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Abstract: Models of set theory are defined, in which nonconstructible reals first appear on a given
level of the projective hierarchy. Our main results are as follows. Suppose that n ≥ 2. Then: 1. If it
holds in the constructible universe L that a ⊆ ω and a /∈ Σ1

n ∪Π1
n , then there is a generic extension

of L in which a ∈ ∆1
n+1 but still a /∈ Σ1

n ∪Π1
n , and moreover, any set x ⊆ ω , x ∈ Σ1

n , is constructible
and Σ1

n in L . 2. There exists a generic extension L in which it is true that there is a nonconstructible
∆1

n+1 set a ⊆ ω , but all Σ1
n sets x ⊆ ω are constructible and even Σ1

n in L , and in addition, V = L[a]
in the extension. 3. There exists an generic extension of L in which there is a nonconstructible
Σ1

n+1 set a ⊆ ω , but all ∆1
n+1 sets x ⊆ ω are constructible and ∆1

n+1 in L . Thus, nonconstructible
reals (here subsets of ω ) can first appear at a given lightface projective class strictly higher than
Σ1

2 , in an appropriate generic extension of L . The lower limit Σ1
2 is motivated by the Shoenfield

absoluteness theorem, which implies that all Σ1
2 sets a ⊆ ω are constructible. Our methods are based

on almost-disjoint forcing. We add a sufficient number of generic reals to L , which are very similar at
a given projective level n but discernible at the next level n + 1.

Keywords: definability; nonconstructible reals; projective hierarchy; generic models; almost
disjoint forcing

MSC: 03E15; 03E35

1. Introduction

Problems of definability and effective construction of mathematical objects have always been in
the focus of attention during the development of mathematical foundations. In particular, Hadamard,
Borel, Baire, and Lebesgue, participants of the discussion published in [1], in spite of significant
differences in their positions regarding problems of mathematical foundations, emphasized that a
pure existence proof and a direct definition (or an effective construction) of a mathematical object
required are different mathematical results, and the second one of them does not follow from the
first. Problems of definability and effectivity are considered in such contemporary monographs on
foundations as [2–5]. Moschovakis, one of founders of modern set theory, pointed in [6] (p. xiv), that

the central problem of descriptive set theory and definability theory in general [is] to find
and study the characteristic properties of definable objects.

The general goal of the research line of this paper is to explore the existence of effectively definable
structures in descriptive set theory on specific levels of the projective hierarchy. One of the directions
here is the construction of set theoretic models, in which this or another problem is decided, at a
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predefined projective level n , differently than it is decided in L , Gödel’s constructible universe,
or, that is equivalent, by adding the axiom of constructibility, dubbed V = L .

Such set theoretic models are usually defined as generic extensions of L itself. Any such a generic
extension leads to consistency and independence results in set theory, because if a sentence Φ holds in
L or in a generic extension of L then Φ is consistent with the axioms of ZFC , the Zermelo–Fraenkel
set theory (with the axiom of choice AC).

As a first, and perhaps most immediately interesting problem of this sort, in this paper, we consider
the problem of the existence of effectively definable (that is, occurring in one of lightface classes Σ1

n
of the projective hierarchy) but nonconstructible reals. It follows from Shoenfield’s absoluteness
theorem [7] that every (lightface) Σ1

2 set x ⊆ ω belongs to L . Generic models, in which there exist
nonconstructible reals on effective levels of the projective hierarchy higher than Σ1

2 , were defined
in the early years of forcing; see a brief account in [8]. This culminated in two different generic
extensions [9,10] containing a nonconstructible Π1

2 singleton, hence, a ∆1
3 set a ⊆ ω . (We are

concentrated on generic extensions of L in this paper, and therefore leave aside another research line,
related to models with large cardinals, with many deep and fruitful results connected, in particular,
with properties of Π1

2 singletons, see e.g., [11–13]).
Then it was established in [14] that for any n ≥ 2 there is a generic extension of L in which there

exists a nonconstructible ∆1
n+1 real a ⊆ ω , but all Σ1

n sets x ⊆ ω are constructible. Our motivation
here is to further extend this research line. The next three theorems are the main results in this paper.

Theorem 1. If n ≥ 2 and b ⊆ ω , b /∈ Σ1
n ∪Π1

n , then there is a generic extension of L in which b ∈ ∆1
n+1

but still b /∈ Σ1
n ∪Π1

n , and moreover, any set x ⊆ ω , x ∈ Σ1
n , is constructible and Σ1

n in L .

Theorem 1 shows that being at a certain lightface projective level is hardly an intrinsic property of
a constructible real, unless it is already at that level in L . The theorem definitely fails for n = 1 since
being ∆1

2 is an ablosute property of a real by the Shoenfield absoluteness theorem.

Theorem 2. If n ≥ 2 , then there exists a generic extension of the universe L in which it is true that

(i) there is a nonconstructible ∆1
n+1 set a ⊆ ω , but all Σ1

n sets x ⊆ ω are constructible and Σ1
n in L ;

(ii) we can strengthen (i) by the requirement that V = L[a] in the extension.

Theorem 3. If n ≥ 2 then there exists an extension of L in which there is a nonconstructible Σ1
n+1 set a ⊆ ω

but all ∆1
n+1 sets x ⊆ ω are constructible and ∆1

n+1 in L .

The common denominator of Theorems 2 and 3 is that nonconstructible reals can first appear
at a given lightface projective class strictly higher than Σ1

2 , in an appropriate generic extension of L .
The lower limit Σ1

2 is motivated by the Shoenfield absoluteness theorem.
The generic models, which we define to prove the main theorems, make use of modifications of

the almost-disjoint forcing by Jensen–Solovay [9].
Some other recent results can be mentioned here, which resemble Theorems 1–3 in that they

give models in which a particular property of some kind holds at a certain pre-selected level of the
projective hierarchy. Yet they are different in that they use modifications of Jensen’s minimal Π1

2
singleton forcing [10] and its finite-support products first considered by Enayat [15], as well as its
collapse-style modification by Abraham [16], rather than the almost-disjoint forcing.

• A model defined in [17], in which, for a given n ≥ 2, there is a (lightface) Π1
n Vitali equivalence

class in the real line R (that is, a set of the form x + Q in R ), containing no OD (ordinal definable)
elements, and in the same time every countable Σ1

n set consists of OD elements.
• A model in [18], in which, for a given n ≥ 2, there is a Π1

n singleton {a} , such that a codes a
collapse of ωL

1 , and in the same time every Σ1
n set a ⊆ ω is still constructible.
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• A model defined in [19], in which, for a given n ≥ 2, there is a Π1
n non-OD-uniformizable planar

set with countable cross-sections, and at the same time, every Σ1
n set with countable cross-sections

is OD-uniformizable.

Organization of the Paper

Our plan of the proofs of the main results will be to construct, in L , a sequence of forcing notions
P(ν) , ν < ω1 , satisfying the following three key conditions.

1. P(ν) are sufficiently homogeneous and independent of each other in the sense that, for any ν0 ,
there are no P(ν0)-generic reals in a (∏ν 6=ν0

P(ν))-generic extensions of L .
2. The property of a real x being P(ν)-generic over L is Π1

n as a binary relation, where n ≥ 2 is a
number chosen in Theorems 1–3.

3. A condition which makes P(ν)-generic reals for different values ν < ω1 undistinguishable from
each other below the Π1

n definability level (at which they are distinguishable by condition 2).

Each P(ν) will be a forcing notion of almost-disjoint type, determined by a set U(ν) ⊆ ωω .
To make the exposition self-contained, we review some basic details related to almost-disjoint forcing,
finite-support products, and related generic extensions, taken mainly from [9], in Sections 2 and 3.

Having the construction of P(ν) , ν < ω1 , accomplished in Section 4, the proof of, e.g., Theorem 1
(Section 7.1) is performed as follows. Let b ∈ L , b ⊆ ω be chosen as in Theorem 1 for a given n ≥ 2.
We consider a P-generic extension L[G] of L , where P = ∏i<ω P(i) . Let ai ⊆ ω be the P(i)-generic
real generated by the i th projection Gi of G ; these reals are nonconstructible and L[G] = L[{ai}i<ω ] .
Let z = {0} ∪ {2k : k ∈ b} ∪ {2k + 1 : k /∈ b} Consider the subextension L[{ai}i∈z] . Then it is true in
L[{ai}i∈z] by condition 1, that

b = {k < ω : there exist P(2k)-generic reals}
= {k < ω : there are no P(2k + 1)-generic reals} ,

so using condition 2, we easily get b ∈ ∆1
n+1 in L[{ai}i∈z] . A similar construction (but with b being

generic over L ) was carried out in the early years of forcing in [9] for n = 2, which is the least possible
value. In the case n = 2, the fact, that all Σ1

2 sets x ⊆ ω in the extension belong to L and are Σ1
2 in L ,

is guaranteed by the Shoenfield absoluteness theorem.
If n ≥ 3, then the Shoenfield absoluteness argument does not work, of course. Still we can argue

that any lightface Σ1
n set x ⊆ ω in L[{ai}i∈z] belongs to L by the general forcing theory, because

the product forcing Pz = ∏i∈z P(i) ∈ L is homogeneous by condition 1. However this does not
immediately imply the lightface definability of b in L , as Pz is defined via z , hence via b . To solve
this difficulty, we make use of condition 3 to prove another absoluteness property: Σ1

n formulas
turn out to be absolute between L[{ai}i∈z] and the entire extension L[G] = L[{ai}i<ω ] , which is an
P-generic extension of L . Here P = ∏i<ω P(i) is a parameter-free definable forcing in L , leading to
the parameter-free definability of b in L . There are two issues here that need to be explained.

First, how to secure condition 3 in a sufficiently effective form. To explain the main technical
device, we recall that by [9] the system of forcing notions P(ν) is the result of certain transfinite
ω1 -long construction of assembling it from countable fragments in L . The construction can be viewed
as a maximal branch in a certain “mega-tree”, say T , whose nodes are such countable fragments, and
each of them is chosen to be the Gödel-least appropriate one over the previous one. The complexity
of this construction is ∆1

2 in the codes, leading in [9] to the Π1
2 definability of the property of being

generic, as in condition 2, in case n = 2.
To adapt this construction for the case n ≥ 3, our method requires us to define a maximal

branch in T that intersects all dense sets in T of class Σ1
n−1 . Such a construction is carried out in

Section 4. This genericity-like condition of meeting all dense Σ1
n−1 sets, results in the Π1

n definability
of the property of being generic in condition 2, and also yields condition 3, since the abundance of
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order automorphisms of the “mega-tree” T (including those related to index permutations) allows to
establish some homogeneity properties of a certain auxiliary forcing-style relation.

This auxiliary forcing-style relation, defined and studied in Sections 5 and 6. The auxiliary
relation approximates the truth in P′ -generic extensions, as L[{ai}i∈z] above, up to Σ1

n formulas,
but, unlike the ordinary P′ -forcing relation, is sufficiently homogeneous. In particular, it helps to
obtain the mentioned absoluteness property. This will allow us to accomplish the proof of the main
results, Theorem 1 together with part (i) of Theorem 2 in Section 7, part (ii) of Theorem 2 in Section 8,
Theorem 3 in Section 9. The flowchart can be seen in Figure 1.

The flowchart can be seen in Figure 1. And we added the index and contents as Supplementary
Materials for easy reading.

ALMOST DISJOINT FORCING
PRELIMINARIES, 2.1, 2.2

PRODUCT ALMOST
DISJOINT FORCING, 3.1-3.6

TRANSFORMATIONS
OF A. D. FORCING, 2.3, 2.4

TRANSFORMATIONS
OF PRODUCT

A. D. FORCING, 3.7, 3.8

BASIC FORCING
NOTION, 4.1–4.4

FORCING
APPROXIMATIONS

Section 5

BASIC GENERIC EXTENSION
and SUBEXTENSIONS, 4.5 ELEMENTARY EQUIVALENCE

THEOREM, Section 6

THEOREM 1,
7.1

THEOREM 2,
7.2, 7.3, Section 8

THEOREM 3,
Section 9

CONCLUSION,
SOME FURTHER RESULTS,

Section 10

Figure 1. Flowchart.

General Set-Theoretic Notation Used in This Paper

• ω = {0, 1, 2, . . .} : natural numbers; ω2 = ω×ω .
• X ⊆ Y iff ∀ x (x ∈ X =⇒ x ∈ Y) : the inclusion.
• X $ Y means that X ⊆ Y but Y 6⊆ X : strict inclusion.
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• card X is the cardinality of a set X, equal to the number of elements of X in case X is finite.
• dom P = {x : ∃ y (〈x, y〉 ∈ P)} and ran P = {y : ∃ x (〈x, y〉 ∈ P)} — the domain and range of any

set P that consists of pairs.
• In particular if P = f is a function then dom f and ran f are the domain and the range of f .
• Functions are identified with their graphs: if P = f is a function then f = {〈x, f (x)〉 : x ∈ dom f },

so that y = f (x) is equivalent to 〈x, y〉 ∈ f .
• f [X] = { f (x) : x ∈ X ∩ dom f } , the f -image of X .
• f−1[Y] = {x ∈ dom f : f (x) ∈ Y} , the f -pre-image of a set Y .
• f−1(y) = {x ∈ dom f : f (x) = y} , the f - pre-image of an element y .
• ∆ is the symmetric difference.
• {xa}a∈A is the map f defined on A by f (a) = xa , ∀ a .
• P (X) = {x : x ⊆ X} , the power set.
• X<ω is the set of all strings (finite sequences) of elements of a set X.
• In particular ω<ω is the set of strings of natural numbers.
• lh s < ω is the length of a string s .
• sax is the string obtained by adjoining x as the rightmost term to a given string s.
• s ⊂ t means that the string t is a proper extension of s .
• ∅ = Λ is resp. the empty set and the empty string.
• ωω is the Baire space.

2. Almost Disjoint Forcing

In this section, we review basic definitions and results related to almost disjoint forcing, as well as
some rarely used results related, for instance, to symmetries of almost disjoint forcing notions.

Assumption 1. In this paper, we assume that L is the ground universe. Thus all forcing notions are defined in
L while all generic extensions are those of L . (In fact many intermediate results remain true w.r. t. any ground
universe.)

2.1. Almost Disjoint Forcing

We present this forcing in a form based on the fact that the set Fun of all functions f : ω → ω

is almost disjoint in the sense that if f 6= g belong to Fun then the infinite sets { f �m : m ∈ ω} and
{g�m : m ∈ ω} of finite strings have a finite intersection.

Definition 1. Seq = ω<ω r {Λ} = all finite non-empty strings of natural numbers. A recursive enumeration
ω<ω = {sk : k ∈ ω} is fixed, such that s0 = Λ , the empty string, and sk ⊆ s` =⇒ k 6 ` . Thus
Seq = ω<ω r {Λ} = {sk : k ≥ 1} . For any s = sk , we let num s = k; in particular numΛ = 0 .

Fun = ωω = all infinite sequences of natural numbers. A set X ⊆ Fun is dense iff for any s ∈ Seq there
is f ∈ X such that s ⊂ f .

Let S ⊆ Seq , f ∈ Fun . If the set S/ f = {n : f �n ∈ S} is infinite then we say that S covers f ,
otherwise S does not cover f .

We underline that Λ , the empty string, does not belong to Seq .
Given a set u ⊆ Fun in the ground universe, the general goal of almost disjoint forcing is to find

a generic set S ⊆ Seq such that the equivalence

f ∈ u ⇐⇒ S does not cover f (1)

holds for each f ∈ Fun in the ground universe. This goal will be achieved by a forcing P[u] introduced
in Definition 4. In fact P[u] will be a part, determined by u , of a common reservoir P∗ .

Definition 2. P∗ is the set of all pairs p = 〈Sp ; Fp〉 of finite sets Fp ⊆ Fun , Sp ⊆ Seq . Elements of P∗ will
sometimes be called (forcing) conditions. If p ∈ P∗ then put F∨p = { f �n : f ∈ Fp ∧ n ≥ 1} . The set F∨p is an
infinite (or else F∨p = Fp = ∅) tree in Seq , without terminal nodes.
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Definition 3 (order). Let p, q ∈ P∗ . We define q ≤ p (q is stronger) iff Sp ⊆ Sq , Fp ⊆ Fq , and the difference
Sq r Sp does not intersect F∨p , that is, Sq ∩ F∨p = Sp ∩ F∨p .

Thus any condition p ∈ P∗ is a pair that consists of a “finite” component Sp and an “infinite”
component Fp . Either of the components is a finite set (possibly, empty), but Sp consists of finite
strings of integers while Fp consists of infinite sequences of integers that will be called functions (from
ω to ω ). Both components of a stronger condition q , naturally, increase, but strings t ∈ Sq r Sp must
satisfy t /∈ F∨p —in other words, t is not a substring of any function (infinite sequence) f ∈ Fp .

If p ∈ P∗ then both 〈∅ ; Fp〉 and 〈Sp ; ∅〉 belong to P∗ and p ≤ 〈Sp ; ∅〉 , but p ≤ 〈∅ ; Fp〉 may
fail. In fact p ≤ 〈∅ ; Fp〉 iff Sp ∩ F∨p = ∅ .

Lemma 1. Conditions p, q ∈ P∗ are compatible in P∗ iff 1) Sq r Sp does not intersect F∨p , and 2) Sp r Sq

does not intersect F∨q . Therefore, any p, q ∈ P∗ are compatible in P∗ iff p ∧ q ≤ p and p ∧ q ≤ q.

Proof. The pair p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 is a condition in P∗ . Moreover if 1) and 2) hold then we
have p ∧ q ≤ p and p ∧ q ≤ q , thus p, q are compatible.

Now let us introduce a relativized version of P∗ . The parameter of relativization will be an
arbitrary set u ⊆ Fun served as a reservoir of functions allowed to occur in sets Fp .

Definition 4. If u ⊆ Fun then put P[u] = {p ∈ P∗ : Fp ⊆ u} .

Note that if p , q ∈ P[u] then p∧ q ∈ P[u] . Thus in this case if conditions p , q are compatible in P∗

then they are compatible in P[u] , too. Therefore, we will say that conditions p , q ∈ P∗ are compatible
(or incompatible) without an indication which set P[u] containing both conditions is considered.

Lemma 2. If u ⊆ Fun then P[u] is a ccc forcing.

Proof. If Sp = Sq then p and q are compatible by Lemma 1. However there are only countably many
sets of the form Sp .

2.2. Almost-Disjoint Generic Extensions

Fix, in L , a set u ⊆ Fun and consider a P[u]-generic extension L[G] of the ground (constructible by
Assumption 1) set universe L , obtained by adjoining a P[u]-generic set G ⊆ P[u] . Put SG =

⋃
p∈G Sp ;

thus SG ⊆ Seq . The next lemma reflects the idea of almost-disjoint forcing: elements of u are
distinguished by the property of SG not covering f in the sense of Definition 1.

Lemma 3. Suppose that u ⊆ Fun in the universe L , and G ⊆ P[u] is a set P[u]-generic over L . Then

(i) G belongs to L[SG] ;
(ii) if f ∈ Fun∩ L then f ∈ u iff SG does not cover f ;

(iii) if p ∈ P[u] then p ∈ G iff sp ⊆ SG ∧ (SG r sp) ∩ (F∨p ∪ S∨p ) = ∅ .

Proof. (ii) Let f ∈ u . The set D f = {p ∈ P[u] : f ∈ Fp} is dense in P[u] . (Let q ∈ P[u] . Define
p ∈ P[u] so that Sp = Sq and Fp = Fq ∪ { f } . Then p ∈ D f and p 6 q .) Therefore D f ∩ G 6= ∅ . Pick
any p ∈ D f ∩ G . Then f ∈ Fp . Now every r ∈ G is compatible with p , and hence Sr/ f ⊆ Sp/ f by
Lemma 1. Thus SG/ f = Sp/ f is finite.

Let f /∈ u . The sets D f l = {p ∈ P[u] : sup(Sp/ f ) > l} are dense in P[u] . (If q ∈ P[u] then Fq

is finite. As f /∈ u , there is m > l with f �m /∈ F∨q . Define p so that Fp = Fq and Sp = Sq ∪ { f �m} .
Then p ∈ D f l and p 6 q .) Let p ∈ D f l ∩ G . Then sup(SG/ f ) > l . As l is arbitrary, SG/ f is infinite.
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(iii) Consider any p ∈ P[u] . Suppose that p ∈ G . Then obviously sp ⊆ SG . If there exists
s ∈ (SG r Sp) ∩ F∨p then by definition we have s ∈ Sq for some q ∈ G . However, then p, q are
incompatible by Lemma 1, a contradiction.

Now suppose that p /∈ G . Then there exists q ∈ G incompatible with p . By Lemma 1, there are
two cases. First, there exists s ∈ (Sq r Sp) ∩ F∨p . Then s ∈ SG r Sp , so p is not compatible with SG .
Second, there exists s ∈ (Sp r Sq) ∩ F∨q . Then any condition r ≤ q satisfies s /∈ Sr . Therefore s /∈ SG ,
so Sp 6⊆ SG , and p is not compatible with SG .

(i) G = {p ∈ P[u] : sp ⊆ SG ∧ (SG r sp) ∩ F∨p = ∅} by (iii).

2.3. Lipschitz Transformations

Let Lip be the group of all ⊆-automorphisms of Seq ; these transformations may be called
Lipschitz by obvious association. Any λ ∈ Lip preserves the length lh of finite strings, that is,
lh s = lh (λ · s) for all s ∈ Seq . Define the action of any transformation λ ∈ Lip on:

– finite strings s ∈ Seq by: λ · s = λ(s) ;
– functions f ∈ Fun : λ · f ∈ Fun is defined so that (λ · f )�m = λ ·( f �m) ;
– sets S ⊆ Seq , F ⊆ Fun by: λ ·S = {λ · s : s ∈ S} , λ ·F = {λ · f : f ∈ F} ;
– conditions p ∈ P∗ , by: λ · p = 〈λ ·Sp ; λ ·Fp〉 .

Lemma 4 (routine). The action of any λ ∈ Lip is an order-preserving automorphism of P∗. If u ⊆ Fun and
p ∈ P[u] then λ · p ∈ P[λ ·u] .

Lemma 5. Suppose that u, v ⊆ Fun are countable sets topologically dense in Fun , and p ∈ P[u] , q ∈ P[v] .
Then there is λ ∈ Lip and conditions p′ ∈ P[u] , p′ ≤ p and q′ ∈ P[v] , q′ ≤ q, such that λ ·u = v, and
λ · p′ = q′ — therefore conditions λ · p and q are compatible in P[v] .

Proof. Put bas r = {s(0) : s ∈ Sr} ∪ { f (0) : f ∈ Fr} for any r ∈ P∗ ; bas r ⊆ ω is finite. Let M < ω

satisfy bas p ∪ bas q ⊆ M . Because of density, for any i < M there exist fi ∈ u and gi ∈ u′ such that
fi(0) = i and gi(0) = M + i .

For any f 6= g ∈ Fun , let N( f , g) be the largest n with f �n = g�n .
We will define enumerations u = { fk : k < ω} and u′ = {gk : k < ω} , without repetitions,

which agree with the above definition for k < M and satisfy N( fk, fl) = N(gk, gl) for all k , l , and
gk(0) = fk(0) for all k ≥ M . As soon as this is accomplished, define λ ∈ Lip as follows. Consider any
s ∈ Seq of length m = lh s . As u is dense, s = fk�m for some k . Put λ(s) = gk�m . Clearly λ ·u = u′ ,
and in particular λ · fk = gk for all k , and hence

(∗) if k < M then λ(〈k〉) = 〈M + k〉 and λ(〈M + k〉) = 〈k〉 , but if k ≥ 2M then λ(〈k〉) = 〈k〉 .

Now to define q′ put r′ = λ · p . Then r′ ∈ P[v] , and bas r′ = β · bas p ⊆ ω r M by (∗), since
bas p ⊆ M . Therefore, bas r′ ∩ bas q = ∅ because bas q ⊆ M as well. It follows that conditions r′ and
q are compatible in P[v] , and hence condition q′ = r′ ∧ q (that is, Sq′ = Sr′ ∪ Sq and Xq′ = Xr′ ∪ Xq )
belongs to P[v] , and obviously q′ ≤ q . Pretty similarly, to define q , we put r = λ−1 ·q ∈ P[u] , thus
bas r ⊆ ω r M , bas r ∩ bas p = ∅ , conditions r , p are compatible, condition p′ = p ∧ r (that is,
Sp′ = Sp ∪ Sr and Xp′ = Xp ∪ Xr ) belongs to P[u] , and p′ ≤ p . Note that q = λ ·r and r′ = λ · p by
construction. It follows that q′ = r′ ∧ q = λ ·(p ∧ r) = λ · p′ , as required.

To define fk and gk by induction, suppose that k ≥ M , f0, . . . , fk−1 and g0, . . . , gk−1 are defined,
and N( fi, f j) = N(gi, gj) holds in this domain. Consider any next function f ∈ u r { f0, . . . , fk−1} , and
let it be fk . There are functions g ∈ Fun satisfying N( f j, fk) = N(gj, g) for all j < k . This property of
g is determined by a certain finite part g�m . By the density the set v contains a function g of this type.
Let gk be any of them. In the special case when N( f j, fk) = 0 for all j < k (then k ≥ 2M ), we take any
gk ∈ v satisfying N( f j, fk) = 0 for all j < k and gk(0) = fk(0) .
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2.4. Substitution Transformations

The next lemma (Lemma 6) will help to prove that the forcing notions considered are sufficiently
homogeneous. Assume that p, q ∈ P∗ satisfy the following requirement:

Fp = Fq and Sp ∪ Sq ⊆ F∨p = F∨q . (2)

We define a transformation Hp
q acting as follows. Let p′ ∈ P∗ , p′ ≤ p . Then by definition

Sp ⊆ Sp′ , Fp ⊆ Fp′ , and Sp′ ∩ F∨p = Sp (by (2)). We put Hp
q (p′) = q′ := 〈Sq′ , Fq′〉 , where Fq′ = Fp′ and

Sq′ = (Sp′ r Sp) ∪ Sq . Thus the difference between Sq′ and Sp′ lies entirely within the set F∨p = F∨q ,
and in particular Sq′ has Sq there while Sp′ has Sp there.

Lemma 6 (routine). If p, q ∈ P∗ , Fp = Fq , and Sp ∪ Sq ⊆ F∨p = F∨q , then

Hp
q : P = {p′ ∈ P∗ : p′ ≤ p} onto−→ Q = {q′ ∈ P∗ : q′ ≤ q}

is an order isomorphism, and Hp
q = (Hq

p)
−1. If moreover u ⊆ Fun and p , q ∈ P[u] then Hp

q maps the set
{p′ ∈ P[u] : p′ ≤ p} onto {q′ ∈ P[u] : q′ ≤ q} order-preservingly.

3. Almost Disjoint Product Forcing

Here we review the structure and basic properties of product almost-disjoint forcing over L and
corresponding generic extensions of L . In order to support various applications, we make use of ω1-
many independent forcing notions.

3.1. Product Forcing, Systems, Restrictions

We begin with ω1-products of P∗ after which we consider more complicated forcing notions.

Definition 5. Let I = ω1 . This is the index set for the forcing products considered below. Let P∗ be the
product of I copies of the set P∗ (Definition 2), with finite support. That is, P∗ consists of all functions
p : |p| → P∗ such that the set |p| = dom p ⊆ I is finite.

If p ∈ P∗ then put Fp(ν) = Fp(ν) and Sp(ν) = Sp(ν) for all ν ∈ |p| , so that p(ν) = 〈Sp(ν) ; Fp(ν)〉 .
We order P∗ componentwise: p ≤ q iff |q| ⊆ |p| and p(ν) ≤ q(ν) for all ν ∈ |q| . Put

F∨p (ν) = F∨p(ν) = { f �m : f ∈ Fp(ν) ∧m ≥ 1}.

If p, q ∈ P∗ then define a condition r = p ∧ q ∈ P∗ so that |p ∧ q| = |p| ∪ |q| , (p ∧ q)(ν) =

p(ν) ∧ q(ν) whenever ν ∈ |p| ∩ |q| , and if ν ∈ |p|r |q| or ν ∈ |q|r |p| , then (p ∧ q)(ν) = p(ν) , resp.,
(p ∧ q)(ν) = q(ν) . Then Conditions p, q are compatible iff p ∧ q ≤ p and p ∧ q ≤ q .

We consider certain subforcings of the total product almost disjoint forcing notion P∗ .
This involves the following notion of a system.

Definition 6. A system is any map U : |U| → P (Fun) such that |U| ⊆ I and each set U(ν) (ν ∈ |U|) is
topologically dense in Fun . A system U is:

• disjoint, if its components U(ν) ⊆ Fun (ν ∈ I) are pairwise disjoint;
• countable, if the set |U| and each U(ν) (ν ∈ |U|) are at most countable.
• If U, V are systems, |U| ⊆ |V| , and U(ν) ⊆ V(ν) for all ν ∈ |U| then we write that V extends U , in

symbol U 4 V .
• If {Uξ }ξ<λ is a sequence of systems then define a system U =

∨
ξ<λ Uξ by |U| = ⋃

ξ<λ |Uξ | and
U(ν) =

⋃
ξ<λ,ν∈|Uξ |Uξ(ν) for all ν ∈ |U| .

• If U is a system then let P[U] be the finite support product of sets P[U(ν)] , ν ∈ |U| , that is, P[U] =

{p ∈ P∗ : |p| ⊆ |U| ∧ ∀ ν (Fp(ν) ⊆ U(ν))} .
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Definition 7 (restrictions). Suppose that c ⊆ I .
If p ∈ P∗ then define p′ = p� c ∈ P∗ so that |p′| = c ∩ |p| and p′(ν) = p(ν) whenever ν ∈ |p′| .

Accordingly if U is a system then define a system U� c so that |U� c| = c ∩ |U| and (U� c)(ν) = U(ν) for
ν ∈ |U� c| . A special case: if ν ∈ I then let p� 6=ν = p� (|p|r {ν}) and U� 6=ν = U� (|U|r {ν}) .

Note that writing p� c or U� c , it is not assumed that c ⊆ |p| , resp., c ⊆ |U| .

3.2. Regular Forcing Notions

Unfortunately, product forcing notions of the form P[U] (U being a system in L) do not provide
us with all the definability effects we need. We will make use of certain more complicated forcing
notions K ⊆ P∗ in L . To explain the idea, let a system U ∈ L satyisfy |U| = ω . Let G ⊆ P[U]

be generic over L . The sets SG(ν) = SG(ν) =
⋃

p∈G Sp(ν) ⊆ Seq then belong to L[G] , and in fact
L[G] = L[{SG(ν)}ν<ω ] . As Seq = {sk : k ≥ 1} (a fixed recursive enumeration, Definition 1), let
a0[G] = {k ≥ 1 : sk ∈ S0[G]} and c = {0} ∪ aG(0) . Consider the model L[{SG(ν)}ν∈c] . The first idea
is to make use of U� c , but oops, clearly c /∈ L , and consequently U� c /∈ L and P[U� c] /∈ L , so that
many typical product forcing results do not apply in this case. The next definition attempts to view the
problem from another angle.

Definition 8 (in L). A set K ⊆ P∗ is called a regular subforcing if:

(1) if conditions p, q ∈ K are compatible then p ∧ q ∈ K;
(2) if p, q ∈ K then p� |q| ∈ K — but it is not assumed that p ∈ K necessarily implies p� c ∈ K for an

arbitrary c ⊆ |p| ;
(3) if p, q ∈ P∗ , q ≤ p, and |q| = |p| exactly, then p ∈ K implies q ∈ K;
(4) for any condition p ∈ P∗ , there exist: a condition p∗ ∈ P∗ and a set d ⊆ |p∗| such that p∗ ≤ p,

Fp∗(ν) = Fp(ν) for all ν ∈ |p| , Fp∗(ν) = ∅ for all ν ∈ |p∗|r |p| , p∗� d ∈ K, and every condition
q ∈ K, q ≤ p∗� d, satisfies |q| ∩ |p∗| = d, and hence q is compatible with p∗ and with p.

In this case, if U is a system then define K[U] = K ∩ P[U] . In particular, if simply K = P∗ then
P∗[U] = P∗ ∩ P[U] = P[U] .

Example 1 (trivial). If c ⊆ I in the ground universe L , then P∗� c is a regular forcing. To prove (4) of
Definition 8 let p∗ = p and d = |p| ∩ c .

Example 2 (less trivial). Consider the set K of all conditions p ∈ P∗ such that |p| ⊆ ω and if ν ∈ |p| ,
ν ≥ 1 , then sν ∈ Sp(0) . We claim that K is a regular subforcing.

To verify 8(2), note that if q ∈ K then either 0 ∈ |q| or |q| = ∅ .
To verify 8(4), let p ∈ P∗ . If |p| ⊆ {0} , then setting p∗ = p and d = |p| works, so we assume that

|p| 6⊆ {0} . Define p∗ ∈ P∗ so that p∗(ν) = p(ν) for all ν ≥ 1 , Fp∗(0) = Fp(0) , and Sp∗(0) = Sp(0)∪ {sν :
ν ∈ I′} , where I′ consists of all ν ∈ |p| , ν ≥ 1 , such that sν /∈ Sp(0) ∪ F∨p (0) . Then |p∗| = |p| ∪ |0| ,
p∗ ≤ p, and we have sν ∈ Sp∗(0) ∪ F∨p∗(0) (not necessarily sν ∈ Sp∗(0)) for all ν ∈ |p| , ν ≥ 1 . Let d ⊆ |p∗|
contain 0 and all ν ∈ |p| , ν ≥ 1 with sν ∈ Sp∗(0) ; easily p∗� d ∈ K.

Now let q ∈ K, q ≤ r = p∗� d. Consider any index ν ∈ |p∗|r d. Then sν /∈ Sp∗(0) = Sr(0) ,
hence sν ∈ F∨p∗(0) = F∨r (0) . We claim that ν /∈ |q| . Indeed otherwise sν ∈ Sq(0) as q ∈ K. However
sν ∈ F∨r (0)r Sr(0) (see above). However, this contradicts sν ∈ Sq(0) , because q ≤ r .

Theorem 4 (in L). The partially ordered set P∗ , and hence each P[U] , and generally each regular subforcing
of P[U] (for any system U ) satisfies CCC (countable antichain condition).

Proof. Suppose towards the contrary that A ⊆ P∗ is an uncountable antichain. We may assume that
there is m ∈ ω such that |p| = m for all p ∈ A . Applying the ∆-lemma argument, we obtain an
uncountable set A′ ⊆ A and a finite set w ⊆ I with cardw < m strictly, such that |p| ∩ |q| = w for all
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p 6= q in A′ . Then A′′ = {p�w : p ∈ A′} is still an uncountable antichain, with |p| = w for all p ∈ A′ ,
easily leading to a contradiction (see the proof of Lemma 2).

Lemma 7 (in L). If K ⊆ P∗ is a regular forcing and U is a system then K[U] = K ∩ P[U] is a regular
subforcing of P[U] .

To show how (4) of Definition 8 works, we prove

Lemma 8 (in L). If U is a system and K ⊆ P[U] is a regular subforcing of P[U] then any set D ⊆ K
pre-dense in K remains pre-dense in P[U] .

Proof. Consider any p ∈ P[U] . Let p∗ ∈ P[U] and d ⊆ |p∗| satisfy (4) of Definition 8. In particular,
p∗ ≤ p and p∗� d ∈ K . By the pre-density, there is a condition q ∈ D compatible with p∗� d . Then by
(1) of Definition 8 there is a condition r = q ∧ (p∗� d) ∈ K such that r ≤ q and r ≤ p∗� d . Then r is
compatible with p by the choice of p∗ and d .

3.3. Outline of Product and Regular Extensions

We consider sets of the form P[U] , U being a system in L , as well as regular subforcings K ⊆ P[U] ,
as forcing notions over L . Accordingly, we will study P[U]-generic and K-generic extensions L[G] of
the ground universe L . Define some elements of these extensions.

Definition 9. Suppose that G ⊆ P∗ . Put |G| = ⋃
p∈G |p| ; |G| ⊆ I . Let

SG(ν) = SG(ν) =
⋃

p∈G Sp(ν) and aG(ν) = aG(ν) = {k ≥ 1 : sk ∈ SG(ν)} ,

for any ν ∈ I , where G(ν) = {p(ν) : p ∈ G} ⊆ P∗ , and Seq = {sk : k ≥ 1} is a fixed recursive
enumeration (see Definition 1).

Thus SG(ν) ⊆ Seq , aG(ν) ⊆ ω r {0} , and SG(ν) = aG(ν) = ∅ for any ν /∈ |G| .
By the way, this defines a sequence ~SG = {SG(ν)}ν∈I of subsets of Seq .
If c ⊆ I then let G� c = {p ∈ G : |p| ⊆ c} . It will typically happen that G� c = {p� c : p ∈ G} . Put

G� 6=ν = {p ∈ G : ν /∈ |p|} = G� (I r {ν}) .

If U is a system in L , the ground universe, then any P[U]-generic set G ⊆ P[U] splits into the
family of sets G(ν) , ν ∈ I , and each G(ν) is P[U(ν)]-generic.

Lemma 9. Let U be a system and K ⊆ P[U] be a regular subforcing in the ground universe L . Let G ⊆ P[U]

be a set P[U]-generic over L . Then :

(i) G ∈ L[SG] ;
(ii) the set G ∩ K is K-generic over L ;

(iii) L[G ∩ K] = L[G� c] , where c = |G ∩ K| (it is not necessary that c ∈ L !) ;
(iv) if ν /∈ |G ∩ K| then L[G ∩ K] ⊆ L[G� 6=ν] ;
(v) if ν ∈ I then SG(ν) /∈ L[G� 6=ν] ;

(vi) if ν ∈ |G| then the set G(ν) = {p(ν) : p ∈ G} ∈ L[G] is P[U(ν)]-generic over L , hence if f ∈ Fun∩L
then f ∈ U(ν) ⇐⇒ SG(ν)/ f is finite.

Proof. (ii) This follows from Lemma 8.
(iii) Let us show that G� c = {q ∈ P∗ : ∃ p ∈ G ∩ K (p ≤ q)} ; this proves G� c ∈ L[G ∩ K] .

Suppose that q ∈ G� c , so that q ∈ G and |q| ⊆ c , in other words, |q| ⊆ |p1| ∪ · · · ∪ |pn| for a finite set
of conditions p1, . . . , pn ∈ G ∩ K . Note that p = p1 ∧ · · · ∧ pn ∈ K by Definition 8(1). Thus p ∈ G ∩ K ,
and |q| ⊆ |p| . Yet q ∈ G as well, therefore, p′ = p ∧ q ∈ G , and |p′| = |p| . It follows that p′ ∈ K , by
Definition 8(3), so that p′ ∈ G ∩ K . Finally p′ ≤ q .
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Now suppose that p ∈ G ∩ K and p ≤ q ∈ P∗ . Then obviously q belongs to P[U] (since so does
p), hence q ∈ G (since G is generic). Finally |q| ⊆ |p| ⊆ c .

Let us show that G ∩ K = (G� c) ∩ K ; this proves G ∩ K ∈ L[G� c] . Indeed if p ∈ G ∩ K then by
definition |p| ⊆ c = |G ∩ K| , therefore p ∈ G� c , as required.

(iv) This is clear since we have G ∩ K = G� 6=ν ∩ K in the case considered.
(v) The set P[U] can be identified with the product P[U]� 6=ν × P[U(ν)] . Thus G(ν) and SG(ν)

are P[U(ν)]-generic over L[P[U]� 6=ν] .
(vi) The genericity easily follows from Definition 8(3). Then use Lemma 3.
(i) First of all, G = ∏ν G(ν) by the product-forcing theorem. Then, each G(ν) is recovered from

the associated SG(ν) by means of a simple uniform formula, see the proof of Lemma 3(i).

3.4. Names for Sets in Product and Regular Extensions

For any set X we let NX be the set of all P∗-names for subsets of X . Thus NX consists of all sets
τ ⊆ P∗ × X . Let SNX (small names) consist of all at most countable names τ ∈ NX .

We define dom τ = {p : ∃ x (〈p, x〉 ∈ τ)} , |τ| = ⋃{|p| : p ∈ dom τ} for any name τ .
Say that a name τ is below a given p ∈ P∗ if all p′ ∈ dom τ satisfy p′ ≤ p .
For any set K ⊆ P∗ , we let NX(K) be the set of all names τ ∈ NX such that dom τ ⊆ K ,

and accordingly SNX(K) = NX(K) ∩ SNX (small names). In particular, we’ll consider such sets of
names as SNX(P[U]) and SNX(P[U]� c) . Names in NX(K) for different sets X will be called K-names.
Accordingly, names in SNX(K) for different sets X will be called small K-names.

Definition 10 (valuations). If τ ∈ NX and G ⊆ P∗ then define τ[G] = {x : ∃ p ∈ G (〈p, x〉 ∈ τ)} , the G-
valuation of τ ; τ[G] is a subset of X .

Example 3 (some names). Let � ∈ P∗ be the empty condition, that is, |�| = ∅ . This is the weakest
condition in any P[U] . If X is a set in the ground universe then X̆ = {〈�, x〉 : x ∈ X} is a K-name for any
regular forcing K ⊆ P∗ , and X̆[G] = X for any set G containing � .

We will typically use breve-names like X̆ for sets in the ground universe, and dot-names (like .x ) for sets in
generic extensions.

Suppose that K ⊆ P∗ . Let G = {〈p, p〉 : p ∈ K} . (In principle, G depends on K but this dependence
will usually be suppressed.) Clearly G ∈ NK(K) (but G /∈ SNK(K) unless K is countable), and in addition
G[G] = G for any ∅ 6= G ⊆ K. Thus G is a name for the generic set G ⊆ K.

Similarly, G� c = {〈p, p〉 : p ∈ K� c} (c ⊆ I ) is a name for G� c (see Definition 9).

3.5. Names for Functions

For any sets X , Y let NX
Y be the set of all P∗-names for functions X → Y ; it consists of all

τ ⊆ P∗ × (X×Y) such that the sets τ ”〈x, y〉 = {p : 〈p, 〈x, y〉〉 ∈ τ} satisfy the following requirement:

if y 6= y′ , p ∈ τ ”〈x, y〉 , p′ ∈ τ ”〈x, y′〉 , then p, p′ are incompatible.

Let dom τ =
⋃

x,y τ ”〈x, y〉 and |τ| = ⋃{|p| : p ∈ dom τ} .
As above, SNX

Y consists of all at most countable names τ ∈ NX
Y .

For any set K ⊆ P∗ , we let NX
Y (K) be the set of all names τ ∈ NX

Y such that dom τ ⊆ K , and
accordingly SNX

Y (K) = NX
Y (K) ∩ SNX

Y (small names).
A name τ ∈ NX

Y (K) is K-full iff the union τ ”x =
⋃

y τ ”〈x, y〉 is pre-dense in K for any x ∈ X . A
name τ ∈ NX

Y (K) is K-full below some p0 ∈ K , iff all sets τ ”x are pre-dense in K below p0 , that is,
any condition q ∈ K , q ≤ p0 , is compatible with some r ∈ τx (and this holds for all x ∈ X ).

Note that NX
Y (K) ⊆ NX×Y(K) , and accordingly SNX

Y (K) ⊆ SNX×Y(K) . Thus all names in NX
Y (K)

and in SNX
Y (K) are still K-names in the sense above.
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Corollary 1 (of Lemma 8, in L ). If U is a system, K ⊆ P[U] is a regular subforcing, X, Y any sets, and τ is
a name in NX

Y (K) , then τ is K-full (resp., K-full below p ∈ K ) iff τ is P[U]-full (resp., P[U]-full below p ) .

Suppose that τ ∈ NX
Y . Call a set G ⊆ P∗ minimally τ-generic iff it is compatible in itself (if

p, q ∈ G then there is r ∈ G with r ≤ p , r ≤ q), and intersects each set of the form τ ”x , x ∈ X . In this
case put

τ[G] = {〈x, y〉 ∈ X×Y : (τ ”〈x, y〉) ∩ G 6= ∅} ,

so that τ[G] ∈ YX and τ[G](x) = y ⇐⇒ τ ”〈x, y〉 ∩ G 6= ∅ . If ϕ is a formula in which some names
τ ∈ NX

Y occur (for various sets X, Y ), and a set G ⊆ P∗ is minimally τ-generic for any name τ in ϕ ,
then accordingly ϕ[G] is the result of substitution of τ[G] for each name τ in ϕ .

Claim 1 (obvious). Suppose that, in L , X, Y are any sets, p ∈ K ⊆ P∗ and τ ∈ NX
Y (K) is K-full (resp.,

K-full below p ) . Then, any set G ⊆ K, K-generic over L (resp., K-generic over L and containing p ) , is
minimally τ-generic.

Definition 11 (equivalent names). Names τ, µ ∈ SNω
ω(P∗) are called equivalent iff conditions q, r are

incompatible whenever q ∈ τ ”〈m, j〉 and r ∈ µ”〈m, k〉 for some m and j 6= k. (Recall that τ ”〈m, k〉 = {p :
〈p, 〈m, k〉〉 ∈ τ} .) Similarly, names τ, µ are equivalent below some p ∈ P∗ iff the triple of conditions p, q, r is
incompatible (that is, p ∧ q ∧ r is not ≤ than at least one of p, q, r ) whenever q ∈ τ ”〈m, j〉 and r ∈ µ”〈m, k〉
for some m and j 6= k.

Claim 2 (obvious). Suppose that, in L , p ∈ K ⊆ P∗ , and names µ , τ ∈ SNω
ω(K) are equivalent (resp.,

equivalent below p ) . Then, for any G ⊆ K both minimally µ-generic and minimally τ-generic (resp., and
containing p ) , µ[G] = τ[G] .

Lemma 10. Suppose that, in L , U is a system, K ⊆ P[U] is a regular subforcing, p0 ∈ K, A ⊆ P = {p ∈ K :
p ≤ p0} is a countable antichain, and, for any p ∈ A, τp ∈ SNω

ω(K) is a name K-full below p0 . Then there is
a K-full name τ ∈ SNω

ω(K) , equivalent to τp below p for any p ∈ A.

Proof. Let B be a maximal (countable) antichain in the set of all conditions q ∈ K incompatible with
p0 . Then A ∪ B is a countable maximal antichain in K . We let τ consist of: 1) all triples 〈r ∧ q, 〈k, m〉〉 ,
such that q ∈ A and 〈r, 〈k, m〉〉 ∈ τq , and 2) all triples 〈q, 〈k, 0〉〉 , such that q ∈ B and m ∈ ω .

3.6. Names and Sets in Generic Extensions

For any forcing P , let ||−−P denote the P-forcing relation over L as the ground model.

Theorem 5. Suppose that U is a system and K ⊆ P[U] a regular subforcing in L . Let G ⊆ K be a set K-
generic over L . Then :

(i) if p ∈ K and ϕ is a closed formula with K-names as parameters, then

p ||−−K ϕ iff p ||−−P[U] “ L[G ∩ K̆] |= ϕ[G]” ;

(ii) if X, Y are countable sets in L , and f ∈ L[G] , f : X → Y, then there is a K-full name τ ∈ SNX
Y (K) in

L such that f = τ[G] .
(iii) if X ∈ L , y ∈ L[G] , y ⊆ X, then there is a name τ ∈ NX(K) in L such that y = τ[G] , and in addition

if X is countable in L then τ ∈ SNX(K) .
(iv) if X, Y are countable sets in L , p ∈ K, ϕ( f ) is a formula with K-names as parameters, and p ||−−K ∃ f ∈

YX ϕ( f ) , then there is a K-full name τ ∈ SNX
Y (K) in L such that p ||−−K ϕ(τ) .

Proof. (i) Suppose p ||−−K ϕ . To prove p ||−−P[U] “ L[G ∩ K̆] |= ϕ[G]”, consider a set G ⊆ P[U] , P[U]-
generic over L . Then G ∩ K is K-generic over L by Lemma 8, hence ϕ[G] is true in L[G ∩ K] , as
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required. Conversely assume ¬ p ||−−K ϕ . There is a condition q ∈ K , q ≤ p , q ||−−k ¬ ϕ . Then
q ||−−P[U] “ L[G ∩ K̆] |= ¬ ϕ[G]” by the above, thus p ||−−P[U] “ L[G ∩ K] |= ϕ[G]” fails.

(ii) It follows from general forcing theory that there is a K-full name σ ∈ NX
Y (K) , not necessarily

countable, such that f = σ[G] . Then all sets Qx = σ”x , x ∈ X , are pre-dense in K . Put τ =

{〈p, 〈x, y〉〉 ∈ σ : x ∈ X ∧ y ∈ Y ∧ p ∈ Ax} , where Ax ⊆ Qx is a maximal (countable, by Theorem 4)
antichain for any x .

(iv) We conclude from (ii) that the set Q of all conditions q ∈ K , q ≤ p , such that q ||−−K ϕ(τ) for
some name τ = τq ∈ SNX

Y (K) , is dense in K below p . Let A ⊆ Q be a maximal antichain in Q ; A is
countable and pre-dense in K below p . Apply Lemma 10 to get a name τ as required.

Example 4. Consider the regular forcing K = P[U� c] , where U is a system and c ⊆ I in L . If G ⊆ P[U]

is P[U]-generic over L then the restricted set G� c = G ∩ (P[U� c]) is P[U� c]-generic over L , by Lemma 9
(with K = P[U� c] ). Furthermore, it follows from Lemma 9 and Theorem 5 that if ν ∈ I then SG(ν) ∈ L[G� c]
iff ν ∈ c , so that L[G� c] = L[{SG(ν)}ν∈c] .

Example 5. Consider the regular forcing K defined in Example 2 in Section 3.2. Suppose that U is a system
in L and G ⊆ P[U] is a set P[U]-generic over L . Then K[U] = K ∩ P[U] is a regular subforcing of P[U] by
Lemma 7. We conclude that G′ = G ∩ K is a set K[U]-generic over L , by Lemma 9.

It follows by the definition of K that the set |G′| = ⋃
p∈G′ |p| satisfies |G′| ⊆ ω , contains 0 , and if ν ≥ 1

then ν ∈ |G′| iff sν ∈ SG(0) . Therefore, by Lemma 9 and Theorem 5, the sets G(0) and SG(0) belong to
L[G′] , and if 1 ≤ ν < ω then SG(ν) ∈ L[G′] iff sν ∈ SG(0) . Thus

L[G′] = L[SG(0), {SG(ν)}sν∈SG(0)] = L[G′] = L[G� c] ,

where c = |G′| = {0} ∪ {ν < ω : sν ∈ SG(0)} /∈ L .

3.7. Transformations Related to Product Forcing

There are three important families of transformations of the whole system of objects related to
product forcing. Two of them are considered in this Subsection.

Family 1: permutations. If c , c′ ⊆ I are sets of equal cardinality then let BIJc
c′ be the set of all

bijections π : c onto−→ c′ . Let |π| = {ν ∈ c : π(ν) 6= ν} ∪ {ν ∈ c′ : π−1(ν) 6= ν} , so that π is essentially
a bijection c ∩ |π| onto−→ c′ ∩ |π| , equal to the identity on c r |π| = c′ r |π| . Define the action of any
π ∈ BIJc

c′ onto:

– sets e ⊆ c : π · e := {π(ν) : ν ∈ e} — then π · e ⊆ c′ and π ·c = c′ ;
– systems U with |U| ⊆ c : (π ·U)(π(ν)) := U(ν) for all ν ∈ |U| — then |π ·U| = π · |U| ⊆ c′ ;
– conditions p ∈ P∗ with |p| ⊆ c : (π · p)(π(ν)) := p(ν) for all ν ∈ |p| ;
– sets G ⊆ P∗� c : π ·G := {π · p : p ∈ G} — then π ·G ⊆ P∗� c′ ,

in particular, π ·K = {π · p : p ∈ K} ⊆ P∗� c′ for any regular subforcing K ⊆ P∗� c ;
– names τ ∈ NX

Y (P
∗� c) : π ·τ := {〈π · p, 〈`, k〉〉 : 〈p, 〈`, k〉〉 ∈ τ} — then π ·τ ∈ NX

Y (P
∗� c′) ;

Lemma 11. If c , c′ ⊆ I are sets of equal cardinality and π ∈ BIJc
c′ then p 7−→ π · p is an order preserving

bijection of P∗� c onto P∗� c′ , and if U is a system and |U| ⊆ c then |π ·U| ⊆ c′ , and we have p ∈
P[U] ⇐⇒ π · p ∈ P[π ·U] .

Family 2: Lipschitz transformations. Let LipI be the I-product of the group Lip (see
Section 2.3), with countable support; this will be our second family of transformations. Thus a
typical element α ∈ LipI is α = {αν}ν∈|α| , where |α| = dom α ⊆ I is at most countable, and αν ∈ Lip ,
∀ ν . We will routinely identify each α ∈ LipI with its extension on I defined so that αν is the
identity map (on Seq) for all ν ∈ I r |α| . Keeping this identification in mind, define the action of any
α ∈ LipI on:
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– systems U : |α ·U| := |U| and (α ·U)(ν) := αν ·U(ν) ;
– conditions p ∈ P∗ , by |α · p| = |p| and (α · p)(ν) = αν · p(ν) ;
– sets G ⊆ P∗ : α ·G := {α · p : p ∈ G} ,

in particular, α ·K = {α · p : p ∈ K} for any regular subforcing K ⊆ P∗ ;
– names τ ∈ NX

Y : α ·τ := {〈α · p, 〈n, k〉〉 : 〈p, 〈n, k〉〉 ∈ τ} ;

In the first two lines, we refer to the action of αν ∈ Lip on sets u ⊆ Fun and on forcing conditions,
as defined in Section 2.3.

Lemma 12. If α ∈ LipI then p 7−→ π · p is an order preserving bijection of P∗ onto P∗ , and if U is a
system then we have p ∈ P[U] ⇐⇒ α · p ∈ P[α ·U] .

Corollary 2 (of Lemma 5). Suppose that U, V are countable systems, |U| = |V| , and p ∈ P[U] , q ∈ P[V] .
Then there is a transformation α ∈ LipI such that

(i) |α| = |U| = |V| , α ·U = V , and
(ii) there are conditions p′ ∈ P[U] , p′ ≤ p and q′ ∈ P[V] , q′ ≤ q such that α · p′ = q′—in particular,

conditions α · p and q are compatible in P[V] .

Proof. Apply Lemma 5 componentwise for every ν ∈ |U| = |U′| .

3.8. Substitutions and Homogeneous Extensions

Assume that conditions p , q ∈ P∗ satisfy (2) of Section 2.4 for all ν , that is:

|p| = |q| , and Sp(ν) ∪ Sq(ν) ⊆ F∨p (ν) = F∨q (ν) for all ν ∈ |p| = |q| . (3)

Definition 12. If (3) holds and p′ ∈ P∗ , p′ ≤ p, then define q′ = Hp
q (p′) so that |q′| = |p′| , q′(ν) = p′(ν)

whenever ν ∈ |p′|r |p| , but q′(ν) = Hp(ν)
q(ν) (p′(ν)) for all ν ∈ |p| , where Hp(ν)

q(ν) is defined as in Section 2.4.
This is Family 3 of transformations, called substitutions.

Theorem 6. If U is a system, and conditions p , q ∈ P[U] satisfy (3) above, then

Hp
q : P = {p′ ∈ P[U] : p′ ≤ p} onto−→ Q = {q′ ∈ P[U] : q′ ≤ q}

is an order isomorphism.

Proof. Apply Lemma 6 componentwise.

Suppose that U , p , q ∈ P[U] , Hp
q are as in Theorem 6. Extend the action of Hp

q onto names and
formulas. Recall that a name τ ∈ NX

Y is below p iff p′ ≤ p holds for any triple 〈p′, 〈n, k〉〉 ∈ τ .

• If X , Y are any sets and τ ∈ NX
Y is a name below p then put Hp

q (τ) = {〈Hp
q (p′), 〈n, k〉〉 :

〈p′, 〈n, k〉〉 ∈ τ} , so Hp
q (τ) ∈ NX

Y is a name below q .
• If ϕ is a formula with names below p as parameters then Hp

q (ϕ) denotes the result of substitution
of Hp

q (τ) for any name τ in ϕ .

Forcing notions of the form P[U] are quite homogeneous by Theorem 6. The next result is a usual
product forcing application of such a homogeneity.

Theorem 7. Suppose that, in L , U is a system, d ⊆ c ⊆ I , K is a regular subforcing of P[U� d] , and
Q = {p ∈ P[U� c] : p� d ∈ K} = K× P[U� (c r d)] . Let ϕ be a formula which contains as parameters : (∗)
K-names, and (†) names of the form G� e , where e ∈ L , e ⊆ c , and G� e enters ϕ only via L[G� e] . Then :

(i) if p ∈ Q and p ||−−Q ϕ then p� d ||−−Q ϕ ;
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(ii) in particular, for d = ∅ (and Q = P[U� c]), Q decides any formula Φ which contains only names for
sets in L and names G� e via L[G� e] of the form (†) with e ⊆ c , as parameters ;

(iii) if p ∈ Q and p ||−−Q ∃ x ∈ L[G� c] ϕ(x) then p� d ||−−Q ∃ x ∈ L[G� c] ϕ(x) .

Proof. (i) Otherwise there are conditions p , q ∈ Q with p� d = q� d , p ||−−Q ϕ , but q ||−−Q ¬ ϕ . We can
w. l.o.g. assume that p, q satisfy (3) above (otherwise extend p, q appropriately). Define P , Q , Hp

q as
in Definition 12 and Theorem 6.

Let G ⊆ Q be a generic set containing p . Assuming w. l.o.g. that G ⊆ P , the set H = {Hp
q (p′) :

p′ ∈ G} ⊆ Q will be generic as well by Theorem 6, and q ∈ H . Therefore ϕ[G] is true in L[G] but
ϕ[H] is false in L[H] . Yet L[G] = L[H] since Hp

q ∈ L . Moreover ϕ[G] coincides with ϕ[H] since 1)
Hp

q is the identity on d (indeed p� d = q� d), and 2) if e ∈ L , e ⊆ c , then L[G� e] = L[H� e] since G� e ,
H� e can be obtained from each other via maps coded in L . This is a contradiction.

(iii) This is a particular case.

Corollary 3. Under the assumptions of Theorem 7, suppose that X , Y are arbitrary sets in L , p ∈ Q,
and p ||−−Q ∃ f ∈ L[G ∩ K] ( f ∈ YX ∧ ϕ( f )) . Then there is a K-full name τ ∈ SNX

Y (K) such that
p� d ||−−Q ϕ(τ) .

Proof. We can assume that |p| ⊆ d by Theorem 7(iii), thus p = p� d ∈ K . It follows from Theorems
5(ii) and 7(i) that there exist: a (countable) antichain A ⊆ K maximal below p , and, for any q ∈ A , a
K-full name τq ∈ SNX

Y (K) such that q ||−−Q ϕ(τq) . Now compose a K-full name τ ∈ SNX
Y (K) , such

that every q ∈ A forces τ = τq , as in the proof of Theorem 5(iv).

4. Basic Forcing Notion and Basic Generic Extension

The proofs of Theorems 1–3, that follow in Sections 7–9, will have something in common. Namely
the generic extensions we employ to get the results required will be parts of a basic extension,
introduced and studied in this section. To define the extension, we’ll define (in L as the ground
universe) an increasing sequence {〈Mξ , Uξ〉}ξ<ω1 of pairs of certain type—a Jensen–Solovay sequence,
since this construction goes back to [9]—and make use of a forcing notion of the form P[U] , where
U =

∨
ξ<ω1

Uξ . It turns out that if such a sequence is n-complete, in sense that it meets all sets of
n-complexity within the whole tree of possible constructions, then the truth of analytic formulas
up to level n in corresponding generic extensions has a remarkable connection with the forcing
approximations studied in Section 5. This will allow us to convert the homogeneity of the construction
of Jensen–Solovay sequences into a uniformity of the corresponding generic extensions, expressed by
Theorem 13.

Recall that V = L assumed in the ground universe by Assumption 1.

4.1. Jensen–Solovay Sequences

If U 4 V are systems then by definition P[U] ⊆ P[V] holds. However this is not necessarily
a suitably good notion. For instance a dense set X ⊆ P[U] may not be pre-dense in P[V] , thus if
G ⊆ P[V] is a generic set then the “projection” G ∩ P[U] is not necessarily P[U]-generic. Yet there
is a special type of extension of systems, introduced by Jensen and Solovay [9], which preserves the
density. This method is based on the requirement that the functions in Fun that occur in V but not in
U must be generic over a certain model that contains U .

Recall that ZFC− is ZFC minus the Power Set axiom, see Section 5.1 below. Let ZFC−1 be ZFC−

plus the axioms V = L and “every set is at most countable”.

Definition 13. Let U, U′ be a pair of systems. Suppose that M is any transitive model of ZFC− . Define
U 4M U′ iff U 4 U′ and we have:
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(a) the set ∆(U, U′) =
⋃

ν∈|U|(U′(ν)rU(ν)) (note the union over |U| rather than |U′| !) is multiply
Cohen generic over M, in the sense that every string 〈 f1, . . . fm〉 of pairwise different functions f` ∈
∆(U, U′) is Cohen generic over M, and

(b) if ν ∈ |U| and U′(ν)rU(ν) 6= ∅ then U′(ν)rU(ν) is dense in Fun = ωω .

Let JS , Jensen–Solovay pairs, be the set of all pairs 〈M, U〉 of a transitive model M |= ZFC− and a disjoint
(ν 6= ν′ =⇒ U(ν) ∩U(ν′) = ∅) system U ∈ M. Let sJS , small pairs, consist of all 〈M, U〉 ∈ JS such that
M |= ZFC−1 and M (then U as well) is countable. Define the extension relations:

〈M, U〉 4 〈M′, U′〉 iff M ⊆ M′ and U 4M U′ ;
〈M, U〉 ≺ 〈M′, U′〉 iff 〈M, U〉 4 〈M′, U′〉 and ∀ ν ∈ |U| (U(ν) $ U′(ν)) .

It would be a vital simplification to get rid of M as an explicit element of the construction, e.g., by
setting U 4∗ U′ iff U 4 U′ and there is a CTM M containing U and such that U 4M U′ .

Lemma 13. Suppose that pairs 〈M, U〉 4 〈M′, U′〉 4 〈M′′, U′′〉 belong to JS . Then 〈M, U〉 4 〈M′′, U′′〉 .
Thus 4 is a partial order on JS .

Proof. Prove that the set F =
⋃

ν∈|U|(U′′(ν)rU(ν)) is multiply Cohen generic over M . Consider a
simple case when f ∈ U′(ν)rU(ν) and g ∈ U′′(µ)rU′(µ) , where ν, µ ∈ |U| , and prove that 〈 f , g〉
is Cohen generic over M . (The general case does not differ much.) By definition, f is Cohen generic
over M and g is Cohen generic over M′ . Therefore, g is Cohen generic over M[ f ] , which satisfies
M[ f ] ⊆ M′ since f ∈ M′ . It remains to apply the product forcing theorem.

Remark 1. We routinely have 〈M, U〉 4 〈M′, U〉 (the same U ) provided M ⊆ M′ . On the other
hand, 〈M, U〉 4 〈M, U′〉 (with the same M ) is possible only in the case when ∆(U, U′) = ∅ , that is,
U(ν) = U′(ν) for all ν ∈ |U| . In particular, if 〈M, U〉 ∈ JS , c ∈ M , c ⊆ |U| , then 〈M, U� c〉 4 〈M, U〉 .

Lemma 14 (extension). If 〈M, U〉 ∈ sJS and z ⊆ I is countable, then there is a pair 〈M′, U′〉 ∈ sJS such
that 〈M, U〉 ≺ 〈M′, U′〉 and z ⊆ |U′| .

Proof. Let d = |U| ∪ z , and let ~f = { fνk}ν∈d,k<ω ∈ (Fun)d×ω be Cohen generic over M . Now define
U′(ν) = U(ν) ∪ { fνk : k ∈ ω} for each ν ∈ d , and let M′ |= ZFC−1 be any CTM satisfying M ⊆ M′

and containing U′ .

Definition 14. A Jensen–Solovay sequence of length λ ≤ ω1 is any strictly ≺-increasing λ-sequence
{〈Mξ , Uξ〉}ξ<λ of pairs 〈Mξ , Uξ〉 ∈ sJS , which satisfies Uη =

∨
ξ<η Uξ on limit steps. Let

−→
JSλ be the

set of all such sequences.

Lemma 15. Suppose that λ ≤ ω1 is a limit ordinal, and {〈Mξ , Uξ〉}ξ<λ belongs to
−→
JSλ . Put U =

∨
ξ<λ Uξ ,

that is, U(ν) =
⋃

ξ<λ Uξ(ν) for all ν ∈ I .
Then Uξ 4Mξ

U for every ξ .
If, moreover, λ < ω1 and M is a CTM of ZFC−1 containing {〈Mξ , Uξ〉}ξ<λ then 〈M, U〉 ∈ sJS and

〈Mξ , Uξ〉 ≺ 〈M, U〉 for every ξ .

Proof. The same idea as in the proof of Lemma 13.

4.2. Stability of Dense Sets

Assume that 〈M, U〉 ∈ sJS and D is a pre-dense subset of P[U] (say, a maximal antichain). If U′

is another system satisfying U 4 U′ , then it may well happen that D is not maximal in P[U′] . The role
of the multiple genericity requirement (a) in Definition 13, first discovered in [9], is to somehow seal
the property of pre-density of sets already in M for any further extensions. This is the content of
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the following key theorem. The product forcing arguments allow us to extend the stability result to
pre-dense sets not necessarily in M , as in items (ii), (iii) of the following theorem.

Theorem 8. Assume that, in L , 〈M, U〉 ∈ sJS , U′ is a disjoint system, and U 4M U′ . If D is a pre-dense
subset of P[U] (resp., pre-dense below some p ∈ P[U] ) then D remains pre-dense in P[U′] (resp., pre-dense
in P[U′] below p ) in each of the following three cases :

(i) D ∈ M ;
(ii) D ∈ M[G] , where G ⊆ Q is Q-generic over L and Q ∈ M is a PO set ;

(iii) D ∈ M[H] , where H ⊆ U′(ν0) is finite, ν0 ∈ |U| is fixed, and D ⊆ P[U� 6=ν0
] .

Proof. We consider only the case of sets D pre-dense in P[U] itself; the case of pre-density below
some p ∈ P[U] is treated similarly.

(i) Suppose, towards the contrary, that a condition p ∈ P[U′] is incompatible with each q ∈ D .
As D ⊆ P[U] , we can w. l.o.g. assume that |p| ⊆ |U| .

Our plan is to define a condition p′ ∈ P[U] , also incompatible with each q ∈ D , contrary to the
pre-density. To maintain such a construction, consider the finite string ~f = 〈 f1, . . . , fm〉 of all elements
f ∈ Fun occurring in

⋃
ν∈|p| Fp(ν) but not in U . It follows from U 4M U′ that ~f is Cohen-generic

over M . Further analysis shows that p being incompatible with D is implied by the fact that ~f meets
a certain M -countable family of Cohen-dense sets. Therefore, we can simulate this in M , getting a
string ~g ∈ M which meets the same Cohen-dense sets, and hence yields a condition p′ ∈ P[U] , also
incompatible with each q ∈ D .

This argument was first carried out in [9] in full generality, where we address the reader. However,
to present the key idea in sufficient detail in a somewhat simplified subcase, we assume that (1)
|p| = {ν} is a singleton; ν ∈ |U| . Then p(ν) = 〈Sp(ν) ; Fp(ν)〉 ∈ P[U′(ν)] , where Sp(ν) ⊆ Seq and
Fp(ν) ⊆ U′(ν) are finite sets. The (finite) set X = Fp(ν)r U(ν) is multiply Cohen generic over M
since U 4M U′ . To make the argument even more transparent, we suppose that (2) X = { f , g} , where
f 6= g and the pair 〈 f , g〉 is Cohen generic over M . (The general case follows the same idea and can
be found in [9]; we leave it to the reader.)

Thus Fp(ν) = F ∪ { f , g} , where F = Fp(ν) ∩U(ν) ∈ M is by definition a finite set.
The plan is to replace the functions f , g by some functions f ′, g′ ∈ U(ν) so that the incompatibility

of p with conditions in D will be preserved.
It holds by the choice of p and Lemma 1 that D = D1( f , g) ∪ D2 , where

D1( f , g) = {q ∈ D : Aq ∩ F∨p (ν) 6= ∅}, where Aq = Sq(ν)r Sp(ν) ⊆ Seq ;

D2 = {q ∈ D : (Sp(ν)r Sq(ν)) ∩ F∨q (ν) 6= ∅} ∈ M;

and D1 depends on f , g via Fp(ν). (See Section 3.1 on notation.) The equality D = D1( f , g) ∪D2 ∪D3

can be rewritten as ∆ ⊆ D1( f , g) , where ∆ = D r D2 ∈ M . Further, ∆ ⊆ D1( f , g) is equivalent to

(∗) ∀ A ∈ A (A ∩ F∨p (ν) 6= ∅) , where A = {Aq : q ∈ D} ∈ M ,

and each Aq = Sq(ν)r Sp(ν) ⊆ Seq is finite. Recall that Fp(ν) = F ∪ { f , g} , therefore F∨p (ν) =

Z ∪ S( f , g) , where Z = {h�m : m ≥ 1 ∧ h ∈ F} ∈ M and S( f , g) =
⋃

m≥1{ f �m, g�m} . Thus (∗) is
equivalent to

(†) ∀ A′ ∈ A ′ (A′ ∩ S( f , g) 6= ∅) , where A ′ = {Aq r Z : q ∈ D} ∈ M .

Note that each A′ ∈ A ′ is a finite subset of Seq , so we can reenumerate A ′ = {A′k : k < ω} in M
and rewrite (†) as follows:

(‡) ∀ k (A′k ∩ S( f , g) 6= ∅) , where each A′k ⊆ Seq is finite.
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As the pair 〈 f , g〉 is Cohen-generic, there is a number m0 such that (‡) is forced over M by 〈σ0, τ0〉 ,
where σ0 = f �m0 and τ0 = g�m0 . In other words, A′k ∩ S( f ′, g′) 6= ∅ holds for all k whenever
〈 f ′, g′〉 is Cohen-generic over M and σ0 ⊂ f ′ , τ0 ⊂ g′ . It follows that for any k and strings σ, τ ∈ Seq
extending resp. σ0, τ0 there are strings σ′, τ′ ∈ Seq extending resp. σ, τ , at least one of which extends
one of w ∈ A′k . This allows us to define, in M , a pair of f ′, g′ ∈ Fun such that σ0 ⊂ f ′ , τ0 ⊂ g′ , and
for any k at least one of f ′, g′ extends one of w ∈ A′k . In other words, we have

∀ k (A′k ∩ S( f ′, g′) 6= ∅) and ∀ A′ ∈ A ′ (A′ ∩ S( f ′, g′) 6= ∅).

It follows that the condition p′ defined by |p′| = {ν} , Sp′(ν) = Sp(ν) , Fp′(ν) = F ∪ { f ′, g′} , still
satisfies ∀ A ∈ A (A ∩ F∨p′(ν) 6= ∅) (compare with (∗)), and further D = D1( f ′, g′) ∪ D2 ∪ D3 ,
therefore, p′ is incompatible with each q ∈ D . Yet p′ ∈ M since f ′, g′ ∈ M , which contradicts the
pre-density of D .

(ii) The above proof works with M[G] instead of M since the set X as in the proof is multiple
Cohen generic over M[G] by the product forcing theorem.

(iii) Assuming w. l.o.g. that H ⊆ U′(ν0)r U(ν0) , we conclude that M[H] is a Cohen generic
extension of M . Following the above, let ν ∈ |U| , ν 6= ν0 . By the definition of 4 the set F =

Fp(ν)rU(ν) is multiply Cohen generic not only over M but also over M[H] . This allows to carry out
the same argument as above.

Corollary 4. (i) Assume that, in L , 〈M, U〉 ∈ sJS , and 〈M, U〉 4 〈M′, U′〉 ∈ JS . Let a set G ⊆ P[U′]
be P[U′]-generic over M′ . Then G ∩ P[U] is P[U]-generic over M.

(ii) If moreover, K ∈ M, K ⊆ P[U] is a regular subforcing, then G ∩ K is K-generic over M.

Proof. To prove (i), note that if a set D ∈ M , D ⊆ Q(U) , is pre-dense in Q(U) , then it is pre-dense in
Q(U′) by Theorem 8, and hence G ∩ D 6= ∅ by the genericity. To prove (ii), apply Lemma 8.

The next corollary returns us to names, the material of Sections 3.4 and 3.5.

Corollary 5 (of Theorem 8(i)). In L , suppose that 〈M, U〉 ∈ sJS , 〈M, U〉 4 〈M′, U′〉 ∈ JS , and X , Y
belong to M. Assume that τ ∈ M ∩ SNX

Y (P[U]) is a P[U]-full name. Then τ remains P[U′]-full. If moreover
p ∈ P[U] and τ is P[U]-full below p, then τ remains P[U′]-full below p.

4.3. Digression: Definability in HC

The next subsection will contain a transfinite construction of a key forcing notion in L relativized
to HC. Recall that HC is the collection of all hereditarily countable sets. In particular, HC = Lω1 in L . In
matters of related definability classes, we refer to e.g., Part B, Chapter 5, Section 4 in [20], or Chapter 13
in [21], on the Lévy hierarchy of ∈-formulas and definability classes ΣX

n , ΠX
n , ∆X

n for any set X , and
especially on ΣHC

n , ΠHC
n , ∆HC

n for X = HC in Sections 8 and 9 in [22], or elsewhere. In particular,

ΣHC
n = all sets X ⊆ HC, definable in HC by a parameter-free Σn formula.

ΣHC
n = all sets X ⊆ HC definable in HC by a Σn formula with sets in HC as parameters.

Something like ΣHC
n (x) , x ∈ HC, means that only x is admitted as a parameter, while ΣHC

n (M) ,
where M ⊆ HC is a transitive model, means that all x ∈ M are admitted as parameters. Collections
like ΠHC

n , ΠHC
n (x) , ΠHC

n (M) are defined similarly, and ∆HC
n = ΣHC

n ∩ΠHC
n , etc.. The boldface classes

are defined as follows: ΣHC
n = ΣHC

n (HC) , ΠHC
n = ΠHC

n (HC) , ∆HC
n = ∆HC

n (HC) .

Remark 2. It is known that the classes ΣHC
n , ΠHC

n , ∆HC
n are equal to resp. Σ1

n+1 , Π1
n+1 , ∆1

n+1 for sets
of reals, and the same for parameters and boldface classes. This well-known result was explicitly
mentioned in [23] (Lemma on p. 281), a detailed proof see Lemma 25.25 in [21], or Theorem 9.1 in [22].

Remark 3. Recall that <L is the Gödel wellordering of L , the constructible universe.
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It is known that the restriction <L�HC is a ∆HC
1 relation, and if n ≥ 1, p ∈ ωω is any parameter,

and R(x, y, z, . . . ) is a finitary ∆HC
n (p) relation on HC then the relations ∃ x <L y R(x, y, z, . . . ) and

∀ x <L y R(x, y, z, . . . ) (with arguments y, z, . . . ) are ∆HC
n (p) as well.

4.4. Complete Sequences and the Basic Notion of Forcing

Say that a pair 〈M, U〉 ∈ sJS solves a set D ⊆ sJS iff either 〈M, U〉 ∈ D , or there is no pair
〈M′, U′〉 ∈ D extending 〈M, U〉 . Let Dsolv be the set of all pairs 〈M, U〉 ∈ sJS which solve D .

Definition 15. Let n ≥ 3 . A sequence {〈Mξ , Uξ〉}ξ<ω1 ∈
−→
JSω1 is n- complete iff it intersects every set of

the form Dsolv , where D ⊆ sJS is ΣHC
n−2 . (See Section 4.3 on definability classes in HC .)

Let us prove the existence of complete sequences.

Theorem 9 (in L). Let n ≥ 2 . There is a sequence {〈Mξ , Uξ〉}ξ<ω1 ∈
−→
JSω1 of class ∆HC

n−1 , n-complete in
case n ≥ 3 , and such that ξ ∈ |Uξ+1| for all ξ — hence the limit system U =

∨
ξ<ω1

Uξ satisfies |U| = I .

Proof. Define pairs 〈Mξ , Uξ〉 , ξ < ω1 , by induction. Let U0 be the null system with |U0| = ∅ , and M0

be the least CTM of ZFC−1 . If λ < ω1 is limit then put Uλ =
∨

ξ<λ Uξ and let Mλ be the least CTM of
ZFC−1 containing the sequence {〈Mξ , Uξ〉}ξ<λ . If 〈Mξ , Uξ〉 ∈ sJS is defined then by Lemma 14 there
is a pair 〈M′, U′〉 ∈ sJS with 〈Mξ , Uξ〉 ≺ 〈M′, U′〉 and ξ ∈ |U′| . Let Θ ⊆ ω1 ×HC be a universal
ΣHC

n−2 set, and Dξ = {z ∈ sJS : 〈ξ, z〉 ∈ Θ} . Let 〈Mξ+1, Uξ+1〉 be the <L-least pair 〈M, U〉 ∈ Dξ
solv

satisfying 〈M′, U′〉 4 〈M, U〉 . To check the definability property use the fact mentioned by Remark 3
in Section 4.3.

Now define the basic forcing notion.

Definition 16 (in L). Fix a number n ≥ 2 . Let {〈Mξ ,Uξ〉}ξ<ω1 ∈
−→
JSω1 be any n-complete Jensen–Solovay

sequence of class ∆HC
n−1 as in Theorem 9—in case n ≥ 3 , or just any Jensen–Solovay sequence of class ∆HC

1 —in
case n = 2 , and in both cases ξ ∈ |Uξ+1| for every ξ < ω1 , as in Theorem 9. Put U =

∨
ξ<ω1

Uξ , so U
is a system, |U| = I = ω1 , U(ν) =

⋃
ξ<ω1,ν∈|Uξ | Uξ(ν) for all ν ∈ I . We finally define P = P[U] and

Pγ = P[Uγ] for γ < ω1 .

Thus P is the product of sets P(ν) = P[U(ν)] , ν ∈ I , with finite support.
We proceed with a couple of simple lemmas.

Corollary 6. Suppose that, in L , M is a transitive model of ZFC− containing the sequence {〈Mξ ,Uξ〉}ξ<ω1 ∈−→
JSω1 of Definition 16. Then, for every ξ < ω1 :

(i) 〈M,U〉 ∈ JS and 〈Mξ ,Uξ〉 ≺ 〈M,U〉 ;
(ii) if ν ∈ I then U(ν) is uncountable and topologically dense in ωω , and if ν 6= µ belong to I then

U(ν) ∩U(µ) is empty ;
(iii) any set D ∈ Mξ , D ⊆ Pξ , pre-dense in Pξ (resp., pre-dense in Pξ below some p ∈ Pξ ) , is pre-dense in

P (resp., pre-dense in P below p );
(iv) any name τ ∈ Mξ ∩ SNω

ω(Pξ) , Pξ-full (resp., Pξ-full below some p ∈ Pξ ) , is P-full (resp., P-full below
p );

(v) if G ⊆ P is a set P-generic over the ground universe L then the set Gξ = G ∩ Pξ is Pξ-generic over Mξ .

Proof. To prove (i) use Lemma 15. Both claims of (ii) hold by Definition 13. To prove (iii) and (iv) use
Corollary 5. Finally, (v) follows from (iii).

Now let us address definability issues.

Lemma 16 (in L). The binary relation f ∈ U(ν) is ∆HC
n−1 .
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The sets P and SNω
ω(P) (P-names for functions in Fun) are ∆HC

n−1 .

The set of all P-full names in SNω
ω(P) is ∆HC

n−1 .

Proof. The sequence {〈Mξ ,Uξ〉}ξ<ω1 is ∆HC
n−1 by definition, hence the relation f ∈ U(ν) is ΣHC

n−1 . On
the other hand, if f ∈ Fun belongs to some Mξ then f ∈ U(ν) obviously implies f ∈ Uξ(ν) , leading to
a ΠHC

n−1 definition of the relation f ∈ U(ν) . To prove the last claim, note that by Corollary 5 if a name
τ ∈ SNω

ω(Pξ) ∩Mξ is Pξ-full then it remains P-full.

4.5. Basic Generic Extension and Regular Subextensions

Recall that an integer n ≥ 2 and sets Uξ , Mξ , U , Pξ , P are fixed in L by Definition 16. These sets
are fixed for the remainder.

Suppose that, in L , K ⊆ P is a regular subforcing. If G ⊆ P is a set P-generic over L then G ∩ K
is K-generic over L by Lemma 9(vi), and hence L[G ∩ K] is a K-generic extension of L . The following
formulas �i ( i ∈ I ) will give us a useful coding tool in extensions of this form:

�ν(S) :=def ν ∈ I ∧ S ⊆ Seq ∧ ∀ f ∈ Fun∩ L ( f ∈ U(ν) ⇐⇒ max (S/ f ) < ω).

This is based on the next two results. Recall that |G ∩ K| = ⋃
p∈G∩K |p| .

Lemma 17. �ν(S) as a binary relation belongs to ΠHC
n−1 in any cardinal-preserving generic extension of L .

Proof. The set W = {〈ν, f 〉 : ν ∈ I ∧ f ∈ U(ν)} is ∆HC
n−1 in L , by Lemma 16, and hence so is

W ′ = {〈ν, f 〉 : ν ∈ I ∧ f ∈ Fun r U(ν)} . Let ϕ(ν, f ) and ϕ′(ν, f ) be Σn−1 formulas that define
resp. W , W ′ in HC, in L . Then, in any generic extension of L , �ν(S) is equivalent to ν ∈ I ∧ S ⊆
Seq∧ ∀ f ∈ Fun∩ L Ψ(ν, f ) , where Ψ(ν, f ) is the Πn−1 formula(

(L |= ϕ(ν, f )) =⇒ max (S/ f ) < ω
)
∧
(
(L |= ϕ′(ν, f )) =⇒ max (S/ f ) = ω

)
.

Theorem 10. Suppose that, in L , K ⊆ P is a regular subforcing. Let G ⊆ P be P-generic over L . Then :

(i) if ν ∈ |G ∩ K| , then SG(ν) ∈ L[G ∩ K] and �ν(SG(ν)) holds, but
(ii) if ν /∈ |G ∩ K| , then SG(ν) /∈ L[G ∩ K] , and there is no sets S ⊆ Seq in L[G ∩ K] satisfying �ν(S) .

Proof. (i) This is a corollary of Lemma 9(vi).
(ii) Suppose towards the contrary that some S ∈ L[G ∩ K] satisfies �ν(S) . Note that S ∈ L[G� 6=ν]

by Lemma 9(iv). Now we can forget about the given set K . It follows from Theorem 5(iii) (with
K = P� 6=ν ), that there is a name τ ∈ SNSeq(P� 6=ν) such that S = τ[G� 6=ν] . There is an ordinal ξ < ω1

satisfying τ ∈ Mξ and τ ∈ SNSeq(Pξ � 6=ν) . Then S = τ[Gξ � 6=ν] , where Gξ = G ∩ Pξ is Pξ-generic
over Mξ by Corollary 6, and hence S belongs to Mξ [Gξ � 6=ν] .

Note that U(ν) is uncountable by Corollary 6(ii), and hence F = U(ν)rUξ(ν) is uncountable.
Let f ∈ F . Then f is Cohen generic over the model Mξ by Corollary 6. On the other hand Gξ � 6=ν is
Pξ � 6=ν-generic over Mξ [ f ] by Theorem 8(iii). Therefore f is Cohen generic over Mξ [Gξ � 6=ν] as well.

Recall that S ∈ Mξ [Gξ � 6=ν] and �ν(S) holds, hence max (S/ f ) < ω . As f is Cohen generic over
Mξ [Gξ � 6=ν] , it follows that there is a string s ∈ Seq , s ⊂ f , such that S contains no strings extending
s . Take any µ ∈ I , j 6= ν . By Corollary 6(ii), there exists a function g ∈ U(µ)rUξ(µ) , g /∈ U(ν) ,
satisfying s ⊂ g . Then, max (S/g) = ω by �ν(S) . However, this is absurd by the choice of s .

Corollary 7. Suppose that, in L , K ⊆ P is a regular forcing. Let G ⊆ P be a set P-generic over L . Then

(i) |G ∩ K| is equal to the set {ν ∈ I : L[G ∩ K] |= ∃ S �ν(S)} ;
(ii) it is true in L[G ∩ K] that the set {〈ν, S〉 : �ν(S)} is ΠHC

n−1 ;
(iii) therefore |G ∩ K| is ΣHC

n in L[G ∩ K] .
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Proof. Claim (i) follows from the theorem, because by the regularity we have G ∩ K ∈ L[G� 6=ν] for all
ν /∈ |G ∩ K| . Claim (ii) immediately follows from Lemma 17. To prove (iii) note that, by (i) and (ii), it
holds in L[G ∩ K] that the set |G ∩ K| is defined by a ΣHC

n formula ∃ S�ν(S) in HC.

5. Forcing Approximations

Here we define and study here an important forcing-like relation forc. It will give us control over
various phenomena of analytic definability in the generic extensions considered.

We continue to assume V = L in the ground universe by Assumption 1.

5.1. Models and Absolute Sets

To consider transitive models of weaker theories, we let ZFC− be ZFC minus the Power Set
axiom, with the schema of Collection instead of replacement, and AC in the form of well-orderability
of every set. See [24] on ZFC− in detail.

Let ZFC−1 be ZFC− plus the axioms V = L and “every set is at most countable”.
Let W ⊆ HC. By definition, a set X ⊆ HC is ∆HC

1 (W) iff there exist a Σ1 formula σ(x) and a Π1
formula π(x) , with sets in W as parameters, such that

X = {x ∈ HC : σHC(x)} = {x ∈ HC : πHC(x)}, (4)

in particular, we have σHC(x) ⇐⇒ πHC(x) for all x . However, generally speaking, this does not
imply that X ∩M ∈ ∆M

1 (W) , where M ∈ HC is a countable transitive model (CTM). The goal of the
next two definitions is to distinguish and formalize this kind of absoluteness.

Definition 17. If for a given ∆HC
1 (W) set X , there exists such a pair of formulas, containing only parameters

in W and satisfying (4) and ∀ x ∈ M (σM(x) ⇐⇒ πM(x)) for all countable transitive models M |= ZFC−

containing all parameters that occur in σ and/or in π , then we say that X is absolute ∆HC
1 (W) . In this case, if

M is as indicated then the set X ∩M is ∆M
1 (W) via the same pair of formulas. In particular, any ∆HC

0 (W) set
is absolute ∆HC

1 (W) by obvious reasons.

Definition 18. In continuation of the last definition, a function f : D → HC , defined on a set D ⊆ HC , is
absolute ∆HC

1 (W) function, if f is absolute ∆HC
1 (W) as a set of pairs in the sense of Definition 17, and in

addition, if M |= ZFC− is a CTM and x ∈ D ∩M then f (x) ∈ M.

5.2. Formulas

Here we introduce a language that will help us study analytic definability in P[U]-generic
extensions, for different systems U , and their submodels.

Definition 19. Let L be the 2nd order Peano language, with variables of type 1 over ωω . If K ⊆ P∗ then an
L(K) formula is any formula of L , with some free variables of types 0, 1 replaced by resp. numbers in ω and
names in SNω

ω(K) , and some type 1 quantifiers are allowed to have bounding indices B (i.e., ∃B , ∀B ) such that
B ⊆ I is finite or countable.

Typically K will be a regular forcing in Definition 19, in the sense of Definition 8, or a regular
subforcing of the form K[U] , U being a system.

If ϕ is a L(P∗) formula then let

NAM ϕ = the set of all names τ that occur in ϕ;

|ϕ| =
⋃

τ∈NAM ϕ |τ| (at most countable);

IND ϕ = the set of all quantifier indices B which occur in ϕ;

||ϕ|| = |ϕ| ∪
(⋃

IND ϕ
)

(at most countable).
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Note that |ϕ| ⊆ ||ϕ|| ⊆ I provided ϕ is an L(P∗) formula.
If a set G ⊆ P∗ is minimally ϕ-generic (i.e., minimally τ-generic w.r. t. every name τ ∈ NAM ϕ ,

in the sense of Section 3.5), then let the valuation ϕ[G] be the result of substitution of τ[G] for any
name τ ∈ NAM ϕ , and changing each quantifier ∃Bx , ∀Bx to ∃ (∀ ) x ∈ ωω ∩ L[G�B] respectively,
while index-free type 1 quantifiers are relativized to ωω ; ϕ[G] is a formula of L with real parameters,
and with some quantifiers of type 1 explicitly relativized to certain submodels of L[G] .

An arithmetic formula in L(K) is a formula with no quantifiers of type 1 (names in SNω
ω(K) as

in Definition 19 are allowed). If n < ω then let a LΣ1
n(K) , resp., LΠ1

n(K) formula be a formula of
the form

∃◦x1 ∀◦x2 . . . ∀◦(∃◦) xn−1 ∃ (∀ ) xn ψ , ∀◦x1 ∃◦x2 . . . ∃◦(∀◦) xn−1 ∀ (∃ ) xn ψ

respectively, where ψ is an arithmetic formula in L(K) , all variables xi are of type 1 (over ωω ), the
sign ◦ means that this quantifier can have a bounding index as in Definition 19, and it is required that
the rightmost (closest to the kernel ψ) quantifier doesn’t have a bounding index.

If in addition M |= ZFC− is a transitive model and U ∈ M a system then define

LΣ1
n(K[U], M) = all LΣ1

n(K) formulas ϕ such that NAM ϕ ⊆ SNω
ω(K[U]) ∩M and all indices B ∈

IND ϕ belong to M and satisfy B ⊆ |U| .

Define LΠ1
n(K[U], M) similarly. All formulas in LΣ1

n(K[U], M)∪LΠ1
n(K[U], M) are by definition

(finite) strings in M .

5.3. Forcing Approximation

The next definition invents a convenient forcing-type relation forc for pairs 〈M, U〉 in sJS and
formulas ϕ in L(K[U]) , associated with the truth in K[U]-generic extensions of L , where K ⊆ P∗ is a
regular forcing. Recall that K[U] = K ∩ P[U] whenever K ⊆ P∗ is a regular forcing and U is a system.

Definition 20 (in L). We introduce a relation p KforcM
U ϕ . First of all,

(F1) Writing p KforcM
U ϕ , it is assumed that:

(a) 〈M, U〉 ∈ sJS ,
(b) K ⊆ P∗ is a regular forcing and an absolute ∆HC

1 (M) set,
(c) p belongs to K[U] (a regular subforcing of P[U] by Lemma 7),
(d) ϕ is a closed formula in LΠ1

k (K[U], M) ∪ LΣ1
k+1(K[U], M) for some k ≥ 1 , and each name

τ ∈ NAM ϕ is K[U]-full below p.

Under these assumptions, the sets U , K[U] , p , NAM ϕ , IND ϕ belong to M. The property of K[U]-
fullness in (F1)d is equivalent to just P[U]-fullness, by Corollary 1, since K[U] is a regular subforcing of P[U]

by Lemma 7.
The definition of forc goes on by induction on the complexity of formulas.

(F2) If 〈M, U〉 ∈ sJS , p ∈ K[U] , and ϕ is a closed formula in LΠ1
1(K[U], M) (then by definition it has no

quantifier indices), then: p KforcM
U ϕ iff (F1) holds and p K[U]-forces ϕ over M in the usual sense.

Note that the forcing notion K[U] belongs to M in this case by (F1)b.
(F3) If ϕ(x) ∈ LΠ1

k (K[U], M) , k ≥ 1 , then:

(a) p KforcM
U ∃Bx ϕ(x) iff there is a name τ ∈ M ∩ SNω

ω(K[U]�B) , K[U]-full below p (by (F1)d)
and such that p KforcM

U ϕ(τ) .
(b) p KforcM

U ∃ x ϕ(x) iff there is a name τ ∈ M ∩ SNω
ω(K[U]) , K[U]-full below p (by (F1)d) and

such that p KforcM
U ϕ(τ) .

(F4) If k ≥ 2 , ϕ is a closed LΠ1
k (K[U], M) formula, p ∈ K[U] , and (F1) holds, then p KforcM

U ϕ iff we
have ¬ q KforcM′

U′ ϕ¬ for every pair 〈M′, U′〉 ∈ sJS extending 〈M, U〉 , and every condition q ∈ K[U′] ,
q ≤ p, where ϕ¬ is the result of canonical conversion of ¬ ϕ to LΣ1

k(K[U], M) .
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Lemma 18 (in L). Let K , 〈M, U〉 , p , ϕ satisfy (F1) of Definition 20. Then :

(i) if p KforcM
U ϕ , 〈M, U〉 4 〈M′, U′〉 ∈ sJS and q ∈ K[U′] , q ≤ p, then q KforcM′

U′ ϕ ;
(ii) if k ≥ 2 , ϕ is LΠ1

k (K[U], M) , and p KforcM
U ϕ , then p KforcM

U ϕ¬ fails.

Thus by the first claim of the lemma forc is monotone w.r. t. both the extension of pairs in sJS
and the strengthening of forcing conditions.

Proof. (i) Let ϕ = ϕ(τ1, . . . , τm) be a closed formula in LΠ1
1(K[U], M) , where all names τj ∈

SNω
ω(K[U]) ∩M are K[U]-full below the condition p ∈ K[U] considered. Then all names τj remain

K[U′]-full below p , and below q as well since q ≤ p , by Corollary 5. Consider a set G′ ⊆ K[U′] ,
K[U′]-generic over M′ and containing q . We have to prove that ϕ[G′] is true in M′[G′] . Note that
the set G = G′ ∩ K[U] is K[U]-generic over M by Corollary 4, and we have p ∈ G . Moreover the
valuation ϕ[G′] coincides with ϕ[G] since all names in ϕ belong to SNω

ω(K[U]) . ϕ[G] is true in M[G]

as p KforcM
U ϕ . It remains to apply Mostowski’s absoluteness between the models M[G] ⊆ M′[G′] .

The inductive steps related to (F3), (F4) of Definition 20 are easy.
Claim (ii) immediately follows from (F4) of Definition 20.

The next theorem classifies the complexity of forc in terms of projective hierarchy. Recall that all
formulas in

⋃
n
(
LΣ1

n(K, M) ∪ LΠ1
n(K, M)

)
are by definition (finite) strings in M . This allows us to

consider and analyze sets

ForcK
w(Σ

1
n) =

{
〈M, U, p, ϕ〉 : 〈M, U〉 ∈ sJS ∧ w ∈ M ∧ p ∈ K[U] ∧
ϕ is a closed LΣ1

n(K[U], M) formula ∧ p KforcM
U ϕ

}
;

and similarly defined ForcK
w(Π

1
n) , where it is assumed that w ∈ ωω and K ⊆ P∗ is a regular forcing

and an absolute ∆HC
1 (w) set.

Theorem 11 (in L). Let w ∈ ωω and K ⊆ P∗ be a regular forcing and an absolute ∆HC
1 (w) set. Then :

(i) ForcK
w(Π

1
1) and ForcK

w(Σ
1
2) are ∆HC

1 (w) ;
(ii) if k ≥ 2 then ForcK

w(Π
1
k ) and ForcK

w(Σ
1
k+1) are ΠHC

k−1(w) .

Proof (sketch). Suppose that ϕ is LΠ1
1 . Under the assumptions of the theorem, items (F1)a, (F1)c,

(F1)d of Definition 20(F1) are ∆HC
1 (w) relations, (F1)b is automatic, while (F2) is reducible to a forcing

relation over M that we can relativize to M . The inductive step goes on straightforwardly using (F3),
(F4) of Definition 20. Note that the quantifier over names in (F3) is a bounded quantifier (bounded by
M ), hence it does not add any extra complexity.

5.4. Advanced Properties of Forcing Approximations

The following lemma works whenever the domain K ⊆ P∗ (a regular forcing) of conditions p
related to the definition of p KforcM

U ϕ is bounded by a set c ⊆ I . (Compare with Theorem 7.)

Lemma 19 (restriction lemma, in L). Suppose that K , 〈M, U〉 , p , ϕ satisfy (F1) of Definition 20, a set
c ⊆ I is absolute ∆HC

1 (M) , K ⊆ P∗� c , and p KforcM
U ϕ . Then p KforcM

U� c ϕ .

Note that |U| ⊆ c is not assumed in the lemma. On the other hand, we have |p| ⊆ c by
Definition 20(F1)c, because p ∈ K[U] and K ⊆ P∗� c , and |ϕ| ⊆ c holds because ϕ is an L(K[U])

formula. In addition, U� c ∈ M by the choice of c .

Proof. The direction ⇐= immediately follows from Lemma 18(i) since we have 〈M, U� c〉 4 〈M, U〉
by Remark 1 in Section 4.1. Prove the opposite implication by induction.

Case of LΠ1
1 formulas: K[U] = K[U� c] under the assumptions of the lemma.
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Step LΠ1
n → LΣ1

n+1 . Let ψ(x) be a LΠ1
n(K[U], M) formula, and ϕ be ∃Bx ψ(x) , B ⊆ I , B ∈ M .

If p KforcM
U ϕ then there is a name τ ∈ M ∩ SNω

ω(K[U]�B) such that p KforcM
U ψ(τ) . We conclude that

p KforcM
U� c ψ(τ) by the inductive hypothesis. However we have SNω

ω(K[U]�B) = SNω
ω(K[U� c]�B)

since |K| ⊆ c . Thus p KforcM
U� c ϕ . The case ϕ being ∃ x ψ(x) is similar.

Step LΣ1
n → LΠ1

n , n ≥ 2 . Let ϕ be a LΠ1
n(K[U], M) formula. Suppose towards the contrary

that p KforcM
U ϕ holds, but p KforcM

U� c ϕ fails, so that there exist a pair 〈M′, V〉 ∈ sJS and a condition

q ∈ K[V] , such that 〈M, U� c〉 4 〈M′, V〉 , q ≤ p , and q KforcM′
V ϕ¬ . Then q KforcM′

V� c ϕ¬ by the
inductive hypothesis. Note that |q| ⊆ c by the choice of K , but not necessarily |V| ⊆ c .

Define a system W ∈ M′ such that |W| = (|V| ∩ c) ∪ (|U|r c) , W� (|V| ∩ c) = V� (|V| ∩ c) , and
W� (|U|r c) = U� (|U|r c) . Then 〈M′, V� c〉 4 〈M′, W〉 , therefore still q KforcM′

W ϕ¬ by Lemma 18(i).
Now we claim that 〈M, U〉 4 〈M′, W〉 . Indeed, suppose that ν ∈ |U| . If ν /∈ c then W(ν) =

U(ν) . If ν ∈ c then U(ν) ⊆ V(ν) = W(ν) by construction. It follows that |U| ⊆ |W| , U 4 W ,
and ∆(U, W) ⊆ ∆(U� c, V)—which implies U 4M W , since 〈M, U� c〉 4 〈M′, V〉 . Thus 〈M, U〉 4
〈M′, W〉 .

We have q ≤ p as well. This contradicts the assumption p KforcM
U ϕ by Lemma 18(ii).

Lemma 20 (in L ). Let K , 〈M, U〉 , p , ϕ , k satisfy (F1) of Definition 20, NAM ϕ = {τ1, . . . , τm} , µ1, . . . , µm

be another list of names in SNω
ω(K[U]) ∩M, K[U]-full below p and such that τ` and µ` are equivalent below

p for each ` = 1, . . . , m. Then p KforcM
U ϕ(τ1, . . . , τm) iff p KforcM

U ϕ(µ1, . . . , µm) .

Proof. It suffices to consider the case of Π1
1 formulas; the induction steps LΠ1

k → LΣ1
k+1 and

LΣ1
k → LΠ1

k are rather easy.
Suppose that ϕ is LΠ1

1 and p KforcM
U ϕ(τ1, . . . , τm) . Suppose that G ⊆ K[U] is a set K[U]-generic

over M , and p ∈ G . We claim that τ`[G] = µ`[G] for all ` ; this obviously implies the result required.
Suppose that this is not the case. Then, by definition, there exist numbers m and j 6= k and conditions
q ∈ G ∩ (τ ”〈m, j〉) and r ∈ G ∩ (µ”〈m, k〉) . Then p, q, r must be compatible (as elements of the same
generic set), which is a contradiction.

Lemma 21 (in L). Suppose that K , 〈M, U〉 , p , ϕ , k satisfy (F1) of Definition 20, ϕ is LΠ1
k (K[U], M) ,

P = {q ∈ K[U] : q ≤ p} , a set A ∈ M, A ⊆ P is a maximal antichain in P, and q KforcM
U ϕ for all q ∈ A.

Then p KforcM
U ϕ .

Proof. If ϕ is a LΠ1
1 formula then the result follows from (F2) of Definition 20 and known properties of

the ordinary forcing over M . Now let ϕ be Π1
k , k ≥ 2. Suppose towards the contrary that p KforcM

U ϕ

fails. Then there exist: a pair 〈M′, U′〉 ∈ sJS extending 〈M, U〉 , and a condition r ∈ K[U′] , r ≤ p , such
that r KforcM′

U′ ϕ¬ . Note that A remains a maximal antichain in the set Q = {q ∈ P[U] : q ≤ p} (bigger
than P above), by Lemma 8. Therefore, A is still a maximal antichain in Q′ = {q ∈ P[U′] : q ≤ p} , by
Theorem 8(i), hence a maximal antichain in P′ = {q ∈ K[U′] : q ≤ p} . It follows that r is compatible
in K[U′] with at least one condition q ∈ A . However, r KforcM′

U′ ϕ¬ while q KforcM
U ϕ , easily leading to

a contradiction with Lemma 19.

5.5. Transformations and Invariance

Here we show that, under certain assumptions, the transformations of the first two groups defined
in Section 3.7 preserve forcing approximations forc. This is not an absolutely elementary thing: there
is no way to reasonably apply transformations to transitive models M involved in the definition of
forc . What we can do is to require that the transformations involved belong to the models involved.
This leads to certain complications of different sort.

Family 1: permutations. First of all we have to extend the definition of the action of π in
Section 3.7 to include formulas. Suppose that c , c′ ⊆ I . Define the action of any π ∈ BIJc

c′ onto
formulas ϕ of L(P∗) such that ||ϕ|| ⊆ c :
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– to get πϕ substitute π ·τ for any τ ∈ NAM ϕ and π ·B for any B ∈ IND ϕ .

Lemma 22. Suppose that 〈M, U〉 , K , p , ϕ satisfy (F1) of Definition 20, sets c, c′ ⊆ I have equal cardinality
and are absolute ∆HC

1 (M) , π ∈ BIJc
c′ is an absolute ∆HC

1 (M) function, and ||ϕ|| ⊆ c , |U| ⊆ c , K ⊆ P∗� c .
Then, p KforcM

U ϕ iff (π · p) π ·KforcM
π ·U πϕ .

Proof. Under the assumptions of the lemma, in particular, the requirement of c, c′, π being absolute
∆HC

1 (M) , π acts as an isomorphism on all relevant domains and preserves all relevant relations
between the objects involved. Thus 〈M, π ·U〉 , π ·K , π · p , πϕ still satisfy Definition 20(F1), and
||πϕ|| ⊆ c′ , |π ·U| ⊆ c′ , π ·K ⊆ P∗� c′ . (For instance, to show that π ·U still belongs to M , note that
the set |U| ⊆ c belongs to M , thus π� |U| ∈ M , too, since π is an absolute ∆HC

1 (M) function.) This
allows to prove the lemma by induction on the complexity of ϕ .

Suppose that ϕ is a closed formula in LΠ1
1(K[U], M) . Then πϕ is a closed formula in

LΠ1
1((π ·K)[π ·U], M) . Then easily P′ = (π ·K)[π ·U] = π ·(K[U]) ⊆ P∗ is a set in M order

isomorphic to P = K[U] itself by means of the map p 7−→ π · p . Moreover a set G ⊆ P is P-
generic over M iff π ·G is, accordingly, P′-generic over M and the valuated formulas ϕ[G] and
(πϕ)[π ·G] coincide. Now the result for Π1

1 formulas follows from (F2) of Definition 20.
Step Π1

n → Σ1
n+1 , n ≥ 1. Let ψ(x) be a LΠ1

n(K[U], M) formula, and ϕ be ∃ x ψ(x) . Assume
p KforcM

U ϕ . By definition there is a name τ ∈ SNω
ω(K[U]) ∩M such that p KforcM

U ψ(τ) . Then, by the
inductive hypothesis, π · p π ·KforcM

π ·U (πψ)(π ·τ) , and hence by definition π · p π ·KforcM
π ·U πϕ .

The case of ϕ being ∃Bx ψ(x) is similar.
Step Σ1

n → Π1
n , n ≥ 2. This is somewhat less trivial. Assume that ϕ is a closed LΠ1

n(K[U], M)

formula; all names in ϕ belong to SNω
ω(K[U]) ∩M and are K[U]-full below a given p ∈ K[U] . Then,

by rather obvious reasons, πϕ is a closed LΠ1
n((π ·K)[π ·U], M) formula, whose all names belong

to SNω
ω((π ·K)[π ·U]) ∩M and are (π ·K)[π ·U]-full below π · p . Suppose that p KforcM

U ϕ fails. By
definition there exist a pair 〈M1, U1〉 ∈ sJS with 〈M, U〉 4 〈M1, U1〉 , and a condition q ∈ K[U1] , q ≤ p ,
such that q KforcM1

U1
ϕ¬ . We can also assume by Lemma 19, that |U1| ⊆ c . Then (π ·q) π ·KforcM1

π ·U1
πϕ¬

by the inductive hypothesis. Yet the pair 〈M1, π ·U1〉 belongs to sJS and extends 〈M, π ·U〉 . (As π is
absolute ∆HC

1 (M) and U ∈ M , the restriction π� |U| belongs to M .) In addition, π ·q ∈ (π ·K)[π ·U1] ,
and π ·q ≤ π · p . Therefore the statement (π · p) KforcM

π ·U πϕ fails, as required.

Family 2: Lipschitz transformations. We extend the action of α ∈ LipI to formulas of L(P∗) :

– to get πϕ substitute π ·τ for any τ ∈ NAM ϕ but do not change the quantifier indices B .

Note that the action of any α ∈ LipI ∩M on systems, conditions, names, and formulas, as defined
there, is absolute ∆HC

1 (M) . This allows to prove the next invariance lemma similarly to Lemma 22,
which we leave for the reader.

Lemma 23. Suppose that 〈M, U〉 , K , p , ϕ satisfy (F1) of Definition 20, and α ∈ LipI ∩M. Then p KforcM
U ϕ

iff (α · p) α ·KforcM
α ·U αϕ .

6. Elementary Equivalence Theorem

This section presents further properties of P-generic extensions of L and their subextensions,
including Theorem 13 and its corollaties on the elementary equivalence of different subextensions.

Assumption 2. We continue to assume V = L in the ground universe. Below in this section, a number
n ≥ 2 is fixed, and pairs 〈Mξ ,Uξ〉 , the system U =

∨
ξ<ω1

Uξ , the forcing notions Pξ = P[Uξ ] and
P = P[U] =

⋃
ξ<ω1

Pξ are as in Definition 16 for this n .
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6.1. Further Properties of Forcing Approximations

Coming back to the complete sequence of pairs 〈Mξ ,Uξ〉 introduced by Definition 16, we consider
the auxiliary forcing relation forc with respect to those pairs. We begin with the following definition.

Definition 21 (in L). Let K ⊆ P∗ be a regular forcing. Recall that

K[U] = K ∩ P and K[Uξ ] = K ∩ P[Uξ ] = K ∩ Pξ

for any ξ < ω1 . Let p Kforcξ ϕ mean p Kforc
Mξ

Uξ
ϕ—then by definition K has to be an absolute ∆HC

1 (Mξ) set,

by the way. We let p Kforc∞ ϕ mean: ∃ ξ < ω1 (p Kforcξ ϕ) .

Thus, if p Kforcξ ϕ then definitely K is an absolute ∆HC
1 (Mξ) set, p ∈ K[Uξ ] , ϕ is a formula with

names in Mξ ∩ SNω
ω(K[Uξ ]) as parameters, all names τ ∈ NAM ϕ are K[Uξ ]-full below p , all indices

B ∈ IND ϕ belong to Mξ . The following is an easy consequence of Lemma 18.

Lemma 24 (in L). Let K ⊆ P∗ be a regular forcing. Assume that ϕ is a closed formula in LΠ1
k (K[U]) ∪

LΣ1
k+1(K[U]) , 1 ≤ k, p ∈ K[U] . Then:

(i) if p Kforcξ ϕ and ξ 6 ζ < ω1 , q ∈ K[Uζ ] , q 6 p, then q Kforcζ ϕ ;
(ii) p Kforc∞ ϕ and p Kforc∞ ϕ¬ contradict to each other ;

(iii) if ϕ is a LΠ1
k (K[U]) formula, A ⊆ Q = {q ∈ K[U] : q ≤ p} is a maximal antichain in Q, and

q Kforc∞ ϕ for all q ∈ A, then p Kforc∞ ϕ .

Proof. (iii) As A is a countable set, there exists an ordinal ξ < ω1 such that q Kforcξ ϕ for all q ∈ A .
Apply Lemma 21.

Lemma 25 (in L). Assume that K ⊆ P∗ is a regular forcing, ϕ is a closed formula in LΠ1
k (K[U]) ∪

LΣ1
k(K[U]) , 2 ≤ k < n , p ∈ K[U] , all names in ϕ are K[U]-full below p, and finally w ∈ ωω and K is

absolute ∆HC
1 (w) . Then :

(i) there is q ∈ K[U] , q 6 p, such that q Kforc∞ ϕ or q Kforc∞ ϕ¬ ;
(ii) if ϕ is LΠ1

k (K[U]) , 2 ≤ k < n , then p Kforc∞ ϕ iff there is no condition q ∈ K[U] , q ≤ p, such that
q Kforc∞ ϕ¬ .

Proof. (i) As any name is a countable object, there is an ordinal η < ω1 such that p ∈ K[Uη ] , w ∈ Mη ,
and all names in ϕ belong to Mη ∩ SNω

ω(K[Uη ]) ; then all names in ϕ are K[Uη ]-full below p , of course.
As k < n , the set D of all pairs 〈M, U〉 ∈ sJS that extend 〈Mη ,Uη〉 and there is a condition q ∈ K[U] ,
q 6 p , satisfying q KforcM

U ϕ¬ , belongs to ΣHC
n−2 by Theorem 11. Therefore, by the n-completeness of

the sequence {〈Mξ ,Uξ〉}ξ<ω1 , there is an ordinal ζ , η 6 ζ < ω1 , such that 〈Mζ ,Uζ〉 ∈ Dsolv . (By the
way, this is the only use of the n-completeness!)

We have two cases.
Case 1: 〈Mζ ,Uζ〉 ∈ D . Then there is a condition q ∈ K[Uζ ] , q ≤ p , satisfying q Kforcζ ϕ¬ .

However, obviously q ∈ K[U] .
Case 2: there is no pair 〈M, U〉 ∈ D extending 〈Mζ ,Uζ〉 . Prove p Kforcζ ϕ . Suppose otherwise.

Then by the choice of η and (F4) of Definition 20 there exist a pair 〈M, U〉 ∈ sJS extending 〈Mζ ,Uζ〉 ,
and a condition q ∈ K[U] , q ≤ p , such that q KforcM

U ϕ¬ . Then 〈M, U〉 ∈ D , a contradiction.
(ii) Suppose that there is no condition q ∈ K[U] , q ≤ p , with q Kforc∞ ϕ¬ . Then by (i) the set

Q = {q ∈ K[U] : q ≤ p ∧ q Kforc∞ ϕ} is dense in K[U] below p . Let A ⊆ Q be a maximal antichain.
It remains to apply Lemma 24(iii).
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6.2. Relations to the Truth in Generic Extensions

According to the next theorem, the truth in the generic extensions considered is connected in the
usual way with the relation forc∞ up to the n-th level of analytic hierarchy. Recall that V = L is
assumed in the ground universe.

Theorem 12. Assume that, in L , K ⊆ P∗ is a regular forcing, ϕ is a closed formula in LΠ1
k (K[U]) ∪

LΣ1
k+1(K[U]) , 1 ≤ k ≤ n , all names in NAM ϕ are K[U]-full, w ∈ ωω, and K is an absolute ∆HC

1 (w) set.
Let G ⊆ P be a P-generic set over L . Then :

(i) if p ∈ G and p Kforc∞ ϕ , then ϕ[G] is true in L[G ∩ K[U]] ;
(ii) conversely, if ϕ[G] is true in L[G ∩ K[U]] and strictly k < n holds, then ∃ p ∈ G ∩ K (p Kforc∞ ϕ) .

The formulas ϕ[G] , ϕ[G ∩ K] coincide under the assumptions of the theorem.

Proof. (ii) We argue by induction on the complexity of ϕ .

The case of LΠ1
1 formulas. Let ϕ be a closed formula in LΠ1

1(K[U]) . As names in the
formulas considered are countable objects, there is an ordinal ξ < ω1 such that w ∈ Mξ and ϕ

is a LΠ1
1(K[Uξ ],Mξ) formula. As G ⊆ P is P-generic over L , the smaller set Gξ = G ∩ K[Uξ ] is

K[Uξ ]-generic over Mξ by Corollary 4, and the formulas ϕ[G] , ϕ[Gξ ] coincide by the choice of ξ .
Therefore if ϕ[G] holds in L[G ∩ K[U]] then ϕ[Gξ ] holds in Mξ [Gξ ] , by Shoenfield’s absoluteness
theorem, and hence there is a condition p ∈ Gξ which K[Uξ ]-forces ϕ over Mξ , that is, p Kforcξ ϕ by
(F2) of Definition 20, and finally p Kforc∞ ϕ , as required. If conversely, p ∈ G ∩ K[U] , ζ , ξ ≤ ζ < ω1 ,
and p Kforcζ ϕ , then by definition p K[Uζ ]-forces ϕ over Mξ . It follows that ϕ[Gξ ] holds in Mξ [Gξ ] ,
and hence ϕ[G] holds in L[G ∩ K[U]] as well by the Shoenfield absoluteness.

Step LΠ1
k → LΣ1

k+1 , k < n . Let ϕ(x) be a LΠ1
k (K[U]) formula; let us prove the result for

∃ x ϕ(x) . If p ∈ G and p Kforcξ ∃ x ϕ(x) then by definition there is a name τ ∈ Mξ ∩ SNω
ω(K[Uξ ]) ,

K[Uξ ]-full below p , and such that p Kforcξ ϕ(τ) . By Lemma 10, there is a K[Uξ ]-full name τ′ ∈
Mξ ∩ SNω

ω(K[Uξ ]) , equivalent to τ below p . Then p Kforcξ ϕ(τ′) by Lemma 20. Note that τ′ is
Pξ-full by Corollary 1, hence P-full by Corollary 6(iv), and K[U]-full, too. It follows that ϕ(τ′)[G]

holds in L[G ∩ K[U]] by the inductive hypothesis, thus (∃ x ϕ(x))[G] holds in L[G ∩ K[U]] because
τ′[G] = τ[G] ∈ L[G ∩ K[U]] by the choice of τ .

If conversely (∃ x ϕ(x))[G] is true in L[G ∩ K[U]] then by definition there is an element x ∈
L[G ∩ K] = L[G ∩ K[U]] such that ϕ[G](x) is true in L[G ∩ K[U]] . By Theorem 5(ii), there is a K[U]-
full name τ ∈ SNω

ω(K[U]) such that x = τ[G] . Thus ϕ(τ)[G] is true in L[G ∩ K[U]] . Note that τ is P-
full as well, by Corollary 1, and hence K[U]-full, too. By the inductive hypothesis, there is a condition
p ∈ G such that p Kforc∞ ϕ(τ) . It follows that p Kforc∞ ∃ x ϕ(x) .

Step LΣ1
k → LΠ1

k , 2 ≤ k < n . Prove the theorem for a LΠ1
k (K[U]) formula ϕ , assuming that

the result holds for ϕ¬ . If ϕ[G] is false in L[G] then ϕ¬[G] is true. Thus by the inductive hypothesis,
there is a condition p ∈ G such that p Kforc∞ ϕ¬ . Then q Kforc∞ ϕ for any q ∈ G is impossible by
Lemma 24(ii). Conversely, suppose that p Kforc∞ ϕ fails for all p ∈ G ∩ K . Then by Lemma 25(i) there
is q ∈ G ∩ K[U] such that q Kforc∞ ϕ¬ . It follows that ϕ¬[G] is true in L[G ∩ K[U]] by the inductive
hypothesis, therefore ϕ[G] is false.

(i) Let ϕ be a LΠ1
n(K[U]) formula, p ∈ G ∩ K[U] , p Kforc∞ ϕ . By Lemma 24(ii), there is no

q ∈ G ∩ K[U] such that q Kforc∞ ϕ¬ . However, ϕ¬ is LΣ1
n(K[U]) , thus ¬ ϕ[G] in L[G ∩ K] holds

by (ii).
Finally prove (i) for a formula ϕ := ∃ x ψ(x) , ψ being LΠ1

n(K[U]) . Suppose that p ∈ G ∩ K[U]
and p Kforc∞ ϕ . Then there is a name τ ∈ SNω

ω(K[U]) , K[U]-full below p and such that p Kforc∞ ψ(τ) .
We can w. l.o.g. assume that τ is totally K[U]-full, by Lemmas 10 and 20. We have to prove that
the formula ψ(τ)[G] , that is, ψ[G](τ[G]) , holds in L[G ∩ K]—then ϕ[G] holds in L[G ∩ K] as well.
Suppose to the contrary that ψ(τ)[G] fails in L[G ∩ K] . However, ψ(τ)¬ is a Σ1

n formula. Therefore,
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by the first claim of the lemma, there is a condition q ∈ G ∩ K such that q Kforc∞ ψ(τ)¬ . However,
p Kforc∞ ψ(τ) and p, q are compatible (as they belong to the same generic set). This contradicts
Lemma 24(ii).

6.3. Consequences for the Ordinary Forcing Relation

For any forcing P ∈ L , we let ||−−P be the ordinary P-forcing relation over L as the ground
universe. In particular ||−−P is the P-forcing relation over L .

Corollary 8 (in L). Under the assumptions of Theorem 12, let p ∈ K[U] . Then :

(i) if ϕ is LΠ1
k (K[U]) or LΣ1

k+1(K[U]) and p Kforc∞ ϕ , then p ||−−K[U] ϕ ;
(ii) if ϕ is LΠ1

k (K[U]) , then p ||−−K[U] ϕ iff ¬ ∃ q ∈ K[U] (q ≤ p ∧ q Kforc∞ ϕ¬) ;
(iii) if k < n strictly, ϕ belongs to LΠ1

k (K[U]) or LΣ1
k+1(K[U]) , and p ||−−K[U] ϕ , then

∃ q ∈ K[U] (q ≤ p ∧ q Kforc∞ ϕ) ;
(iv) if k < n strictly, ϕ is LΠ1

k (K[U]) , and p ||−−K[U] ϕ then p Kforc∞ ϕ .

Proof. (i) follows from Theorem 12(i).
(iii) Let G ⊆ P be P-generic over L , and p ∈ G . If p ||−−K[U] ϕ then ϕ[G] is true in L[G ∩ K[U]] ,

and hence there is r ∈ G ∩ K such that r Kforc∞ ϕ , by Theorem 12. However, then p, r are compatible
(as members of G ), hence q = p ∧ r still is a condition, and q ∈ K[U] .

(iv) If p Kforc∞ ϕ fails, then by Lemma 25(ii) there is a condition q ∈ K[U] , q ≤ p , such that
q Kforc∞ ϕ¬ . Then q ||−−K[U] ϕ¬ by (i), thus p ||−−K[U] ϕ fails.

(ii) Suppose that q ∈ K[U] , q ≤ p , q Kforc∞ ϕ¬ . Then q ||−−K[U] ¬ ϕ by (i), and hence p ||−−K[U] ϕ

fails. Now suppose that p ||−−K[U] ϕ fails. Then there is a condition r ∈ K[U] , r ≤ p , r ||−−K[U] ϕ¬ .
However, then, by (iii), there is a condition q ∈ K[U] , q ≤ r , q Kforc∞ ϕ¬ , as required.

The next corollary evaluates the complexity of the ordinary forcing relations ||−−K[U] . The result is
related to formulas in classes LΠ1

n and higher.

Corollary 9 (in L). Let ϕ(x1, . . . , xm) be an L(∅) formula (that is, no names), and K ⊆ P∗ be a regular
forcing. Suppose that w ∈ ωω , and K is an absolute ∆HC

1 (w) set. Then :

(i) if ϕ belongs to LΠ1
k , k ≥ n , then the following set is ΠHC

k−1(w) :

FORCK(ϕ) =
{
〈p, τ1, . . . , τm〉 : p ∈ K[U] ∧
τ1, . . . , τm ∈ SNω

ω(K[U]) are K[U]-full names ∧
p ||−−K[U] ϕ(τ1, . . . , τm)

}
;

(ii) similarly, if ϕ is LΣ1
k , k > n , then FORCK(ϕ) is ΣHC

k−1(w) .

Proof. We argue by induction on k ≥ n . Suppose that ϕ is LΠ1
n and τ1, . . . , τm ∈ SNω

ω(K[U]) are
K[U]-full names. It follows from Corollary 8(ii) that 〈p, τ1, . . . , τm〉 ∈ FORCK(ϕ) iff

¬ ∃ ξ < ω1 ∃ q ∈ K[Uξ ] (q ≤ p ∧ q Kforc
Mξ

Uξ
ϕ¬(τ1, . . . , τm)) .

The formula q Kforc
Mξ

Uξ
ϕ¬(τ1, . . . , τm) can be replaced by

〈Mξ ,Uξ , q, ϕ(τ1, . . . , τm)〉 ∈ ForcK
w(Σ

1
n)

(see a definition in Theorem 11). However, ForcK
w(Σ

1
n) is ∆HC

n−1(w) by Theorem 11 (even ΠHC
n−2(w)

provided n ≥ 3). On the other hand, the maps ξ 7−→ Mξ and ξ 7−→ Uξ are ∆HC
n−1 by construction

(Definition 16). As K is ∆HC
1 (w) , it easily follows that ξ 7−→ K[Uξ ] is ∆HC

n−1(w) . We conclude that
FORCK(ϕ) is ΠHC

n−1(w) .
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Step LΠ1
k → LΣ1

k+1 . Suppose that ϕ(~τ) is a LΣ1
k+1 formula of the form ∃ y ψ(y,~τ) , where

accordingly ψ is LΠ1
k . Let us show that simply

〈p,~τ〉 ∈ FORCK(ϕ) ⇐⇒ ∃ σ ∈ SNω
ω(K[U]) (〈p, σ,~τ〉 ∈ FORCK(ψ)) , (5)

which obviously suffices to carry out the step LΠ1
k → LΣ1

k+1 .
If σ is a name as in the right-hand side then obviously any p forces σ[G] ∈ L[G ∩ K[U]] , and on

the other hand by definition p ||−−K[U] ψ(σ,~τ) . Thus p ||−−K[U] ϕ(~τ) , hence, 〈p,~τ〉 ∈ FORCK(ϕ) , as
required. Now suppose that p ||−−K[U] ϕ(~τ) . This means, by definition, that p ||−−K[U] ∃ y ψ(y,~τ) . By
Theorem 5(iv), there is a K[U]-full name σ ∈ SNω

ω(K[U]) such that p ||−−K[U] ψ(σ,~τ) , thus 〈p, σ,~τ〉 ∈
FORCK(ψ) .

Step LΣ1
k → LΠ1

k , k > n . Suppose that ϕ is a LΠ1
k formula; accordingly, ϕ¬ is LΣ1

k . It is clear
that, under the assumptions that p ∈ K[U] and τ1, . . . , τm ∈ SNω

ω(K[U]) are K[U]-full names, the
following holds:

〈p,~τ〉 ∈ FORCK(ϕ) ⇐⇒ ¬ ∃ q ∈ K[U] (q ≤ p ∧ 〈p,~τ〉 ∈ FORCK(ϕ¬)) , (6)

which is sufficient to accomplish the step LΣ1
k → LΠ1

k .

6.4. Elementary Equivalence Theorem

According to Theorem 10, sets S satisfying �i(S) are different for different indices i ∈ I , and the
difference can be determined, in the extensions of the form L[G� z] , at the level ΠHC

n−1 by Corollary 7,
that is, Π1

n (see Remark 2 in Section 4.3). On the other hand, the extensions considered remain rather
amorphous w.r. t. lower levels of definability, as witnessed by the following key theorem.

Theorem 13. Suppose that, in L : d ⊆ I , w ∈ ωω, sets b , c ⊆ d{ = I r d have equal cardinality, d{ is
uncountable, K ⊆ P∗� d is a regular forcing, Ψ(y) is a Π1

n−1 formula with parameters in ωω ∩ L[G ∩ K] ,
and K , b , c , d are absolute ∆HC

1 (w) sets. Let G ⊆ P be P-generic over L .
Then, if there is a real y ∈ ωω ∩ L[G ∩ K, G� b] such that Ψ(y) holds in L[G ∩ K, G� d{] , then there

exists y′ ∈ L[G ∩ K, G� c] such that Ψ(y′) holds in L[G ∩ K, G� d{] .

Recall that ∆HC
1 (w) means that w is admitted as the only parameter. The assumption that d{ is

uncountable, can be avoided at the cost of extra complications, but the case of d{ countable is not
considered below. The proof makes use of the transformations introduced in Section 3.7.

Proof. As all cardinals are preserved in L[G] , we w. l.o.g. assume that b, c are countably infinite (or
finite of equal cardinality) in L . Suppose towards the contrary that

(A) there is a real y ∈ L[G ∩ K, G� b] such that Ψ(y) holds in L[G ∩ K, G� d{] , but

(B) there is no y′ ∈ L[G ∩ K, G� c] satisfying Ψ(y′) in L[G ∩ K, G� d{] .

By Theorem 5(ii), for every real parameter z in Ψ there is a K[U]-full name τz ∈ SNω
ω(K[U]) such

that z = τz[G] . Replace each parameter z in Ψ(x) by such a name τz in L , and let ψ(x) be the
LΠ1

n−1(K[U]) formula obtained. Then |ψ| ⊆ d . Further, the set

K′ = {p ∈ P∗� (d ∪ b) : p� d ∈ K} = K× (P∗� b) ⊆ P∗� (d ∪ b)

is a regular forcing, and L[G ∩ K, G� b] = L[G ∩ K′] . Choose y by (A). Once again, Theorem 5(ii),
yields a K′[U]-full name τy ∈ SNω

ω(K′[U]) such that y = τy[G] . The name τy is small, hence the set
|τy| ⊆ d ∪ b is countable (in L). We let d0 = |τy| ∩ d ; the set B = d0 ∪ b is still countable and |τy| ⊆ B .
Thus the formula ∃By ψ(y)[G] is true in L[G ∩ K, G� d{] .
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Now let Q = {p ∈ P∗ : p� d ∈ K} = K × (P∗� d{) . Thus Q is a regular forcing, and L[G ∩
K, G� d{] = L[G ∩ Q] = L[G ∩ Q[U]] . Therefore ∃By ψ(y)[G] is true in L[G ∩ Q[U]] by the above. It
follows by Theorem 12(ii) that there is a condition p ∈ G ∩ Q such that p Qforc∞ ∃By ψ(y) , and, by
(B), we can also assume that p Q[U]-forces ¬ ∃Cy ψ(y) over L where C = d0 ∪ c . Further, in L , there
exists an ordinal ξ < ω1 such that

p QforcM
U ∃By ψ(y), (7)

where M = Mξ and U = Uξ , and in addition the countable sets d0, b, c belong to M , w ∈ M ,
p ∈ Q[U] , d0 ∪ b ∪ c ⊆ A = |U| , and all names in ψ belong to M ∩ SNω

ω(K[U]) , so that ψ(x) is a
LΠ1

n−1(K[U], M) formula.
Now we can assume that both sets |U|r (d ∪ b) and |U|r (d ∪ c) are infinite. (Otherwise take

a suitably bigger ξ .) Then there is a bijection f ∈ M , f : |U| onto−→ |U| , such that f � d is the identity
and f [b] = c . Define a bijection π ∈ BIJII such that π� |U| coincides with f and π� (I r |U|) is the
identity. Let q = π · p and V = π ·U . Acting by π on (7), we obtain, by Lemma 22,

q QforcM
V ∃Cy ψ(y), (8)

Comments: 1) π ·Q = Q since π� d is the identity by construction and K ⊆ P∗� d ; 2) π ·B = π[B] =
f [B] = C by construction; 3) π ·ψ(x) is ψ(x) because |ψ| ⊆ d and π� d is the identity.

Note that V ∈ M is a system with |V| = π · |U| = |U| , and p ∈ U , q ∈ V , U� d = V� d and
q� d = p� d by the choice of π and f . In addition, U , V are countable systems in M |= ZFC−1 .
Corollary 2 yields a transformation α ∈ LipI in M such that |α| = |U| = |V| , α ·V = U , conditions
q′ = α ·q ∈ Q[U] and p are compatible, and α� d is the identity (as U� d = V� d and p� d = q� d).
However, then α ·Q = Q , and α(∃Cx ψ(x)) coincides with ∃Cx ψ(x) since |ψ| ⊆ d . Therefore
q′ QforcM

U ∃Cy ψ(y) by (8) and Lemma 23. This implies q′ Qforc∞ ∃Cy ψ(y) . We conclude that q′

Q[U]-forces ∃Cy ψ(y) over L , by Corollary 8(i). However, q′ is compatible with p and p forces the
negation of this sentence. The contradiction completes the proof.

Corollary 10. Under the assumptions of Theorem 13, if c is uncountable in L , then L[G ∩ K, G� c] is an
elementary submodel of L[G ∩ K, G� d{] w.r. t. all Σ1

n formulas with parameters in ωω ∩ L[G ∩ K, G� c] .

Proof. Prove by induction that if k ≤ n then L[G ∩ K, G� c] is an elementary submodel of L[G ∩
K, G� d{] w.r. t. all Σ1

k formulas with parameters in L[G ∩ K, G� c] . If k = 2 then the result holds
by the Shoenfield absoluteness theorem. It remains to carry out the step k → k + 1 (k < n). Let
ϕ(x) be a Π1

k formula with parameters in L[G ∩ K, G� c] ; we have to prove the result for the Σ1
k

formula ∃ x ϕ(x) , assuming k < n . First of all, as the cardinals are preserved, there is a set δ ∈ L ,
δ ⊆ d{ , countable in L and such that all parameters of ϕ belong to L[G ∩ K, G� δ] . Let d′ = d ∪ δ

and K′ = {p ∈ P∗� d′ : p� d ∈ K} ; we can identify K′ with K× (P∗� δ) , of course. Then, in L , K′ is a
regular forcing, K′ ⊆ P∗� d′ , and all parameters of ϕ belong to L[G ∩ K′] .

Now suppose that ∃ x ϕ(x) holds in L[G ∩ K, G� d{] , the bigger of the two models of the lemma.
Let this be witnessed by a real x0 ∈ L[G ∩ K, G� d{] = L[G ∩ K′, G� (d′){] , where (d′){ = I r d′ =
d{ r δ , so that ϕ(x0) holds in the model L[G ∩ K, G� d{] = L[G ∩ K′, G� (d′){] . As the cardinals
are preserved, there is a set b′ ∈ L , b′ ⊆ (d′){ , countably infinite in L and such that x0 belongs
to L[G ∩ K′, G� b′] . Since c is uncountable, there exists a set c′ ∈ L , c′ ⊆ (d′){ ∩ c , countably
infinite in L . By the choice of δ , there is a real w′ ∈ ωω ∩ L such that the sets K′ , d′ , c′ , b′ are
absolute ∆HC

1 (w′) in L . By Theorem 13, there is a real y0 ∈ L[G ∩ K′, G� c′] such that ϕ(y0) holds in
L[G ∩ K′, G� (d′){] = L[G ∩ K, G� d{] , and then in L[G ∩ K, G� c] by the inductive assumption.

Note that if say c is uncountable but b countable, and d is countable, then Theorem 13 fails
by means of the formula “there is a real x such that all reals belong to L[x, G ∩ K]”, and G ∩ K is
equiconstructible with a real in this case.

Question 1. It would be very interesting to figure out whether Theorem 13 and Corollary 10 hold also
for sets b , c not necessarily constructible.
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The following corollary presents a partial positive result.
A set z ⊆ I = ωL

1 is bounded iff there is α < ωL
1 such that z ⊆ α .

Corollary 11. Suppose that G ⊆ P is P-generic over L , and z ⊆ I is a set unbounded in I , locally
constructible in the sense that z ∩ α ∈ L for all α ∈ I , and all L-cardinals are preserved in L[G� z] . Then
L[G� z] is elementarily equivalent to L[G] w.r. t. all Σ1

n formulas with parameters in L[G� z] .

Remark: under the assumptions of the corollary, it is not necessary that L[G� z] ⊆ L[G] , since the
set z is not assumed to belong to L[G] , but we necessarily have L[G� z] ∩ωω ⊆ L[G] ∩ωω by rather
obvious reasons.

Proof. Prove by induction that for any k ≤ n , L[G� z] is elementarily equivalent to L[G] w.r. t. all
Σ1

k formulas with parameters in L[G� z] . For k = 2 use Shoenfield’s absoluteness. To carry out the
step k→ k + 1 (k < n), let ϕ := ∃ y ψ(y) be a Σ1

k+1 formula with parameters in L[G� z] . Then, by the
choice of z , 1) there is a set d ∈ L , d ⊆ z , countable in L and such that all parameters in ϕ belong to
L[G� d] , and 2) there is a set e ∈ L , e ⊆ z r d , countably infinite in L .

Now suppose that ∃ y ψ(y) is true in L[G] . This is witnessed by a real y′ ∈ L[G� (d ∪ e′)] for a
set e′ ∈ L , e′ ⊆ I r d , countably infinite in L . Then, by Theorem 13 with K = P∗� d , there is a real
y ∈ L[G� (d ∪ e)] , hence, y ∈ L[G� z] , such that ψ(y) is true in L[G] . However, then ψ(y) is true in
L[G� z] by the inductive hypothesis. Hence ϕ is true in L[G� z] as well, as required.

7. Application 1: Nonconstructible ∆1
n Reals

In this section, we proveTheorems 1 and 2(i). Theorem 1 provides change of definability of reals
situated in the ground set universe L , in generic extensions of L . Thus, any real a /∈ Σ1

n ∪Π1
n in L

can be placed exactly at ∆1
n+1 in an appropriate (almost disjoint) extension of L . Theorem 2 contains

several results for nonconstructible reals. The proofs of these results will make use of various results in
Sections 5 and 6, in particular, a result (Theorem 11) related to definability of relevant forcing relations.

Assumption 3. We continue to assume V = L in the ground universe. We fix an integer n ≥ 2 , for
which Theorems 1 and 2 will be proved, and make use of a system U and the forcing notion P = P[U] as in
Definition 16; both U and P belong to L .

7.1. Changing Definability of an Old Real

Proof (Theorem 1). Fix a set b ⊆ ω , b /∈ Σ1
n ∪Π1

n , in L , and define

c = {2k : k ∈ b} ∪ {2k + 1 : k /∈ b} and K = P∗� c = {p ∈ P∗ : |p| ⊆ c} .

Thus c ⊆ ω ⊆ I = ω1 , c ∈ L , K ⊆ P∗ is a regular forcing. Let G ⊆ P be a P-generic set over L . Then
the set G ∩ K = G� c is K[U]-generic over L by Lemma 9(ii), where K[U] = K ∩ P[U] , as usual.

Define S(ν) = SG(ν) ⊆ Seq and aν = aG(ν) = {k ≥ 1 : sk ∈ SG(ν)} for every ν , as in
Definition 9. We assert that the submodel L[G� c] = L[G ∩ K] = L[{am}m∈c] of the whole generic
extension L[G] witnesses Theorem 1. This amounts to the two following claims:

Claim 3. It is true in L[G� c] that c is Σ1
n+1 , therefore b is ∆1

n+1 .

Proof. By definition we have c = |K| = |K ∩ G| . Therefore c is ΣHC
n in L[G� c] by Corollary 7(iii),

hence Σ1
n+1 (see Remark 2 in Section 4.3), and b = {k : 2k ∈ c} = {k : 2k + 1 /∈ c} ∈ ∆1

n+1 , as required.
In more detail,

c = {m : SG(m) ∈ L[G� c]} = {m : L[G� c] |= ∃ S�m(S)}, hence

a = {k : SG(2k) ∈ L[G� c]} = {k : L[G� c] |= ∃ S�2k(S)}

= {k : SG(2k + 1) /∈ L[G� c]} = {k : L[G� c] |= ¬ ∃ S�2k+1(S)}

by Theorem 10, and it remains to apply Lemma 17.
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Claim 4. In L[G� c] : if x ⊆ ω is Σ1
n then x ∈ L and x is Σ1

n in L .

Proof (Claim 4). Let x = {m : ϕ(m)} in L[G� c] , where ϕ(m) is a Σ1
n formula. Define c′ = ω ,

K′ = P∗�ω , and K′[U] = K′ ∩ P[U] , as usual. Prove that

m ∈ x ⇐⇒ ∃ 〈M, U〉 ∈ sJS ∃ p ∈ K′[U] (p K′forcM
U ϕ(m)). (9)

The right-hand side of (9) is relativized to L and is Σ1
n in L by Theorem 11. Thus (9) implies Claim 4.

To verify =⇒ in (9), suppose that m ∈ x , that is, ϕ(m) holds in L[G� c] = L[G ∩ K] . Then by
Theorem 12(ii) there is a condition p ∈ G ∩ K such that p Kforc∞ ϕ(m) , that is, p KforcM

U ϕ(m) , where
M = Mξ , U = Uξ for some ξ < ω1 . As Mξ = M |= ZFC−1 , M contains c , c′ , and the increasing
bijection π ∈ BIJc

c′ . It follows that q K′forcM
U′ ϕ(m) , by Lemma 22, where U′ = π ·U and q = π · p , as

obviously π ·K = K′ . This implies the right-hand side of (9).
To verify ⇐= , let 〈M′, U′〉 ∈ sJS , p′ ∈ K′[U′] , and p′ K′forcM′

U′ ϕ(m) . Suppose towards the
contrary that ϕ(m) fails in L[G ∩ K] , so that there is a condition q ∈ G ∩ K such that q ||−−K[U] ¬ ϕ(m) .
Then q ∈ K[U] (since G ⊆ P), and hence there is an ordinal ξ < ω1 such that q ∈ K[Uξ ] , ω ∪ |U′| ⊆
|Uξ | and M′ ⊆ Mξ . Then still p′ K′forc

Mξ

U′ ϕ(m) by Lemma 18, and Lemma 22 implies p Kforc
Mξ

U ϕ(m) ,
where p = π−1 · p′ and U = π−1 ·U′ . (By obvious reasons, K = π−1 ·K′ .) Note that |U| ⊆ |Uξ | by
the choice of ξ . Therefore, we can define a system V ∈ Mξ such that V� |U| = U and V(ν) = Uξ(ν)

for all ν /∈ |U| . Then obviously 〈Mξ , U〉 4 〈Mξ , V〉 , therefore p Kforc
Mξ

V ϕ(m) .
Now, V and Uξ are countable systems in Mξ with |V| = |Uξ | and p ∈ K[V] but q ∈ K[Uξ ] .

Corollary 2 yields a transformation α ∈ LipI in M such that |α| ⊆ c , α ·V = Uξ , and conditions

r = α · p ∈ K[Uξ ] and q are compatible. Then r Kforc
Mξ

Uξ
ϕ(m) by Lemma 23. (Comment: αϕ is ϕ , and

α ·K = K because regular forcings of the form K = P∗� c are invariant w.r. t. the transformations in
LipI .) Thus r Kforc∞ ϕ(m) , and hence r ||−−K[U] ϕ(m) by Corollary 8(i). However, r is compatible
with q , and q forces the opposite, a contradiction. This ends the proof of (9). (Claim 4)

(Theorem 1)

7.2. Nonconstructible ∆1
n+1 Real, Part 1

Here we begin the proof of Theorem 2(i). Suppose that a set G ⊆ P is P-generic over L . Define
S(ν) = SG(ν) ⊆ Seq and aν = aG(ν) = {k ≥ 1 : sk ∈ SG(ν)} for every ν as in Definition 9. Emulating
the construction in Section 7.1, put

z = zG = {0} ∪ {2k + 2 : k ∈ a0} ∪ {2k + 1 : k /∈ a0}. (10)

The sets SG(ν) and aν do not belong to L , accordingly, z = zG ∈ L[a0] r L—unlike c in
Section 7.1. Nevertheless, we are going to prove that the extension L[G� z] = L[{am}m∈z] witnesses
Theorem 2(i) with a = a0 .

Note that the setup here is not exactly the same as in the proof of Theorem 1 in Section 7.1 since
the set z does not belong to L , the ground universe. Therefore we cannot treat P∗� z as a forcing in L .
Instead of P∗� z , we make use of the set K of all conditions p ∈ P∗�ω such that for any k ≥ 1:

(A) if 2k ∈ |p| then sk ∈ Sp(0) ;
(B) if 2k− 1 ∈ |p| then sk ∈ F∨p (0)r Sp(0)—and hence 2k /∈ |p| by (A).

as well as the related set K[U] = K ∩ P = K ∩ P[U] .

Lemma 26. K is a regular forcing in L . If G ⊆ P is P-generic over L then G ∩ K = G ∩ K[U] is a set K[U]-
generic over L and L[G ∩ K] = L[G� zG].

Proof. The nontrivial item of the regularity property here is (4) of Definition 8. If p ∈ P∗ then define
p∗ ∈ P∗ to be equal to p everywhere except for Sp∗(0) = Sp(0) ∪ S , where S consists of all strings
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s = sk such that 1) 2k ∈ |p| or 2k− 1 ∈ |p| , and 2) s /∈ F∨p (0) (to make sure that p∗ ≤ p). Now we
let d contain 0, all numbers 2k ∈ |p∗| such that sk ∈ Sp∗(0) , and all numbers 2k− 1 ∈ |p∗| such that
sk ∈ F∨p (0)r Sp∗(0) . (Compare to Example 2 in Section 3.2!)

The rest of the lemma follows from Lemma 9.

Thus extensions of the form L[G� zG] considered here are exactly K[U]-generic extensions of L .
To check that those extensions satisfy Theorem 2(i), we prove the following Claims 5 and 6. The first of
them is entirely similar to Claim 3, so the proof is omitted (left to the reader).

Claim 5. It is true in L[G� z] that z is Σ1
n+1 , therefore a0 is ∆1

n+1 .

Claim 6. In L[G� z] , if x ⊆ ω is Σ1
n , then x ∈ L and x is Σ1

n in L .

The proof of this claim involves the following lemma.

Lemma 27 (proved below in Section 7.3). Suppose that 〈M, U〉 ∈ sJS , p ∈ K[U] , q ∈ K[U] . Let Φ be any
closed parameter-free Σ1

n formula. Then it is impossible that simultaneously q ||−−K[U] ¬Φ and p KforcM
U Φ .

Proof (Claim 6 from the lemma). Assume that x = {m : ϕ(m)} in L[G� c] = L[G ∩ K] , where ϕ(m) is
a Σ1

n formula. We claim that then

m ∈ x ⇐⇒ ∃ 〈M, U〉 ∈ sJS ∃ p ∈ K[U] (p KforcM
U ϕ(m)). (11)

This proves Claim 6, of course, by Theorem 11. Now let us check (11) itself; this will be similar to the
proof of (9) in Section 7.1.

Assume that m ∈ x , that is, ϕ(m) holds in L[G ∩ K] . By Theorem 12(ii) there is a condition
p ∈ G ∩ K such that p Kforc∞ ϕ(m) , that is, p KforcM

U ϕ(m) , where M = Mξ , U = Uξ , ξ < ω1 .
However, this implies the right-hand side of (9).

Now assume that 〈M, U〉 ∈ sJS , p ∈ K[U] , and p KforcM
U ϕ(m) . Suppose towards the contrary

that ϕ(m) is false in L[G ∩ K] , so that there is a condition q ∈ G ∩ K such that q ||−−K[U] ¬ ϕ(m) .
However, this contradicts Lemma 27. (Claim 6 and Theorem 2(i) modulo Lemma 27)

7.3. Nonconstructible ∆1
n+1 Real, Part 2

We continue the proof of Theorem 2(i).
The proof of Lemma 27 that follows below makes use of transformations in BIJω

ω (bijections of
ω ) and those in the set Lipω = {α ∈ LipI : |α| ⊆ ω} , essentially the ω-product of Lip . Yet this will
be somewhat more complicated than the proof of Theorem 1 above, because in this case K is not
preserved under the action of arbitrary transformations in BIJω

ω and Lipω . This is why we have to
consider certain combinations of those transformations.

Namely consider superpositions of the form σ = π ◦ α , where π ∈ BIJω
ω and α ∈ Lipω . (Such σ

acts so that σ ·x = π ·(α ·x) for any applicable object x .)

Remark 4. The set Σ of all σ of this form is a group under the superposition, because the
transformations of the two families considered commute so that α ◦ π = π ◦ α′ , where α′ = π ·α , that
is, α′k = απ(k) for all k .

Definition 22. A transformation σ = π ◦ α ∈ Σ is K-preserving, if p ∈ K ⇐⇒ σ · p ∈ K for all p ∈ P∗�ω .

Not all π ∈ BIJω
ω are K-preserving, and neither is any α ∈ Lipω with α0 6= the identity. Yet there

are plenty of K-preserving transformations in Σ .

Lemma 28. Let U , V be countable systems with |U| = |V| = ω , and p ∈ K[U] , q ∈ K[V] . There is a K-
preserving transformation σ = π ◦ α ∈ Σ such that σ ·U = V , and the conditions σ · p and q are compatible.
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Proof. First of all, Lemma 5 yields a transformation α0 ∈ Lip such that α0 ·U(0) = V(0) and the
conditions α0 · p(0) and q(0) (in P∗ ) are compatible. Define α = {αi}i∈ω ∈ Lipω so that α0 has
just been defined, and αk = the identity for all k > 0. Note that α0 is a ⊆-preserving bijection of
the set Seq of all non-empty strings of integers. Let f : ω

onto−→ ω be the associated permutation of
integers, so that f (k) = n iff α0(sk) = sn (and f (0) = 0). Define π ∈ BIJω

ω so that π(0) = 0 and then
π(2k + 2) = 2 f (k) + 2 and π(2k + 1) = 2 f (k) + 1. It is quite obvious that ρ = π ◦ α is K-preserving.
Let U′ = ρ ·U and p′ = ρ · p . Thus U′ is a countable system with |U′| = ω , p′ ∈ K[U′] , and in
addition U′(0) = V(0) and the conditions p′(0) = α0 · p(0) and q(0) are compatible.

It follows from Lemma 5 that there is a transformation γ = {γν}ν<ω ∈ Lipω such that γ0 is the
identity (and hence γ is K-preserving) and for any k ≥ 1 we have γk ·U′(k) = V(k) and γ · p′(k) is
compatible with q(k) . We conclude that the transformation σ = γ ◦ ρ = γ ◦ π ◦ α is K-preserving,
V = γ ·U′ = σ ·U , and the condition γ · p′ = (γ ◦π ◦ α) · p is compatible with q . Then, we have σ ∈ Σ
by Remark 4 in Section 7.3.

Proof (Lemma 27). Suppose towards the contrary that both q ||−−K[U] ¬Φ and p KforcM
U Φ . By the way

we can w. l.o.g. assume that |U| ⊆ ω , by Lemma 19, and moreover, that |U| = ω exactly. (Otherwise
extend U by U(ν) = Q for all ν ∈ ω r |U| , where Q = all eventually-0 functions f ∈ Fun .)

There is an ordinal ξ < ω1 such that q ∈ K[Uξ ] , ω ⊆ |Uξ | , and M ⊆ Mξ . Let V = Uξ �ω . Note
that |q| ⊆ ω since K ⊆ P∗�ω . Thus q ∈ K[V] . Apply Lemma 28 in Mξ . It gives a K-preserving
transformation σ = α ◦ π ∈ Mξ such that σ ·U = V and the conditions r = σ · p and q (both in K[V])

are compatible. On the other hand, we have r Kforc
Mξ

V Φ by Lemmas 22 and 23, and hence r Kforc
Mξ

Uξ
Φ

by Lemma 18, that is, r Kforc∞ Φ . Thus r ||−−K[U] Φ by Corollary 8(i). However, r is compatible with q ,
and q forces the opposite, a contradiction. (Lemma 27) (Claim 6) (Theorem 2(i))

8. Application 2: Nonconstructible Self-Definable ∆1
n Reals

Note that the set a as in Theorem 2(i) is definable in the generic extension of L , considered in
Section 7.2, by means of other reals in that extension, including those which do not necessarily belong
to L[a] . Claim (ii) of Theorem 2 achieves the same effect with the advantage that a is definable inside
L[a] .

The key idea (originally from [9] Section 4) can be explained as follows. Recall that a set of
the form a0 = aG(0) was made definable in a generic extension of the form L[G� zG] by means of
the presence/absense of other sets of the form SG(ν) , ν < ω , in L[G� z] , see Sections 7.2 and 7.3.
Our plan will now be to make each of the according sets aG(ν) ∈ L[G� z] (note that aG(ν) ⊆ ω r {0} ,
see Definition 9), as well as the whole sequence of them, ∆1

n+1 -definable in L[G� z] . In order to do this,
we need to develop a suitable coding construction.

Assumption 4. We continue to assume V = L in the ground universe. We fix an integer n ≥ 2 , for which
Theorem 1(ii) will be proved, and make use of a system U and the forcing notion P = P[U] as in Definition 16;
both U and P belong to L .

8.1. Nonconstructible Self-Definable ∆1
n+1 Reals: The Model

Here we begin the proof of Theorem 2(ii). Recall that ωω = {sk : k < ω} is a fixed recursive
enumeration of strings of natural numbers, such that s0 = Λ , the empty string, and sk ⊆ sk′ =⇒ k ≤ k′ .
Let `k

i = num (sk
ai) , thus s

`k
i
= sk

ai . Then we have:

• Each set L(k) = {`k
i : i < ω} ⊆ ω is countably infinite, k < mini `

k
i ,

k 6= k′ =⇒ L(k) ∩ L(k′) = ∅ and i 6= j =⇒ `k
i 6= `k

j , and finally

each m ≥ 1 is equal to `k
i for exactly one pair of indices of i, k < ω .
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Define a partial order � on ω so that i � k iff si ⊂ sk . Obviously k � `k
i for all i , k ∈ ω , and 0 is

the �-least element.
For any sequence ~a = {ak}k<ω of sets ak ⊆ ω , we define a set ζ~a ⊆ ω so that:

1) 0 ∈ ζ~a ;
2) if k ∈ ζ~a then, for every i : if i ∈ ak then `k

2i ∈ ζ~a and `k
2i+1 /∈ ζ~a , but

if i /∈ ak then `k
2i /∈ ζ~a and `k

2i+1 ∈ ζ~a ;
3) if k /∈ ζ~a then `k

i /∈ ζ~a for all i .

The next theorem obviously implies Theorem 2(ii).

Theorem 14. Let G ⊆ P be P-generic over L . Define ~a[G] = {aG(i)}i<ω and ζ = ζ~a[G] ⊆ ω . Then
L[ζ] = L[G� ζ] , and it holds in L[ζ] that :

(i) ζ is ∆1
n+1 ;

(ii) if x ⊆ ω is Σ1
n , then x ∈ L and x is Σ1

n in L .

Proof (will continue towards the end of Section 7). Our arguments will be a more elaborate version of
arguments in Sections 7.2, 7.3. We’ll make use of the set K of all conditions p ∈ P∗�ω such that for all
i and k :

(A) if `k
2i ∈ |p| then si ∈ Sp(k) ;

(B) if `k
2i+1 ∈ |p| then si ∈ F∨p (k)r Sp(k)—and hence `k

2i /∈ |p| by (A).

(compare to (A), (B) in Section 7.2), and the related set K[U] = K ∩ P .

Lemma 29. K is a regular forcing in L . If G ⊆ P is a set P-generic over L then G ∩ K = G ∩ K[U] is K[U]-
generic over L , |G ∩ K| = ζ~a[G] , and accordingly L[G ∩ K] = L[G� ζ~a[G]] = L[ζ~a[G]] .

Proof. As above, the nontrivial item of the regularity property is (4) of Definition 8. Suppose that
p ∈ P∗ . Then |p| ⊆ ω is finite. Let δ be the least �-initial segment of ω satisfying |p| ⊆ δ ; δ is
finite as well. Define p∗ ∈ P∗ so that |p∗| = δ and Fp∗(k) = Fp(k) for all k , but the sets Sp∗(k) may
be strictly bigger than the corresponding sets Sp(k) . The definition of Sp∗(k) goes on by �-inverse
induction on k ∈ δ . If k ∈ δ is �-maximal in δ then obviously k ∈ |p| , and we put Sp∗(k) = Sp(k) .
Assume that k ∈ δ is not �-maximal in δ , and the value of p∗(`k

m) = 〈Sp∗(`
k
m) ; Fp(`

k
m)〉 is defined

for all m such that `k
m ∈ δ . Put Sp∗(k) = Sp(k) ∪ S , where S consists of all strings s = si such that

(a) `k
2i+1 ∈ |p∗| = γ or `k

2i ∈ |p∗| , and

(b) s /∈ F∨p (k) (to make sure that p∗ ≤ p).

By definition, |p∗| = δ , and if i, k ∈ ω and at least one of the numbers `k
2i+1 , `k

2i belongs to δ , then the
string si belongs to F∨p∗(k) ∪ Sp∗(k) .

Now we define a set d ⊆ δ so that the decision whether a number k ∈ δ belongs to d is made by
direct �-induction. We put 0 ∈ d . Suppose that some k ∈ δ already belongs to d . We define:

(1) `k
2i ∈ d , if `k

2i+1 ∈ δ and si ∈ Sp∗(k) ;

(2) `k
2i+1 ∈ d , if `k

2i ∈ δ and si ∈ F∨p∗(k)r Sp∗(k) .

A simple verification that p∗ and d satisfy Definition 8(4) is left to the reader.
Further, the set G ∩ K = G ∩ K[U] is K[U]-generic by Lemma 9(ii).
By definition if k ∈ ζ~a[G] then aG(k) = {i : `k

2i ∈ ζ~a[G]} = {i : `k
2i+1 /∈ ζ~a[G]} ∈ L[ζ~a[G]] , therefore

G� ζ~a[G] ∈ L[ζ~a[G]] and L[G� ζ~a[G]] = L[ζ~a[G]] .
Now to prove L[G ∩ K[U]] = L[G� ζ~a[G]] it remains to show that |G ∩ K| = ζ~a[G]—then use

Lemma 9(iii). Note that both |p| for any p ∈ K and ζ~a[G] are �-initial segments. Thus it suffices to
check that if k ∈ |G ∩ K| ∩ ζ~a[G] then

`k
2i+1 ∈ |G ∩ K| ⇐⇒ `k

2i+1 ∈ ζ~a[G] and `k
2i ∈ |G ∩ K| ⇐⇒ `k

2i ∈ ζ~a[G] .



Mathematics 2020, 8, 910 36 of 46

Prove, e.g., the first equivalence. Suppose that `k
2i+1 ∈ |G ∩ K| . Then `k

2i+1 ∈ |p| for some p ∈ K
in G , and we have si ∈ F∨p (k)r Sp(k) by (B), so that si /∈ SG(k) and accordingly i /∈ aG(k) , thus

by definition `k
2i+1 ∈ ζ~a[G] . Suppose conversely that `k

2i+1 ∈ ζ~a[G] . Then by definition i /∈ aG(k) ,
hence si /∈ GG(k) . This must be forced by some p ∈ K ∩ G , and, as k ∈ |G ∩ K| , we can assume that
k ∈ |p| . However, in this case forcing si /∈ GG(k) means by necessity that just si ∈ F∨p (k)r Sp(k) ,

so there exists a stronger condition p′ ∈ K ∩ G with `k
2i+1 ∈ |p′| . We conclude that `k

2i+1 ∈ |G ∩ K| .
(Lemma)

It follows that ζ~a[G] is Σ1
n+1 in L[G� ζ] by Corollary 7. On the other hand, by definition, if

k ∈ ζ~a[G] , then, for any k , we have `k
2i ∈ ζ~a[G] iff `k

2i+1 /∈ ζ~a[G] . This easily leads to a Π1
n+1 definition

of ζ~a[G] . Thus ζ~a[G] is ∆1
n+1 in L[G� ζ] , and hence we have claim (i) of Theorem 14. The proof of claim

(ii) follows in the next two subsections.

Remark 5. A slightly more elaborate argument, like in the end of Section 4 in [9], shows that even more
{ζ~a[G]} is a Π1

n singleton in L[ζ~a[G]] since ζ~a[G] is equalto the only set ζ ⊆ ω in L[ζ~a[G]] satisfyings
the following requirements:

(a) 0 ∈ ζ , and if k /∈ ζ then `k
2i /∈ ζ and `k

2i /∈ ζ for all i ;
(b) if k ∈ ζ then we have `k

2i ∈ ζ iff `k
2i+1 /∈ ζ for every i , and

(c) if k ∈ ζ then the set Sζk = {si : `k
2i ∈ ζ} satisfies �k(Sζk) .

The conjunction of them amounts to a Π1
n definition of {ζ} in L[ζ] .

8.2. Key Lemma

As in Section 7.2, Claim (ii) of Theorem 14 is a consequence of the following lemma (the key
lemma from the title), the proof of which will end the proof of theorems 14 and 2(ii).

Lemma 30 (in L). Suppose that 〈M, U〉 ∈ sJS , p ∈ K[U] , q ∈ K[U] . Let Φ be any closed parameter-free
Σ1

n formula. Then it is impossible that simultaneously q ||−−K[U] ¬Φ and p KforcM
U Φ .

Following Definition 22, a transformation σ ∈ Σ (see Remark 4 in Section 7.3 on Σ) is called K-
preserving, if p ∈ K ⇐⇒ σ · p ∈ K for all p ∈ P∗�ω . Clearly the regular forcing K here is different
(and way more complex in some aspects) than K in Section 7.3. The following lemma is analogous to
Lemma 28.

Lemma 31 (in L ). Suppose that U , V are countable systems with |U| = |V| = ω , and p ∈ K[U] , q ∈ K[V] .
Then there is a K-preserving transformation σ ∈ Σ such that σ ·U = V , and the conditions σ · p and q are
compatible.

Proof. The proof resembles the proof of Lemma 28, but is somewhat more complicated. Essentially,
we’ll have a ramified ω-long iteration in which the construction employed in Lemma 28 will be just
one step. We define �-cones Ck = {i ∈ ω : k� i} and C′k = Ck ∪ {k} for any k ∈ ω .

Claim 7. If α = {αk}k<ω ∈ Lipω , k0 ∈ ω , and αk is the identity for each k 6= k0 then there is a bijection
π = π[αk0 ] ∈ BIJω

ω , recursive in α , �-preserving, and such that π(k) = k for all k /∈ Ck0 and π ◦ α is K-
preserving.

Proof. Note that αk0 is a ⊆-preserving bijection of the set Seq of all finite non-empty strings of

integers. Let f = fαk0
: ω

onto−→ ω be the associated permutation of integers, so that f (i) = j iff
α0(si) = sj . Let the transformation π = π[αk0 ] be the identity outside of the strict �-cone Ck0 ; in

particular, π(k0) = k0 . Beyond this, put π(`k0
2i ) = `k0

2 f (i) and π(`k0
2i+1) = `k0

2 f (i)+1 for all i . Now, if

k ∈ Ck0 and π(k) = k′ is defined then put π(`k
2m) = `k′

2m for all m . (Claim)
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8.3. Matching Permutation

Now, in continuation of the proof of Lemma 31, given any α ∈ Lipω we outline a construction
of a permutation Π ∈ BIJω

ω such that the superposition α ◦Π is K-preserving. Suppose that α =

{αk}k<ω ∈ Lipω . We define

(I) a sequence of numbers km , m < ω , such that k0 = 0 and, for any m , km+1 is the least (in the
usual order of ω ) �-minimal element of ω r dm , where dm = {ki : i ≤ m} ,—then

⋃
m dm = ω

and each dm is a �-initial segment of ω ;
(II) for every m , a transformation αm = {αm

k }k<ω ∈ Lipω , such that αm
k is the identity for all k 6= km

but αm
km

= αkm , and a matching permutation πm = π[αm
km
] ∈ BIJω

ω by Claim 7 — thus πm is the
identity outside of the cone Ckm ;

(III) a K-preserving superposition ρm = πm ◦ αm , equal to the identity outside of the extended� -cone
C′km

= Ckm ∪ {km} , in the sense that if U is a system with |U| = ω , or a condition p ∈ P∗ satisfies
|p| ⊆ ω , then (ρm ·U)(k) = U(k) and (ρm · p)(k) = p(k) for all k ∈ ω r C′km

.

The whole sequence of transformations is thereby specified by the choice of the components
αm

km
∈ Lip , m ∈ ω ; we address this issue below. Now put

Tm = ρm ◦ · · · ◦ ρ2 ◦ ρ1 ◦ ρ0 ∈ Σ , Πm = πm ◦ · · · ◦ π2 ◦ π1 ◦ π0 ∈ BIJω
ω . (12)

Claim 8. (i) the sets Dm = (Πm)−1(dm) satisfy
⋃

m Dm = ω ;
(ii) If m ≤ i and k ∈ Dm then Πi(k) = Πm(k) ;

(iii) there is a single permutation Π ∈ BIJω
ω such that Π(k) = Πm(k) = Πi(k) whenever i ≥ m and

k ∈ Dm .

Proof. (i) Suppose that k < ω belongs to some Dm . Prove that any number j = `k
2i or j = `k

2i+1 ,
i < ω , also belongs to some Dm′ . By definition k′ = Πm(k) ∈ dm . The number j′ = Πm(j) either
belongs to dm , QED, or is �-minimal in ω r dm . In the latter case, we have ¬ km′ � j′ for all m′ > m ,
and hence Πm′(j) is equal to j′ for every m′ > m . Take m′ > m big enough for j′ ∈ dm′ ; then j ∈ Dm′ .

To prove (ii) apply assumption (II) above. Finally (iii) easily follows from items (i), (ii).

The transformation Π as in item (iii) of the claim can be understood as the infinite superposition
· · · ◦ πm ◦ · · · ◦ π2 ◦ π1 ◦ π0 .

Claim 9. Suppose that m ≤ i , U is a system, |U| = ω , and p ∈ P∗ , |p| ⊆ ω . Then (Ti ·U)(km) =

((α ◦Π) ·U)(km) and (Ti · p)(km) = ((α ◦Π) · p)(km) .

Proof. By Claim 8(ii), there is an index j ∈ Dm such that km = Π(j) = Πi(j) for all i ≥ m . Thus
(Ti ·U)(km) is equal to αm

km
·U(j) = αm

km
·((Ti ·U)(km)) .

The argument for p is similar. (Claim)

It follows that the superposition α ◦Π ∈ Σ is K-preserving. Indeed, since sets |p| are finite, if
p ∈ K then there is m such that |p| ⊆ dm ∩ Dm . However, then (α ◦Π) · p = Ti · p by Claim 9, and on
the other hand Ti is K-preserving as a finite superposition of K-preserving transformations ρm .

8.4. Final Argument

Now let U , V , p , q be as in Lemma 31. To accomplish the proof of Lemma 31, we note that the
construction of αm , πm , ρm depends on αkm rather than on α = {αk}k<ω ∈ Lipω as a whole. This
enables us to carry out the following definition of αkm ∈ Lip (m ∈ ω ) by induction on m .

Definition 23. Choose, using Lemma 5, a transformation αk0 ∈ Lip such that αk0 ·U(k0) = V(k0) and the
conditions αk0 · p(k0) and q(k0) (in P∗ ) are compatible.

Now suppose that transformations αk0 , . . . , αkm ∈ Lip have been defined, and define αkm+1 ∈ Lip . Note
that km+1 is a �-minimal element in ω r dm , where dm = {k0, . . . , km} , as above. First of all if µ ≤ m
then define:
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– αµ = {α
µ
k }k<ω ∈ Lipω so that α

µ
kµ

= αkµ
, but α

µ
k is the identity, whenever k 6= kµ ;

– πµ = π[α
µ
kµ
] ∈ BIJω

ω as in assumption (II) of Section 8.3 — thus πµ is the identity outside of Ckµ
;

– a K-preserving superposition ρµ = πµ ◦ αµ , equal to the identity outside of the extended cone C′kµ
, as in

assumption (III) of Section 8.3.

Define Πm and Tm by (12) above. Put Um = Tm ·U and pm = Tm · p. By Lemma 5, there is a
transformation αkm+1 ∈ Lip such that αkm+1 ·U

m(km+1) = V(km+1) and the conditions αkm+1 · pm(km+1)

and q(km+1) are compatible.

After we have defined αkm ∈ Lip by induction on m , let’s take the transformation α = {αk}k<ω ∈
Lipω as the input of the construction in Section 8.3. The latter gives us a permutation Π ∈ BIJω

ω

of Claim 8, such that the superposition σ = α ◦Π ∈ Σ is K-preserving. It remains to check that 1)
σ ·U = V and that 2) σ · p and q are compatible conditions.

To prove 1), consider any k = km+1 ∈ ω . (The argument will also work for the case m = −1, that
is, k = 0.) By definition, we have

V(km+1) = αkm+1 ·U
m(km+1) = (αm+1 ·Um)(km+1) ,

and hence, as obviously πm+1(km+1) = km+1 ,

V(km+1) = ((πm+1 ◦ αm+1 ◦ Tm) ·U))(km+1) = (Tm+1 ·U))(km+1) ,

therefore V(km+1) = ((α ◦Π) ·U)(km+1) = (σ ·U)(km+1) by Claim 9, as required. (Lemma 31)

Proof (Lemma 30). Similar to the proof of Lemma 27, but using Lemma 31 just proved.

(Theorem 14) (Theorem 2(ii))

9. Application 3: Nonconstructible Σ1
n Reals

Here we prove Theorem 3.

Assumption 5. We continue to assume V = L in the ground universe. We fix an integer n ≥ 2 , for which
Theorem 3 will be proved, and make use of a system U and the forcing notion P = P[U] as in Definition 16;
both U and P belong to L .

9.1. Nonconstructible Σ1
n+1 Reals: The Model

The most obvious idea as of getting an extension required is to slightly modify the proof of
Theorem 2(ii) in the following direction. Suppose that G ⊆ P be P-generic over L , and let SG(ν)

and aν = aG(ν) = {k ≥ 1 : sk ∈ S(i)} be defined as in Definition 9. We proved (see the proof of
Theorem 2(i) above) that if

z = {0} ∪ {2k + 2 : k ∈ a0} ∪ {2k + 1 : k /∈ a0}

by (10) of Section 7.2 then the set a0 is ∆1
n+1 in L[G� z] , and the part {2k + 2 : k ∈ a0} of z is

responsible for a0 being Σ1
n+1 in L[G� z] (by means of the equality a0 = {k : ∃ S�2k+2(S)}) while the

part {2k + 1 : k /∈ a0} is responsible for a0 being Π1
n+1 in L[G� z] (by means of the equality a0 = {k :

¬ ∃ S�2k+1(S)}). As now the second part is not needed, one might hope that if y is defined by

y = yG := {0} ∪ a0 = {0} ∪ aG(0) (13)

then L[G� y] will be a model for Theorem 3. At least a0 will be Σ1
n+1 in L[G� y] by exactly the same

reasons. However we have not been able to prove the second part of the theorem, i.e., that all reals
∆1

n+1 in L[G� y] belong to L . The point of difficulty is the following hypothesis:
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Conjecture 1. Under the assumptions above, if m /∈ y = yG then any parameter-free Σ1
n+1 formula

true in L[G� y] is true in L[G� y, am] as well.

We definitely cannot expect the conjecture to be true for formulas with parameters in L[G� y] (the
smaller model) since if p ∈ L[G� y] , p ⊆ ω codes the sequence {ai}i∈y then Fun ⊆ L[p] is true in
L[G� y] but false in L[G� y, am] .

We have a near-counterexample to Conjecture 1: the formula ∃ x (�0(x) ∧ Fun ⊆ L[x]) of class
Σ1

n+1 (assuming n ≥ 3) holds in L[a0] and fails in L[a0, a1] . The set y = {a0} is definitely not of the
form (13), so this is not literally a counterexample, yet it casts doubts on the approach based on (13).

Now we describe the extension involved in the proof of Theorem 3.
The model we define will be a submodel of the whole extension L[G] , where G is P-generic over

L , and a set y of (13) is involved in the definition. We let

Y = YG = yG ∪ (I r ω) = {0} ∪ a0 ∪ (I r ω) , (14)

where a0 = aG(0) (then Y ∈ L[a0]r L) and yG is defined by (13). The goal is to prove that L[G�Y]
witnesses Theorem 3 with a = a0 . The task splits in two claims:

Claim 10. In L[G�Y] , y is Σ1
n+1 , therefore a0 is Σ1

n+1 as well.

Claim 11. In L[G�Y] , if x ⊆ ω is ∆1
n+1 then x ∈ L and x is ∆1

n+1 in L .

Claim 10 is established just as similar claims above, so we leave it for the reader.
Let us concentrate on Claim 11. We make use of the set K0 of all conditions p ∈ P∗�ω such that

if k ≥ 1 and k ∈ |p| , then sk ∈ Sp(0) (= Example 2 in Section 3.2); (15)

as well as the related sets: K = K0 × (P∗� (I r ω)) = {p ∈ P∗ : p�ω ∈ K0} , K0[U] = K0 ∩ P , and
accordingly K[U] = K ∩ P .

Lemma 32. It is true in L that : K0 and K are regular forcings and absolute ∆HC
1 sets, and if z ⊆ I contains

0 then the restrictions K� z, K0� z are regular forcings, too.
If G ⊆ P is a set P-generic over L then G ∩ K = G ∩ K[U] is a set K[U]-generic over L , G ∩ K0 =

G ∩ K0[U] is a set K0[U]-generic over L , and

L[G ∩ K0] = L[G� yG] , L[G ∩ K] = L[G�YG] = L[G� yG, G� (I r ω)] .

Proof. To check (4) of Definition 8 for K0 see Example 2 in Section 3.2. To prove, that the set K0� z =

{p ∈ K0 : |p| ⊆ z} (z ∈ L , z ⊆ ω ) is regular, argue as in Example 2 in Section 3.2. The rest of the
lemma is easy: apply Lemma 9.

9.2. Key Lemma

Here we establish the following key lemma. Recall that sets yG , YG are defined by (13) and (14).

Lemma 33. Suppose that G ⊆ P is P-generic over L , and yG = {0} ∪ aG(0) , y ⊆ ω , the symmetric
difference δ = y ∆ yG is finite, and 0 /∈ δ . Then the models L[G�YG] = L[G� yG, G� (I r ω)] and
L[G� y, G� (I r ω)] are K[U]-generic extensions of L , elementarily equivalent w. r. t. all Σ1

n formulas with
parameters in the common part L[G� (yG ∩ y), G� (I r ω)] of the two models.

Proof. That L[G� yG, G� (I r ω)] = L[G ∩ K[U]] is a K[U]-generic extension of L follows from
Lemma 32. Consider L[G� y, G� (I r ω)] , the other model.

Let u = y r yG and v = yG r y ; thus δ = u ∪ v . Then v ⊆ aG(0) but u ∩ aG(0) = ∅ by the
definition of yG . In other words, the finite disjoint sets Su = {sk : k ∈ u} and Sv = {sk : k ∈ v}
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satisfy Sv ⊆ SG(0) but Su ∩ SG(0) = ∅ . It follows that there is a condition p ∈ G ∩ K[U] such that
|p| = {0} , Sv ⊆ Sp(0) , and Su ⊆ F∨p (0)r Sp(0) . We can increase Fp(0) if necessary for Sp(0) ⊆ F∨p (0)
(a technical requirement) to hold.

Now let q be a condition obtained by the following modification of p : still |q| = {0} and
Fq(0) = Fp(0) (therefore, q belongs to K[U] together with p), and Sq(0) = (Sp(0) ∪ Su)r Sv . It is
clear that Sq(0) ⊆ F∨q (0) = F∨p (0) , so p, q satisfy (3) in Section 3.7. Therefore the map (Definition 12)

Hp
q : P = {p′ ∈ P∗ : p′ ≤ p} onto−→ Q = {q′ ∈ P∗ : q′ ≤ q}

is an order isomorphism of P onto Q by Theorem 6, acting so that:

(∗) if p′ ∈ P then q′ = Hp
q (p′) satisfies |p′| = |q′| , p′(i) = q′(i) for all i 6= 0, and even Fq′(0) =

Fp′(0) , but Sq′(0) = (Sp′(0) ∪ Su)r Sv .

We conclude that Hp
q also is an order isomorphism of P ∩ P onto Q ∩ P by (∗), and hence the set

H = {Hp
q (p′) : p′ ∈ G} ⊆ Q is P-generic over L . Moreover it follows from (∗) that SH(i) = SG(i) and

aH(i) = aG(i) for all i > 0, but SH(0) = (SG(0) ∪ Su)r Sv and aH(0) = (aG(0) ∪ u)r v . Therefore
yH = (yG ∪ u)r v = y , thus L[G� y, G� (I r ω)] is a K[U]-generic extension of L .

As for the elementary equivalence claim, note first of all that the common part L[G� (yG ∩
y), G� (I r ω)] of the two models also is a K[U]-generic extension of L by the above. (Take yG ∩ y as a
new y .) Thus in fact it suffices to prove that under the assumptions of the theorem if j ∈ ω r yG then
L[G� yG, aG(j), G� (I r ω)] is an elementary extension of L[G� yG, G� (I r ω)] w.r. t. all Σ1

n formulas.
Let Φ be a closed Σ1

n formula with parameters in L[G� yG, G� (I r ω)] . It can be deduced,
using either Theorem 5(ii) or directly the CCC property of P (Theorem 4) that there is an ordinal γ ,
ω ≤ γ < ω1 , such that all parameters of Φ belong to L[G� yG, G� h] , where h = γ r ω .

Put d = γ r { j} ; the sets b = I r γ , c = b ∪ { j} have cardinality ω1 , and Y = h ∪ b while
Y ∪ { j} = h ∪ c . It follows from Lemma 32 that K′ = K� d is a regular forcing, and in fact G�γ ⊆ K′

since j /∈ yG . Moreover, by definition all of K0 , K , K′ , d , b , c are absolute ∆HC
1 (w) sets in L for some

w ∈ ωω . Therefore by Corollary 10 Φ is simultaneously true in L[G ∩ K′, G� b] and in L[G ∩ K′, G� c] .
However,

L[G ∩ K′, G� b] = L[G ∩ K0, G� (γ r ω), G� (I r γ)] = L[yG, G� (I r ω)] ,

and similarly L[G ∩ K′, G� c] = L[yG, aG(j), G� (I r ω)] , as required.

9.3. Second Key Lemma

In continuation of the proof of Claim 11, we establish another key lemma (Lemma 35).
Suppose that

(I) G ⊆ P is P-generic over L , x ⊆ ω , x ∈ L[G�YG] , and ϕ(m) , ψ(m) are parameter-free Σ1
n+1

formulas that give a ∆1
n+1 definition for x = {m ∈ ω : ϕ(m)} = {m : ¬ ψ(m)} in L[G�YG] .

Thus it is true in L[G] that “the equivalence ∀m (ϕ(m) ⇐⇒ ¬ ψ(m)) holds in the model L[G�YG]”.
It follows that there is a condition p0 ∈ G with

(II) p0 ||−−P “L[G�YG] |= ∀m (ϕ(m) ⇐⇒ ¬ ψ(m))”.

Lemma 34. If p0 ∈ G satisfies (II) then so does p0� {0} .

Proof. We assume w. l.o.g. that 0 ∈ |p0| . Let u = |p0| r {0} . In the context of Theorem 7, put
d = I , c = ω r u , and K′ = K0� c (a regular forcing by Lemma 32). Then YG = (I r ω) ∪ yG =

(I r ω) ∪ (yG ∩ c) ∪ (yG ∩ u) , hence

L[G�YG] = L[G� (I r ω)] ∪ L[G� (yG ∩ c)] ∪ L[G� (yG ∩ u)] .
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Here I r ω ⊆ d r c is constructible while yG ∩ u ⊆ d r c is finite and hence constructible as well.
We conclude by Theorem 7(i) that p0� c P-forces “L[G�YG] |= ∀m (ϕ(m) ⇐⇒ ¬ ψ(m))”. However,
c ∩ |p0| = {0} , so we are done.

Following the lemma, fix a condition p0 ∈ G satisfying |p0| = {0} and (II).

Lemma 35. Assume (I) and (II) above. Let m < ω . Then the sentence ϕ(m) is K[U]-decided by p0 : either
p0 ||−−K[U] ϕ(m) or p0 ||−−K[U] ¬ ϕ(m) .

Proof. It will be technically easier to establish the result in the following form equivalent to the original
form by Theorem 5(i):

1◦: the sentence “ L[G�YG] |= ϕ(m)” is P-decided by p0 .

Assume that this fails; then there exist two conditions p , q ∈ P stronger than p0 and satisfying:

2◦: q ||−−P “ L[G�YG] |= ϕ(m)” and p ||−−P “ L[G�YG] |= ¬ ϕ(m)”.

We can assume that |p| = |q| = {0} ; otherwise apply Lemma 34 to formulas ϕ and ¬ ϕ . Strengthening
p , q , if necessary, we can w. l.o.g. assume that

(a) Fq(0) = Fp(0) and Sp(0) ∪ Sq(0) ⊆ F∨p (0) = F∨q (0) . (= (3) in Section 3.8.)

Working towards a contradiction, we w. l.o.g. assume that, in addition to (a), the following holds:

(b) the symmetric difference Sp(0) ∆ Sq(0) contains a single element s ∈ Seq .

(Any pair of conditions p , q ≤ p0 satisfying (a) can be connected by a finite chain of conditions in
which any two neighbours satisfy (b) and are ≤ p0 .)

Thus suppose that p , q ≤ p0 , |p| = |q| = {0} , (a), (b), 2◦ hold; the goal is to infer a contradiction.
The associated transformation Hp

q (Definition 12) maps P = {p′ ∈ P : p′ ≤ p} onto Q = {q′ ∈ P :
q′ ≤ q} order-preservingly by Theorem 6. Let G ⊆ P be a set P-generic over L and containing p .
Then H = {Hp

q (p′) : p′ ∈ G} ⊆ Q is P-generic as well, q ∈ H , and hence L[H�YH ] |= ϕ(m) , while
L[H�YG] |= ¬ ϕ(m) by 2◦.

Case 1: Sp(0) = Sq(0) ∪ {s} , where s = s` ∈ Seq r Sq(0) . Then the map Hp
q acts so that

q′ = Hp
q (p′) is defined by |p′| = |q′| ⊇ |p| = |q| , p′(ν) = q′(ν) for all ν ∈ I , ν 6= 0, Fq′(0) = Fp′(0) ,

but Sp′(0) = Sq′(0)∪ {s} . It follows that SH(ν) = SG(ν) for all ν 6= 0 but SG(0) = SH(0)∪ {s} . Thus
aG(ν) = aH(ν) for ν 6= 0 but aG(0) = aH(0)∪ {`} since s = s` . In other words, aG(0) = aH(0)∪ {`} ,
therefore yG = yH ∪ {`} and L[G�YG] = L[H�YH , aH(`)] . It follows from Lemma 33 that any Σ1

n+1
formula true in L[H�YH ] remains true in L[G�YG] . In particular, L[G�YG] |= ϕ(m) , a contradiction.

Case 2: Sq(0) = Sp(0) ∪ {s} , where s = s` ∈ Seq r Sp(0) . Then, similarly to the above,
aG(ν) = aH(ν) for ν 6= 0, but aH(0) = aG(0) ∪ {`} . Therefore, yH = yG ∪ {`} and L[H�YH ] =

L[G�YG, aG(`)] . Thus any Π1
n+1 formula true in L[H�YH ] remains true in L[G�YG] by Lemma 33.

Apply this to the formula ¬ ψ(m) , equivalent to ϕ(m) in both models by (II) above. (Note that
p, q ≤ p0 , hence p0 ∈ G ∩ H .) We have L[G�YG] |= ϕ(m) , a contradiction. (Lemma 35)

9.4. Final Argument

Here we finish the proof of both Claim 11 in Section 9.1 and Theorem 3. Suppose that G ⊆ P is a
set P-generic over L , Y = YG , and a set x ⊆ ω in L[G�Y] , formulas ϕ , ψ , and a condition p0 satisfy
assumptions (I), (II) above. Then, by Lemma 35,

x = {m < ω : p0 ||−−K[U] ϕ(m)} = {m : A(p0, m)} , (16)

where, in L , A ⊆ K[U]×ω is a ΣHC
n set such that A(p, m) ⇐⇒ p ||−−K[U] ϕ(m) for all p ∈ K[U] and

m (Corollary 9). It follows that, in L , x is ΣHC
n (p0) , hence Σ1

n+1(w) (see Remark 2 in Section 4.3),
where w ∈ L ∩ωω is a suitable code of p0 .



Mathematics 2020, 8, 910 42 of 46

To eliminate p0 , consider the set Q of all conditions p ∈ K[U] such that |p| = |p0| and Sp(ν) =

Sp0(ν) for all ν ∈ |p| = |p0| . Note that K[U] = K ∩ P is a set of the same complexity as P , that is,
∆HC

n−1 , and hence so is Q because |p0| and all Sp0(ν) , ν ∈ |p0| are finite sets. It follows that Q is ∆HC
n−1 .

We now claim that, in L , x = {m ∈ ω : ∃ p ∈ Q A(p, m)} ; this obviously yields x being lightface
Σ1

n+1 in L . Indeed ⊆ follows by taking p = p0 ∈ Q and applying (16). Now suppose that p ∈ Q
and A(p, m) , that is, p ||−−K[U] ϕ(m) . Recall that p0 decides ϕ(m) by Lemma 35. However, p0 ||−−K[U]

¬ ϕ(m) is impossible since any condition in Q is compatible with p0 . Therefore p0 ||−−K[U] ϕ(m) as
required. Thus x ∈ Σ1

n+1 in L is established.
That the complementary set ω r x is Σ1

n+1 as well is verified the same way, using the formula ψ

instead of ϕ . (Theorem 3)

10. Conclusions and Some Further Results

With proofs of the main theorems accomplished, in this final section some further results are
briefly discussed, which we plan to achieve and publish elsewhere.

10.1. Separation

This is another application of submodels of the same basic model. Recall that given a class K of
pointsets, the separation principle K-Sep claims that any two disjoint K -sets in the same space can be
separated by a set in K ∩ K{ , where K{ consists of all complements of K -sets. The separation principle
was introduced by N. Luzin. Luzin proved (see [25]) that Σ1

1-Sep holds, and then P. Novikov [26,27]
demonstrated that Π1

1-Sep fails, while at the second projective level, the other way around, Π1
2-Sep

holds but Σ1
2-Sep fails.

As for higher projective levels, the separation problem belongs to a considerable list of problems
related to the projective hieharchy in Luzin’s book [25], Chapter V. Further development of set theory
showed that Luzin’s problems are very hard to solve. Some of them are now known to be independent
of the Zermelo–Fraenkel set theory ZFC , while some others are still open in different aspects, but it is
known that adding Gödel’s axiom of constructibility V = L solves most of them. In particular, V = L
implies [28,29] that Π1

n-Sep holds but Σ1
n-Sep fails for all n ≥ 3—similarly to the classical case n = 2.

It follows that the statement ∀ n ≥ 3 (Π1
n-Sep∧ ¬ Σ1

n-Sep) is consistent with ZFC , and the problem is
then to find a model in which we have Σ1

n-Sep and/or ¬Π1
n-Sep (opposite to the state of affairs in

L) for one or several or all indices n ≥ 3. This was the content of problems P 3029 and 3030 in the
survey [8] of early years of forcing.

This turns out a very difficult question, and still open in its general forms, especially w.r. t. Σ1
n-

Sep. (Compare to Problem 9 in [30], Section 9.) As for the ¬Π1
n-Sep side, there are indications in the

set-theoretic literature, that generic extensions, where both Σ1
n-Sep and Π1

n-Sep fail, are constructed
by L. Harrington for n = 3 (see 5B.3 in [6]) and for arbitrary n ≥ 3 (see [8] and [31], p. 230). These
results were indeed announced in Harrington’s handwritten notes (Addendum A in [32]), with brief
outline of some key arguments related mainly to case n = 3 and based on almost-disjoint forcing.
There are no such results in Harrington’s published works, assumed methods in their principal part
(arbitrary n) are not used even for any other results, and separability theorems in this context are not
considered. An article by Harrington, entitled “Consistency and independence results in descriptive
set theory”, which apparently might have contained these results, was announced in the References
list in [31], to appear in Ann. of Math., 1978, but in fact it has never been published.

The following conjecture concludes Addendum A of Harrington’s note [32]:

In fact (we believe) there is a model of ZFC in which Separation fails for all of the following at once :
Σ1

n , Π1
n , 3 ≤ n < ω , Σm

n , Πm
n , 1 ≤ n < ω , 2 ≤ m < ω . ( Σm

n , Πm
n are classes arising in the

type-theoretic hierarchy).

The hypothesis is partially confirmed by the following our theorem (to appear elsewhere).
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Theorem 15 (originally Harrington [32]). If n ≥ 2 then there is a generic extension of L in which Π1
n+1-

Sep and Σ1
n+1-Sep fail, and moreover

(i) there exist disjoint Π1
n+1 sets of reals unseparable by disjoint Σ1

n+1 sets,
(ii) there exist disjoint Σ1

n+1 sets of reals unseparable by disjoint Π1
n+1 sets.

Moreover there is a generic extension of L in which (i) and (i) simultaneously hold for all n ≥ 2 .

Note that generic models are defined in [33] in which both Σ1
3-Sep and Π1

3-Sep fail. We used
different technique in [33], mostly related to Jensen’s minimal Π1

2 singleton forcing [10] and its iterated
forms (see [34–36]) rather than the almost-disjoint forcing as in this paper.

10.2. Projections of Uniform Sets

In his monograph [25] (pp. 276–291) Nikolas Luzin formulated a number of problems about the
structure of the projective classes Σ1

n , Π1
n , ∆1

n (or An, CAn, Bn in the old notational system). Their
general meaning was to extend the results obtained by Luzin himself and P. S. Novikov for classes Σ1

1 ,
Π1

1 , ∆1
1 (level n = 1 of the projective hierarchy) to higher levels. Among these problems, the following

stands out, along with the separation problem discussed above:

Projection problem: given n ≥ 2, find out the nature of projections of uniform (planar) Π1
n sets in

comparison with the class Σ1
n+1 of arbitrary projections of Π1

n sets and with the narrower class
∆1

n . (A planar set is uniform, if it intersects every vertical line at no more than one point.)

Further research has shown the key importance of structural theorems on projective classes for the
development of descriptive set theory. For example, separation principles play essential role in research
on subsystems of second-order arithmetic, in particular, in the context of reverse mathematics [5].

If n = 1 then every Σ1
2 set is equal to the projection of a uniform Π1

1 set by the
Novikov–Kondo–Addison uniformization theorem [6, 4E.4]. Under V = L , the uniformization
theorem fails for classes Π1

n , n ≥ 2, but nevertheless it is known that if n ≥ 2 then every Σ1
n+1 set is

equal to the projection of a uniform Π1
n set [37]. The next theorem (to appear elsewhere) demonstrates

that this property is violated in suitable generic models.

Theorem 16. If n ≥ 2 then there is a generic extension of L in which :

(i) there is a Σ1
n+1 set not equal to the projection of a uniform Π1

n+1 sets,
(ii) there is a ∆1

n+1 set not equal to the projection of a uniform Π1
n set.

10.3. Harvey Friedman’s ∆1
n Problem

Problem 87 in [38] requires to prove that for each n > 2 there is a model of

ZFC + “the constructible reals are precisely the ∆1
n reals”. (17)

It is noted in the very end of [38] that Harrington had solved this problem affirmatively. Indeed,
a sketch is given in the same handwritten notes [32], of a generic extension of L , in which it is true
that ωω ∩ L = ∆1

3 , as well as a few sentences added as how Harrington planned to get a model in
which ωω ∩ L = ∆1

n holds for a given (arbitrary) n ≥ 3, and a model in which ωω ∩ L = ∆1
∞ , where

∆1
∞ =

⋃
n ∆1

n (all analytically definable reals). This positively solves Problem 87, including the case
n = ∞ . Full proofs have never been published except for an independent proof of the consistency of
ωω ∩ L = ∆1

∞ in [39]. Our plan will be to restore Harrington’s proof of the next theorem elsewhere.

Theorem 17 (originally Harrington [32]). (i) If n ≥ 2 then there is a generic extension of L in which it
is true that ωω ∩ L = ∆1

n+1 .
(ii) There is a generic extension of L in which it is true that ωω ∩ L = ∆1

∞ .
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Friedman concludes [38] with a modified version of the above problem, given as Problem 87 ′ :
find a model of

ZFC + “for any reals x, y , we have: if x ∈ L[y] then x is ∆1
3 in y”. (18)

This was solved in the positive by David [40], yet so far it is unknown whether this result generalizes
to higher classes ∆1

n , n ≥ 4, or ∆1
∞ . We also note that problems (17) and (18) were known in the early

years of forcing, see, e.g., problems P 3110, 3111, 3112 in [8].

10.4. Axiom Schemata in 2nd Order Arithmetic

Different axiomatic systems in second-order arithmetic Z2 is widely represented in modern
research, in particular, in the context of reverse mathematics and other sections of proof theory. See
e.g., Simpson [5] (Part B), and numerous articles, and from older sources—for example, Kreisel [41],
where the choice of subsystems is called the central problem. These systems are obtained by joining a
particular combination of comprehension schema CA , countable choice AC , dependent choice DC ,
transfinite induction TI and recursion TR , etc., to the basic theory, say ACA0 . The schemata can be
specifieded by the complexity of the core formula in the Kleene hierarchy, as well as by allowing or
prohibiting parameters. (For the importance of parameters, see [41], section III.)

The relationships between the subsystems have been actively studied. In particular, it is known
that Σ1

n+1 -CA is strictly stronger, than Σ1
n -CA, and the same for AC and DC. Proofs of these results in

e.g., [5, Chapter VII] use the fact that the schema at a higher quantifier level allows to get strictly more
countable ordinals, than the schema at a lower level, but in essence, it is utilized that the (n + 1)th
level schema proves the consistency of the n th level schema.

A few more complex results are known, where the compared systems are equiconsistent, despite
the increase in quantifier complexity in the schemata, so the consistency argument doesn’t work. It
such a case one has to resort to set theoretic methods. This is the old result of A. Levy [42] that Σ1

3 -AC
does not follow from CA , as well as a recent theorem in [43] saying that Σ1

3 -DC does not follow from
AC ; both are obtained using complex generic models of ZF without the full axiom of choice. The task
of our further research in this direction will be to prove consistency theorems that demonstrate the
importance of both the quantifier complexity and the presence of parameters in the Z2 schemata.

Theorem 18 (to appear elsewhere). If n ≥ 2 , then the theory ACA0 + CA∗ + Σ1
n-CA does not imply

Σ1
n+1 -CA (unless inconsistent, of course) .

Here CA* is the parameter-free part of the comprehension schema CA. Thus, both the quantifier
complexity and the presence of parameters are essential for the deductive power of the comprehension
schema in second-order arithmetic.

Theorem 19 (to appear elsewhere). If n ≥ 2 , then the theory ACA0 +CA+AC+ Σ1
n-DC does not imply

Σ1
n+1 -DC (unless inconsistent) .

Remark 6. We are grateful to one of the reviewers for pointing out possible connections of our research
with some questions of fuzzy set theory [44,45], yet this issue cannot be considered for a short time.
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