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Abstract: In this paper, we prove the following. If n ≥ 3, then there is a generic extension of
L, the constructible universe, in which it is true that the set P (ω) ∩ L of all constructible reals
(here—subsets of ω ) is equal to the set P (ω) ∩ ∆1

n of all (lightface) ∆1
n reals. The result was

announced long ago by Leo Harrington, but its proof has never been published. Our methods are
based on almost-disjoint forcing. To obtain a generic extension as required, we make use of a forcing
notion of the form Q = C ×∏ν Qν in L, where C adds a generic collapse surjection b from ω

onto P (ω) ∩ L, whereas each Qν , ν < ωL
2 , is an almost-disjoint forcing notion in the ω1-version,

that adjoins a subset Sν of ωL
1 . The forcing notions involved are independent in the sense that no

Qν -generic object can be added by the product of C and all Qξ , ξ 6= ν . This allows the definition
of each constructible real by a Σ1

n formula in a suitably constructed subextension of the Q -generic
extension. The subextension is generated by the surjection b , sets Sω·k+j with j ∈ b(k) , and sets Sξ

with ξ ≥ ω ·ω . A special character of the construction of forcing notions Qν is L, which depends
on a given n ≥ 3, obscures things with definability in the subextension enough for vice versa any
∆1

n real to be constructible; here the method of hidden invariance is applied. A discussion of possible
further applications is added in the conclusive section.

Keywords: Harvey Friedman’s problem; definability; nonconstructible reals; projective hierarchy;
generic models; almost-disjoint forcing

MSC: 03E15; 03E35

1. Introduction

Problem 87 in Harvey Friedman’s treatise One hundred and two problems in mathematical logic [1]
requires proof that for each n in the domain 2 < n ≤ ω there is a model of

ZFC + “the constructible reals are precisely the ∆1
n reals”. (1)

(For n ≤ 2 this is definitely impossible e.g., by the Shoenfield’s absoluteness theorem.) This problem
was generally known in the early years of forcing, see, e.g., problems 3110, 3111, 3112 in an early
survey [2] (the original preprint of 1968) by Mathias. At the very end of [1], it is noted that Leo
Harrington had solved this problem affirmatively. For a similar remark, see [2] (p. 166), a comment to
P 3110. And indeed, Harrington’s handwritten notes [3] (pp. 1–4) contain a sketch of a generic extension
of L, based on the almost-disjoint forcing of Jensen and Solovay [4], in which it is true that ωω ∩ L = ∆1

3.
Then a few sentences are added on page 5 of [3], which explain, as how Harrington planned to get
a model in which ωω ∩ L = ∆1

n holds for a given (arbitrary) natural index n ≥ 3, and a model in which
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ωω ∩ L = ∆1
∞, where ∆1

∞=
⋃

n ∆1
n (all analytically definable reals). This positively solves Problem 87,

including the case n = ∞. Different cases of higher order definability are observed in [3] as well.
Yet no detailed proofs have ever emerged in Harrington’s published works. An article

by Harrington, entitled “Consistency and independence results in descriptive set theory”,
which apparently might have contained these results among others, was announced in the References
list in Peter Hinman’s book [5] (p. 462) to appear in Ann. of Math., 1978, but in fact, this or similar
article has never been published by Harrington.

One may note that finding a model for (1) belongs to the “definability of definable” type of
mathematical problems, introduced by Alfred Tarski in [6], where the definability properties of the set
D1M , of all sets x ⊆ ω definable by a parameter-free type-theoretic formula with quantifiers bounded
by type M , are discussed for different values of M < ω . In this context, case n = ∞ in (1) is equivalent
to case M = 1 in the Tarski problem, whereas cases n < ∞ in (1) can be seen as refinements of case
m = 1 in the Tarski problem, because classes ∆1

n are well-defined subclasses of D11 =
⋃

n<ω ∆1
n.

The goal of this paper is to present a complete proof of the following part of Harrington’s
statement that solves the mentioned Friedman’s problem. No such proof has been known so far in
mathematical publications, and this is the motivation for our research.

Theorem 1 (Harrington). If 2 ≤ n < ∞ then there is a generic extension of L in which it is true that the
constructible reals are precisely the ∆1

n+1 reals.

The ∆1
∞ case of Harrington’s result, as well as different results related to Tarski’s problems in [6],

will be subject of a forthcoming publication.
This paper is dedicated to the proof of Theorem 1. This will be another application of the technique

introduced in our previous paper [7] in this Journal, and in that sense this paper is a continuation and
development of the research started in [7]. However, the problem considered here, i.e., getting a model
for (1), is different from and irreducible to the problems considered in [7] and related to definability
and constructability of individual reals. Subsequently the technique applied in [7] is considerably
modified and developed here for the purposes of this new application. In particular, as the models
involved here by necessity satisfy ω1

L < ω1 (unlike the models considered in [7], which satisfy the
equality ω1

L = ω1), the almost-disjoint forcing is combined with a cardinal collapse forcing in this
paper. And hence we will have to substantially deviate from the layout in [7], towards a modification
that shifts the whole almost-disjoint machinery from ω to ω1.

Section 2: we set up the almost-disjoint forcing in the ω1-version. That is, we consider the sets
SEQ = (ω1)

<ω1 and FUN = (ω1)
ω1 in L, the constructible universe, and, given u ⊆ FUN , we define

a forcing notion Q[u] which adds a set G ⊆ SEQ such that if f ∈ FUN in L then G covers f iff f /∈ u ,
where covering means that f � ξ ∈ G for unbounded-many ξ < ω1

L. We also consider two types of
transformations related to forcing notions of the form Q[u] .

Section 3. We let I = ω2
L be the index set. Arguing in L, we consider systems

U = {U(ν)}ν∈I , where each U(ν) ⊆ FUN is dense. Given such U , the product almost-disjoint forcing
Q[U] = C×∏ν∈I+ Q[U(ν)] (with finite support) is defined in L, where C = (P (ω))<ω is a version
of Cohen’s collapse forcing. Such a forcing notion adjoins a generic map bG : ω

onto−→ P (ω) ∩ L to L,
and adds an array of sets G(ν) ⊆ SEQ (where ν ∈ I ) as well, so that each G(ν) is a Q[U(ν)] -generic set
over L. We also investigate the structure of related product-generic extensions and their subextensions,
and transformations of forcing notions of the form Q[U] .

Section 4. Given n ≥ 2, we define a system U ∈ L as above, which has some remarkable
properties, in particular, (1) being Q[U(ν)]-generic is essentially a Π1

n property in all suitable generic
extensions, (2) if ν ∈ I and G ⊆ Q[U] is generic over L, then the extension L[bG , {G(ν′)}ν′ 6=ν]

contains no Q[U(ν)]-generic reals, and (3) all submodels of L[G] of certain kind are elementarily
equivalent w.r. t. Σ1

n formulas. The latter property is summarized in the key technical instrument,
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Theorem 4 (the elementary equivalence theorem), whose proof is placed in a separate Section 6.
To prove Theorem 1, we make use of a related generic extension L[bG , {G(ν)}ν∈W[G]] , where

W[G] = w[G] ∪W = {ω · k + 2j : j ∈ bG(k)} ∪ {ω · k + 3j : j, k < ω} ∪ {ν ∈ I : ν ≥ ω2}

(see Lemma 23), and · is the ordinal multiplication. The first term in W[G] provides a suitable
definition of each set x = bG(k) ∈ L in the model L[bG , {G(ν)}ν∈W[G]] , namely

bG(k) = { j : there exists a Q[U(ν)]-generic set over L},

while the second and third terms in W[G] are added for technical reasons. The proof itself goes on in
Section 4.5, modulo Theorem 4.

We introduce forcing approximations in Section 5, a forcing-like relation used to prove the
elementary equivalence theorem. Its key advantage is the invariance under some transformations,
including the permutations of the index set I , see Section 5.4. The actual forcing notion Q = Q[U] is
absolutely not invariant under permutations, but the n-completeness property, maintained through
the inductive construction of U in L, allows us to prove that the auxiliary forcing relation is connected
to the truth in Q -generic extensions exactly as the true Q -forcing relation does—up to the level
Σ1

n of the projective hierarchy (Lemma 33). We call this construction the hidden invariance technique
(see Section 6.1).

Finally, Section 6 presents the proof of the elementary equivalence theorem, with the help of
forcing approximations, and hence completes the proof of Theorem 1.

The flowchart can be seen in Figure 1 on page 3. And we added the index and contents as
Supplementary Materials for easy reading.

ALMOST-DISJOINT FORCING
PRELIMINARIES, SECTIONS 2.1, 2.2

PRODUCT ALMOST DISJOINT
(A. D.) FORCING, SECTIONS 3.1, 3.2
PRODUCT A. D. EXTENSIONS, LEMMA 9
NAMES FOR REALS IN A. D. EXTENSIONS SECTIONS 3.4, 3.5

TRANSFORMATIONS
OF A. D. FORCING, SECTIONS 2.3, 2.4

TRANSFORMATIONS OF PRODUCT
A. D. FORCING, SECTIONS 3.6, 3.7, 3.8

LEMMA 17

JENSEN–SOLOVAY CONSTRUCTION SECTION 4.1
STABILITY THEOREM (THM 2 IN SECTION 4.2),
COMPLETE SEQUENCES (THM 3 IN SECTION 4.3),
BASIC FORCING NOTION Q = Q[U]

FORCING APPROXIMATIONS
SECTION 5

INVARIANCE LEMMAS 29, 30, 31
IN SECTION 5.4

BASIC GENERIC EXTENSION
AND SUBEXTENSIONS, SECTION 4.4
STRUCTURE LEMMA: LEMMA 22

ELEMENTARY EQUIVALENCE THEOREM
(THEOREM 4 IN SECTION 4.4), PROVED IN SECTION 6.3

THE MODEL FOR THEOREM 1, SECTION 4.5
THEOREM 1, PROVED IN SECTION 4.5

VIA THEOREM 4 AND LEMMA 23

CONCLUSION,
SOME FURTHER RESULTS,

SECTION 7

Figure 1. Flowchart.
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2. Almost-Disjoint Forcing

Almost-disjoint forcing as a set theoretic tool was invented by Jensen and Solovay [4]. It has
been applied in many research directions in modern set theory, in particular, in our paper [7] in this
Journal. Here we make use of a considerably different version of the almost-disjoint forcing technique,
which, comparably to [7], (1) considers countable cardinality instead of finite cardinalities in some
key positions, (2) accordingly considers cardinality ω1 instead of countable cardinality. In particular,
sequences of finite length change to those of length < ω1. And so on.

Assumption 1. During arguments in this section, we assume that the ground set universe is L,
the constructible universe. Recall that in L, HC = Lω1 and Hω2 = Lω2 .

For the sake of brevity, we call ω1-size sets those X satisfying card X ≤ ω1.

2.1. Almost-Disjoint Forcing: ω1-Version

This subsection contains a review the basic notation related to almost-disjoint forcing in the
ω1- version. Arguing in L, we put FUN = ω1

ω1 = all ω1-sequences of ordinals < ω1.

• A set X ⊆ FUN is dense iff for any s ∈ SEQ there is f ∈ X such that s ⊂ f .

• We let SEQ = ω1
<ω1 r {Λ} , the set of all non-empty sequences s of ordinals < ω1, of length

lh s = dom s < ω1. We underline that Λ , the empty sequence, does not belong to SEQ .

• If S ⊆ SEQ , f ∈ FUN then let S/ f = sup{ξ < ω1 : f � ξ ∈ S} . If S/ f is unbounded in ω1 then
say that S covers f , otherwise S does not cover f .

The following or very similar version of the almost-disjoint forcing was defined by Jensen and
Solovay in [4] ([§ 5]). Its goal can be formulated as follows: given a set u ⊆ FUN in the ground universe,
find a generic set S ⊆ SEQ such that the equivalence

f ∈ u ⇐⇒ S does not cover f (2)

holds for each f ∈ FUN in the ground universe.

Definition 1 (in L). Q∗ is the set of all pairs p = 〈Sp ; Fp〉 of finite sets Fp ⊆ FUN , Sp ⊆ SEQ . Elements of
Q∗ will be called (forcing) conditions. If p ∈ Q∗ then put

F∨p = { f � ξ : f ∈ Fp ∧ 1 ≤ ξ < ω1} ,

a tree in SEQ . If p, q ∈ Q∗ then let p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 ; a condition in Q∗ .
Let p, q ∈ Q∗ . Define q 6 p (that is, q is stronger as a forcing condition) iff Sp ⊆ Sq , Fp ⊆ Fq , and the

difference Sq r Sp does not intersect F∨p , i.e., Sq ∩ F∨p = Sp ∩ F∨p . Clearly, we have q 6 p iff Sp ⊆ Sq ,
Fp ⊆ Fq , and Sq ∩ F∨p = Sp ∩ F∨p .

Lemma 1 (in L). Conditions p, q ∈ Q∗ are compatible in Q∗ iff (1) Sq r Sp does not intersect F∨p , and (2)
Sp r Sq does not intersect F∨q . Therefore any p, q ∈ P∗ are compatible in P∗ iff p ∧ q 6 p and p ∧ q 6 q.

Proof. If (1), (2) hold then p ∧ q 6 p and p ∧ q 6 q , thus p, q are compatible.

If u ⊆ FUN then put Q[u] = {p ∈ Q∗ : Fp ⊆ u} .
Any conditions p , q ∈ Q[u] are compatible in Q[u] iff they are compatible in Q∗ iff the condition

p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 ∈ Q[u] satisfies both p ∧ q 6 p and p ∧ q 6 q . Therefore, we can say that
conditions p , q ∈ Q∗ are compatible (or incompatible) without an explicit indication which forcing
notion Q[u] containing p, q is considered.
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Lemma 2 (in L). If u ⊆ FUN and A ⊆ Q[u] is an antichain then card A ≤ ω1.

Proof. Suppose towards the contrary that card A > ω1. If p 6= q in A are incompatible then obviously
Sp 6= Sq . Yet {Sp : p ∈ Q∗} = all finite subsets of SEQ , is a set of cardinality ω1, a contradiction.

2.2. Almost-Disjoint Generic Extensions

To work with L-sets FUN and SEQ in generic extensions of L, possibly in those obtained by
means of cardinal collapse, we let

FUNL = (ωL
1)

ωL
1 ∩ L and SEQL = ((ωL

1)
<ωL

1 ∩ L)r {Λ} (3)

—in other words, FUNL and SEQL are just FUN and SEQ defined in L.

Lemma 3. Suppose that in L, u ⊆ FUN is dense. Let G ⊆ Q[u] be a set Q[u]-generic over L. We define
SG =

⋃
p∈G Sp ; thus SG ⊆ SEQL. Then

(i) if f ∈ FUNL then f ∈ u iff SG does not cover f ;

(ii) if p ∈ Q[u] then p ∈ G iff Sp ⊆ SG ∧ (SG r Sp) ∩ F∨p = ∅ .

(iii) L[G] = L[SG] ;

(iv) if f ∈ FUNLr u then X f = {ξ < ωL
1 : f � ξ ∈ SG} is a cofinal subset of ωL

1 of order type ω ;

(v) ω1
L[G] = ωL

2 .

Proof. (i) Consider any f ∈ u . We claim that D f = {p ∈ P[u] : f ∈ Fp} is dense in P[u] . (Indeed if
q ∈ P[u] then define p ∈ P[u] by Sp = Sq and Fp = Fq ∪ { f } ; we have p ∈ D f and p 6 q .) It follows
that D f ∩ G 6= ∅ . Choose any p ∈ D f ∩ G ; we have f ∈ Fp . Each condition r ∈ G is compatible with
p , therefore, by Lemma 1, Sr/ f ⊆ Sp/ f . We conclude that SG/ f = Sp/ f .

Now assume that f /∈ u . The set D f l = {p ∈ P[u] : sup(Sp/ f ) > l} is dense in P[u] for
any l < ω . (Let q ∈ P[u] . Then Fq is finite. There exists m > l with f �m /∈ F∨q , since f /∈ u .
Define a condition p by Fp = Fq and Sp = Sq ∪ { f �m} ; we have p ∈ D f l and p 6 q .) Pick,
by the density, any p ∈ D f l ∩ G . Then sup(SG/ f ) > l . We conclude that SG/ f is infinite because l
is arbitrary.

(ii) Let p ∈ G . Then obviously sp ⊆ SG . If there exists s ∈ (SG r Sp) ∩ F∨p then s ∈ Sq for some
q ∈ G . Then conditions p, q are incompatible by Lemma 1, which is a contradiction.

Now assume that p ∈ P[u]r G . There is a condition q ∈ G incompatible with p . We have
two cases by Lemma 1. First, there is some s ∈ (Sq r Sp) ∩ F∨p . Then s ∈ SG r Sp , so p is not
compatible with SG . Second, there is some s ∈ (Sp r Sq) ∩ F∨q . In this case, s /∈ Sr holds for any
condition r ≤ q . It follows that s /∈ SG , hence Sp 6⊆ SG , and p cannot be compatible with SG .

Further it follows from (ii) that G = {p ∈ P[u] : sp ⊆ SG ∧ (SG r sp) ∩ F∨p = ∅} , hence, we have
(iii). Claim (v) is an immediate corollary of (iv) since ωL

2 remains a cardinal in L[G] by Lemma 2.
Finally, to prove (iv) let f ∈ FUNLr u and λ < ωL

1 . The set D f λ of all conditions p ∈ Q[u] ,
such that f �λ ⊂ g for some g ∈ Sp , is dense in Q[u] . Therefore G contains some p ∈ D f λ . Let this be
witnessed by some g ∈ Sp . Now, if ξ < λ belongs to X f , so that s = f � ξ ∈ SG , then s must belong to
Sp by (ii), therefore ξ belongs to the finite set {lh s : s ∈ Sp} . Thus, X f ∩ λ is finite. That X f ∩ωL

1 is
infinite follows from (i) (recall that f /∈ u).

Now we consider two types of transformations related to the forcing notion Q∗ .
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2.3. Lipschitz Transformations

We argue in L. Let LIP be the group of all ⊆-automorphisms of SEQ , called Lipschitz
transformations. Any λ ∈ LIP preserves the length lh of sequences, i.e., lh s = lh (λ · s) for all
s ∈ SEQ . Any transformation λ ∈ LIP acts on:

– sequences s ∈ SEQ : by λ · s = λ(s) ;

– functions f ∈ FUN : by λ · f ∈ FUN and (λ · f )� ξ = λ ·( f � ξ) for all ξ < ω1;

– sets S ⊆ SEQ , F ⊆ FUN : by λ ·S = {λ · s : s ∈ S} , λ ·F = {λ · f : f ∈ F} ;

– conditions p ∈ Q∗ : by λ · p = 〈λ ·Sp ; λ ·Fp〉 ∈ Q∗ .

Lemma 4 (routine). The action of any λ ∈ LIP is an order-preserving automorphism of Q∗. If u ⊆ FUN

and p ∈ Q[u] then λ · p ∈ Q[λ ·u] .

We proceed with an important existence lemma. If f 6= g belongs to FUN then let β( f , g) be
equal to the least ordinal β < ω1 such that f (β) 6= g(β) (or, similarly, the largest ordinal β with
f � β = g� β). Say that sets X, Y ⊆ FUN are intersection-similar, or i-similar for brevity, if there is
a bijection b : X onto−→ Y such that β( f , g) = β(b( f ), b(g)) for all f 6= g in X—such a bijection b will
be called an i-similarity bijection.

Lemma 5. Suppose that u, v ⊆ FUN are ω1-sizesets, dense in FUN . Then u, v are i-similar. Moreover, if
X ⊆ u, Y ⊆ v are finite and i-similar then

(i) there is an i-similarity bijection b : u onto−→ v such that b[X] = Y,

(ii) there exists a transformation λ ∈ LIP such that λ ·u = v and λ ·X = Y.

Proof. The key argument is that if A ⊆ u , B ⊆ v are at most countable, b : A onto−→ B is an i-similarity
bijection, and f ∈ u r A , then by the density of v there is g ∈ v r B such that the extended
map b ∪ {〈 f , g〉} : A ∪ { f } onto−→ B ∪ {g} is still an i-similarity bijection. This allows proof of
(i), iteratively extending an initial i-similarity bijection b0 : X onto−→ Y by a ω1-step back-and-forth
argument involving eventually all elements f ∈ u and g ∈ v , to an i-similarity bijection u onto−→ v
required. See the proof of Lemma 5 in [7] for more detail.

To get (ii) from (i), consider any sequence s ∈ SEQ . Let β = lh s . As u is dense, there exist
f , f ′ ∈ u such that β( f , f ′) = β and s ⊂ f , s ⊂ f ′ . Put g = b( f ) , g′ = b( f ′) . Then still β(g, g′) = β ,
hence g� β = g′� β . Therefore, we can define λ(s) = g� β = g′� β .

2.4. Substitution Transformations

We continue to argue in L. Assume that conditions p, q ∈ Q∗ satisfy

Fp = Fq and Sp ∪ Sq ⊆ F∨p = F∨q . (4)

We define a transformation hpq acting as follows.
If p = q then define hpq(r) = r for all r ∈ Q∗ , the identity.
Suppose that p 6= q . Then p, q are incompatible by (4) and Lemma 1.

Define dpq = {r ∈ Q∗ : r 6 p ∨ r 6 q} , the domain of hpq . Let r ∈ dpq . We put hpq(r) = r′ := 〈Sr′ , Fr′〉 ,
where Fr′ = Fr and

Sr′ =

 (Sr r Sp) ∪ Sq in case r 6 p ,

(Sr r Sq) ∪ Sp in case r 6 q .
(5)

Thus, assuming (4), the difference between Sr and Sr′ lies entirely within the set X = F∨p = F∨q , so that
if r 6 p then Sr ∩ X = Sp but Sr′ ∩ X = Sq , while if r 6 q then Sr ∩ X = Sq but Sr′ ∩ X = Sp .
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Lemma 6. (i) If u ⊆ FUN is dense and p0, q0 ∈ Q[u] then there exist conditions p, q ∈ Q[u] with p 6 p0 ,
q 6 q0 , satisfying (4).

(ii) Let p, q ∈ Q∗ satisfy (4). If p = q then hpq is the identity transformation. If p 6= q then hpq an order
automorphism of dpq = {r ∈ Q∗ : r 6 p ∨ r 6 q} , satisfying hpq(p) = q and hpq = (hpq)−1 = hqp .

(iii) If u ⊆ FUN and p , q ∈ Q[u] satisfy (4) then hpq maps the set Q[u] ∩ dpq onto itself order-preserving.

Proof. (i) By the density of u there is a finite set F ⊆ FUN satisfying Fp ∪ Fq ⊆ F and
Sp ∪ Sq ⊆ F∨ = { f � ξ : f ∈ F ∧ 1 ≤ ξ < ω1} . Put p = 〈Sp, F〉 and q = 〈Sq, F〉 . Claims (ii), (iii)
are routine.

Please note that unlike the Lipschitz transformations above, transformations of the form hpq ,
called substitutions in this paper, act within any given forcing notion of the form Q[u] by claim (iii) of
the lemma, and hence the forcing notions of the form Q[u] considered are sufficiently homogeneous.

3. Almost-Disjoint Product Forcing

Here we review the structure and basic properties of product almost-disjoint forcing and
corresponding generic extensions in the ω1-version. There is an important issue here: a forcing
C , which collapses ω1 to ω , enters as a factor in the product forcing notions considered.

3.1. Product Forcing

In L, we define C = P (ω)<ω , the set of all finite sequences of subsets of ω , an ordinary forcing
to collapse P (ω) ∩ L down to ω . We will make use of an ω2-product of Q∗ with C as an extra factor.
(In fact, C can be eliminated since Q∗ collapses ωL

1 anyway by Lemma 3 (v). Yet the presence of C
somehow facilitates the arguments since C has a more transparent forcing structure.)

Technically, we put I = ω2 (in L) and consider the index set I+ = I ∪ {−1} . Let Q∗ be the
finite-support product of C and I copies of Q∗ (Definition 1 in Section 2.1), ordered componentwise.
That is, Q∗ consists of all maps p defined on a finite set dom p = |p|+ ⊆ I+ so that p(ν) ∈ Q∗ for all
ν ∈ |p| := |p|+ r {−1} , and if −1 ∈ |p|+ then bp := p(−1) ∈ C . If p ∈ Q∗ then put Fp(ν) = Fp(ν)
and Sp(ν) = Sp(ν) for all ν ∈ |p| , so that p(ν) = 〈Sp(ν) ; Fp(ν)〉 .

We order Q∗ componentwise: p 6 q ( p is stronger as a forcing condition) iff |q|+ ⊆ |p|+ , bq ⊆ bp

in case −1 ∈ |q|+ , and p(ν) 6 q(ν) in Q∗ for all ν ∈ |q| . Put

F∨p (ν) = F∨p(ν) = { f � ξ : f ∈ Fp(ν) ∧ 1 ≤ ξ < ω1}.

In particular, Q∗ contains the empty condition � ∈ Q∗ satisfying |�|+ = ∅ ; obviously � is the 6-least
(and weakest as a forcing condition) element of Q∗ .

Because of the factor C , it takes some effort to define p ∧ q for p, q ∈ Q∗ , and only assuming
that bp, bq are compatible, i.e., bp ⊆ bq or bq ⊆ bp . In such a case define p ∧ q ∈ Q∗ as
follows. First, |p ∧ q|+ = |p|+ ∪ |q|+ . If ν ∈ |p|+ r |q|+ then put (p ∧ q)(ν) = p(ν) , and similarly if
ν ∈ |q|+ r |p|+ then (p ∧ q)(ν) = q(ν) . Now suppose that ν ∈ |p|+ ∩ |q|+ .

If ν 6= −1 then (p ∧ q)(ν) = p(ν) ∧ q(ν) in the sense of Definition 1 in Section 2.1.
If ν = −1 ∈ |p|+ ∩ |q|+ , then, by the compatibility, either bp ⊆ bq —and then define bp∧q = bq ,

or bq ⊆ bp —and then accordingly bp∧q = bp .

Lemma 7. Let p, q ∈ Q∗ be compatible. Then (p ∧ q) ∈ Q∗ , (p ∧ q) 6 p, (p ∧ q) 6 q, and if r ∈ Q∗ ,
r 6 p, r 6 q, then r 6 (p ∧ q) .

3.2. Systems

Arguing in L, we consider certain subforcings of the total product forcing notion Q∗ .
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Let a system be any map U : |U| → P (FUN) such that |U| ⊆ I , each set U(ν) (ν ∈ |U| ) is dense
in FUN , and the components U(ν) ⊆ FUN (ν ∈ |U|) are pairwise disjoint.

• A system U is small, if both |U| and each set U(ν) (ν ∈ |U|) has cardinality ≤ ω1.

• If U, V are systems, |U| ⊆ |V| , and U(ν) ⊆ V(ν) for all ν ∈ |U| , then say that V extends U ,
in symbol U 4 V .

• If {Uξ }ξ<λ is a 4-increasing sequence of systems then define a system U =
∨

ξ<λ Uξ by
|U| = ⋃

ξ<λ |Uξ | and U(ν) =
⋃

ξ<λ,ν∈|Uξ |Uξ(ν) for all ν ∈ |U| .

• If U is a system, then Q[U] is the finite-support product of C and sets Q[U(ν)] , ν ∈ |U| , i.e.,

Q[U] = {p ∈ Q∗ : |p| ⊆ |U| ∧ ∀ ν ∈ |p| (Fp(ν) ⊆ U(ν))} .

Suppose that c ⊆ I+ . If p ∈ Q∗ then define p′ = p� c ∈ Q∗ so that |p′|+ = c ∩ |p|+ and
p′(ν) = p(ν) whenever ν ∈ |p′|+ . A special case: if ν ∈ I+ then let p� 6=ν = p� (|p|+ r {ν}) .
Similarly, if U is a system then define a system U′ = U� c so that |U′| = c ∩ |U| and U′(ν) = U(ν)

whenever ν ∈ |U′| . A special case: if ν ∈ I+ then let U� 6=ν = U� (|p|r {ν}) . And if Q ⊆ Q∗ then
let Q� c = {p ∈ Q : |p|+ ⊆ c} (will usually coincide with {p� c : p ∈ Q} .

Writing p� c , U� c etc., it is not assumed that c ⊆ |p|+ .

Lemma 8 (in L). If U is a system and A ⊆ Q[U] is an antichain then card A ≤ ω1.

Proof. Suppose that card A > ω1. As cardC = ω1, we can w. l.o.g. assume that bp = bq for all
p, q ∈ A . It follows by the ∆-system lemma that there is a set A′ ⊆ A of the same cardinality
card A′ = card A > ω1, and a finite set d ⊆ I+ , such that |p|+ = d for all p ∈ A′ . Then we have
Sp 6= Sq for all p 6= q in A′ , easily leading to a contradiction, as in the proof of Lemma 2.

3.3. Outline of Product Extensions

We consider sets of the form Q[U] , U being a system in L, as forcing notions over L.
Accordingly, we’ll study Q[U]-generic extensions L[G] of the ground universe L. Define some elements
of these extensions. Suppose that G ⊆ Q∗ . Put |G| = ⋃

p∈G |p| ; |G| ⊆ I . Let

bG =
⋃

p∈G bp , and SG(ν) = SG(ν) =
⋃

p∈G Sp(ν)

for any ν ∈ |G| , where G(ν) = {p(ν) : p ∈ G} ⊆ Q∗ .
Thus, SG(ν) ⊆ SEQL, and SG(ν) = ∅ for any ν /∈ |G| .
By the way, this defines a sequence ~SG = {SG(ν)}ν∈I of subsets of SEQ .
If c ⊆ I+ then let G� c = {p ∈ G : |p|+ ⊆ c} . It will typically happen that G� c = {p� c : p ∈ G} .

Put G� 6=ν = {p ∈ G : ν /∈ |p|+} = G� (I+ r {ν}) .
If U is a system in L, then any Q[U]-generic set G ⊆ Q[U] splits into the family of sets G(ν) ,

ν ∈ I , and a separate map bG : ω
onto−→ P (ω) ∩ L. It will follow from (ii) of the next lemma that Q[U]-

generic extensions of L satisfy ω1 = ωL
2 .

Lemma 9. Let U be a system in L, and G ⊆ Q[U] be a set Q[U]-generic over L. Then :

(i) bG is a C-generic map from ω onto P (ω) ∩ L ;

(ii) if ν ∈ I then L[G(ν)] = L[SG(ν)] and ω1
L[bG ] = ω1

L[G(ν)] = ωL
2 = ω1

L[G] ;

(iii) L[G] = L[~SG] and |G|+ = I ;

(iv) if ν ∈ I and c ∈ L[G� 6=ν] , ν /∈ c ⊆ I+ , then L[G� c] ⊆ L[G� 6=ν] ;

(v) if ν ∈ I then SG(ν) /∈ L[G� 6=ν] ;
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(vi) if ν ∈ I then the set G(ν) = {p(ν) : p ∈ G} ∈ L[G] is P[U(ν)]-generic over L, hence if f ∈ FUNL

then f ∈ U(ν) iff SG(ν) does not cover f .

Proof. Proofs of (i) and (iii)–(vi) are similar to ([7] (Lemma 9)). To prove ω1
L[G(ν)] = ωL

2 in (ii) apply
Lemma 3 (v). Finally, to see that ωL

2 remains a cardinal in L[G] apply Lemma 8.

3.4. Names for Sets in Product Extensions

The next definition introduces names for elements of product-generic extensions of L considered.
Assume that in L, K ⊆ Q∗ , e.g., K = Q[U] , where U is a system, and X is any set. By NX(K)

(K-names for subsets of X ) we denote the set of all sets τ ⊆ K × X in L. Furthermore, SNX(K)
(small names) consist of all ω1-size names τ ∈ SNX(K) ; in other words, it is required that card τ ≤ ω1.

Suppose that τ ∈ NX(Q∗) . We put

dom τ = {p : ∃ x (〈p, x〉 ∈ τ} , |τ|+ =
⋃

p∈dom τ

|p|+ , |τ| =
⋃

p∈dom τ

|p| .

If G ⊆ Q∗ then define

τ[G] = {x ∈ X : (τ ”x) ∩ G 6= ∅} , where τ ”x = {p : 〈p, x〉 ∈ τ},

so that τ[G] ⊆ X . If ϕ is a formula in which some names τ ∈ SNω
ω(Q∗) occur, and G ⊆ Q∗ ,

then accordingly ϕ[G] is the result of substitution of τ[G] for each name τ in ϕ .

Lemma 10. Suppose that X ∈ L, card X ≤ ω1 in L, U is a system in L, and G ⊆ Q[U] is a set Q[U]-
generic over L. Then for any set Y ∈ L[G] , Y ⊆ X, there is a name τ ∈ SNX(Q[U]) in L such that Y = τ[G] .
If in addition c ∈ L, c ⊆ I+ , and Y ∈ L[G� c] , then there is a name τ ∈ SNX(Q[U]� c) in L such that
Y = τ[G] .

Proof. It follows from general forcing theory that there is a name σ ∈ NX(Q[U]) , not necessarily
an ω1-size name, such that X = σ[G] . Let Qx = σ”x for all x ∈ X . Arguing in L, put

τ = {〈p, x〉 ∈ σ : x ∈ X ∧ p ∈ Ax} ,

where Ax ⊆ Qx is a maximal antichain for any x . We observe that card Ax ≤ ω1 in L for all x by
Lemma 8, hence τ ∈ SNX(Q[U]) . And on the other hand, we have τ[G] = σ[G] = Y .

To prove the additional claim, note that by the product forcing theorem if Y ∈ L[G� c] then the
original name σ can be chosen in NX(Q[U]� c) , and repeat the argument.

3.5. Names for Reals in Product Extensions

Now we introduce names for reals (elements of ωω ) in generic extensions of L considered. This is
an important particular case of the content of Section 3.4.

Assume that in L, K ⊆ Q∗ , e.g., K = Q[U] , where U is a system. By Nω
ω(K) (K-names for reals

in ωω ) we denote the set of all τ ⊆ K × (ω×ω) such that the sets τ ”〈j, k〉 = {p : 〈p, 〈j, k〉〉 ∈ τ}
satisfy the following requirement:

if k 6= k′ , p ∈ τ ”〈j, k〉 , p′ ∈ τ ”〈j, k′〉 , then conditions p, p′ are incompatible.

We let τ ”j =
⋃

k τ ”〈j, k〉 , dom τ =
⋃

j,k<ω τ ”〈j, k〉 , |τ|+ =
⋃{|p|+ : p ∈ dom τ} .

Let SNω
ω(K) (small names) consist of all ω1-size names τ ∈ Nω

ω(K) ; in other words, it is required
that card (τ ”〈j, k〉) ≤ ω1 for all j, k < ω .

Define the restrictions SNω
ω(K)� c = {τ ∈ SNω

ω(K) : |τ|+ ⊆ c} .
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A name τ ∈ SNω
ω(K) is K-full iff the set τ ”j is pre-dense in K for any j < ω . A name τ ∈ SNω

ω(K)
is K-full below some p0 ∈ K , iff all sets τ ”j are pre-dense in K below p0 , i.e., any condition q ∈ K ,
q 6 p0 , is compatible with some r ∈ τj (and this holds for all j < ω ).

Suppose that τ ∈ SNω
ω(Q∗) . A set G ⊆ K is minimally τ-generic iff it is compatible in itself

(if p, q ∈ G then there is r ∈ G with r 6 p , r 6 q ), and intersects each set τ ”x , x ∈ X . In this case, put

τ[G] = {〈j, k〉 ∈ ωω ×ωω : (τ ”〈j, k〉) ∩ G 6= ∅} ,

so that τ[G] ∈ ωω and τ[G](j) = k ⇐⇒ τ ”〈j, k〉 ∩ G 6= ∅ . If ϕ is a formula in which some names
τ ∈ SNω

ω(Q∗) occur, and a set G ⊆ Q∗ is minimally τ-generic for any name τ in ϕ , then accordingly
ϕ[G] is the result of substitution of τ[G] for each name τ in ϕ .

Lemma 11. Suppose that U is a system in L, and G ⊆ Q[U] is Q[U]-generic over L. Then for any real
x ∈ L[G] ∩ ωω there is a Q[U]-full name τ ∈ SNω

ω(Q[U]) in L such that x = τ[G] . If in addition c ∈ L,
c ⊆ I+ , and x ∈ L[G� c] , then there is a Q[U]-full name τ ∈ SNω

ω(Q[U]� c) in L such that x = τ[G] .

Proof. It follows from general forcing theory that there is a Q[U]-full name σ ∈ Nω
ω(Q[U]) ,

not necessarily an ω1-size name, such that f = σ[G] . Then all sets Qj = σ”j , j < ω , are pre-dense
in Q[U] . Arguing in L, put τ = {〈p, 〈j, k〉〉 ∈ σ : j, k < ω ∧ p ∈ Aj} , where Aj ⊆ Qj is a maximal
antichain for any j < ω . We conclude by Lemma 8 that card Aj ≤ ω1 in L for all j , hence in fact
τ ∈ SNω

ω(Q[U]) . And on the other hand, we have τ[G] = σ[G] = f .

Equivalent names. Names τ, µ ∈ SNω
ω(Q∗) are equivalent iff conditions q, r are incompatible

whenever q ∈ τ ”〈j, k〉 and r ∈ µ”〈j, k′〉 for some j and k′ 6= k . Names τ, µ are equivalent below some
p ∈ Q∗ iff the triple of conditions p, q, r is incompatible (that is, no common strengthening) whenever
q ∈ τ ”〈j, k〉 and r ∈ µ”〈j, k′〉 for some j and k′ 6= k .

Lemma 12. Suppose that in L, p ∈ Q∗ , and names µ , τ ∈ SNω
ω(Q∗) are equivalent (resp., equivalent below

p ) . If G ⊆ Q∗ is minimally µ-generic and minimally τ-generic (resp., and containing p ) , then µ[G] = τ[G] .

Proof. Suppose that this is not the case. Then by definition there exist numbers j and k′ 6= k and
conditions q ∈ G ∩ (τ ”〈j, k〉) and r ∈ G ∩ (µ”〈j, k′〉) . Then p, q, r are compatible (as elements of the
same generic set), contradiction.

The next lemma provides a useful transformation of names. Recall that p′ ∧ p is defined
in Section 3.1.

Lemma 13 (in L). If p ∈ Q∗ and τ ∈ SNω
ω(Q∗) , then

τ6p = {〈p′ ∧ p, 〈j, k〉〉 : 〈p′, 〈j, k〉〉 ∈ τ and p′ is compatible with p}

is still a name in SNω
ω(Q∗) , equivalent to τ below p, and |τ6p|+ ⊆ |τ|+ ∪ |p|+ .

If U is a system and p ∈ Q[U] , τ ∈ SNω
ω(Q[U]) , then τ6p ∈ SNω

ω(Q[U]) .
Moreover, if τ is Q[U]-full below p then τ6p is Q[U]-full below p, too.

Proof. Routine.

3.6. Permutations

We continue to argue in L. There are three important families of transformations of the whole
system of objects related to product forcing, considered in this Subsection and the two following ones.
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We begin with permutations, the first family. Let BIJ be the set of all bijections π : I onto−→ I ,
i.e., permutations of the set I , such that the set |π| = {ν ∈ I : π(ν) 6= ν} (the essential domain) satisfies
card |π| ≤ ω1. Please note that π is the identity outside of |π| . Any permutation π ∈ BIJ acts onto:

– sets e ⊆ I : by π · e := {π(ν) : ν ∈ e} ;

– systems U : by (π ·U)(π(ν)) := U(ν) for all ν ∈ |U|—then |π ·U| = π · |U| ;
– conditions p ∈ Q∗ : if −1 ∈ |p|+ then −1 ∈ |π · p|+ and bπ · p = bp , and if ν ∈ |p| then

(π · p)(π(ν)) := p(ν) , so |π · p| = π · |p| ;
– sets G ⊆ Q∗ : by π ·G := {π · p : p ∈ G}—then π ·G ⊆ Q∗ ;

– names τ ∈ SNω
ω(Q∗) : by π ·τ := {〈π · p, 〈`, k〉〉 : 〈p, 〈`, k〉〉 ∈ τ} ∈ SNω

ω(Q∗) .

Lemma 14 (routine). If π ∈ BIJ then p 7−→ π · p is an order-preserving bijection of Q∗ onto Q∗ , and if U
is a system then p ∈ Q[U] ⇐⇒ π · p ∈ Q[π ·U] .

3.7. Multi-Lipschitz Transformations

Still arguing in L, we let LIPI be the I-product of the group LIP (see Section 2.3), this will
be our second family of transformations, called multi-Lipschitz. Thus, a typical element λ ∈ LIPI

is λ = {λν}ν∈|λ| , where |λ| = domλ ⊆ I+ has ω1-size, λν ∈ LIP , ∀ ν . Define the action of any
λ ∈ LIPI on:

– systems U : |λ ·U| := |U| , and (λ ·U)(ν) := λν ·U(ν) for all elements ν ∈ |λ| ∩ |U| ,
but (λ ·U)(ν) := U(ν) for all ν ∈ |U|r |λ| ;

– conditions p ∈ Q∗ : |λ · p|+ = |p|+ , if −1 ∈ |p|+ then bλ · p = bp , if ν ∈ |p| ∩ |λ| then
(λ · p)(ν) = λν · p(ν) , but if ν ∈ |p|r |λ| , then (λ · p)(ν) = p(ν) ;

– sets G ⊆ Q∗ : λ ·G := {λ · p : p ∈ G} ;

– names τ ∈ SNω
ω(Q∗) : λ ·τ := {〈λ · p, 〈n, k〉〉 : 〈p, 〈n, k〉〉 ∈ τ} ;

In the first two items, we refer to the action of λν ∈ LIP on sets u ⊆ FUN and on forcing conditions,
as defined in Section 2.3.

Lemma 15 (routine). If λ ∈ LIPI then p 7−→ π · p is an order-preserving bijection of Q∗ onto Q∗ , and if
U is a system then p ∈ Q[U] ⇐⇒ λ · p ∈ Q[λ ·U] .

Lemma 16. Suppose that U, V are systems, |U| = |V| , p ∈ Q[U] , q ∈ Q[V] , |p| = |q| , and sets F∨p (ν) ,
F∨q (ν) are i-similar for all ν ∈ |p| = |q| . Then there is λ ∈ LIPI such that |λ| = |U| = |V| , λ ·U = V ,
and F∨q (ν) = F∨λ · p(ν) for all ν ∈ |p| = |q| .

Proof. Apply Lemma 5 componentwise for every ν ∈ I .

3.8. Multi-Substitutions

Assume that conditions p , q ∈ Q∗ satisfy the following:

(6i) − 1 ∈ |p|+ = |q|+ and lh bp = lh bq , and

(6ii) if ν ∈ |p| then Fp(ν) = Fq(ν) and Sp(ν) ∪ Sq(ν) ⊆ F∨p (ν) = F∨q (ν) .

}
(6)

In particular, (4) of Section 2.4 holds for all ν . We define a transformation Hpq acting as follows. First,
we let Dpq , the domain of Hpq , contain all conditions r ∈ Q∗ such that

(a) if −1 ∈ |r|+ and bp 6= bq , then bp ⊆ br or bq ⊆ br ;

(b) if ν ∈ |r| ∩ |p| and p(ν) 6= q(ν) , then r(ν) 6 p(ν) or r(ν) 6 q(ν) , thus, in other words,
r(ν) ∈ dp(ν)p(ν) in the sense of Section 2.4.
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Please note that all conditions r 6 p and all r 6 p belong to Dpq . On the other hand, if r ∈ Q∗ satisfies
|r| ∩ |p| = ∅ and (a), then r belongs to Dpq as well. In particular, � ∈ Dpq .

If r ∈ Dpq , then define r′ = Hpq(r) ∈ Q∗ so that |r′|+ = |r|+ and:

(a1) if −1 ∈ |r|+ and bp = bq then simply br′ = br ,

(a2) if −1 ∈ |r|+ and bp 6= bq , then by (a) either br = bp
as or br = bq

as , where s ∈ P (ω)<ω —we
put br′ = bq

as in the first case, and br′ = bp
as in the second case;

(b1) if either ν ∈ |r|r |p| , or ν ∈ |r| ∩ |p| ∧ p(ν) = q(ν) , then put r′(ν) = r(ν) ,

(b2) if ν ∈ |p| = |q| and p(ν) 6= q(ν) , then we put r′(ν) = hp(ν)q(ν)(r(ν)) , where hp(ν)q(ν) is defined
in Section 2.4.

Transformations of the form Hpq will be called multi-substitutions.

Lemma 17 (in L). (i) If U is a system and p0, q0 ∈ Q[U] then there exist conditions p, q ∈ Q[U] with
p 6 p0 , q 6 q0 , satisfying (6).

(ii) If conditions p, q ∈ Q∗ satisfy (6), then Hpq is an order automorphism of Dpq = Dqp , and we have
Hpq = (Hpq)−1 = Hqp and Hpq(p) = q.

(iii) If U is a system, and p , q ∈ Q[U] satisfy (6), then Hpq maps the set Q[U] ∩ Dpq onto itself
order-preserving.

Proof. Apply Lemma 6 componentwise.

Corollary 1 (of Lemma 17). If U is a system then Q[U] is homogeneous in the following sense :
if p0, q0 ∈ Q[U] then there exist stronger conditions p 6 p0 and q 6 q0 in Q[U] , such that the according
lower cones {p′ ∈ Q[U] : p′ 6 p} and {q′ ∈ Q[U] : q′ 6 q} are order-isomorphic.

Action of Hpq on names. Assume that conditions p, q ∈ Q∗ satisfy (6). Let SNω
ω(Q∗)pq contain

all names τ ∈ SNω
ω(Q∗) such that dom τ ⊆ Dpq . If τ ∈ SNω

ω(Q∗)pq then put

Hpq ·τ = {〈Hpq(p′), 〈n, k〉〉 : 〈p′, 〈n, k〉〉 ∈ τ} .

Then obviously Hpq ·τ ∈ SNω
ω(Q∗)qp .

4. The Basic Forcing Notion and the Model

In this paper, we let ZFC− be ZFC minus the Power Set axiom, with the schema of Collection
instead of Replacement, with AC is assumed in the form of well-orderability of every set, and with the
axiom: “ω1 exists”. See [8] on versions of ZFC sans the Power Set axiom in detail.

Let ZFC−2 be ZFC− plus the axioms: V = L, and the axiom “every set x satisfies card x ≤ ω1”.

4.1. Jensen—Solovay Sequences

Arguing in L, let U, V be systems. Suppose that M is any transitive model of ZFC−2 .
Define U 4M U′ iff U 4 U′ and the following holds:

(a) the set ∆(U, U′) =
⋃

ν∈|U|(U′(ν)rU(ν)) is multiply SEQ -generic over M , in the sense that every
sequence 〈 f1, . . . fm〉 of pairwise different functions f` ∈ ∆(U, U′) is generic over M in the sense
of SEQ = ω1

<ω1 as the forcing notion in L, and

(b) if ν ∈ |U| then U′(ν)rU(ν) is dense in FUN , therefore uncountable.

Let JS , Jensen—Solovay pairs, be the set of all pairs 〈M, U〉 of:

− a transitive model M |= ZFC−2 , and a system U ,
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− such that the sets ω1 and U belong to M—then sets SEQ , Q[U] also belong to M .

Let sJS , small Jensen—Solovay pairs, be the set of all pairs 〈M, U〉 ∈ JS such that both U and M have
cardinality ≤ ω1. We define:

〈M, U〉 4 〈M′, U′〉 (〈M′, U′〉 extends 〈M, U〉) iff M ⊆ M′ and U 4M U′ ;
〈M, U〉 ≺ 〈M′, U′〉 (strict extension) iff 〈M, U〉 4 〈M′, U′〉 and ∀ ν ∈ I (U(ν) $ U′(ν)) .

Lemma 18 (in L). If 〈M, U〉 ∈ sJS and z ⊆ I , card z ≤ ω1, then there is a pair 〈M′, U′〉 ∈ sJS , such that
〈M, U〉 ≺ 〈M′, U′〉 and z ⊆ |U′| .

Proof. Let d = |U| ∪ z . By definition SEQ is ω-closed as a forcing: any ⊆-increasing sequence
{sn}n<ω of sn ∈ SEQ has the least upper bound in SEQ , equal to the union of all sn . It follows
that the countable-support product SEQ(d×ω1) is ω-closed, too. Therefore, as card M ≤ ω1,
there exists a system ~f = { fνξ }ν∈d, ξ<ω1 ∈ (Fun)d×ω1 , SEQ(d×ω1) -generic over M . Now define
U′(ν) = U(ν) ∪ { fνξ : ξ < ω1} for each ν ∈ d (assuming that U(ν) = ∅ in case ν /∈ |U|), and let
M′ |= ZFC−1 be any transitive model of cardinality ω1, satisfying M ⊆ M′ and containing U′ .

Lemma 19 (in L). Suppose that pairs 〈M, U〉 4 〈M′, U′〉 4 〈M′′, U′′〉 belong to JS .
Then 〈M, U〉 4 〈M′′, U′′〉 . Thus 4 is a partial order on JS .

Proof. We claim that F =
⋃

ν∈|U|(U′′(ν)rU(ν)) is multiply SEQ -generic over M . Suppose, for the
sake of brevity, that F = { f , g} , where f ∈ U′(ν) r U(ν)—then f ∈ M′ , g ∈ U′′(µ) r U′(µ) ,
and ν, µ ∈ |U| . (The general case does not differ much.) By definition, f is Cohen generic over M
and g is Cohen generic over M′ . Therefore, g is Cohen generic over M[ f ] , because M[ f ] ⊆ M′

(as f ∈ M′ ). It remains to apply the product forcing theorem.

Now, still in L, a Jensen—Solovay sequence of length λ ≤ ω2 is any strictly ≺-increasing λ-sequence
{〈Mξ , Uξ〉}ξ<λ of pairs 〈Mξ , Uξ〉 ∈ sJS , satisfying Uη =

∨
ξ<η Uξ on limit steps. Let

−→
JSλ be the set of

all such sequences.

Lemma 20 (in L). Let λ be a limit ordinal, and {〈Mξ , Uξ〉}ξ<λ ∈
−→
JSλ . Put U =

∨
ξ<λ Uξ . Then

(i) Uξ 4Mξ
U for every ξ .

(ii) If moreover λ < ω2 and M |= ZFC−2 is a transitive model containing {〈Mξ , Uξ〉}ξ<λ then
〈M, U〉 ∈ sJS and 〈Mξ , Uξ〉 ≺ 〈M, U〉 , ∀ ξ .

(iii) The same is true in case λ = ω2, but then the model M is not necessarily a ω1-sizemodel, and we require
〈M, U〉 ∈ JS rather than sJS , of course.

Proof. The same arguments work as in the proof of Lemma 19.

4.2. Stability of Dense Sets

If U is a system, D is a pre-dense subset of P[U] , and U′ is another system extending U , then in
principle D does not necessarily remain maximal in P[U′] , a bigger set. This is where the genericity
requirement (a) in Section 4.1 plays its role to seal the pre-density of sets in M w.r. t. further extensions.
This is the content of the following key theorem. Moreover, the product forcing arguments will allow us
to extend the stability result in pre-dense sets not necessarily in M , as in items (ii), (iii) of the theorem.

Theorem 2 (stability of dense sets). Assume that, in L, 〈M, U〉 ∈ sJS , U′ is a system, and U 4M U′ .
If D is a pre-dense subset of Q[U] (resp., pre-dense below some p ∈ Q[U] ) then D remains pre-dense in
Q[U′] (resp., pre-dense below p ) in each of the following three cases :
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(i) D ∈ M ;

(ii) D ∈ M[G] , where G ⊆ P is P-generic over L, and P ∈ M is a PO set ;

(iii) D ∈ M[H] , where H ⊆ U′(ν1) is finite, ν1 ∈ I is fixed, and D ⊆ Q[U]� 6=ν1
= {q ∈ Q[U] : ν1 /∈ |q|} .

Proof. Arguing in L, we consider only the case of sets D pre-dense in Q[U] itself; the case of
pre-density below some p ∈ Q[U] is treated similarly.

(i) Suppose, towards the contrary, that a condition p ∈ Q[U′] is incompatible with each q ∈ D .
As D ⊆ P[U] , we can w. l.o.g. assume that |p| ⊆ |U| .

We are going to define a condition p′ ∈ Q[U] , also incompatible with each q ∈ D , contrary to the
pre-density. To maintain the construction, consider the finite sequence ~f = 〈 f1, . . . , fm〉 of all elements
f ∈ FUN occurring in

⋃
ν∈|p| Fp(ν) but not in U . It follows from U 4M U′ that ~f is SEQm -generic

over M . Moreover, p being incompatible with D is implied by the fact that ~f meets a certain family
of dense sets in SEQm , of cardinality ≤ ω1 in M . Therefore, we will be able to simulate this in M ,
getting a sequence ~g ∈ M which meets the same dense sets, and hence yields a condition p′ ∈ Q[U] ,
also incompatible with each q ∈ D .

To present the key idea in sufficient detail in a rather simplified subcase, we assume that

|p| = {ν0} is a singleton; ν0 ∈ |U| . (7)

Then p(ν0) = 〈Sp(ν0) ; Fp(ν0)〉 ∈ Q[U′(ν0)] , where Sp(ν0) ⊆ SEQ and Fp(ν0) ⊆ U′(ν0) are finite sets.
The (finite) set X = Fp(ν0)r U(ν0) is multiply SEQ -generic over M since U 4M U′ . To make the
argument even more transparent, we suppose that

X = { f , g} , where f 6= g and the pair 〈 f , g〉 is SEQ2 -generic over M . (8)

(The general case follows the same idea and can be found in [4]; we leave it to the reader.)
Thus, Fp(ν0) = F ∪ { f , g} , where F = Fp(ν0) ∩U(ν0) ∈ M is by definition a finite set.
The plan is to replace the functions f , g by some functions f ′, g′ ∈ U(ν0) so that the

incompatibility of p with conditions in D will be preserved.
It holds by the choice of p and Lemma 1 that D = D1( f , g) ∪ D2 , where

D1( f , g) = {q ∈ D : Aq ∩ F∨p (ν0) 6= ∅}, where Aq = Sq(ν0)r Sp(ν0) ⊆ SEQ ;

D2 = {q ∈ D : (Sp(ν0)r Sq(ν)) ∩ F∨q (ν0) 6= ∅} ∈ M;

and D1 depends on f , g via Fp(ν0). The equality D = D1( f , g) ∪D2 can be rewritten as ∆ ⊆ D1( f , g) ,
where ∆ = D r D2 ∈ M . Furthermore, ∆ ⊆ D1( f , g) is equivalent to

∀ A ∈ A (A ∩ F∨p (ν) 6= ∅) , where A = {Aq : q ∈ D} ∈ M , (9)

and each Aq = Sq(ν0) r Sp(ν0) ⊆ SEQ is finite. Recall that Fp(ν0) = F ∪ { f , g} ,
therefore F∨p (ν0) = Z ∪ S( f , g) , where Z = {h�µ : 1 ≤ µ < ω1 ∧ h ∈ F} ∈ M and
S( f , g) =

⋃
1≤µ<ω1

{ f �µ, g�µ} . Thus, (9) is equivalent to

∀ A′ ∈ A ′ (A′ ∩ S( f , g) 6= ∅) , where A ′ = {Aq r Z : q ∈ D} ∈ M . (10)

Please note that each A′ ∈ A ′ is a finite subset of SEQ , so we can re-enumerate A ′ = {A′κ : κ < ω1}
in M and rewrite (10) as follows:

∀ κ < ω1 (A′κ ∩ S( f , g) 6= ∅) , where each A′κ ⊆ SEQ is finite. (11)
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As the pair 〈 f , g〉 is SEQ -generic, there is an index µ0 < ω1 such that (11) is forced over M by 〈σ0, τ0〉 ,
where σ0 = f �µ0 and τ0 = g�µ0 . In other words, A′κ ∩ S( f ′, g′) 6= ∅ holds for all κ < ω1 whenever
〈 f ′, g′〉 is SEQ -generic over M and σ0 ⊂ f ′ , τ0 ⊂ g′ . It follows that for any κ < ω1 and sequences
σ, τ ∈ SEQ extending resp. σ0, τ0 there are sequences σ′, τ′ ∈ SEQ extending resp. σ, τ , at least one
of which extends one of sequences w ∈ A′κ . This allows us to define, in M , a pair of sequences
f ′, g′ ∈ FUN , such that σ0 ⊂ f ′ , τ0 ⊂ g′ , and for any κ < ω1 at least one of f ′, g′ extends one of
w ∈ A′k . In other words, we have

∀ κ < ω1 (A′κ ∩ S( f ′, g′) 6= ∅) and ∀ A′ ∈ A ′ (A′ ∩ S( f ′, g′) 6= ∅).

It follows that the condition p′ defined by |p′| = {ν0} , Sp′(ν0) = Sp(ν0) , Fp′(ν0) = F ∪ { f ′, g′} ,
still satisfies ∀ A ∈ A (A ∩ F∨p′(ν0) 6= ∅) (compare with (9)), and further D = D1( f ′, g′) ∪ D2 , thus p′

is incompatible with each q ∈ D . Yet p′ ∈ M since f ′, g′ ∈ M , which contradicts the pre-density of D .

(ii) The above proof works with M[G] instead of M since the set X as in the proof is multiple
SEQ -generic over M[G] by the product forcing theorem.

(iii) Assuming w. l.o.g. that H ⊆ U′(ν1) r U(ν1) , we conclude that M[H] is a SEQ -generic
extension of M . Now, if p ∈ Q[U′]� 6=ν1

, then, following the above argument, let ν0 ∈ |p| , ν0 6= ν1 .
By the definition of 4 the set F = Fp(ν0)rU(ν0) is multiply SEQ -generic not only over M but also
over M[H] . This allows the carrying out of the same argument as above.

Corollary 2. Under the assumptions of Theorem 2, if a set G ⊆ Q[U′] is Q[U′]-generic over a transitive
model M′ |= ZFC−2 containing M and U′ ( including the case M′ = L) , then the intersection G ∩Q[U] is
Q[U]-generic over M.

Proof. If a set D ∈ M , D ⊆ Q[U] , is pre-dense in Q[U] , then it is pre-dense in Q[U′] by Theorem 2,
and hence G ∩ D 6= ∅ by the genericity.

Corollary 3 (in L). Under the assumptions of Theorem 2, if τ ∈ M ∩ SNω
ω(Q[U]) is a Q[U]-full name then

τ remains Q[U′]-full, and if p ∈ Q[U] and τ is Q[U]-full below p, then τ remains Q[U′]-full below p.

4.3. Complete Sequences and the Basic Forcing Notion

In L, we say that a pair 〈M, U〉 ∈ sJS solves a set D ⊆ sJS iff either 〈M, U〉 ∈ D or there is no
pair 〈M′, U′〉 ∈ D that extends 〈M, U〉 . Let Dsolv be the set of all pairs 〈M, U〉 ∈ sJS which solve
a given set D ⊆ sJS . A sequence {〈Mξ , Uξ〉}ξ<ω2 ∈

−→
JSω2 is called n-complete (n ≥ 3) iff it intersects

every set of the form Dsolv , where D ⊆ sJS is a ΣHω2
n−2(Hω2) set.

Recall that Hω2 is the collection of all sets x whose transitive closure TC(x) has cardinality
card (TC(x)) < ω2. Furthermore, ΣHω2

n−2(Hω2) means definability by a Σn−2 formula of the ∈-
language, in which any definability parameters in Hω2 are allowed, while ΣHω2

n−2 means parameter-free
definability. Similarly, ∆Hω2

n−1({ω1}) in the next theorem means that ω1 is allowed as a sole parameter.

It is a simple exercise that sets {SEQ} and SEQ are ∆Hω2
1 ({ω1}) under V = L.

Generally, we refer to e.g., ([9] (Part B, 5.4)), or ([10] (Chapter 13)) on the Lévy hierarchy of
∈-formulas and definability classes ΣH

n , ΠH
n , ∆H

n for any transitive set H .

Theorem 3 (in L). Let n ≥ 2 . There is a sequence {〈Mξ , Uξ〉}ξ<ω2 ∈
−→
JSω2 of class ∆Hω2

n−1({ω1}) , hence,
∆Hω2

n−1 in case n ≥ 3 , n-complete in case n ≥ 3 , and such that ξ ∈ |Uξ+1| for all ξ < ω2.

Proof. To account forω1 as a parameter, note that the set ω1 is ΣHω2
1 , and hence the singleton {ω1} is

∆Hω2
2 . Indeed “being ω1” is equivalent to the conjunction of “being uncountable”—which is ΠHω2

1 ,
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and “every smaller ordinal is countable”—which is ΣHω2
1 since the quantifier “for all smaller ordinals”

is bounded, hence, it does not increase the complexity.
It follows that ∆Hω2

n−1({ω1}) = ∆Hω2
n−1 in case n ≥ 3, supporting the “hence” claim of the theorem.

Then, it can be verified that the sets Q∗ , Q∗ , sJS are ∆Hω2
1 ({ω1}) . (Indeed “being finite” and

“being countable” are ∆Hω2
1 relations, while “being of cardinality ω1” is ∆Hω2

1 ({ω1}) ; the Π1 definition
says that there is no injection from ω1 into a given set.)

Define pairs 〈Mξ , Uξ〉 , ξ < ω2, by induction. Let U0 be the null system with |U0| = ∅ , and M0

be the least CTM of ZFC−2 . If λ < ω1 is a limit, then put Uλ =
∨

ξ<λ Uξ and let Mλ be the least CTM
of ZFC−2 containing the sequence {〈Mξ , Uξ〉}ξ<λ . If 〈Mξ , Uξ〉 ∈ sJS is defined, then by Lemma 18
there is a pair 〈M′, U′〉 ∈ sJS with 〈Mξ , Uξ〉 ≺ 〈M′, U′〉 and ξ ∈ |U′| . Further let Θ ⊆ ω1×Hω2 be
a universal ΣHω2

n−2 set, and if ξ < ω2 then Dξ = {z ∈ sJS : 〈ξ, z〉 ∈ Θ} . Let 〈Mξ+1, Uξ+1〉 be the <L-
least pair 〈M, U〉 ∈ Dξ

solv satisfying 〈M′, U′〉 4 〈M, U〉 , where <L is the Gödel wellordering of L,
the constructible universe. This completes the inductive construction of 〈Mξ , Uξ〉 ∈ sJS , ξ < ω2.

To check the definability property, make use of the well-known fact that the restriction <L�Hω2

is a ∆Hω2
1 relation, and if n ≥ 1, p ∈ ωω is any parameter, and R(x, y, z, . . . ) is a finitary ∆Hω2

n (p)
relation on HC then the relations ∃ x <L y R(x, y, z, . . . ) and ∀ x <L y R(x, y, z, . . . ) (with arguments
y, z, . . . ) are ∆Hω2

n (p) as well.

Definition 2 (in L). Fix a number n ≥ 2 during the proof of Theorem 1.

• Let ~js = {〈Mξ ,Uξ〉}ξ<ω2 ∈
−→
JSω2 be any n-complete Jensen–Solovay sequence of class ∆Hω2

n−1 as in
Theorem 3—in case n ≥ 3 , or just any Jensen–Solovay sequence of class ∆Hω2

1 ({ω1})—in case n = 2 ,
as in Theorem 3, including ξ ∈ |Uξ+1| for all ξ in both cases.

• Put U =
∨

ξ<ω1
Uξ , so U(ν) =

⋃
ξ<ω2,ν∈|Uξ | Uξ(ν) for all ν ∈ I . Thus, U ∈ L is a system and

|U| = I since ξ ∈ |Uξ+1| for all ξ .

We define Q = Q[U] (the basic forcing notion), and Qξ = Q[Uξ ] for ξ < ω2. Thus, Q is the finite-support
product of the set C and sets Q(ν) = Q[U(ν)] , i ∈ I ; so that Q ∈ L.

Corollary 4. Suppose that in L, ξ < ω2 and M is a TM of ZFC−2 containing the sequence ~js . Then

(i) 〈M,U〉 ∈ JS , 〈Mξ ,Uξ〉 ≺ 〈M,U〉 , and if ν ∈ I then card(Uξ(ν)) = ω1 < ω2 = card(U(ν)) in L.

(ii) If G ⊆ Q is a set Q-generic over L then the set Gξ = G ∩ Qξ is Qξ-generic over Mξ .

Proof. Make use of Lemma 20 and Corollary 2 in Section 4.2.

Lemma 21 (in L). The binary relation f ∈ U(ν) , the sets Q and SNω
ω(Q) (Q-names for reals in ωω ),

and the set of all Q-full names in SNω
ω(Q) are ∆Hω2

n−1({ω1}) , and even ∆Hω2
n−1 in case n ≥ 3 .

Proof. The sequence {〈Mξ ,Uξ〉}ξ<ω1 is ∆Hω2
n−1 by definition, hence the relation f ∈ U(ν) is ΣHω2

n−1 .
On the other hand, if f ∈ Fun belongs to some Mξ then f ∈ U(ν) obviously implies f ∈ Uξ(ν) ,
leading to a ΠHC

n−1 definition of the relation f ∈ U(ν) . To prove the last claim, note that by Corollary 3
if a name τ ∈ SNω

ω(Pξ) ∩Mξ is Pξ-full then it remains P-full.

4.4. Basic Generic Extension

The proof of Theorem 1 makes use of a generic extension of the form L[G� z] , where G ⊆ Q is a
set Q-generic over L, and z ⊆ I+ , z /∈ L. The following two theorems will play the key role in the
proof. Define formulas �ν (ν ∈ I ) as follows:

�ν(S) :=def S ⊆ SEQL ∧ ∀ f ∈ FUNL ( f ∈ U(ν) ⇐⇒ S does not cover f ).

Lemma 22. Suppose that a set G ⊆ Q is Q-generic over L, and ν ∈ I , c ∈ L[G] , ∅ 6= c ⊆ I+ . Then



Mathematics 2020, 8, 1477 17 of 30

(i) ω1
L[G� c] = ωL

2 ,

(ii) if −1 ∈ c then bG ∈ L[G� c] , and if ν ∈ c then SG(ν) ∈ L[G� c] ,

(iii) �ν(SG(ν)) holds,

(iv) SG(ν) /∈ L[G� 6=ν] , and generally, there are no sets S ⊆ SEQL in L[G� 6=ν] satisfying �ν(S) .

Proof. To prove (i) apply Lemma 9 (ii); (ii) is easy. Furthermore, Lemma 9 (vi) immediately implies
(iii).

To prove (iv), we need more work. Let X = SEQL. Suppose towards the contrary that
some S ∈ L[G� 6=ν] , S ⊆ X = SEQL satisfies �ν(S) . It follows from Lemma 10 (with U = U and
c = I+ r {ν} ), that there is a name τ ∈ SNX(Q)� 6=ν in L such that S = τ[G� 6=ν] . There is an ordinal
ξ < ω1 satisfying τ ∈ Mξ and τ ∈ SNX(Qξ � 6=ν) . Then S = τ[Gξ � 6=ν] , where Gξ = G ∩ Pξ is Pξ-
generic over Mξ by Corollary 4 (ii), and by the way S belongs to Mξ [Gξ � 6=ν] by the choice of ξ .

Please note that F = U(ν) r Uξ(ν) 6= ∅ by Corollary 4 (i). Let f ∈ F . Then f is Cohen
generic over the model Mξ by Corollary 4. On the other hand, Gξ � 6=ν is Pξ � 6=ν-generic over Mξ [ f ] by
Theorem 2 (iii). Therefore f is Cohen generic over Mξ [Gξ � 6=ν] as well.

Recall that S ∈ Mξ [Gξ � 6=ν] and �ν(S) holds, hence S does not cover f . As f is Cohen generic over
Mξ [Gξ � 6=ν] , it follows that there is a sequence s ∈ SEQL, s ⊂ f , such that S contains no subsequences
of f extending s . Take any µ ∈ I , µ 6= ν . By Corollary 4 (i), there exists a function g ∈ U(µ)rUξ(µ) ,
g /∈ U(ν) , satisfying s ⊂ g . Then, S covers g by �ν(S) . However, this is absurd by the choice of s .

The proof of the next important elementary equivalence theorem will be given below in Section 6.3.

Theorem 4 (elementary equivalence theorem). Assume that in L, −1 ∈ d ⊆ I+ , sets Z′, Z ⊆ I r d
satisfy card (I r Z) ≤ ω1 and card (I r Z′) ≤ ω1, the symmetric difference Z ∆ Z′ is at most countable,
and the complementary set I r (d ∪ Z ∪ Z′) is infinite.

Let G ⊆ Q be Q-generic over L, and x0 ∈ L[G� d] be any real. Then any closed Σ1
n formula ϕ , with real

parameters in L[x0] , is simultaneously true in L[x0, G�Z] and in L[x0, G�Z′] .

4.5. The Main Theorem Modulo the Elementary Equivalence Theorem: The Model

Here we begin the proof of Theorem 1 on the base of Theorem 4 of Section 4.4. We fix a number
n ≥ 2 during the proof. The goal is to define a generic extension of L in which for any set x ⊆ ω the
following is true: x ∈ L iff x ∈ ∆1

n+1. The model is a part of the basic generic extension defined in
Section 4.4.

In the notation of Definition 2 in Section 4.3, consider a set G ⊆ Q , Q-generic over L.
Then bG =

⋃
G(−1) is a C-generic map from ω onto P(ω)∩ L by Lemma 9 (i). We define

w[G] = {ωk + 2j : k < ω ∧ j ∈ bG(k)} ∪ {ωk + 3j : j, k < ω} ⊆ ω2, (12)

and w+[G] = {−1} ∪ w[G] . We also define, for any m < ω ,

w≥m[G] = {ωk + ` ∈ w[G] : k ≥ m} , w<m[G] = {ωk + ` ∈ w[G] : k < m} ,

and accordingly w+
≥m[G] = {−1} ∪ w≥m[G] and w+

<m[G] = {−1} ∪ w<m[G] .
With these definitions, each k th slice

wk[G] = {ωk + 2j : j ∈ bG(k)} ∪ {ωk + 3j : j < ω} (13)

of w[G] is necessarily infinite and coinfinite, and it codes the target set bG(k) since

bG(k) = { j < ω : ωk + 2j ∈ wk[G]} = { j < ω : ωk + 2j ∈ w+[G]}. (14)
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It will be important below that definition (12) is monotone w.r. t. bG , i.e., if bG(k) ⊆ bG′(k) for all k ,
then w[G] ⊆ w[G′] and w+[G] ⊆ w+[G′] . Non-monotone modifications, like e.g.,

w[G] = {ωk + 2j : j ∈ bG(k)} ∪ {ωk + 3j : j /∈ bG(k)}

would not work. Finally, let
W = [ω2, ω2) = {ζ : ω2 ≤ ζ < ω2} .

Anyway, w+[G] ⊆ ω2 = ω · ω (the ordinal product) is a set in the model
L[bG] = L[w+[G]] = L[w[G]] = L[w≥m[G]] for each m , containing −1, while w<m[G] ∈ L for
all m . We are going to prove the following lemma:

Lemma 23. The model L[G� (w+[G] ∪W)] witnesses Theorem 1. That is, let a set G ⊆ Q be Q-generic over
L. Then it holds in L[G� (w+[G] ∪W)] that

(i) w[G] is Σ1
n+1 and each set x ∈ L, x ⊆ ω is ∆1

n+1 ;

(ii) if x ⊆ ω is ∆1
n+1 then x ∈ L.

Recall that if Z ⊆ I+ then G�Z = {p ∈ G : |p|+ ⊆ Z} .

Proof (Claim (i) of the lemma). Consider an arbitrary ordinal ν = ωk + ` ; k, ` < ω . We claim that

ν ∈ w[G] ⇐⇒ ∃ S�ν(S) (15)

holds in L[G� (w+[G] ∪W)] . Indeed, assume that ν ∈ w[G] . Then S = SG(ν) ∈ L[G�w+[G]] ,
and we have �ν(S) in L[G� (w+[G] ∪W)] by Lemma 22 (ii), (iii). Conversely assume that ν /∈ w[G] .
Then we have w+[G] ∈ L[bG] ⊆ L[G�w+[G]] ⊆ L[G� 6=ν] , but L[G� 6=ν] contains no S with �ν(S) by
Lemma 22 (iv).

However, the right-hand side of (15) defines a ΣHω2
n ({ω1

L, SEQL}) relation in L[G� (w+[G] ∪W)]

by Lemma 21. (Indeed, (Hω2)
L = Lω2

L = Lω1 in L[G� (w+[G] ∪W)] , therefore (Hω2)
L is ΣHω2

1

in L[G� (w+[G] ∪W)] .) On the other hand, the sets {ω1
L} and {SEQL} remain ∆Hω2

2 singletons
in L[G� (w+[G] ∪W)] , so they can be eliminated since n ≥ 2. This yields w[G] ∈ ΣHC

n in
L[G� (w+[G] ∪W)] . It follows that w[G] ∈ Σ1

n+1 by ([10] (Lemma 25.25)), as required.
Consider an arbitrary set x ∈ L, x ⊆ ω . By genericity there exists k < ω such that bG(k) = x .

Then x = { j : ωk + 2j ∈ w[G]} by (12), therefore x is Σ1
n+1 as well. However, ω r x ∈ Σ1

n+1 by the
same argument. Thus, x is ∆1

n+1 in L[G� (w+[G] ∪W)] , as required. (Claim (i) of Lemma 23)

4.6. Proof of the Key Claim of Lemma 23

The proof of Lemma 23 (ii) is based on several intermediate lemmas.
Recall that W = [ω2, ω2) = {ξ : ω2 ≤ ξ < ω2} .

Lemma 24 (compare with Lemma 33 in [7]). Suppose that G ⊆ Q is Q-generic over L, and m < ω .
Let c ⊆ w<m[G] be any set in L. Then any closed Σ1

n formula Φ , with reals in L[G� (c ∪ w+
≥m[G] ∪W)] as

parameters, is simultaneously true in L[G� (c ∪ w+
≥m[G] ∪W)] and in L[G� (w+[G] ∪W)] .

It follows that if c′ ⊆ c ⊆ w<m[G] in L, then any closed Σ1
n+1 formula Ψ , with parameters in

L[G� (c′ ∪ w+
≥m[G] ∪W)] , true in L[G� (c′ ∪ w+

≥m[G] ∪W)] , is true in L[G� (c ∪ w+
≥m[G] ∪W)] as well.

Proof (Lemma 24). There is an ordinal ξ < ω2 such that all parameters in ϕ belong to L[G�Y] ,
where Y = c ∪ w+

≥m[G] ∪ X and X = [ω2, ξ) = {γ : ω2 ≤ γ < ξ} . The set Y belongs to L[bG] , in
fact, L[Y] = L[bG] . Therefore G�Y is equi-constructible with the pair 〈bG, {SG(ν)}ν∈X′〉 , where bG is
a map from ω onto, essentially, ω1

L. It follows that there is a real x0 with L[G�Y] = L[x0] . Then all
parameters of ϕ belong to L[x0] .
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To prepare for Theorem 4 of Section 4.4, put Z′ = [ξ, ω2) , e = w<m[G]r c , Z = e ∪ Z′ ,

d = {−1} ∪ {ωk + j : k ≥ m ∧ j < ω} ∪ X .

As w+
≥m[G] ⊆ {−1} ∪ {ωk + j : k ≥ m ∧ j < ω} , we have Y = c ∪ w+

≥m[G] ∪ X ⊆ d , and hence
x0 ∈ L[G� d] . It follows by Theorem 4 that ϕ is simultaneously true in L[x0, G�Z] and in
L[x0, G�Z′] . However, L[x0, G�Z′] = L[G� (Y ∪ Z′)] = L[G� (c ∪ w+

≥m[G] ∪W)] by construction,
while L[x0, G�Z] = L[G� (w+[G] ∪W)] , and we are done.

In continuation of the proof of Lemma 23 (ii), suppose that

(†) ϕ(·) and ψ(·) are parameter-free Σ1
n+1 formulas that provide a ∆1

n+1 definition for a set x ⊆ ω ,
x ∈ L[G� (w+[G] ∪W)] , i.e., we have

x = {` < ω : ϕ(`)} = {` < ω : ¬ ψ(`)}

in L[G� (w+[G] ∪W)] . Thus, the equivalence ∀ ` (ϕ(`) ⇐⇒ ¬ ψ(`)) is forced to be true in
L[G� (w+[G] ∪ W̌)] by a condition p0 ∈ G .

Here, G is the canonical Q-name for the generic set G ⊆ Q , as usual, while W̌ is a name for W ∈ L.

Lemma 25. Assume (†). If ` < ω then the sentence “L[G� (w+[G] ∪ W̌)] |= ϕ(`)” is Q-decided by p0 .

Proof. Suppose, for the sake of simplicity, that p0 is the empty condition � (i.e., |p0|+ = ∅);
the general case does not differ much. Then ∀ ` (ϕ(`) ⇐⇒ ¬ ψ(`)) holds in L[G� (w+[G] ∪W)]

for any generic set G ⊆ Q .
Say that conditions p, q ∈ Q = Q[U] are close neighbours iff −1 ∈ |p|+ ∩ |q|+ and one of the

following holds:

(I) bp = bq (recall that bp = p(−1)), or

(II) p� 6=−1 = q� 6=−1 , lh bp = lh bq , and either (a) bp(k) ⊆ bq(k) for all k < lh bp , or (b)
bq(k) ⊆ bp(k) for all k < lh bp .

Proposition 1. If conditions p, q ∈ Q are close neighbours, satisfying (6) in Section 3.8, ` < ω , and p Q-
forces the sentence “L[G� (w+[G] ∪ W̌)] |= ϕ(`)”, then so does q.

Proof (Proposition). Suppose on the contrary that q does not force “L[G� (w+[G] ∪ W̌)] |= ϕ(`)”.
As p, q satisfy (6), the associated transformation Hpq maps the set Q6p = {p′ ∈ Q : p′ 6 p} onto
Q6q = {q′ ∈ Q : q′ 6 q} order-preserving by Lemma 17 (with U = U). By the choice of q , there is
a set Gq ⊆ Q6q , generic over L, containing q , and such that ϕ(`) is false in L[Gq� (w+[Gq] ∪W)] .
Then ψ(`) is true in L[Gq� (w+[Gq] ∪W)] by (†) (and the assumption that p0 = �).

The set Gp = {(Hpq)−1(q′) : q′ ∈ Gq ∧ q′ 6 q} ⊆ Q6p is Q-generic over L as well (as Hpq is
an order isomorphism), and contains p , and hence ϕ(`) is true and ψ(`) false in L[Gp� (w+[Gp] ∪W)] .

Case 1: (I) holds, i.e., bp = bq . Then by definition bGp = bGq , so that w+[Gp] = w+[Gq] .
On the other hand, the sets Gp and Gq are equi-constructible by means of the application of Hpq ,
and hence Gp� (w+[Gp] ∪W) and Gq� (w+[Gq] ∪W) are equi-constructible, that is, the classes
L[Gp� (w+[Gp] ∪W)] and L[Gq� (w+[Gq] ∪W)] coincide. However, ϕ(`) is true in one of them and
false in the other one, a contradiction.

Case 2: (II) holds. Let m = lh bp = lh bq . Then bGp(k) = bGq(k) for all k ≥ m via Hpq .
This implies L[bGp ] = L[bGq ] , and also implies w+

≥m[Gp] = w+
≥m[Gq] , while the difference between the

sets w<m[Gp] , w<m[Gq] is that for any k < m and any j ,

ωk + 2j ∈ w<m[Gq] ⇐⇒ j ∈ bq(k) and ωk + 2j ∈ w<m[Gp] ⇐⇒ j ∈ bp(k) . (16)
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Moreover, (II) implies Gp� 6=−1 = Gq� 6=−1 , and hence SGp(ν) = SGq(ν) for all ν ∈ I via
Hpq . We conclude that L[Gp�Z] = L[Gq�Z] for any set Z ∈ L[bGp ] , Z ⊆ I+ , in particular,
L[Gp� (w+[Gq] ∪W)] = L[Gq� (w+[Gq] ∪W)] .

If now (II) (a) holds, then c′ = w<m[Gp] ⊆ c = w<m[Gq] = c′ ∪ z by (16), where

z = {ωk + 2j : k < m ∧ j ∈ bq(k)r bp(k)} ∈ L .

However, ϕ(`) holds in L[Gp� (w+[Gp] ∪W)] , see above. It follows by Lemma 24 that ϕ(`) holds in
L[Gp� (w+[Gq] ∪W)] . However, we know that L[Gp� (w+[Gq] ∪W)] = L[Gq� (w+[Gq] ∪W)] . Thus,
ϕ(`) holds in L[Gq� (w+[Gq] ∪W)] , which is a contradiction to the above. If (II) (b) holds, then argue
similarly using the formula ψ(`) . (Proposition 1)

Coming back to Lemma 25, suppose towards the contrary that “L[G� (w+[G] ∪ W̌)] |= ϕ(`)”
is not Q-decided by p0 = � . There are two conditions p, q ∈ Q such that p Q-forces
“L[G� (w+[G] ∪ W̌)] |= ϕ(`)” while q Q-forces the negation. We may w. l.o.g. assume, by Lemma 17
(i), that p, q satisfy (6) of Section 3.8. We claim that p , q can be connected by a finite chain of conditions
in Q in which each two consecutive terms are close neighbours in the sense above, satisfying (6) in
Section 3.8— then Proposition 1 implies a contradiction and concludes the proof of Lemma 25.

Thus, it remains to prove the connection claim. Let p′ ∈ Q be defined by bp′ = bp and
p′� 6=−1 = q� 6=−1 . Then p, p′ are close neighbours and (6) holds for this pair as it holds for p, q .
Let r ∈ Q be defined by br(k) = bp(k) ∪ bq(k) for all k < ` = lh bp = lh bq and p′� 6=−1 = q� 6=−1 .
Still r is a close neighbour to both p′ and q , and (6) holds for p′, r and q, r . Thus, the chain
p— p′—r—q proves the connection claim. (Lemma 25)

Now, to accomplish the proof of Lemma 23 (ii), apply Lemma 25.

(Lemma 23 (ii)) �

(Theorem 1 modulo Theorem 4 of Section 4.4) �

5. Forcing Approximation

To prove Theorem 4 of Section 4.4 and thus complete the proof of Theorem 1 in the next Section 6,
we define here a forcing-like relation forc, and exploit certain symmetries of objects related to forc.
This similarity will allow us to only outline really analogous issues but concentrate on several things
which bear some difference.

We argue under Blanket Assumption 1.
Recall that ZFC− is ZFC minus the Power Set axiom, with the schema of Collection instead of

Replacement, with the axiom “ω1 exists”, and with AC in the form of wellorderability of every set,
and ZFC−2 is ZFC− plus the axioms: V = L, and “every set x satisfies card x ≤ ω1”.

5.1. Formulas

Here we introduce a language that will help us to study analytic definability in Q[U]-generic
extensions, for different systems U , and their submodels.

Let L be the 2nd order Peano language, with variables of type 1 over ωω . If K ⊆ Q∗ then an L(K)
formula is any formula of L , with some free variables of types 0, 1 replaced by resp. numbers in ω

and names in SNω
ω(K) , and some type 1 quantifiers are allowed to have bounding indices B (i.e., ∃B ,

∀B ) such that B ⊆ I+ satisfies either card B ≤ ω1 or card(I r B) ≤ ω1 (in L). In particular, I+ itself
can serve as an index, and the absence
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If ϕ is a L(Q∗) formula, then let

NAM ϕ = the set of all names τ that occur in ϕ;

IND ϕ = the set of all quantifier indices B which occur in ϕ;

|ϕ|+ =
⋃

τ∈NAM ϕ |τ|+ (a set of ω1-size);

||ϕ|| = |ϕ|+ ∪
(⋃

IND ϕ
)
− so that |ϕ|+ ⊆ ||ϕ|| ⊆ I+.

If a set G ⊆ Q∗ is minimally ϕ-generic (that is, minimally τ-generic w.r. t. every name τ ∈ NAM ϕ ,
in the sense of Section 3.5), then the valuation ϕ[G] is the result of substitution of τ[G] for any name
τ ∈ NAM ϕ , and changing each quantifier ∃Bx , ∀Bx to resp. ∃ (∀ ) x ∈ ωω ∩ L[G�B] , while index-free
type 1 quantifiers are relativized to ωω ; ϕ[G] is a formula of L with real parameters, and some
quantifiers of type 1 relativized to certain submodels of L[G] .

An arithmetic formula in L(K) is a formula with no quantifiers of type 1 (names in SNω
ω(K) are

allowed). If n < ω then let a LΣ1
n(K) , resp., LΠ1

n(K) formula be a formula of the form

∃◦x1 ∀◦x2 . . . ∀◦(∃◦) xn−1 ∃ (∀ ) xn ψ , ∀◦x1 ∃◦x2 . . . ∃◦(∀◦) xn−1 ∀ (∃ ) xn ψ

respectively, where ψ is an arithmetic formula in L(K) , all variables xi are of type 1 (over ωω ), the sign
◦ means that this quantifier can have a bounding index as above, and it is required that the rightmost
(closest to the kernel ψ) quantifier does not have a bounding index.

If in addition M |= ZFC− is a transitive model and K ⊆ Q∗ then define

LΣ1
n(K, M) = all LΣ1

n(K) formulas ϕ such that NAM ϕ ⊆ SNω
ω(K) ∩M and each index B ∈ IND ϕ

satisfies the requirement: either B ∈ M or I r B ∈ M .

Define LΠ1
n(K, M) similarly.

5.2. Forcing Approximation

We introduce a convenient forcing-type relation p forcM
U ϕ for pairs 〈M, U〉 in sJS and formulas

ϕ in L(K) , associated with the truth in K-generic extensions of L, where K = Q[U] ⊆ Q∗ and U ∈ L
is a system.

(F1) First, writing p forcM
U ϕ , it is assumed that:

(a) 〈M, U〉 ∈ sJS and p belongs to Q[U] ,

(b) ϕ is a closed formula in LΠ1
k (Q[U], M) ∪ LΣ1

k+1(Q[U], M) for some k ≥ 1, and each
name τ ∈ NAM ϕ is Q[U]-full below p .

Under these assumptions, the sets U , Q[U] , p , NAM ϕ belong to M .

The definition of forc goes on by induction on the complexity of formulas.

(F2) If 〈M, U〉 ∈ sJS , p ∈ Q[U] , and ϕ is a closed formula in LΠ1
1(Q[U], M) (then by definition it

has no quantifier indices), then: p forcM
U ϕ iff (F1) holds and p Q[U]-forces ϕ[G] over M in the

usual sense. Please note that the forcing notion Q[U] belongs to M in this case by (F1).

(F3) If ϕ(x) ∈ LΠ1
k (Q[U], M) , k ≥ 1, then:

(a) p forcM
U ∃Bx ϕ(x) iff there is a name τ ∈ M∩SNω

ω(Q[U])�B , Q[U]-full below p (by (F1)b)
and such that p forcM

U ϕ(τ) .

(b) p forcM
U ∃ x ϕ(x) iff there is a name τ ∈ M ∩ SNω

ω(Q[U]) , Q[U]-full below p (by (F1)b)
and such that p forcM

U ϕ(τ) .
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(F4) If k ≥ 2, ϕ is a closed LΠ1
k (Q[U], M) formula, p ∈ Q[U] , and (F1) holds, then p forcM

U ϕ iff

we have ¬ q forcM′
U′ ϕ¬ for every pair 〈M′, U′〉 ∈ sJS extending 〈M, U〉 , and every condition

q ∈ Q[U′] , q 6 p , where ϕ¬ is the result of canonical conversion of ¬ ϕ to LΣ1
k(Q[U], M) .

The next theorem classifies the complexity of forc in terms of projective hierarchy. Please note
that if 〈M, U〉 ∈ sJS and k ≥ 1 then any formula ϕ in LΠ1

k (Q[U], M) ∪ LΣ1
k+1(Q[U], M) belongs

to M if we somehow “label” any large index B ∈ IND ϕ (such that card(I r B) ≤ ω1) by its small
complement I r B ∈ M . Therefore, the sets

Forc(Π1
k ) =

{
〈M, U, p, ϕ〉 : 〈M, U〉 ∈ sJS ∧ p ∈ Q[U]∧

∧ ϕ is a closed formula in LΠ1
k (Q[U], M) ∧ p forcM

U ϕ
}

,

and Forc(Σ1
k) similarly defined, are subsets of Hω2 (in L).

Lemma 26 (in L). The sets Forc(Π1
1) and Forc(Σ1

2) belong to ∆Hω2
1 .

If k ≥ 2 then the sets Forc(Π1
k ) and Forc(Σ1

k+1) belong to ΠHω2
k−1 .

Proof (sketch). Suppose that ϕ is LΠ1
1 . Under the assumptions of the theorem, items (F1)a, (F1)b of

(F1) are ∆Hω2
1 relations, while (F2) is reducible to a forcing relation over M that we can relativize to

M . The inductive step goes on straightforwardly using (F3), (F4). Please note that the quantifier over
names in (F3) is a bounded quantifier (bounded by M ), hence it does not add any extra complexity.

5.3. Further Properties of Forcing Approximations

The notion of names ν, τ ∈ SNω
ω(Q∗) being equivalent below some p ∈ Q∗ , is introduced in

Subsection 3.5. We continue with a couple of routine lemmas.

Lemma 27. Suppose that 〈M, U〉 , p , ϕ satisfy (F1) of Section 5.2, and NAM ϕ = {τ1, . . . , τm} . Let
µ1, . . . , µm be another list of names in SNω

ω(Q[U]) , Q[U]-full below p, and such that τj and µj are
equivalent below p for each j = 1, . . . , m. Then p forcM

U ϕ(τ1, . . . , τm) iff p forcM
U ϕ(µ1, . . . , µm) .

Proof. Suppose that ϕ is LΠ1
1 . Let G ⊆ Q[U] be a set Q[U]-generic over M , and containing p .

Then τ`[G] = µ`[G] for all ` by Lemma 12. This implies the result required, by (F2) of Section 5.2.
The induction steps LΠ1

k → LΣ1
k+1 and LΣ1

k → LΠ1
k are carried out by an easy reduction to

items (F3), (F4) of Section 5.2.

Lemma 28 (in L). Let 〈M, U〉 , p , ϕ satisfy (F1) of Section 5.2. Then :

(i) if k ≥ 2 , ϕ is LΠ1
k (Q[U], M) , and p forcM

U ϕ , then p forcM
U ϕ¬ fails ;

(ii) if p forcM
U ϕ , 〈M, U〉 4 〈M′, U′〉 ∈ sJS , and q ∈ Q[U′] , q 6 p, then q forcM′

U′ ϕ .

Proof. Claim (i) immediately follows from (F4) of Section 5.2.
To prove (ii) let ϕ = ϕ(τ1, . . . , τm) be a closed formula in LΠ1

1(Q[U], M) , where all Q[U]-
names τj belong to M and are Q[U]-full below p . Then all names τj remain Q[U′]-full below p by
Corollary 3 in Section 4.2, therefore below q as well since q 6 p . Consider a set G′ ⊆ Q[U′] , Q[U′]-
generic over M′ and containing q . We have to prove that ϕ[G′] is true in M′[G′] . Please note that
the set G = G′ ∩Q[U] is Q[U]-generic over M by Corollary 2 in Section 4.2, and we have p ∈ G .
Moreover, the valuation ϕ[G′] coincides with ϕ[G] since all names in ϕ belong to SNω

ω(Q[U]) . And
ϕ[G] is true in M[G] as p forcM

U ϕ . It remains to apply Mostowski’s absoluteness (see [10] (p. 484)
or [11]) between the models M[G] ⊆ M′[G′] .

The induction steps related to (F3), (F4) of Section 5.2 are easy.
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5.4. Transformations and Invariance

To prove Theorem 4 of Section 4.4, we make use of the transformations considered in
Sections 3.6–3.8. In addition to the definitions given there, define, in L, the action of any transformation
π ∈ BIJ (permutation), λ ∈ LIPI (multi-Lipschitz), or one of the form Hpq (multisubstitution), on
L-formulas with quantifier indices and names in SNω

ω(Q∗) as parameters.

(I) Assume that π ∈ BIJ . To get πϕ replace each quantifier index B (in ∃B or ∀B ) by π ·B and each
name τ ∈ SNω

ω(Q∗) by π ·τ .

(II) Assume that λ ∈ LIPI . To get λϕ replace each name τ ∈ SNω
ω(Q∗) in ϕ by α ·τ , but do not

change quantifier indices.

(III) Assume that p, q ∈ Q∗ satisfy (6) of Section 3.8, and all names τ occurring in ϕ belong to
SNω

ω(Q∗)pq . To get Hpq ϕ replace each name τ ∈ SNω
ω(Q∗)pq in ϕ by Hpq ·τ ∈ SNω

ω(Q∗)qp ,
but do not change quantifier indices.

Lemma 29 (in L). Suppose that 〈M, U〉 ∈ sJS , p ∈ Q[U] , k ≥ 1 , ϕ is a formula in
LΣ1

k+1(Q[U], M) ∪ LΠ1
k (Q[U], M) , and π ∈ BIJ is coded in M in the sense that |π| ∈ M and

π� |π| ∈ M. Then : p forcM
U ϕ iff (π · p) forcM

π ·U πϕ .

Proof. Under the conditions of the lemma, π acts as an isomorphism on all relevant domains and
preserves all relevant relations between the objects involved. Thus, 〈M, π ·U〉 , π · p , πϕ still satisfy
(F1) in Section 5.2. This allows proof of the lemma by induction on the complexity of ϕ .

Base. Suppose that ϕ is a closed formula in LΠ1
1(Q[U], M) . Then πϕ is a closed formula in

LΠ1
1(Q[π ·U], M) . Moreover, the map p 7−→ π · p is an order isomorphism (in M ) Q[U]

onto−→ Q[π ·U]

by Lemma 14. We conclude that a set G ⊆ P is Q[U]-generic over M iff π ·G is, accordingly, Q[π ·U]-
generic over M , and the valuated formulas ϕ[G] and (πϕ)[π ·G] coincide. Now the result for Π1

1
formulas follows from (F2) in Section 5.2.

Step Π1
n → Σ1

n+1 , n ≥ 1. Let ψ(x) be a LΠ1
k (Q[U], M) formula, and ϕ be ∃ x ψ(x) .

Assume p forcM
U ϕ . By definition there is a name τ ∈ SNω

ω(Q[U]) ∩ M , Q[U]-full below
the given p ∈ Q[U] , such that p forcM

U ψ(τ) . Then, by the inductive hypothesis, we have
π · p forcM

π ·U (πψ)(π ·τ) , and hence by definition π · p forcM
π ·U πϕ .

The case of ϕ being ∃Bx ψ(x) is similar.
Step Σ1

n → Π1
n , n ≥ 2. This is somewhat less trivial. Assume that ϕ is a closed LΠ1

k (Q[U], M)

formula; all names in ϕ belong to SNω
ω(Q[U]) ∩M and are Q[U]-full below p . Then πϕ is a closed

LΠ1
k (Q[π ·U], M) formula, whose all names belong to SNω

ω(Q[π ·U])∩M and are Q[π ·U]-full below
π · p . Suppose that p forcM

U ϕ fails.
By definition there exist a pair 〈M1, U1〉 ∈ sJS with 〈M, U〉 4 〈M1, U1〉 , and a condition

q ∈ Q[U1] , q 6 p , such that q forcM1
U1

ϕ¬ . Then (π ·q) forcM1
π ·U1

πϕ¬ by the inductive hypothesis.
Yet the pair 〈M1, π ·U1〉 belongs to sJS and extends 〈M, π ·U〉 . (Recall that U ∈ M and π is coded in
M .) In addition, π ·q ∈ Q[π ·U1] , and π ·q 6 π · p . Therefore, the statement (π · p) forcM

π ·U πϕ fails,
as required.

Lemma 30 (in L). Suppose that 〈M, U〉 ∈ sJS , p ∈ Q[U] , k ≥ 1 , ϕ is a formula in
LΠ1

k (Q[U], M) ∪ LΣ1
k+1(Q[U], M) , and α ∈ LIPI ∩M. Then : p forcM

U ϕ iff (α · p) forcM
α ·U αϕ .

Proof. Similar to the previous one, but with a reference to Lemma 15 rather than Lemma 14.

Lemma 31 (in L). Assume that 〈M, U〉 ∈ sJS , conditions p , q ∈ Q[U] satisfy (6) of Section 3.8, k ≥ 1 , ϕ is
a closed formula in LΠ1

k (Q[U], M) ∪ LΣ1
k+1(Q[U], M) with all names in SNω

ω(Q∗)pq (see Section 3.8),

and r ∈ Q[U] , r 6 p. Then : r forcM
U ϕ iff Hpq ·r forcM

U Hpq ϕ .
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Proof. Similar to the proof of Lemma 29, except for the step Π1
k → Σ1

k+1 , k ≥ 1, where we need to
take additional care to keep the names involved in SNω

ω(Q[U])pq . Thus, let ψ(x) be a LΠ1
k (Q[U], M)

formula, with names in SNω
ω(Q[U])pq , and let ϕ be ∃ x ψ(x) . Assume that r forcM

U ϕ .

By definition there is a name τ ∈ SNω
ω(Q[U]) ∩M , Q[U]-full below r , such that r forcM

U ψ(τ) .
Please note that τ does not necessarily belong to SNω

ω(Q[U])pq . However, the restricted name
τ′ = τ6r (see Lemma 13 in Section 3.8) is still a name in SNω

ω(Q[U]) because r ∈ Q[U] , and we have
r′ ∈ dom τ′ =⇒ r′ 6 r 6 p , so that τ′ ∈ SNω

ω(Q[U])pq . Moreover, τ′ is equivalent to τ below r by

Lemma 13. We conclude that r forcM
U ψ(τ′) , by Lemma 27.

Then, by the inductive hypothesis, we have Hpq ·r forcM
U (Hpq ψ)(Hpq ·τ′) , and hence by

definition Hpq ·r forcM
U Hpq ϕ via Hpq ·τ′ .

6. Elementary Equivalence Theorem

The goal of this section is to prove Theorem 4 of Section 4.4, and accomplish the proof of
Theorem 1. We make use of the relation forc defined above, and exploit certain symmetries in forc
studied in Section 5.4.

6.1. Hidden Invariance

To explain the idea, one may note first that elementary equivalence of subextensions of a given
generic extension is usually a corollary of the fact that the forcing notion considered is enough
homogeneous, or in different words, invariant w.r. t. a sufficiently large system of order-preserving
transformations. The forcing notion Q = Q[U] we consider, as well as basically any Q[U] , is invariant
w.r. t. multi-substitutions by Lemma 17. However, for a straightaway proof of Theorem 4 we would
naturally need the invariance under permutations of Section 3.6—to interchange the domains Z and
Z′ , whereas Q is definitely not invariant w.r. t. permutations.

On the other hand, the relation forc is invariant w.r. t. both permutations (Lemma 29) and
multi-Lipschitz (Lemma 30), as well as still w.r. t. multi-substitutions by Lemma 31. To bridge the
gap between forc (not explicitly connected with Q in any way) and Q -generic extensions, we prove
Lemma 33, which ensures that forc admits a forcing-style association with the truth in Q -generic
extensions, bounded to formulas of type Σ1

n and below. This key result will be based on the
n-completeness property (Definition 2 in Section 4.3). Speaking loosely, one may say that some
transformations, i.e., permutations and multi-Lipschitz, are hidden in construction of Q , so that they do
not act per se, but their influence up to nth level, is preserved.

This method of hidden invariance, i.e., invariance properties (of an auxiliary forcing-type
relationship like forc) hidden in Q by a suitable generic-style construction of Q , was introduced
in Harrington’s notes [3] in a somewhat different terminology. We may note that the hidden
invariance technique is well known in some other fields of mathematics, including more applied
fields, see e.g., [12,13].

6.2. Approximations of the n-Complete Forcing Notion

We return to the forcing notion Q = Q[U] defined in L as in Definition 2 in Section 4.3 for a given
number n ≥ 2 of Theorem 1. Arguing in L, we let the pairs 〈Mξ ,Uξ〉 , ξ < ω2, also be as in Definition 2.

Let forcξ denote the relation forc
Mξ

Uξ
, and let p forc∞ ϕ mean: ∃ ξ < ω2 (p forcξ ϕ) .

Claims (i), (ii) of Lemma 28 take the form:

(I) p forcξ ϕ and p forcη ϕ¬ (ξ , η < ω2) contradict to each other.

(II) If p forcξ ϕ and ξ ≤ ζ < ω2, q ∈ Q[Uζ ] , q 6 p , then q forcζ ϕ .

The next lemma shows that forc∞ satisfies a key property of forcing relations up to the level of
Π1

n−1 formulas.
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Lemma 32. If ϕ is a closed formula in LΠ1
k (Q) , 2 ≤ k < n , p ∈ Q , and all names in ϕ are Q-full below p,

then there is a condition q ∈ Q , q 6 p, such that either q forc∞ ϕ , or q forc∞ ϕ¬ .

Proof. As the names considered are ω1-sizeobjects, there is an ordinal η < ω2 such that p ∈ Qη ,
and all names in ϕ belong to Mη ∩ SNω

ω(Qη) ; then all names in ϕ are Qη-full below p , of course.
As k < n , the set D of all pairs 〈M, U〉 ∈ sJS that extend 〈Mη ,Uη〉 and there is a condition q ∈ Q[U] ,
q 6 p , satisfying q forcM

U ϕ¬ , belongs to ΣHC
n−2 by Lemma 26. Therefore, by the n-completeness of the

sequence {〈Mξ ,Uξ〉}ξ<ω1 , there is an ordinal ζ , η ≤ ζ < ω1, such that 〈Mζ ,Uζ〉 ∈ Dsolv .
We have two cases.
Case 1: 〈Mζ ,Uζ〉 ∈ D . Then there is a condition q ∈ K[Uζ ] , q 6 p , satisfying q forc

Mζ

Uζ
ϕ¬ , that is,

q forc∞ ϕ¬ . However, obviously q ∈ Q .
Case 2: there is no pair 〈M, U〉 ∈ D extending 〈Mζ ,Uζ〉 . Prove p forcζ ϕ . Suppose otherwise.

Then by the choice of η and (F4) in Section 5.2, there exist: a pair 〈M, U〉 ∈ sJS extending 〈Mζ ,Uζ〉 ,
and a condition q ∈ Q[U] , q 6 p , such that q forcM

U ϕ¬ . Then 〈M, U〉 ∈ D , a contradiction.

Now we prove another key lemma which connects, in a forcing-style way, the relation forc∞ and
the truth in Q -generic extensions of L, up to the level of Σ1

n formulas.

Lemma 33. Suppose that ϕ is a formula in LΠ1
k (Q)∪LΣ1

k+1(Q) , 1 ≤ k < n , and all names in ϕ are Q-full.
Let G ⊆ Q be Q-generic over L. Then ϕ[G] is true in L[G] iff there is a condition p ∈ G such that
p forc∞ ϕ .

Proof. We proceed by induction and begin with the case of LΠ1
1 formulas. Consider a closed formula

ϕ in LΠ1
1(Q) . As names in the formulas considered are ω1-sizenames in SNω

ω(Q) , there is an ordinal
ξ < ω2 such that ϕ is a LΠ1

1(Qξ) formula. Please note that since G ⊆ P is Q-generic over L, the
smaller set Gξ = G ∩ Qξ is Qξ-generic over Mξ by Corollary 2 in Section 4.2, and the formulas ϕ[G] ,
ϕ[Gξ ] coincide by the choice of ξ . Therefore

ϕ[G] holds in L[G] :

iff ϕ[Gξ ] holds in Mξ [Gξ ] by the Mostowski absoluteness [10] (p. 484),

iff there is p ∈ Gξ which Qξ-forces ϕ over Mξ ,

iff ∃ p ∈ Gξ (p forcξ ϕ) by (F2) in Section 5.2,

easily getting the result required since ξ is arbitrary.

The step from LΣ1
k to LΠ1

k , k ≥ 2 . Prove the theorem for a LΠ1
k (Q) formula ϕ , assuming that

the result holds for ϕ¬ . Suppose that ϕ[G] is false in L[G] . Then ϕ¬[G] is true, and hence by the
inductive hypothesis, there is a condition p ∈ G� c such that p forc∞ ϕ¬ . Then it follows from (I) and
(II) above that q forc∞ ϕ fails for all q ∈ G .

Conversely let p forc∞ ϕ fail for all p ∈ G . Then by Lemma 32 there exists q ∈ G satisfying
q forc∞ ϕ¬ . It follows that ϕ¬[G] is true by the inductive hypothesis, therefore ϕ[G] is false.

The step from LΠ1
k to LΣ1

k+1 . Let ϕ(x) be a LΠ1
k (Q) formula; prove the result for a formula

∃Bx ϕ(x) . If p ∈ G and p forcξ ∃Bx ϕ(x) then by definition there is a name τ ∈ Mξ ∩ SNω
ω(Qξ)�B ,

Qξ-full below p , and such that p forcξ ϕ(τ) . Then ϕ(τ)[G] holds by the inductive hypothesis, and this
implies (∃Bx ϕ(x))[G] since obviously τ[G] ∈ L[G�B] .

If conversely (∃Bx ϕ(x))[G] is true, then by Lemma 11 there is a Q-full name τ ∈ SNω
ω(Q)�B

such that ϕ(τ)[G] is true. Then, by the inductive hypothesis, there is a condition p ∈ G such that
p forc∞ ϕ(τ) . Therefore p forc∞ ∃Bx ϕ(x) by the choice of τ .

The case of ∃ x ϕ(x) is treated similarly.

6.3. The Elementary Equivalence Theorem

We begin the proof of Theorem 4 of Section 4.4, so let d, Z, Z′, x0 be as in the theorem.
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Step 1. We assume w. l.o.g. that x0 itself is the only parameter in the Σ1
n formula Φ of

Theorem 4. By Lemma 11, there exists, in L, a Q-full name τ ∈ SNω
ω(Q) such that x0 = τ[G]

and |τ|+ ⊆ d . Thus, Φ is ϕ(τ[G]) , where ϕ(·) is a parameter-free Σ1
n formula with a single free

variable. Then |ϕ(τ)|+ = |τ|+ ⊆ d .
We also assume w. l.o.g. that the sets Z, Z′ satisfy the requirement that Z r Z′ and Z′ r Z are

infinite (countable) sets. Indeed, otherwise, under the assumptions of Theorem 4, one easily defines
a third set Z′′ such that each of the pairs Z, Z′′ and Z′, Z′′ still satisfies the assumptions of the theorem,
and in addition, all four sets Z r Z′′ , Z′′ r Z , Z′′ r Z′ and Z′ r Z′′ are infinite. Please note that this
argument necessarily requires that the complementary set I r (d ∪ Z ∪ Z′) is infinite.

Step 2. We are going to reorganize the quantifier prefix of ϕ , in particular, by assigning the indices
Z and Z′ to certain quantifiers, to reflect the relativization to classes L[x0, G�Z] and L[x0, G�Z′] . This is
not an easy task because generally speaking there is no set Z0 ⊆ I in L satisfying L[x0] = L[G�Z0] .
However, nevertheless we will define an LΣ1

n formula, say ψZ(v) , and then ψZ′(v) by the substitution
of Z′ for Z , such that the following will hold:

(A) For any set G ⊆ Q , Q-generic over L :

ϕ(τ[G]) is true in L[τ[G], G�Z] iff ψZ(τ)[G] is true in L[G], and

ϕ(τ[G]) is true in L[τ[G], G�Z′] iff ψZ′(τ)[G] is true in L[G].

(See Section 5.1 on the interpretation ψ[G] for any L-formula ψ .)
To explain this transformation, assume that n = 4 for the sake of brevity, and hence ϕ(v) has the

form ∃ x ∀ y ϑ(v, x, y) , where ϑ is a Σ1
2 formula. To begin with, we define

ψZ
1 (v) := ∃Zx′ ∃ x ∈ L[x′, v] ∀Zy′ ∀ y ∈ L[v, y′] ϑ(v, x, y) , (17)

and define ψZ′
1 (v) accordingly.

Lemma 34. The formulas ψZ
1 , ψZ′

1 satisfy (A).

Proof. To prove the implication =⇒ , suppose that ϕ(τ[G]) holds in L[τ[G], G�Z] , so that there is
a real x1 ∈ ωω ∩ L[τ[G], G�Z] satisfying ∀ y ϑ(τ[G], x1, y) in L[τ[G], G�Z] . By a standard argument
there is a real x′ ∈ ωω ∩ L[G�Z] with x1 ∈ ωω ∩ L[τ[G], x′] . We claim that these reals x′ and x1

witness that ψZ
1 (τ)[G] holds in L[G] , that is, we have ∀Zy′ ∀ y ∈ L[τ[G], y′] ϑ(τ[G], x1, y) in L[G] .

Indeed, suppose that y′ ∈ ωω ∩ L[G�Z] and y ∈ ωω ∩ L[τ[G], y′] . Then y ∈ L[τ[G], G�Z] ,
of course. Therefore ϑ(τ[G], x1, y) is true in L[τ[G], G�Z] by the choice of x1 . We conclude that
ϑ(τ[G], x1, y) is true in L[G] as well by the Shoenfield absoluteness theorem, as ϑ is a Σ1

2 formula.
The inverse implication is proved similarly. (Lemma)

Thus, the formulas ψZ
1 , ψZ′

1 do satisfy (A), but they are not LΣ1
n formulas as defined in Section 5.1,

of course. It will take some effort to convert them to a LΣ1
n form. We must recall some instrumentarium

known in Gödel’s theory of constructability of reals.

• If x ∈ ωω then define reals (x)ev and (x)odd in ωω by (x)ev(k) = x(2k) and
(x)odd(k) = x(2k + 1) for all k . If y, z ∈ ωω then define x∗y ∈ ωω such that (x∗y)ev = x ,
(x∗y)odd = y .

• There is a Π1
1 set WO = {w ∈ ωω : wo(x)} of codes of countable ordinals, defined by a Π1

1 formula
wo , so that |w| is the ordinal coded by w ∈WO , and ω1 = {|w| : w ∈WO} , see ([14] (1E))).

As a one more pre-requisite, we make use of a system of maps f ξ : ωω → ωω , ξ < ω1, such that:

(a) if x ∈ ωω then L[x] ∩ωω = { f ξ(x) : ξ < ω1} , and
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(b) there exist a Σ1
1 formula S(x, y, w) and a Π1

1 formula P(x, y, w) such that if w ∈ WO then
f |w|(x) = y ⇐⇒ S(x, y, w) ⇐⇒ P(x, y, w) for all x, y ∈ ωω ,

see e.g., ([14] (Theorem 2.6)). Recall that ω1
L[G] = ω1

L[G� Z] = ω2
L by Lemma 22.

Now consider the formula

ψZ
2 (v) := ∃Zx

(
wo((x)ev) ∧ ∀Zy [wo((y)ev) =⇒

=⇒ ϑ(v, f |(x)ev|(v∗(x)odd), f |(y)ev|(v∗(y)odd))]
)

,
(18)

and define ψZ′
2 (v) similarly.

We keep the global understanding that the quantifiers ∃Z , ∀Z are relativized to L[G�Z] ∩ωω .

Lemma 35. The formulas ψZ
1 (τ[G]) and ψZ

2 (τ[G]) are equivalent in L[G] , and the same for ψZ′
1 and ψZ′

2 .

Proof (Lemma). To prove the implication =⇒ , assume that ψZ
1 (τ[G]) holds in L[G] , and this

is witnessed by reals x′ ∈ ωω ∩ L[G�Z] and x1 ∈ ωω ∩ L[τ[G], x′] = ωω ∩ L[τ[G]∗x′] satisfying
∀Zy′ ∀ y ∈ L[τ[G], y′] ϑ(τ[G], x1, y) in L[G] . Please note that ω1

L[G� Z] = ω1
L[G] = ωL

2 by Lemma 9 (ii).
It follows by (a) that there is an ordinal ξ < ω1

L[G� Z] with x1 = f ξ(τ[G]∗x′) , and then there is a real
w ∈WO∩ L[G�Z] with ξ = |w| .

Now let x̃ = w∗x′ , so that w = (x̃)ev , x′ = (x̃)odd , and x1 = f |(x̃)ev|(τ[G]∗(x̃)odd) . We claim
that x̃ witnesses ψZ

2 (τ[G]) in L[G] . Indeed, assume that ỹ ∈ ωω ∩ L[G�Z] and w = (ỹ)ev ∈ WO ,
η = |(ỹ)ev| , and y1 = f η(τ[G]∗(ỹ)odd) ; we must prove that ϑ(τ[G], x1, y1) is true in L[G] .

However, we have y1 ∈ L[τ[G], y′] by construction, where y′ = (ỹ)odd ∈ L[G�Z] by the choice of
ỹ . Now it follows by the choice of x1 that ϑ(τ[G], x1, y1) indeed holds, as required.

The proof of the inverse implication is similar. (Lemma)

Please note that the formula ψZ
2 (v) can be converted to the following logically equivalent form:

ψZ
3 (v) := ∃Zx ∀Zy

[
wo((x)ev) ∧

(
wo((y)ev) =⇒

=⇒ ϑ(v, f |(x)ev|(v∗(x)odd), f |(y)ev|(v∗(y)odd))
)]

.
(19)

And here the kernel
[

. . .
]

can be converted to a true Σ1
2 form, say χ(v, x, y) , with the help of

the formulas S and P of (b), and because wo(·) is Π1
1 and ϑ is Σ1

2 . This yields a LΣ1
4 formula

ψZ(v) := ∃Zx ∀Zy χ(v, x, y) , equivalent to ψZ
1 , and hence satisfying (A) by Lemmas 34 and 35,

as required.

Step 3. Assuming that the formula Φ := ϕ(τ[G]) is true in L[x0, G�Z] , the transformed formula
ψZ(τ)[G] holds in L[G] by (A). By Lemma 33 there is a condition p ∈ G such that p forc∞ ψZ(τ)

that is, there is an ordinal ξ < ω2 such that p forcξ ψZ(τ)—then by definition p ∈ Q[Uξ ] . We w. l.o.g.
assume that p and ζ satisfy the following two requirements:

(B) card (|p| ∩ (Z r Z′)) = card (|p| ∩ (Z′ r Z)) (recall that Z′ r Z , Z r Z′ are infinite, Step 1).

(C) −1 ∈ |p|+ , and if ν, ν′ ∈ |p| then Sp(ν) ⊆ F∨p (ν) and the sets F∨p (ν) and F∨p (ν′) are i-similar
(see Section 2.3).

Please note that if ξ < η < ω2 then still p forcη ψZ(τ) by Lemma 28. Therefore, we can increase ξ

below ω2 so that the following holds:

(D) the sets d , Z r Z′ , Z′ r Z belong to Mξ and are subsets of |Uξ | .

Step 4. Now, to finalize the proof of Theorem 4, it suffices (by Lemma 33) to prove:

Lemma 36. We have p forc∞ ψZ′(τ) as well.
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Proof (Lemma). Let δ = d ∪ (Z ∆ Z′) ; then δ ∈ Mξ by (D), and δ ⊆ |Uξ | . There is a bijection f ∈ M ,

f : δ
onto−→ δ , such that

(E) f � d is the identity, f maps Z r Z′ onto Z′ r Z and vice versa.

Then, by (B), f maps |p| onto |p| . Let π be the trivial extension of f onto I : π(ν) = ν for ν /∈ δ .

Thus, π is coded in Mξ in the sense of Lemma 29, and |π| ⊆ δ ⊆ |Uξ | . We have p forc
Mξ

Uξ
ψZ(τ) by

the choice of ξ , hence Uξ ∈ Mξ and p ∈ Pξ = Q[Uξ ] ∈ Mξ . Moreover, π ·τ = τ because |τ|+ ⊆ d and

π� d is the identity by (E). It follows that p′ forc
Mξ

U′ ϕZ′(τ) by Lemma 29, where U′ = π ·Uξ , p′ = π · p .
Please note that p′ ∈ Q[U′] , |p′|+ = |p|+ , |U′| = |Uξ | , U′� d = Uξ � d , p′� d = p� d . Also note that

(F) if ν ∈ |p′| = |p| then the sets F∨p (ν) , F∨p′(ν) are i-similar by (C), (E).

We conclude, by Lemma 16, that there is a transformation λ = {λν}ν∈|Uξ | ∈ LIPI ∩ Mξ , such that
λ ·U′ = Uξ , λν = the identity for all ν ∈ d , and F∨p (ν) = F∨q (ν) for all ν ∈ |p| = |p′| = |q| ,
where q = λ · p′ ∈ Q[Uξ ] . Then we have q forc

Mξ

Uξ
ψZ′(τ) by Lemma 30. Here λ ·ψZ′(τ) = ψZ′(τ) by

the choice of λ , because |τ|+ ⊆ d . And q� d = p� d holds by the same reason.

It remains to derive p forc
Mξ

Uξ
ψZ′(τ) from q forc

Mξ

Uξ
ψZ′(τ) . Please note that p, q satisfy (6) of

Section 3.8 by construction, hence the transformation Hqp is defined. Moreover, the only name τ

occurring in ψZ′(τ) satisfies |τ|+ ⊆ d , and π� d is the identity by (E). It follows that τ ∈ SNω
ω(Q∗)qp ,

and π ·τ = τ . We conclude that Lemma 31 is applicable. This yields p forc
Mξ

Uξ
ψZ′(τ) , as required.

(Lemma 36)

(Theorem 4 of Section 4.4) �

(Theorem 1, see Section 4.5) �

7. Conclusions and Discussion

In this study, the method of almost-disjoint forcing was employed to the problem of getting
a model of ZFC in which the constructible reals are precisely the ∆1

n reals, for different values n > 2.
The problem appeared under no 87 in Harvey Friedman’s treatise One hundred and two problems in
mathematical logic [1], and was generally known in the early years of forcing, see, e.g., problems
3110, 3111, 3112 in an early survey [2] by A. Mathias. The problem was solved by Leo Harrington,
as mentioned in [1,2] and a sketch of the proof mainly related to the case n = 3 in Harrington’s own
handwritten notes [3].

From this study, it is concluded that the hidden invariance technique (as outlined in Section 6.1)
allows the solution of the general case of the problem (an arbitrary n ≥ 3), by providing a generic
extension of L in which the constructible reals are precisely the ∆1

n reals, for a chosen value
n ≥ 3, as sketched by Harrington. The hidden invariance technique has been applied in recent
papers [7,15–17] for the problem of getting a set theoretic structure of this or another kind at
a pre-selected projective level. We may note here that the hidden invariance technique, as a true
mathematical technique, also has multiple applications both in the physical and engineering fields.
In this regard, we cite works [18,19] that have exploited this technique (albeit simplified) for
engineering applications.

We continue with a brief discussion with a few possible future research lines.
1. Harvey Friedman completes [1] with a modified version of the above problem, defined as

Problem 87 ′ : find a model of

ZFC + “ for any reals x, y , we have: x ∈ L[y] =⇒ x is ∆1
3 in y”. (20)

This problem was also known in the early years of forcing, see, e.g., problem 3111 in [2]. Problem (20)
was solved in the positive by René David [20], where the question is attributed to Harrington. So far it
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is unknown whether this result generalizes to higher classes ∆1
n, n ≥ 4, or ∆1

∞, and whether it can be
strengthened towards ⇐⇒ instead of =⇒ . This is a very interesting and perhaps difficult question.

2. Another question to be mentioned here is the following. Please note that in any extension of
L satisfying Theorem 1, it is true that every universal Σ1

n+1 set u ⊆ ω×ω is by necessity Σ1
n+1 but

non-∆1
n+1, and hence nonconstructible. This gives another proof of Theorem 3 in [7]. (It claims, for any

n ≥ 2, the existence of a generic extension of L in which there is a nonconstructible Σ1
n+1 set a ⊆ ω

whereas all ∆1
n+1 sets are constructible.) And the problem is, given n ≥ 2, to find a model in which

all ∆1
n+1 reals are constructible, but there exists a Σ1

n+1 nonconstructible real u ⊆ ω ,
which satisfies V = L[u] .

Neither the model considered in Section 4.5 above, nor the model for ([7] (Theorem 3)), suffice to solve
the problem, because these models in principle are incompatible with V = L[u] for a real u .

3. For any n < ω , let D1n be the set of all reals (here subsets of ω = {0, 1, 2, . . .}), definable by
a type-theoretic parameter-free formula whose quantifiers have types bounded by n from above.
In particular, D10 = arithmetically definable reals and D11 = analytically definable reals. Alfred Tarski
asked in [6] whether it is true that for a given n ≥ 1, the set D1n belongs to D2n , that is, is itself
definable by a type-theoretic parameter-free formula whose quantifiers have types bounded by n .
The axiom of constructibility V = L implies that D1n /∈ D2n , so the problem is to find a generic model
in which D1n ∈ D2n holds, and moreso the equality D1n = L∩P (ω) holds. We believe that such
a model can be constructed by an appropriate modification of the methods developed in this paper.

4. It will be interesting to apply the hidden invariance technique to some other forcing notions
and coding systems (those not of the almost-disjoint type), such as in [21,22].

5. This is a rather technical question. One may want to consider a smaller extension L[w+[G]]

instead of L[w+[G], G�W] in Lemma 23. Claim (i) of Lemma 23 then holds for such a smaller model in
virtue of the same argument as above. However, the proof of Claim (ii) of Lemma 23, as given above
for L[w+[G], G�W] , does not go through for L[w+[G]] . The obstacle is that if we try to carry out the
proof of Lemma 24 for L[w+[G]] , then it may well happen that say Z′ = ∅ , and then Theorem 4 is not
applicable. It is an interesting problem to figure out whether in fact Claim (ii) of Lemma 23 holds in
L[w+[G]] .
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