. The increments are given as functions of the costs wa and wb. At the bottom
of the same cell, we give the type of the chain obtained as a result of this passing, i.e., joining the
initial chains. For instance, joining the extremity 2a* or 2a’ with any extremity has the same increment
of all arguments in Equation (1a) except for ∆Kb, and the corresponding ∆P is given in the cells of
row {2a*, 2a’} in Table 2. Here, wb,a is equal to wb for 2a* and wa for 2a’. Similarly, this applies to the
pairs 3a* and 3a’, 1 and 1\b, and 1’ and 1’\b. Next, (0) means that the corresponding quantity “does
not change”, (−wa) means “reduces by at most wa”, (+wa) means “increases by at most wa”, (1 − wa)
means “increases by at most 1 − wa”, etc.; an ellipsis denotes numbers between the ends of the given
number segments. Bounds for ∆T are easily computed through bounds for ∆P and increments of other
arguments in Equation (2), with the latter being easy to find.

Thus, the problem consists precisely of estimating ∆P. For that, we use a functional P−(M,M1),
where M is a set consisting of two chains in G whose types are the one from the row name and the
one from the column name, while M1 consists of a single chain in G with the name given in the
corresponding cell. The functional itself is the minimum increment of P when replacing M with M1 over
all graphs G containing M. Given the functional P−(M,M1), one can compute a functional P+(M,M1)
as a function of wa and wb which is the maximum increment of P when replacing M with M1 over all
graphs G containing M. Specifically, we have the equality P+(M,M1) = −P−(M1,M). Note that Table 2 is
symmetric around the main diagonal.

Thus, to compute P−(M,M1), we need Lemma 3 below, where M consists of different chains,
denoted by 1 and 2, and M1 consists of one corresponding chain, denoted by 3. If D is a maximal
domain in a graph G containing M, we denote by G’ the graph that contains all chains from M and all
chains from elements in D which intersect with M. These elements themselves form a maximal domain
D’ in G’. Indeed, if D’ is not maximal, strictly extend it to a maximal domain in G’, which together with
elements in D\G’ forms a domain in G with quality strictly greater than that of D, a contradiction.

Lemma 3. We have P(o(G)) − P(G) ≥ P(o(G′)) − P(G′).

Proof. Recall that such a difference was called the increment of the corresponding quantity. Denote the
left-hand side of the inequality by d, and the right-hand side, by d’. Consider D\D’ (elements of D that
do not contain chains 1 and 2), D1, a maximal domain in o(G’), and D2, the result of replacing D’ with
D1 in D. Then, d ≥ P(D2) − P(D) = P(D1) − P(D’), since P(D2) = P(D1) + P(D2\D1) and P(D) = P(D’) +

P(D2\D1). �

Thus, we want to find minG′P(o(G′)) − P(G′). Let X be a set containing at most two polytypes
α* and β* (one for each element of D’), and let Y be a set containing at most four of the types of
which these polytypes are composed (types of the chains contained in the corresponding elements
of D’) and also containing the types of the initial chains 1 and 2. There exists a G” for which these
polytypes correspond to disjoint elements, and for such a G” the pair D” = {α*, β*} is a polytype of a
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domain in G”, not necessarily maximal. In the last case,
∑
α∗∈X

P(α∗) is smaller than the quality P(G”),

and such an X is inessential when searching for the minimum. Given G”, we form the corresponding
o(G”) and find in it an actual maximal domain and the quality P(o(G”)), i.e., the minuend is definitely
correct, and the subtrahend may be smaller than required. Note that P(D’) = P(D”), as well as for other
domains, since the quality of any domain does not change when changing chains but preserving their
types. Through an exhaustive search over all such X, we find the desired lower bound; in this way,
Table 2 is filled. Take note that the number of possible sets X is not greater than the squared number of
interactions, and X contains at most eight types. Therefore, due to an exhaustive search over all X and
finding a maximal domain in o(G”), computing P-(M,M1), takes constant time.

Note that if the initial chains are even, then T’ increases by 1 − wa; otherwise, it does not change;
simple observations of this kind are omitted in what follows. Let us show how seven cells in Table 2
are filled, with the other being filled similarly.

(1) Cell 1a,1a. After the join, we obtain a chain of type 3a*. If the initial chains have hanging edges,
then B reduces by 1 and S does not change. If at least one of the initial chains has an odd extremal
segment, then, vice versa, B does not change and S reduces by 1, D reduces by 1, and Kb reduces by
1. Therefore, T + P reduces by wa + wb. Our functionals are as follows: P−(1a,1a; 3a*) = −wa − 1 and
P+(1a,1a; 3a*) = min(1 − wa − wb,0). In other words, either P reduces by at least wa + wb − 1 but at
most wa + 1 (if wa + wb − 1 > 0), or P does not increase and reduces by at most wa + 1 (otherwise).
Therefore, we have |∆T| ≤ 1.

(2) Cell 1a,2. After the join, we obtain a chain of type 1 (it is not involved in interactions).
Similarly to case (1), we obtain that T + P reduces by wa + wb. We have P−(1a,2; 1) = −wa − wb, P+(1a,2;
1) = min(1 − wa − wb,0). In other words, either P reduces by at least wa + wb − 1 (if wa + wb − 1 > 0) but
at most wa + wb, or P does not increase and reduces by at most wa + wb (otherwise). Therefore, |∆T| ≤ 1.

(3) Cell 2a,3a. After the join, we obtain a chain of type 1a. Then, T + P reduces by wb − wa if the
type of the 3a-chain is 3a* and does not change if it is 3a’. We have P−(2a,3a*; 1a) = −wb, P−(2a,3a’; 1a) =

−wa, P+(2a,3a*; 1a) = wa, and P+(2a,3a’; 1a) = wa. In other words, P reduces by at most wb in the first
case and by at most wa in the second and increases by at most wa in both cases.

(4) Cell 2a,1’. After the join, we obtain a chain of type 2. Then, B, S, and D do not change. We have
P–(2a,1; 2) = −wb, P+(2a,1; 2) = max(wa + wb − 1,0).

(5) Cell 1,3. After the join, we obtain a chain of type 3b. The increment of T + P is 1 − wb if the
chain of type 1 contains a b-vertex, and 1 − wa otherwise. We have P−(1,3; 3b) = min(1 − wa − wb,0) and
P+(1,3; 3b) = wb. Subtracting from the increment of T + P three possible increments of P, equal to 1 −
wa − wb, 0, or wb, we obtain a number of absolute value no greater than 1.

(6) Cell 2,2. After the join, we obtain a chain of type 2b*. The increment of T + P is 1 − wa − wb.
We have P−(2,2; 2b*) = −wa and P+(2,2; 2b*) = 2 − wa − wb. Subtracting from the increment of T + P all
possible increments of P, equal to −wa or 2 − wa − wb, we obtain a number of absolute value no greater
than 1.

(7) Cell 2,3. After the join, we obtain a chain of type 1b. The increment of T + P is 1 − wb. We have
P−(2,3; 1b) = min(1 − wa − wb,0) and P+(2,3; 1b) = 1. Subtracting from the increment of T + P all possible
increments of P, equal to 1 − wa − wb, 0 or 1, we obtain a number of absolute value no greater than 1.

Thus, the result for OM follows from the fact that, according to Table 2, T changes by at most 1.
The next simple lemma is used in what follows.

Lemma 4. Let X(G) be a function of a graph G, and let ∆X(G,G1) be its increment when passing from G to G1.
Then,

1. ∆X(G,G1) = −∆X(G1,G). In particular, if o is an operation, then ∆X(G,o(G)) =

−∆X(o(G),G). If o is a composition of operations o1 and o2 (first o1 and then o2), then
∆X(G,o(G)) = ∆X(G,o1(G)) + ∆X(o1(G),o(G)).

2. For any graphs G and G1 and any operations o and o1, if ∆X(G,G1) = ∆X(o(G),o1(G1)), then ∆X(G,o(G))
= ∆X(G1,o1(G1)).
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Proof. The first claim is obvious. The second follows from the equalities ∆X(G,o(G)) = ∆X(G,G1) +

∆X(G1,o1(G1)) − ∆X(o(G),o1(G1)) = ∆X(G1,o1(G1)). �

3. o is a Cut. This operation is the inverse to OM; thus, the result follows from case 2 and Lemma
4.1.

4. o is an SM. Represent o as a composition of a cut and a join. By Lemma 4.1, the increment
obtained in a composition of operations is the sum of increments obtained in each of them.

4.1. Reversal (i.e., rearrangement of a connected fragment of edges in reverse order at the same
place) of an extremal fragment of the chain. Denote by 1 and 2 the extremities of the reversed fragment
and, by 2’, the arising free endpoint of the remaining chain. Consider two joins: the first is the inverse
to the cut (the first operation of the reversal), and the second is the join from the reversal. They are
either both a- or both b-joins. We go over all rows of Table 2 in the role of the endpoint 2’ and over
pairs of columns as the extremities 1 and 2; the latter are either of types 1a or 1a’ or they are a pair of
identical extremities of types 0a, 2a*, 2a’, 3a*, or 3a’. The increment of T when making a cut is opposite
to the increment of T when joining 2 and 2’, as for any mutually inverse operations. By Lemma 4.1 it
suffices to check the following: when joining the extremities 2 and 2’ and extremities 1 and 2’, we obtain
increments with the absolute value of their difference no greater than 1.

Let us give examples; other pairs of joins are considered similarly. Cases of a-joins are considered
analogously to b-joins.

(1) The pair of cells 1a,1a and 1a,1a’ defines two joins: 2’ = 1a, 2 = 1a, 1 = 1a’. For the first of
them, ∆T and ∆P are, respectively, −1 + x and 1 − wa − wb − x with 0 ≤ x ≤ wa + 1; for the second,
these increments are −wb + y and 0 − y with 0 ≤ y ≤ wa + wb. The difference of increments of T is
strictly greater than 1 in absolute value if x − y > 2 − wb or x − y < −wb (this region in the x,y plane is
called forbidden). This difference is equal to the increment of T upon the reversal, and we want to show
that the forbidden region is empty. The difference R of increments of P (the second minus the first) is
x − y + wa + wb − 1. In the forbidden region, R > wa + 1 or R < wa − 1. However, R is equal to the
increment of P resulting when making the reversal. The reversal result is obtained by replacing a chain
of type 3a* (the result of joining the extremities 2 and 2’) with a chain of type 1a (the result of joining
the extremities 1 and 2’). This increment of P lies in the segment [0,wa], since P−(3a*; 1a) = 0 and P+(3a*;
1a) = wa. Hence, the forbidden region is empty. Computation of P−(M;M1) in the cases where |M| = 1
or |M1| = 2 is performed as in Lemma 3.

(2) The pair of identical cells 1a,3a defines two joins: 2’ = 1a, 2 = 3a, 1 = 3a. For these joins,
∆T is either −wb + x and −wb + y (if the 3a chain is of type 3a*) or −wa + x and −wa + y (if this chain
is of type 3a’). Although both joins are made according to the same cell, ∆T takes different values
within the same segment because of other parameters of the graph. Respectively, ∆P is 0 − x and 0 − y.
The forbidden region, which is shown to be empty, is as follows: x − y > 1 or x − y < −1. We have R = x
− y. However, R is equal to the increment of P upon the reversal (replacing a chain 3a* (the result of
joining the extremities 2 and 2’) with a chain 3a* (the result of joining the extremities 1 and 2’)), i.e.,
it is zero.

4.2. Circularization of an extremal fragment of a chain, i.e., the composition of a cut of the chain
with closing one of the parts into a cycle or loop by a join. Denote by 1 and 2 the extremities of
the circularized fragment and, by 2’, the arising free endpoint of the remaining part of the chain.
Consider two joins: the first is the inverse to the cut (the first operation of the circularization), and the
second is the join from the circularization. They are either both a- or both b-joins.

Let us make Table 3 for closing a chain into a cycle, analogous to Table 2, following the description
given in case 2.1. In Table 3, for each odd type of a chain, we give an interval of possible increments of
T and the corresponding interval of increments of P when closing this chain into a cycle by a join.
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Table 3. Increments of T and P when circularizing a chain by joining extremities.

0 1a, 1b 2a, 2b 3a, 3b

(wa − 1) (−1 . . . wa + wb − 1) (−1 . . . wb − 1) (−1 . . . wb − 1)
[0] [0 . . . −wa − wb] [0 . . . −wb] [0 . . . −wb,]

In Table 2 we go over all rows in the role of extremity 2’ and all columns in the role of extremity
2, the latter for all types of extremities of odd chains. By Lemma 4.1, it suffices to check the
following condition:

The absolute value of the difference of ∆T for joins of 2 and 2’ and joins of 1 and 2 is at most 1. (3)
Let us give examples; other pairs of joins are considered similarly. Cases of a-joins are considered

analogously to b-joins.
(1) Cell 0,1a (i.e., 2’ = 0, 2 = 1a, 1 = 1a’). Here, ∆T and ∆P are, respectively, 0 + x and 0 − x, and, in

Table 3, for chain 1a, these increments are −1 + y and 0 − y. The forbidden region for condition (3) is as
follows: x − y > 0 or x − y < −2. The difference R of increments of P is x − y. In the forbidden region,
we have, respectively, R > 0 or R < −2. However, R is equal to the increment of P when replacing a
chain of type 3 (the result of joining the extremities 2 and 2’) with a chain of type 0 (the result of joining
the extremities 1 and 2) and cannot take these values. Therefore, the forbidden region is empty.

(2) Cell 1a,1a (i.e., 2’ = 1a, 2 = 1a, 1 = 1a’). Here, ∆T and ∆P are, respectively, −1 + x and 1 − wa

− wb − x. The forbidden region for condition (3) is as follows: x − y > 1 or x − y < −1; R = x − y +

wa + wb − 1. In the forbidden region, R > wa + wb or R < wa + wb − 2. However, R is equal to the
increment of P when replacing a chain of type 3a with a chain of type 1a and cannot take these values.
Therefore, the forbidden region is empty.

(3) Cell 2,3a (i.e., 2’ = 2, 2 = 3a, 1 = 3a). Here, ∆T and ∆P are, respectively, −wb + x (or −wa + x)
and 0 − x, and, in Table 3, for chain 3a, these increments are −1 + y and 0 − y. The forbidden region
for condition (3) is as follows: x − y > wb or x − y < wb − 2 (or: x − y > wa or x − y < wa − 2); R = x
− y. In the forbidden region, R > wa or R < wb − 2. However, R is equal to the increment of P when
replacing a chain of type 1 with a chain of type 2 and (since P+(1;2) = max(wa + wb − 1,0)) cannot take
these values. Therefore, the forbidden region is empty.

4.3. SM is applied to a cycle (or a loop) and a chain, i.e., a cycle or a loop is cut and the obtained
chain is lengthened. This operation is the inverse to the preceding one (case 4.2); therefore, by Lemma
4.1, we have |∆T| ≤ 1.

4.4. SM is applied to two chains: the first is cut, and the second is joined. Denote by 1 the arising
free extremity in the cut chain, which is joined with an extremity of the second chain, denoted by 2’.
The other arising free extremity of the cut chain is denoted by 2. Consider two joins: the first of them is
the inverse to the cut (the first operation in our SM), and the second is the final OM. They are either
both a- or both b-joins. We go over all rows of Table 2 in the role of extremity 1 and over all pairs of
columns in the role of extremities 2 and 2’. By Lemma 4.1, it suffices to check the following: for joins
of extremities 1 and 2 and extremities 1 and 2’ we obtain increments with the absolute value of their
difference no greater than 1.

Let us give examples; other pairs of joins are considered similarly. Cases of a-joins are considered
analogously to b-joins.

(1) The pair of cells 1a,0 and 1a,1a (i.e., 1 = 1a, 2 = 0, 2’ = 1a). When making the join according to
the first cell, we have ∆T = 0 + x, 0 ≤ x ≤ 1. When making the join according to the second cell, ∆T = −1
+ y, 0 ≤ y ≤ wa. The difference of these expressions (the second minus the first) is y − x − 1. Its absolute
value is greater than 1 if y − x > 2 or y − x < 0 (the forbidden region). The corresponding difference
R of increments of P is x − y + 1 − wa − wb, which, for y − x > 2, yields R < −1 − wa − wb, and for y
− x < 0, R > 1 − wa − wb. However, R is equal to the increment of P when making the original SM
operation. The result is obtained by replacing chains of types 3 (joining the extremities 1 and 2) and 1a
(the chain with extremity 2’) with chains of types 3a* (joining the extremities 1 and 2’) and 0 (the chain
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with extremity 2). The equalities P−(1a,3; 3a*,0) = −wa and P+(1a,3; 3a*,0) = min{0,1 − wa − wb} imply
that such values of R are impossible and that the forbidden region is empty.

(2) The pair 2a*,1 and 2a*,1’ (i.e., 1 = 2a*, 2 = 1, 2’ = 1’). When making the join according to the
first cell, we have ∆T = −wb + x. When making the join according to the second cell, ∆T = −wb + y.
The difference of these expressions (the second minus the first) is y − x. The forbidden region is x − y
< −1 or x − y > 1. The corresponding difference R of increments of P is x − y + wa. In the forbidden
region, R < −1 + wa or R > 1+wa. However, R is equal to the increment of P when replacing chains
of types 1 (joining the extremities 1 and 2) and 1 (the chain with extremity 2’) with chains of types 2
(joining the extremities 1 and 2’) and 1 (the chain with extremity 2). The equalities P−(1,1; 2,1) = 0 and
P+(1,1; 2,1) = max{0,wa + wb − 1} imply that the forbidden region is empty.

(3) The pair 1,1a and 1,1 (i.e., 1 = 1, 2 = 1a, 2’ = 1). When making the join according to the first
cell, we have ∆T = −wb + x. When making the join according to the second cell, ∆T = 1 − 2wb + y.
The difference of these expressions is y − x + 1 − wb. The forbidden region is x − y < −wb or x − y > 2 −
wb. The corresponding difference R of increments of P is x − y + wb. In the forbidden region, R < 0 or R
> 2. Under the SM, chains of types 3 and 1 are replaced with chains of types 1a and 3b. The equalities
P−(3,1; 1a,3b) = wb and P+(3,1; 1a,3b) = 1 imply that the forbidden region is empty.

(4) The pair (1,1\b),1a and (1,1\b),3 (i.e., 1 = 1 or 1 = 1\b, 2 = 1a, 2’ = 3). When making the join
according to the first cell, we have ∆T = −wb,a + x, where the index b occurs in the case 1 = 1, and index
a, in the case 1 = 1\b. When making the join according to the second cell, ∆T = −wb,a + y. The forbidden
region is x − y < −1 or x − y > 1. The corresponding difference R of increments of P is x − y + 1. In the
forbidden region, R < 0 or R > 2. Under the SM, chains of types 1 and 3 are replaced with chains of
types 1a and 1b. The equalities P−(1,3; 1a,1b) = min(1,wa + wb) and P+(1,3; 1a,1b) = wa + wb imply that
the forbidden region is empty.

(5) The pair 1,3a* and 1,1’ (i.e., 1 = 1, 2 = 3a*, 2’ = 1’). When making the join according to the first
cell, we have ∆T= −wb + x. When making the join according to the second cell, ∆T = 1 − wb + wa − y.
The forbidden region is x + y<wa or x + y>2 + wa. The corresponding difference R of increments of P is
x + y − wa. In the forbidden region, R < 0 or R > 2. Under the SM, chains of types 1 and 3 are replaced
with chains of types 3a* and 1b. The equalities P−(1,3; 3a*,1b) = wb and P+(1,3; 3a*,1b) = min(1,wa + wb)
imply that the forbidden region is empty.

(6) The pair 2,1a and 2,1 (i.e., 1 = 2, 2 = 1a, 2’ = 1). When making the join according to the first
cell, we have ∆T = −1 + x. When making the join according to the second cell, ∆T = 1 − wb − y.
The forbidden region is x + y < 1 − wb or x + y > 3 − wb. The corresponding difference R of increments
of P is x + y − 1 + wa + wb. In the forbidden region, R < wa or R > 2 + wa. Under the SM, chains of
types 1 and 1 are replaced with chains of types 1a and 1b. The equalities P−(1,1; 1a,1b) = wa + wb and
P+(1,1; 1a,1b) = wa + wb imply that the forbidden region is empty.

(7) The pair 2,2 and 2,3 (i.e., 1 = 2, 2 = 2, 2’ = 3). When making the join according to the first
cell, we have ∆T = 1 − wb − x. When making the join according to the second cell, ∆T = −wb + y.
The forbidden region is −x − y > 0 or −x − y < −2. The corresponding difference R of increments of P is
−x − y + wa + 1. In the forbidden region, R > wa + 1 or R < wa − 1. Under the SM, chains of types 2b*
and 3 are replaced with chains of types 1b and 2. The equalities P−(2b*,3; 1b,2) = 0 and P + (2b*,3; 1b,2)
= wa imply that the forbidden region is empty.

5. o is a DM. Represent o as a composition of two cuts and two joins. One can easily check that,
when making any operation, B + S changes by at most 1. This property of an operation is called the B +

S property.
5.1. Reversal in a cycle or in a chain. Let both cuts be interior (i.e., on both sides of each cut there

are singular vertices); then, P and D do not change, since the chain type does not change. The result
follows from the B + S property. Let a reversal be made in a chain where at least one cut is exterior. The
extremity of the chain adjacent to an exterior cut is called exterior; let it be the left-hand extremity. The
other cut is called interior, as well as the edge that it cuts. To reduce the number of cases to consider, note
that, according to the upper row of Table 2, joining any chain with an odd chain of type 0, as well as the
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inverse cut operation, does not change T. We call this the odd cutting property. Therefore, if at one end
(or at both ends) outside the chain there is a fragment (fragments) of oddly many conventional edges,
then we can cut it (them) out, make the reversal, and then again join it (them) to the resulting chain.
Thus, it remains to consider the case where exterior cuts are made at extreme edges. If the reverted
segment has no singular vertices, the chain does not change. Otherwise, consider two possibilities.

(1) Two singular vertices are joined into one, i.e., B reduces by 1. Then, one cut is interior and the
other exterior. Consider variants of changing the parity of the extremal segment. If it does not change,
the result follows from the B + S property. If an even extremal segment is replaced with an odd one,
S increases by 1, since an extremal odd segment appears. The following variants of changing the chain
type are possible: 3a changes into 1a, 1 changes into 2, 1a changes into 2a, and 3 changes into 1. In the
first two variants, D does not change, and P does not reduce and increases by at most wa. In the last
two variants, D reduces by 1 and P does not increase and reduces by at most wa. If an odd extremal
segment is replaced with an even one, S does not change. Now, the following variants of changing the
chain type are possible: 1a changes into 3a, 2 changes into 1, 2a changes into 1a, and 1 changes into 3.
In the first two variants, D does not change, and P does not increase and reduces by at most wa. In the
last two variants, D increases by 1, and P does not reduce and increases by at most wa. In all the cases,
T changes by at most 1.

(2) Assume that no merging of two singular vertices into one occurs, i.e., B does not change, and
let one cut be interior and the other exterior. Consider variants of changing the parity of the extremal
segment. If it does not change, the result follows from the B + S property. If an even extremal segment
is replaced with an odd one, S either does not change or increases by 1. The following variants of
changing the chain type are possible: 3a changes into 1a, 1 changes into 2, 1a changes into 2a, and
3 changes into 1. In the first two variants, D does not change, and P does not reduce and increases by
at most wa. In the last two variants, D reduces by 1, and P does not increase and reduces by at most wa.
If an odd extremal segment is replaced with an even one, S either does not change or reduces by 1.
Now, the following variants of changing the chain type are possible: 1a changes into 3a, 2 changes into
1, 2a changes into 1a, and 1 changes into 3. In the first two variants, D does not change, and P does not
increase and reduces by at most wa. In the last two variants, D increases by 1, and P does not reduce
and increases by at most wa. In all the cases, |∆T| ≤ 1. If both cuts are exterior, then, taking into account
the odd cutting property, the chain does not change.

5.2. Breaking a cycle into two cycles or a cycle and a loop (cutting out a cycle or a loop from a cycle).
In this case, T’ either reduces by 1 − wa or does not change; T” either does not change, or increases by
wa, or reduces by wa; P does not change; and (wb − wa)Kb either does not change or increases by wb −

wa. Therefore, |∆T| ≤ 1.
5.3. Cutting out a fragment from a chain and circularizing it (we consider the case where a cycle

is formed; the case of a loop reduces to removal of a vertex). Here, c increases by 1. If this fragment
contains no singular vertices, consider two cases. Let no merging of two singular vertices into one
occur. Then, one fragment splits into two, one of the new segments being cyclic and, hence, even.
Then S reduces by 1, since a cyclic segment appears, and the chain type does not change; T reduces by
1. Now, let two singular vertices merge into one. Then, one odd segment is circularized with adding an
additional conventional edge, S does not change, the chain type does not change, and T reduces by 1.

If the fragment contains singular vertices, we consider the same two possibilities as in case 5.1
and repeat all arguments with replacing the reversal operation by circularization. The only case that
must be considered separately is the case where both cuts are exterior. One can easily see that the odd
cutting property holds for the circularization operation, as well as for the reversal. Therefore, it suffices
to consider the case where both cuts are made at extremal edges. This results in a 0-chain of length 1.
If merging of vertices occurs, then no segment appears in the cycle, and S increases by 1 due to the
appearance of the above-mentioned 0-chain. In this case, the initial chain is of type 3a or 3b, such that,
when it turns into a chain of type 0, D reduces by 1, and P does not increase and reduces by at most wa.
In all the cases, |∆T| ≤ 1.
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Let there be no merging of vertices; then, two extremal segments of the chain are transformed
into other two segments with the same total length. One of them is the above-mentioned 0-chain of
length 1, and the other is located inside a cycle. If both extremal segments are odd, then S reduces by 1,
the initial chain is of type either 2a or 2b, D does not change, and P does not increase and reduces by at
most wb. If at least one of the extremal segments is odd, then S does not change, the initial chain is of
type 1a, 1b, 3a, or 3b, D reduces by 1, and P does not increase and reduces by at most wa + wb. In all the
cases, |∆T| ≤ 1.

5.4. Joining two cycles into one, joining a cycle and a loop, or joining two loops. In this case, T’
either increases by 1 − wa or does not change, T” does not change, increases by wa, or reduces by wa, P
does not change, and (wb − wa)Kb either does not change or reduces by wb − wa. Therefore, |∆T| ≤ 1.

5.5. One cut is made in a chain, and the other in a cycle or loop. The case of a loop is trivial;
consider the case of a cycle. The cycle is cut and inserted into a chain. If no merging of vertices
occurs, then this operation is the inverse to that considered in case 5.3. Otherwise, B reduces by 1.
Furthermore, c reduces by 1. If the cut in the chain is interior or the parity of the extremal segment
does not change, the result follows from the B + S property. Next, we repeat the arguments from case
5.1, subcase (1).

5.6. Each cut is made in a separate chain.
5.6.1. Both cuts are interior. In what follows, we implicitly use the B + S property without referring

to it. To trace the changes of D and P, consider types of both chains. If the set of types of the two chains
does not change or the change consists in replacing the «asterisk» with the «prime» in the type of one
of the chains or vice versa, then the result follows from the fact that, when making such a replacement,
P changes by at most wb − wa, since P−(2b*; 2b’) = P−(3a*; 3a’)= wa − wb and P−(2b’; 2b*)= P−(3a’; 3a*)
= 0. In what follows, we call this case the identical transformation and omit it from consideration.
Consider other cases.

(1) Both chains are odd, and either both are a- or both are b-chains. T’ does not change. If both
chains are of type 1a, the only nonidentical change of types is transformation of this pair into a pair
of chains of types 2a and 3a or 2a and 3a’: D reduces by 1, and (wb − wa)Kb either reduces by wb −

wa or does not change. Since P−(1a,1a; 2a,3a) = −2wa, P−(1a,1a; 2a,3a’) = −1, and P+(1a,1a; 2a,3a) =

P+(1a,1a; 2a,3a’) = 1 − wa − wb, we have |∆T| ≤ 1. Type 1b is considered similarly. Any other pair of
types of the initial chains (except for 2a and 3a, which give the inverse transformation) results in the
identical change.

(2) Both chains are odd, one of them being an a-chain and the other a b-chain. If their pair of types
is 1a,1b, then, when making a DM, it transforms into either a 1,1 or a 2,3 pair: T’ reduces by 1 − wa; (wb
− wa)Kb in the first case either reduces by wb − wa or does not change and, in the second case, does not
change. In the first case, D reduces by 2, and P reduces by wa + wb. In the second case, D reduces by
1, and P reduces by at most 1 and at least min(1,wa + wb) (since P + (1a,1b; 2,3) = max(−1,−wa − wb)).
If the pair of initial types is 1a,2b or 1a,2b’, then, when making a DM, it transforms into a pair 1,2: T’
reduces by 1 − wa; (wb − wa)Kb does not change, reduces by wb − wa (in the case of 2b), or increases by
wb − wa (in the case of 2b’); D reduces by 1; P reduces by at most 1 and at least wb (in the case of 2b) or
wa (in the case of 2b’). The pair 1a,3b is considered similarly. If the pair of initial types is 2a,2b or 2a,2b’,
then, when making a DM, it transforms into a pair 2,2: T’ reduces by 1 − wa; (wb − wa)Kb either does
not change or increases by wb − wa; D does not change; P does not increase and reduces by at most 2 −
wa − wb, since P−(2a,2b; 2,2) = P−(2a,2b’; 2,2) = wa + wb − 2 and P + (2a,2b; 2,2) = P + (2a,2b’; 2,2) = 0.
The pairs 3a,3b or 3a’,3b are considered similarly. If the initial pair is 2b,3a, 2b’,3a, 2b,3a’, or 2b’,3a’, then,
when making a DM, it transforms into a pair 1,1: (wb − wa)Kb does not change, increases by wb − wa

(for the last three pairs), or reduces by wb − wa (for the first pair); T’ reduces by 1 − wa; D reduces by 1;
P reduces by wb (in the first three cases) or wa (in the last case). Similarly, this applies to the pair 2a,3b.
In all the cases, |∆T| ≤ 1.

(3) Both chains are even. The only nontrivial transformation relates to pairs 2,3 and 1,1;
other transformations are either identical or inverse to those considered in case (2). T’ does not
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change. When a pair 2,3 transforms into 1,1, D reduces by 1, (wb − wa)Kb either does not change or
reduces by wb − wa, and ∆P = min(0,1 − wa − wb).

(4) One chain is odd, and the other even: T’ does not change. If a pair 1b,1 transforms into 2b,3 or
2b’,3, then D does not change; (wb − wa)Kb does not change, increases by wb − wa (for the first case),
or reduces by wb − wa (for the second case); ∆P is not less than wb − 1 and wa − 1, respectively, and not
greater than 0, whence the desired follows. Transformation into a pair 3a,2 is similar. If a pair 1b,2
transforms into 2b,1 or 2b’,1, then D reduces by 1, (wb − wa)Kb either does not change or reduces by wb
− wa, and ∆P is not less than − wb and not greater than min(0,1 − wa − wb), whence the desired follows.
Transformation of a pair 1a,3 into 3a,1 is similar. Transformation of a pair 2a,1 into 1a,2 is inverse to the
one considered above. If a pair 2a,3 transforms into 3a,2 or 3a’,2, then D does not change, ∆P is not less
than wa − 1 and not greater than 1 − wb, and Kb does not change. Transformations 2a,3 into 3a’,2 and
2b’,3 into 3b,2 are considered similarly. Transformations 2a,3 into 1a,1, 3a,1 into 1a,3, and 3a,2 into 1a,1
are inverse to those considered above. For a pair 3a,3, the identical transformation is only possible.

5.6.2. One of the cuts is exterior. We reduce this case to an SM or OM operation as follows:
the extremity of the chain adjacent to an exterior cut is called exterior. The other cut is called interior,
as well as the edge that it cuts. If an exterior cut is at neither an extremal edge nor the edge next to
it, we remove two conventional edges from the exterior end. Then, T reduces by 1 both in the initial
graph and in the resulting one, which allows us to apply Lemma 4.2. Therefore, it suffices to consider
cases where the exterior cut is at an extremal edge of a chain or at the next to it.

(1) The exterior cut is at the next to extremal edge. If it is conventional, remove two extremal edges
together with the exterior cut, thus replacing the DM with an SM (see Figure 5a). Then, T reduces by 1
both in the initial graph and in the resulting one, which by Lemma 4.2 reduces the problem to the SM
case. If the edge with the exterior cut is singular, remove the extremal edge together with its endpoints,
replacing an odd extremal segment of length 1 with a hanging edge (the singular vertex becomes an
endpoint of a hanging edge). Again, the DM is changed to an SM with reducing T by 1 in both graphs
(see Figure 5b).

(2) The exterior cut is at the extremal edge, and this edge is conventional. If the interior edge is
conventional or its singular vertex is on the side that is joined with the exterior extremity, move the
exterior cut outside the end of the chain (i.e., make it “fictitious”) and move the interior cut to the
next edge in the opposite direction from the potential singular vertex (and, if this edge is missing,
then outside the end of the chain) (see Figure 5c). Thus, the DM is changed to an SM (or, respectively,
to the identity operation, which changes nothing). The result of the operation does not change.
If the singular vertex is on the other side, move the exterior cut from the end to the next edge and,
accordingly, move the interior cut to the neighboring edge (see Figure 5d). The result of the operation
does not change, and the problem reduces to that considered in the preceding case.

(3) The exterior cut is at the extremal edge, and this edge is singular. If the interior edge is
conventional or its singular vertex is on the side that is joined with the exterior extremity, we proceed as
in the preceding case (see Figure 6a). Otherwise, move the exterior cut outside the end of the chain and
move the interior cut to the neighboring edge in the opposite direction from the singular vertex (and, if
this edge is missing, then outside the end of the chain) (see Figure 6b–d). Thus, the DM is replaced
with an SM or OM. To obtain the result of the first operation (DM) from the result of the second (SM
or OM), merge the two singular vertices by deleting the conventional edge that separates them, and
add a chain from one conventional edge (in the case of OM) or add two extremal conventional edges
to the chain (if the interior cut was moved to a conventional edge), or replace a hanging edge with
an extremal segment of length 1 (if the interior cut was moved to a singular edge). In all the cases,
the transformation does not change T, which completes the analysis of the cases.
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Figure 5. DM with an exterior cut at a conventional edge. (a) Reduction to an SM for an exterior
cut at the next to extremal conventional edge. Top: initial DM. Bottom: SM obtained from the initial
DM by removing two conventional edges. (b) Reduction to an SM for an exterior cut at the next to
extremal singular edge. (c) Reduction to an SM for an exterior cut at an extremal conventional edge.
The fictitious cut outside the end of the chain corresponds to replacement of the DM with an SM.
(d) Reduction of a cut at an extremal conventional edge to the case considered in Figure 5b.
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Figure 6. DM with an exterior cut at an extremal singular edge. Reduction to an SM: first case (a), second
case (b), and third case (c); reduction to an OM (d).

Theorem 1 is proven.

4. Algorithm and Proof of Theorem 2 (Case III)

Theorem 2 considers Case III; it is a particular case of Theorem 1.

Theorem 2. If DCJ operations are assigned with equal costs w and the deletion and insertion operations are
assigned with any costs wd and wi such that one of them is strictly less and the other strictly greater than
w, then the algorithm described below is of linear time complexity and outputs a sequence of operations with
total cost superior to the cost of the shortest sequence by at most an additive constant that depends only on the
operation costs.

Without loss of generality, we may assume that w = 1. Recall that wd = wa and wi = wb. In Theorem
2, we distinguish three subcases: (1) wd + wi ≤ 2, (2) wd + wi > 2 and max(wd,wi) ≤ 2, and (3) max(wd,wi)
> 2, and we enumerate them, respectively, by 1, 2, and 3. The additive exactness constant k mentioned
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in the theorem is in the first subcase not greater than wb − 1; in the second subcase, constant k is
not greater than 4wb + 2wa − 6; in the third subcase, constant k is not greater than 6wb + 2wa − 9.
In Section 4a, we describe the algorithm for the first subcase. Algorithms for the second and third
subcases, as well as proofs of their exactness, will be given elsewhere due to natural restrictions on the
size of the paper. These algorithms are akin to the algorithm for the first subcase, and the proofs of
their exactness are akin to the proof for this subcase, which is given in Section 4.2. As above, we may
confine ourselves with the case of wa ≤ wb.

4.1. Description of the Algorithm for the First Subcase

In what follows, all comparisons are made with the Algorithm from Section 2 (Case II).
Stage 0: The same, transformation of initial graphs a and b into a + b.
Stage 1: The same, cutting out all conventional edges.
Let us recall what types of chains may occur in a + b. These are odd chains: 1a, 1b, 2a (2a* and 2a’),

2b (2b* and 2b’), 3a (3a* and 3a’), 3b (3b* and 3b’), and 0, and even chains: 1a (1a* and 1a’), 1b (1b* and
1b’), 2 (2* and 2’), 3, and 0. Chains of types 2a’, 3b’, 1’b are called problem chains. Components of a + b
are divided into types (a,b)-, a-, b-, and 0- accordingly as they contain both a- and b-vertices, a- but no
b-vertices, b- but no a-vertices, or no singular vertices at all.

Stage 2: In essence, the same: Consider former 2-interactions between different chains that were
performed in Case II. Their a-quality (instead of the quality that was used in Case II) is shown in square
brackets (its definition is given right after the algorithm description, in Section 4b): 1a + 1b = 1*

b [wa +

1], 3a* + 2b* = 1a [1], 3a* + 2b’ = 1a [wa], 3a’ + 2b* = 1a [wa], 3a’ + 2b’ = 1’a [wa], 3b + 2a = 1b [1], 3 + 2 =

1*
b [wa], (1a + 2b*) + 3 = 1*

b [wa + 1], (1a + 2b’) + 3 = 1*
b [2wa], (1b + 2a) + 3 = 1*

b [wa + 1], (3a* + 1b) + 2
= 1*

b [wa + 1], (3a’ + 1b) + 2 = 1*
b [2wa], (3b + 1a) + 2 = 1*

b [wa + 1], 1a + 2 = 2a* [wa], 1b + 2 = 2b* [wa], 3
+ 1a = 3a* [wa], 3 + 1b = 3b* [wa], (3b + 1a) + (1a + 2b*) = 1*

b [wa + 2], (3b + 1a) + (1a + 2b’) = 1*
b [2wa + 1],

(3a* + 1b) + (1b + 2a) = 1*
b [wa + 2], (3a’ + 1b) + (1b + 2a) = 1*

b [2wa + 1], 1a + (1a + 2b*) = 2a* [wa + 1], 1a
+ (1a + 2b’) = 2a* [2wa], 1b + (1b + 2a) = 2b* [wa + 1], (3b + 1a) + 1a = 3a* [wa + 1], (3a* + 1b) + 1b = 3b*

[wa + 1], (3a’ + 1b) + 1b = 3b* [2wa], 1a + 1a = 3a* [wa], 1b + 1b = 3b* [wa], 1a + 2b* = 2 [1], 1a + 2b’ = 2
[wa], 1b + 2a = 2 [1], 3a* + 1b = 3 [1], 3a’ + 1b = 3 [wa], 3b + 1a = 3 [1], 3 + ((3 + 2b*) + 2a) = 1*

b [wa + 1],
3 + ((3 + 2b’) + 2a) = 1*

b [2wa], (3a* + (3b + 2)) + 2 = 1*
b [wa + 1], (3a’ + (3b + 2)) + 2 = 1*

b [2wa], (3a* + 2)
+ 2 = 2a* [wa], (3a’ + 2) + 2 = 2a* [2wa − 1], (3b + 2) + 2 = 2b* [wa], 3 + (3 + 2a) = 3a* [wa], 3 + (3 + 2b*) =

3b* [wa], 3 + (3 + 2b’) = 3b* [2wa − 1], (3 + 2b*) + 2a = 2* [1], (3 + 2b’) + 2a = 2* [wa], 3a* + (3b + 2) = 3 [1],
3a’ + (3b + 2) = 3 [wa], 3a* + 3b = 3 [1 − wa], and 2a + 2b* = 2* + 1’a [1 − wa].

Construct a maximal domain on the set of chains of a + b in the same way as in Case II but
with the a-quality instead of the quality. Having found a maximal domain M, simultaneously and
independently perform all 2-interactions that correspond to it.

Notice 3. To 2-interactions, we may add the following three interactions that are applied to two
different chains, with the term equalities: 1’b + 2a’ = 2a’, 1’b + 3b’ = 3b’, and 1’b + 1’b = 1’b. They have
zero a-qualities and reduce the number of problem chains, which produce an additive error of the
algorithm. However, they are inessential for the proof of Theorem 2. These interactions were shown in
Figure 7 in [2].

Stage 3: Execute the following 3-interactions, which reduce the number of (a,b)-components and
the number of b-components. These interactions are shown in Figure 7 below.
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1. b-loop + «component with a b-singular vertex» = the same component (DM or SM operations);
2. 2 + 2 = 2 + 1’a. SM operation with cutting out two vertices of a 2-chain (an extremal a-singular

vertex and the neighboring conventional) and joining the obtained extremity with an extremal
b-singular vertex of the other 2-chain.

3. 2a + 2a = 2a, 2b* + 2b* = 2b*. Joining hanging vertices of two chains.
4. 3a* + 3a* = 3a*, 3b + 3b = 3b. OM and cutting out a conventional edge.
5. 3a* + 2 = 1a, 3b + 2 = 1b. SM.
6. 2a + 3 = 1a, 2b* + 3 = 1b. SM.
7. 1a + 3a* = 1a, 1b + 3b = 1b. OM and cutting out a conventional edge.
8. 1a + 2a = 1a, 1b + 2b* = 1b. OM.
9. 3a* + 3 = 3, 3b + 3 = 3. OM and cutting out a conventional edge.
10. 2a + 2 = 2, 2b* + 2 = 2*. OM.
11. 3 + 3 = 3. SM.
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12. 1*
a + 1*

a = 1*
a, 1b + 1b = 1b. SM.

13. 1a + 1b = 1a, 1b + 1*
a = 1b. SM.

14. 1a + 1*
a = 1a, 1b + 1b = 1b. SM.

15. 2a + 1b = 2a, 2b* + 1*
a = 2b*. SM.

16. 3a* + 1*
a = 3a*, 3b + 1b = 3b. SM.

17. 3 + 1*
a = 3, 3 + 1b = 3. SM.

18. 2 + 1*
a = 2*, 2 + 1b = 2. SM.

Repeat Stage 3 until these interactions are possible.
Stage 4: Perform autonomous reduction of remaining components to a final form.
End of the algorithm description for the first subcase.

4.2. Proof of the Algorithm Exactness for the First Subcase

Define the autonomous a-cost Aa(G) of a graph G to be the total cost of the sequence of operations
given in the autonomous reduction for G after deduction of costs of all its b-special operations, i.e.,
those reducing the number of b-singular vertices. In other words, Aa(G) accounts only for a-special
(i.e., those reducing the number of a-singular vertices) and nonspecial (i.e., not reducing the number of
singular vertices) operations. Together, they are called a-operations.

For a graph G, we use the following notation: Ba and Bb are the numbers of, respectively, a-singular
and b-singular vertices in G; S is the sum of integral parts of halved lengths of maximal connected
fragments consisting of conventional edges (referred to as segments) plus the number of extremal (on a
chain) odd segments (i.e., those consisting of an odd number of edges) minus the number of cyclic
segments; Sa is the number of segments enclosed between two singular a-edges; Ca is the number of
a-cycles; D is the number of chains of types 1a, 1b, 3a, 3b, and 3; N(t) is the number of chains of a certain
type t. Denote by A the number of a-special DCJ operations in the autonomous reduction.

Lemma 5. Let wa and wb be the removal costs for singular a- and b-vertices, and let all other operations have
cost 1. Then,

Aa(G) = (1 −wa)·(Sa − Ca + N(2b*) + N(3a*) + N(1a*)) + wa·Ba + S + D.

Proof. For every component of G, let us check the equality A = Sa − Ca + N(2b*) + N(3a*) + N(1a*), and
then sum up the obtained equalities. Each of them is implied by the following facts: when cutting
out conventional edges from any component other than an a-cycle, the number of executed a-special
operations is Sa, and, for an a-cycle, it is less by 1; the operation of circularization into a cycle is a-special
if and only if this chain is of type 2b*, 3a*, or 1a*; breaking a cycle does not contain a-special DCJ
operations. Next, the number of removals of a-singular vertices in the autonomous reduction is Ba − A,
and, similarly to the proof of Lemma 1, we obtain that the number of nonspecial operations is S + D. �

Define the a-quality Pa(s) of an interaction s to be

Pa(s) = Aa(G) − Aa(s(G)) − ca(s),

where s(G) is the graph obtained by applying s to G, and ca(s) is the total cost of a-operations in
s. The number Pa(S) shows what a-cost is saved when applying the interaction s as against the
autonomous reduction of G, i.e., without using s. Take note that, in Case II, we used the quality of
interaction, which is related to all operations instead of a-operations.

Using Lemma 4, we compute a-qualities of 2-interactions. For example, let us find the a-quality of
the interaction 1a + 1b = 1b

* (Figure 4), where ca(s) = 1. The interaction reduces Ba by 1, reduces D by 2,
and does not change all other quantities in the expression for Aa(G). Therefore, Pa(s) = wa + 1.
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Let E be any reducing sequence for a graph G, which is arbitrarily divided into connected fragments
of operations; let us for a while call the latter interactions and denote them by s. Define Ta(G,E), the total
cost of a-operations in E, and Pa(G,E), the total a-quality of all interactions in E, where Pa(s) is formally
defined above. The following lemma is proven similarly to Lemma 2 in Section 3:

Lemma 6. For any graph G, we have Ta(G,E) = Aa(G) − Pa(G,E).

Lemma 7. After Stage 3, the algorithm outputs a graph G”’ with no polytype corresponding to any 2-interaction
of two chains.

Proof. It is important that the algorithms for Cases II (when wb = 1) and III at Stages 0, 1, and 2 completely
coincide. Maximal domains that are constructed in both cases coincide, since, through an exhaustive
search over all 2-interactions, we check the following: for wb = 1, the a-quality of any 2-interaction
is equal to the quality if the same 2-interaction (computed in Section 2). Furthermore, through an
exhaustive search, we check that all 3-interactions have zero quality. If, for G”’, there are two different
chains corresponding to some 2-interaction (its a-quality is automatically strictly greater than zero
for 0 < wa < 1), then, after Stage 2 of the algorithm for Case II applied to G with wb = 1, we use
3-interactions, followed by this 2-interaction and, then, autonomous reduction. The aggregate quality
of all interactions in such a reducing sequence is strictly greater than the aggregate quality in the
sequence output by the algorithm for Case II. By Lemma 2, this means that we have obtained a sequence
with total cost strictly less than the absolute minimum C(G), which is impossible. �

Lemma 8. After Stage 3, the algorithm outputs a graph G”’ satisfying the following condition: it contains
no more than two chains having b-singular vertices. These pairs of different chains are contained among the
following pairs of types: {2a,3a*}, {1a*,1b}, {3b,2b*}, {2a,1a*}, {3a*,1b}, {1a*,3b}, and {1b,2b*}. If the initial G has
no (a,b)-chains, then G”’ contains at most one chain with a b-singular vertex.

Proof. First claim. Through an exhaustive search, we check that, for any three types of chains
with b-singular vertices, there are two of them corresponding to a 2- or 3-interaction. The former is
impossible by Lemma 7, and the latter is possible by the definition of Stage 3. �

Second claim. Exhaustively searching over all types of chains with b-singular vertices, form all
pairs of them that do not correspond to any 2- or 3-interaction. We obtained precisely the pairs listed
in the lemma. Any two chains in this list do not correspond to these interactions.

Third claim. If an (a,b)-chain does not occur in the initial G, it does not appear while running the
algorithm, i.e., in G”’, there are only a- and b-chains. If, in G”’, there are two different chains with
b-singular vertices, then, by the second claim, their types form one of the listed pairs. However, every
chain whose type contains an asterisk is an (a,b)-chain.

Denote by T(G) the total cost of operations executed by the described algorithm on a graph G. Let
Cb and Cab be the numbers of b- and (a,b)-cycles in G, respectively; let Ipb be the indicator function of
the property «G contains a b-loop but has no components with a singular b-vertex other than loops»;
similarly, let Icb be the indicator function of having a chain with a singular b-vertex; let εb = wb − 1.

Denote by Pa(G) the total a-quality of 2-interactions when running the algorithm on a graph G.

Lemma 9. Let wa and wb be removal costs for singular a- and b-vertices, and let all other operations have cost 1.
Then,

T(G) = Aa(G) − Pa(G) + Bb + εb·(Cb + Cab + Icb + Ipb + E), where E = 0 or E = 1.

Proof. We declare each operation outside Stages 2 and 3 as an interaction. It is easily checked that
the a-quality of any such formal interaction, as well as that of any 3-interaction, is zero. By Lemma
6, the total cost of a-operations is Aa(G) − Pa(G). In a reducing sequence, the number of b-special
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operations is Bb. Let us show that the number of b-removals among them is Cb + Cab + Icb + Ipb + E.
If, in G, there are no components with a b-vertex other than b-loops, the claim is trivial. Otherwise,
the number of b-removals is equal to the number of components with a b-vertex that occur in G”’, i.e.,
before Stage 4, since a removal operation was never applied in the algorithm before; at Stage 4, only
autonomous reduction is used. This amounts to Cb + Cab original cycles, Icb chains with a b-vertex,
and E more chains from Lemma 8. �

We prove the additive exactness of the algorithm by induction on the cost C(G) of the shortest
reducing sequence for a graph G. Denote by T’(G) the value of T(G) for E = 0. Assume that, for any
operation o applied to an arbitrary breakpoint graph G, the «triangle inequality»,

c(o) ≥ T’(G) − T’(o(G)),

is valid, where c(o) is the cost of o and o(G) is the result of applying o to G. If we take for o the first
operation in the shortest sequence, by the induction hypothesis, we obtain C(o(G)) ≥ T’(o(G)) ≥ T’(G) −
c(o) and C(G) = C(o(G)) + c(o) ≥ T’(G) − c(o) + c(o) = T’(G). Therefore, the algorithm error is at most εbE
≤ wb − 1.

The proof of the triangle inequality follows the same lines as in Section 3 (Case II) by examining
all operations o. In the proof, one should use Pa, the a-quality of the maximal domain on chains in G.

5. Algorithm and Proof of Theorem 1 for Case I

It might be interesting for the reader to compare the algorithms and proofs presented above with
those related to Case I, where both costs wd and wi are not less than w, although this case was analyzed
in a preparatory work [2]. As above, it suffices to consider the case of wa ≤ wb.

Recall that, in Case I, the Algorithm consists of 8 stages.
Stage 0: The same as above: Transform initial graphs a and b into a + b.
Stage 1: The same as above: Cut out conventional edges.
Stage 2: Perform the same 2-interactions between chains as in Section 2 (except for the two

additional ones) but in the same order as they are listed, independently of their quality (i.e., we need
not choose a maximal domain M). The meaning of these interactions, as always, is that they save
maximally many operations as against the number of operations in the autonomous reduction of
a graph.

Stage 3: Perform 3’-interactions between chains, which are listed in [2]. The meaning of
3’-interactions is that they reduce the number of short chains in a + b (to be precise, chains of
types 2a’, 2b’, 3a’, 3b’, 1’a, 1’b, and 2’), thereby reducing the additive error of the algorithm, which
occurs precisely because of them.

Stage 4: Circularize chains (except for short ones) into cycles using OM or SM operations.
Stage 5: Join all cycles into one cycle and then detach final cycles from it.
Stage 6: Perform 6-interactions between a cycle and short chains, which reduce the number of

the latter. These are interactions defined by the following term equalities: (a,b)-cycle + 2a’ + 2b’ = 2’
(two DM operations) and (a,b)-cycle + 2’ = 2’ (DM and cutting out a conventional edge).

Stage 7 is applied if wb >2. Perform 7-interactions between two cycles or between a cycle and
a short chain. Their meaning is to replace the removal operation for a b-singular vertex with two
intermergings, which is advantageous if wb >2. These are the interactions defined by the following
term equalities: (a,b)-cycle + b-cycle = (a,b)-cycle + cycle of length 2 (two DM operations), b-cycle +

b-cycle = b-cycle + cycle of length 2 (two DM operations), b-cycle + 2’-chain = 2’-chain + cycle of length
2 (SM and cutting out an extremal conventional edge), (a,b)-cycle + 2a’-chain = (a,b)-cycle (SM and
OM), (a,b)-cycle + 1b’-chain = (a,b)-cycle (two SM operations), b-cycle + 2a’-chain = 2a’-chain + cycle of
length 2 (SM and cutting out an extremal conventional edge), b-cycle + 1b’-chain = 1b’-chain + cycle of
length 2 (SM and cutting out an extremal conventional edge). If wa > 2, then symmetric interactions
with a replaced by b are also performed.
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Stage 8: Remove singular vertices.
Now, we recall the proof of exactness of this algorithm, which has an additive error of at most 2w.

As all such proofs, it is based on the triangle inequality. However, for Case I, it has a distinction: T(G)
takes the form T’(G) + E(G), where T’(G) involves only easily computable characteristics of a graph G,
and E(G) ≤ 2w. The triangle inequality for T’(G) implies that C(G) ≥ T’(G), where, as always, C(G) is
the total cost of the shortest reducing sequence for G. However, for T’(G), the triangle inequality is
not always valid. To overcome this obstacle, all graphs G are divided into ranks 1, 2, and 3. Graphs of
ranks 1 and 2 have a simpler structure, although graphs of a final form fall into rank 3 (from the point
of view of the current proof, they are more complicated). For graphs G of ranks 1 and 2, we prove a
lower bound on C(G), which is stronger than C(G) ≥ T’(G); for graphs of rank 1, it is even stronger than
for those of rank 2. When passing, by operation o, from a graph of a larger rank to that of a smaller
rank, the triangle inequality is weakened by a strictly positive number ∆ (depending only on these
ranks), i.e., c(o) ≥ T’(G) − T’(o(G)) − ∆. Under the inverse transformation, it is strengthened by ∆, i.e.,
c(o) ≥ T’(G) − T’(o(G)) + ∆. Then, the proof is made by induction on the shortest reducing sequence
for G; it also requires an exhaustive search over all pairs of ranks of G and o(G). For example, if G
is of rank 3 and o(G) of rank 2, then, by the induction hypothesis, we have C(o(G)) ≥ T’(o(G)) + ∆ ≥
T’(G) − c(o) − ∆ + ∆ and C(G) = C(o(G)) + c(o) ≥ T’(G) − c(o) + c(o) = T’(G). Here, we used the fact that
the ∆ by which the triangle inequality is weakened when passing from a graph of rank 3 to that of
rank 2 is equal to the number by which the lower bound on C(G) for graphs of rank 2 is strengthened.
The analogous consistency of such inequalities holds for other pairs of ranks as well. All cases of the
ranks are examined in [2].

6. Discussion

Usually, a small (slightly different from the original operation costs) explicitly specified additive
error is not considered as a violation of the algorithm exactness. In this sense, we described an exact
algorithm of linear complexity which constructs a shortest transformation of one weighted (in other
words, labeled) directed graph into another under equal costs of DCJ operations and arbitrary costs of
deletion and insertion operations. These graphs must be of degree 2 in the sense that each vertex is of
degree 1 or 2. The labeling cannot contain repetitions of names. Note that the above can be carried
over to infinite (countable) recursively enumerated sequences. The idea of the current algorithm was
based on the abstract theory developed in [11,12].

The theorem proven in the paper is rather unexpected from the mathematical point of view; a
problem that seems to require exhaustive search or at least to be computationally very difficult is
solved by an exact algorithm whose runtime is always linear in the size of input data. In this sense,
the problem is not related to any application. However, it has arisen in the context of quite various
applications. Of these, the most popular concerns the description of a biological genome by a set of
chains and cycles that correspond to linear and circular chromosomes. In this case, the considered
operations correspond to real genome transformations in the biological evolution of the genome. It is
important that different operations can be assigned with different costs, which corresponds to different
frequency of their occurrence in the evolution.

For instance, the possibility to take different costs of deletion wd and insertion wi is essential
when mitochondria of deuterostomes are considered. Their mitochondria mainly have the same
set of genes, and each gene has a unique function. However, the order of these genes can vary; it
is substantially different in the purple sea urchin Strongylocentrotus purpuratus than in vertebrates
(Jacobs et al. [13]), as well as among echinoderms themselves. Thus, gene losses and acquisitions are
much rarer here than DCJ operations, and rare events should be assigned higher costs. A similar
pattern is observed in plastids of plants, e.g., the order of plastid genes in the red alga Porphyridium
purpureum notably differs from that in other red algae. In the next case where one genome is smaller
than the other, the loss cost should exceed that of acquisition, which surely depends on the gene and
the number of its copies. For example, the nuclear genome amplifies after hybridization of two species
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as in the case of polyploid strawberry or wheat (Bors and Sullivan [14]). Polyploidy is much more
common in plants than in animals. Among animals, it was described in nematodes including ascarids
and certain amphibians. However, other full-genome duplications have been reported in chordates
(Putnam et al. [15]). The genome reduction can also occur, e.g., many genes (paralogs) are lost after a
full-genome duplication. In this regard, the presented algorithm has been used, e.g., in [16].

Let us give an example from another area. In some robotics and image processing problems, it is
assumed that the “terrain” is bound by barriers that can be described as chains and cycles. Chains and
cycles are also used to represent parts that have long or compact forms and to describe the frame of an
area or human pose, among other examples. Among many such applications, which are not related to
genomics, let us mention, as an example, [17].

Further research will be aimed at reducing the additive error, up to zeroing it, constructing fast
algorithms in the case of unequal costs of DCJ operations, allowing name repetitions in the graph
labeling, and passing to graphs of degree 3. Moreover, it would be important to extend the list of
operations by adding, for example, the operation of edge duplication in the initial graph, which will
allow strictly considering the duplication of biological genes [18] from the mathematical point of view.
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