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INTRODUCTION

Reconstraction of a species supertree from a set of
protein trees (usually of a complex of orthologous pro�
tein groups, OPG) is a problem with a long history, the
fundamental and practical importance of which is
widely recognized. This is one of the NP�hard prob�
lems [1]. Numerous references to the subject are given
in this study; a review of the results concerning this
and related problems can be found in [2]; [3] contains
references to recent publications. In practical terms,
the time necessary for the problem’s solution depends
exponentially on the volume of initial data (the num�
ber of gene trees and the number of species in them).
Therefore, an algorithm for the problem’s solution can
only be computationally efficient (in other words, an
algorithm of polynomial complexity with a low poly�
nome degree) due to a change in the problem formu�
lation. Such a change should be acceptable in terms of
biological applications. There were no published
approaches to the formulation and solution of this
task. Any formulation or solution in terms of this hard
task has not been reported yet. However, a great num�
ber of exponential heuristic algorithms for supertree
reconstruction have been proposed, and some of them
are discussed in our review [4].

We propose a new formulation of the problem and
algorithms for two cases of the problem’s solution, i.e.,
with and without taking into account horizontal gene
transfer. Here we only analyze the former cases; the
other one is the subject of our reports [5–7]. The
repeated time of the algorithm in the presence of the
worst original data is of an order of the third degree of
both n original gene trees and the |V0| number of the
species constituting these trees. In most cases, the
algorithm repeated time is much less; as a rule, it is a
quadratic function of the above�mentioned two
parameters (see Testing). The same is true for more
general cases, which have been previously discussed
[5–8].

Thus, the task is to reconstruct an S tree containing
|V0| species from a given set of Gi gene trees, where i
ranges from 1 to n. As in many other reports (for exam�
ple, [4, 9–12]), the desired S species tree is con�
structed like a supertree for the Gi set; in other words,
it is constructed as a tree, which is “generally the clos�
est” to each Gi. This approach requires the specifica�
tion of the proximity between the given gene G and
species S trees. The concept of proximity is tradition�
ally based on nesting the gene tree G into the species
tree S with the only difference that, instead of the
method of Guigo et al. [12], the method described in
[5] is used.
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This report is a direct continuation of the study
described in [5].

BASIC CONCEPTS

In a set of V0 species, each s species is assumed to be
a given nonempty set of G(s) genes. A combination of
G(s) sets will be considered broken up into clusters; in
other words, a cluster contains homologous compo�
nents. Each cluster includes any number of genes
belonging to the same species.

A species tree is a binary rooted tree and the names
of the species are assigned to tree leaves; the set of V0
species and the set of tree leaves are in one�to�one cor�
respondence. The gene tree corresponding to the gene
cluster K is a binary rooted tree and the name of each
gene g of K is assigned to each leaf of the gene tree; the
leaves of the gene tree and the genes of the K cluster are
also in one�to�one correspondence. For convenience,
we assume that along with the g gene, which is assigned
to some leaf, the s species, from which the g gene orig�
inates, is assigned to the same leaf; we will say that
these g genes and s species are in a “gene–species”
relationship.

Note that, in other words, the gene tree leaves,
which represent pairs, such as 〈g1,s〉, 〈g2,s〉, 〈g3,s〉, etc.,
correspond to the paralogues g1, g2, etc., in the form of
s. The genes assigned to leaves originate from a certain
family of homologous genes mostly encoding a com�
plex of orthologous groups of proteins represented in
the GenBank and NCBI databases. In this sense, every
gene tree defines a gene in its evolutionary develop�
ment.

Let us assume that the root of a tree is “from
above”. We denote by e– and e+ the upper and lower
endpoints of edge e, respectively. An edge is under�
stood as a pair of vertices with a e– starting point and
e+ ending point. The incoming edge of a vertex g is
denoted as bg. As mentioned in [5], each tree is consid�
ered together with its “root edge”, which is a specially
added edge that comes up from the root and corre�
sponds to the time when there existed a common
ancestor of all species or genes constituting the tree:
the upper endpoint of the root edge is referred to as a
“superroot”. The edges of a species tree S are called
tubes; in particular, a root edge is referred to as a root
tube [5].

Suppose that G is a gene tree. At the vertices of the
G tree, the ordering of the relationship “lower” will be
defined as g1 < g2 if g1 ≠ g2, and the path from the super�
root to g1 can be made through g2. In the presence of a
set of all the vertices and tubes in S, we will define the
ordering relationship y < x as follows: vertex or tube y
is “lower” than a certain vertex or tube in S if y ≠ x,
and, in the y tube, the path from the superroot can be
made through x; respectively, “x is above y”; we denote
y ≤ x if y < x or y = x.

Let us define the terms used in this article. It would
be helpful to read the section Formulation of the Prob�

lem of the report of Gorbunov and Lyubetsky [5].
Unlike their report, in this study, we only discuss nest�
ing and scenarios without horizontal transfers and,
therefore, we refer to them as simply nesting and sce�
narios. Horizontal transfers are discussed in [5–7].

Nesting of the G gene tree into species tree S implies
the reflection f of all V(G) vertices of the G tree in the
V(S) vertices and E(S) tubes of the S tree, when the
following conditions are fulfilled:

(1) The superroot of G is reflected in the root tube
of S; each leaf g in G is reflected in leaf s of S according
to the relationship gene–species;

(2) If g1 —descendant of g and f(g) —is the vertex,
then f(g1) < f(g); whereas if f(g) is a tube, then f(g1) ≤ f(g).

(3) Let us agree that g1 and g2 are the descendants of
the g vertex: if f(g) is a vertex, then f(g1) and f(g2) are
located in different subtrees that are rooted in the
descendants of the f(g) vertex.

In other words, condition (3) means the following:
the species, to which the g gene belongs, is the last
common ancestor of the species to which g1 and g2
belong.

For the given f nesting, the following formal defini�
tions of evolutionary events should be noted [5]. Gene
duplication is determined by the nonsuperroot g vertex
in G, for which f(g) is a tube from S. A loss of the gene
is determined by the pair 〈e, s〉, where e is an edge in G,
s is a vertex in S, and f(e+) < s < f(e–). The speciation
(with respect to the gene under consideration) is
determined by the g vertex from G, where f(g) is a ver�
tex in S and both g and f(g) vertices are not leaves. We
only consider speciation associated with bifurcations
in the G tree; since their cost is assumed to be lower
than zero, speciation is not discussed as a separate
event.

Figures 1a and 1b demonstrate an example of nest�
ing a gene tree within a species tree

Let us explain the informal definitions. The inter�
nal vertices of a species tree correspond to (hypo�
thetic) ancestral species; the internal vertices of a gene
tree correspond to (hypothetic) ancestral genes. Ide�
ally, nesting a gene tree into species tree gives informa�
tion about the ancestral species to which the given
ancestral gene belongs (for the leaves, i.e., modern
species and genes, this is satisfied by definition).

Note that the vertices of a species tree do not indi�
cate all ancestral species, but only those involved in
speciation (divergence into two species). Between spe�
ciation events, some species could evolve and some
genes could double (“duplication”). In such a case (a
species evolves but does not diverge), a new species
will (implicitly) correspond to a certain internal point
on the edge (“tube”) of the species tree. The gene–
tree vertex corresponding to gene duplication is there�
fore reflected in a tube rather than in a vertex.

Similarly, in a gene tree, the vertex corresponds to
a hypothetic ancestral gene g only if two new genes
evolved from the g gene, irrespective of whether this
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was accompanied by speciation or not (in the former
case, a vertex of the species tree corresponds to that
gene) (see above). If after speciation (in this case, a
certain vertex s is present in the species tree) none of
the resultant species contains an analogue of the g
gene, then no “gene duplication” occurred during
species divergence. Therefore, in this case (“a loss of
gene”), even a vertex s of the species tree does not cor�
respond to any vertex of the gene tree. We can say that
s corresponds to a point of some e edge of the gene
tree. The condition f(e+) < s < f(e–) is clearly satisfied.
Note the following: First, several gene losses, i.e., sev�
eral vertices s of the S species tree, might correspond
to a single edge e of the G gene tree if the condition
f(e+) < s < f(e–) is satisfied. Similarly, several gene losses
in the gene tree (i.e., several edges e for which the con�
dition f(e+) < s < f(e–) is satisfied) might correspond to
a single vertex s of the species tree. This is due to gene
duplication (see, for example, Figs. 2 a, 2b).

For any gene tree G and specie tree S, as well as for
any nesting f, the following designations are used:
l(f, G, S) is the number of losses; d( f, G, S) is the num�
ber of gene duplications for the nesting f. The costs of
a single gene loss and of a single duplication are
denoted as cl and cd, respectively. The cost of a single
speciation is believed to be zero; however, if this cost is
lower than cd + 2cl, the algorithm and following asser�
tions are preserved.

FORMULATION OF THE PROBLEM

A set {Gi} is given, which consists of n rooted binary
gene trees. The species tree S is consistent with the {Gi}
set if the set of leaves in S coincides with the V0 set of
all species presented by the leaves of all Gi trees. Our
goal is to formalize the problem of constructing a spe�
cies tree S, which is the “closest” to the whole set of
{Gi} trees. We begin with an auxiliary task.

Gene evolution scenario along a species tree: super�
tree. Let us agree that we have a given set of gene trees
{Gi} and a coordinated species tree S. The nesting f of
the {Gi} set into the S tree indicates a set of nesting {fi},
where each fi is nesting of Gi into S.

Task A1. Having a {Gi} set and an S species tree, it
is required to find the nesting f for the {Gi} set and S
tree, which reaches a minimum functional

c({Gi}, f, S) = Σi(cl · l(fi, Gi, S) + cd · d(fi, Gi, S)). (1)

Note that cl ·Σi l(fi, Gi, S) is the total cost for all losses
in all Gi, whereas cd·Σi d(fi, Gi, S) is the total cost for all
duplications in all Gi.

The nesting that reaches a minimum in (1) will be
called a scenario.

We have proved that when {Gi}, S, and the coeffi�
cients cl and cd are fixed, the scenario is unique and
does not even depend on the choice of any nonnega�
tive values of these coefficients.

Vertices g in the gene tree and s in the species tree
will be considered compatible if they are not super�
roots and one of the following conditions is satisfied:
(1) g and s are leaves that are in the gene–species rela�
tionship or (2) g has descendants g1 and g2, whereas s
has descendants s1 and s2 and 

(a)

(b)

G: r

g1 g3

g2 g4

a' b' c' e' e'' f ' a b c d e f

s1

s2

s3

s4

R = f(r)

f(g1)

s1 = f(g2) s3

f(g3)

s4 = f(g4)s2

S: R

a b c d e f

Fig. 1. Illustration of the concepts of duplication, gene
loss, and speciation. (a) An example of gene tree G and
species tree S, in the leaves of which gene a' is taken from
species a, etc., and paralogs e' and e'' are taken from species
e. There is no species d in the G tree. (b) The values of nest�
ing f the G tree into the S tree are clearly demonstrated; the
values on the leaves of G coincides with appropriate leaves
in S. The values of f reflection on the internal vertices of the
G tree are marked with bullet points. The f(g1) value is indi�
cated in the tube (though it is formally equal to this tube),
and, according to the definition of duplication, the g1 ver�
tex corresponds to a duplication event; the same is true for
the g3 vertex. The values of f on all other internal vertices of
the G tree coincide with the corresponding internal vertices
of the species tree and, according to the definition of spe�
ciation, correspond to speciation events. For the edge h =
(g1, a'), the s1 and s2 vertices lie between the values at the
ends and, according to the definition of loss, the (h, s1) and
(h, s2) pairs correspond to the events of losses; in the figure,
they are the processes with a cross at the end. Similarly, the
(g2, b'), s2), ((g3, е'), s4), and (r, g3), s3 pairs are losses.
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[(Мg1 ⊆ Мs1 и Мg2 ⊆ Мs2) or (Мg1 ⊆ Мs2 и Мg2 ⊆ Мs1)].

X ⊆ Y indicates that the X set is a part (a subset) of
the Y set. Remember that bs indicates a tube of the S
tree with the end point in the s vertex.

Lemma 1. Suppose that G is a gene tree and S is a
species tree. For any scenario h that corresponds to G
and S and for any fixed nonnegative values of the costs
for a single duplication and single loss, the following is
true. Let g be vertex G distinct from a superroot,
whereas s is the last common ancestor of the Мg set in
the S tree. Then, h(g) = s, if the g and s vertices are
compatible, and h(g) = bs if these vertices are incom�
patible.

The proof was given earlier in [7].

Let the nesting described in lemma 1 is a scenario
h({Gi}, S) = {hi} for evolving the genes of the Gi tree
along the S species tree. The value с({Gi}, S) = c({Gi},
h({Gi}, S), S) is the cost of the scenario.

The S* supertree for a set of gene trees {Gi} is called
a species tree for which

с({Gi}, S) = c({Gi}, h({Gi}, S), S) (1*)

takes the minimum possible value.
Task A2. Reconstruction of a supertree from a given

gene tree. This seems to be a traditional formulation of
the task to reconstruct a specie tree on the basis of
minimizing functional (1*). Different versions of the
algorithm for constructing a supertree have been pre�
sented earlier [4, 9–12]. All these algorithms ensure
the solution of the above�mentioned task during expo�
nential time and allow for only heuristic approxima�
tions of the S* tree. The S* tree itself, as a rule,
remains unknown, except for the cases of artificially
selected data.

New formulation of the task. The set of species
assigned to the leaves below a certain vertex v of the S
tree is called a clade Mv of the S species tree; the vertex
itself, v, is the clade root. This set of leaves is denoted
as “a set of clade leaves”. Similarly, a set of species
assigned to the leaves below a certain vertex g of G is
denoted “clade Mg in the G gene tree; this vertex is the
clade root.

We suggest considering the following task.
Task B. From a given set of gene trees {Gi}, the S*

species tree should be found so that (i) all clades of S*
belonged to a predetermined sets Р. Thus, the Р set is
a parameter of the problem; (ii) the value of function
(1*) for the S* supertree does not exceed the values of
the functions for other species trees that satisfy condi�
tion (i).

The set of clades of the desired species tree is
known to include a set of all species V0 and all its ele�
mental sets but does not include an empty set. There�
fore, we will only consider Р sets containing the afore�
mentioned sets. The algorithm described below is
applicable to any Р set, but a typical example of such a
set is Р0 that includes all clades of all original gene trees
and is augmented by the set of all V0 species. This is a
standard set for a given set of gene trees. We denote by
|X | the number of elements of the X set. The number of
elements in a standard Р0 set is assessed from above:
|Р0| ≤ 2|V1|, where V1 is the set of all leaves in all gene
trees. Under the normal assumption that the average
number of leaves in gene trees is of an order of |V0|, we
obtain |Р0| ≤ K|V0| · n, where K is a certain constant,
which does not exceeds 2 in our data; remember that n
is the number of original gene trees and V0 is the set of
all species in them. If the P set does not include all the
sets of standard Р0, it can be expanded with the sets
from Р0. Therefore, we assume that the P sets dis�
cussed below include all sets from standard Р0.

(a)

(b)

g'

g

1 23 4

s

g'

g

4321

1 2 3 4

Fig. 2. (a) Nesting a gene tree (on the left) into a species
tree (on the right). In the example, four species are indi�
cated with figures from 1 to 4. In the leaves of the gene tree,
each gene corresponds to each species; therefore, only the
species numbers are indicated on the leaves of the tree.
The evolutionary events are the following: duplication in
the g' vertex and three losses, which correspond to the
edge–vertex pairs (2, g') and s; (2, g') and s'; and (1, g) and
s, where s' is the ancestor of s. (b) The same nesting is
shown through “inscribing” the gene tree into the tubes of
the species tree. The nesting has one duplication in the g'
vertex and three losses marked with crosses. The gene
divergence due to speciation is indicated with points.
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The gene tree {Gi} and Р sets are considered fixed.
The following two definitions play a significant role in
our approach.

First definition. Suppose that е is an edge in gene
tree G. Let us define Mе as a set of species assigned to
all leaves below the е edge in the G tree. The Md set for
a tube d of the S species tree is defined similarly. For
the G gene tree and a set of species M, the set of e edges
in G is Ed(M, G), where Mе ⊆ M and there is no е' > e
with this property. There might be several edges e of
this kind, but they are incomparable in G.

Suppose that f is the nesting of the G gene tree into
the S species tree. Then the assertion that “the edge e
of G enters the tube d of S” suggests that f(e+) ≤ d < f(e–)
(“enters” is in geometrical sense).

Lemma 2. For the h(G, S) scenario from lemma 1,
the following is satisfied:

(a) The edges from Ed(Mb, G) enter accurately the
tube b of S.

(b) If the b1 tube is the descendant of the b tube,
then the only edge е' ≥ e entering b exists for any edge
e of G that enters b1.

The proof was given earlier in [7].
Second definition. Set V of P is called basic if it can

be divided into two parts of Р and each part, in turn,
can be divided into two parts of Р and so on until one�
element species�representing sets are reached.

Obviously, the B task has a solution if and only if
the all�species V0 set is a basic one.

COMPUTER PROGRAM FOR SUPERTREE 
RECONSTRUCTION

The algorithm and its rationale have been previ�
ously reported [7]; the software itself is freely available
at the website http://lab6.iitp.ru/ru/super3gl/. Several
notations and explanations required for working with
the program are presented below.

The heuristic solution of task A2 consists of two steps.
The first step involves the construction of the so�called
“basic trees” S(V) for all basic sets V from the given Р sets.
At the second stage, the S(V) set is used to obtain an
approximation S' of the desired supertree S* for {Gi} (see
additional materials, items 1–3, www.molecbio.com/
downloads/2012/1/supp_gorbunov_en.pdf).

The computer program is based on the following
theorem.

Theorem 1. Suppose that Р is a set of clades.
(a) If the V0 set is a basic one, the S(V0) tree is a

solution of task B. Otherwise, task B has no solutions.
(b) If P is a standard set and the average number of

leaves in a set of gene trees {Gi} is of an order of |V0|,
then the algorithm determines the {S(V)} set, where
the V variable runs over all basic sets for a number of
steps of an order |V0|

2n + |P |2|V0| + |P ||V0|n + |P |3 +
|P |2|V0|n ≤ Сn3|V0|

3. During this process, the algorithm
produces a solution to task B or reports that no solu�

tion exists. Memory of the order of n2 · |V0|
2 is suffi�

cient.

The proof of theorem 1 was given earlier [7].

To solve task A2, an auxiliary algorithm should be
applied for the set of basic trees (see supplementary
materials, item 4).

A computer program for constructing a set of trees
{S(V)}, where V runs over all the basic sets of the S ' tree,
has been developed by L.I. Rubanov; it is freely avail�
able at the website http://lab6.iitp.ru/ru/super3gl/
together with examples of computation and operating
instructions.

The super3GL program is capable of handling large
sets of original trees, including nonbinary ones; it is
primarily intended for computing on a multiprocessor
system with MPI�1.2 support, although working on a
standard PC is also possible. The program is written in
the C++ programming language and has a command
line interface. The source code can be moved, and,
after recompilation, it can be used in the OS Windows
32/64�bit, Linux, Unix, and MacOS systems. The
program’s executable modules for Windows 32/64 bit
(uniprocessor and parallel versions) can be freely
downloaded from this website; the source code is
available under a free license for noncommercial use
in scientific and educational organizations. Parallel
modules for Windows are designed to work with the
MPICH2 system developed by the Argonne National
Laboratory (versions 1.3.2 or higher); the appropriate
version(32/64 bit) should be installed on the multipro�
cessor used. Since the efficiency of algorithm parallel�
ing varies during the construction of the basic trees and
supertree, the complexity of these steps depends on the
problem and the program allows them to be run
together and separately, including on different comput�
ers. The performance of the program on a variety of
computing facilities is discussed in detail in the manual.

The downloadable files are listed in the supple�
mentary materials (item 5): program description
(PDF); uniprocessor version of the program (Win�
dows 32 bit); uniprocessor version of the program
(Windows 64 bit); option for MPICH2 v.1.3.2 (Windows
32 bit); option for MPICH2 v.1.3.2 (Windows 64 bit);
utility to decrypt the abbreviations in the species tree;
and a script for rooting trees.

The results of testing the program using artificial
sources of data are given below; the correct answer was
obtained in advance. The results of testing the biolog�
ical source of data from the Hodgenom database are in
the supplementary materials (item 6). An example
with 276 species is given in two versions, as well as an
example with 814 species, etc. In these cases, the
answer was unknown, but the results are consistent
with the known species trees [11, 13].
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ALGORITHM TESTING

Algorithm testing was conducted as follows: first,
from the S species tree (randomly selected or biologi�
cal), a set of gene trees {Gi} was constructed, for which
S is definitely a supertree, because the verification of
the trees in the vicinity of the S tree showed that func�
tion (1*) had an S minimum. The argument in favor of
our algorithm or any other one is that this algorithm
reconstructs S from {Gi} completely or partially.

The task of {Gi} reconstruction from a given S set is
nontrivial and of great interest. To solve this problem,
we used the following approach: a {Gi} set was recon�
structed by modeling the “real” process of gene evolu�
tion along the S tree, as it has been described earlier
[5]. It is convenient to consider S trees, which also
include vertices with one descendant. Namely, the
pd(х) and pl(х) probabilities were given in accordance
with duplications and losses, which might occur in
each tube of an S tree. Suppose we have already con�
structed, starting from the root edge, a G' part of the
expected Gi tree; the x(v) tube from S or 〈i (a leaf of S)
is assigned to G ' of each terminal vertex v. In the sec�
ond case, the terminal vertex is a leaf of S〉. Let us ver�
ify all terminal vertices v in G', to which the tube is
assigned. Duplication is simulated in each v with a
probability of pd(х(v)). If this event does occur, then
bifurcation appears in х and the two new terminal ver�
tices belong to the same tube х. If the event does not
occur, the following three cases are possible.

(1) Tube x leads to the bifurcation of the S tree.
Then the loss is simulated twice with a probability of
pl(y), where y is any of the descendants of tube x. If a
loss occurred at least once, then such a loss is simu�
lated with an equal probability in any of the two tubes
outgoing from the bifurcation. The tube adjacent to
the tube, where the loss did occur, is assigned to vertex
v. If a loss has not occurred, the bifurcation is deter�
mined in х, and the descendant of tube х is assigned to
each of the two newly emerged terminal vertices.

(2) Tube х leads to a vertex with an only descen�
dant. Then the tube, which is the descendant of tube x,
is assigned to vertex v.

(3) Tube х leads to a leaf of the S tree. Then a pair
with the name of the species attributed to this leaf is
assigned to vertex v.

We have selected the pd(х) and pl(х) dependencies
so that the number of different events during evolu�
tion, as well as their distribution along the tubes, were
close to those observed after nesting of biological OPG
trees into natural species trees. The appropriate data
were taken from reports [4, 5, 11] and our own unpub�
lished data. Of course, more extensive data are
required for the adequate reconstruction of these dis�
tributions, and distortions caused by the evolution sce�
nario should be taken into account.

Thus, in all tests, the S ' tree obtained by merging
the basis trees was expected to match or be close to the
S supertree known for these special conditions. Of

course, the S supertree was not specified for the algo�
rithm; it was only used when comparing S ' and S. As
input data, the algorithm received only a set of gene
trees {Gi}, which was modeled from the S tree.

1. Reconstruction of an artificial balanced binary
tree with 64 leaves. In this example, S is a balanced
binary species tree with 64 leaves. The values of the
aforementioned probabilities were the following: pd
decreased gradually from the root tube to the leaf tubes
from 0.3 to 0.01 (this was not accompanied by an
increase in numerous paralogs); pl decreased gradually
from the root tubes to the leaf tubes from 0.5 to 0.25
(near the root, the probability is higher for the gene to
leave no descendants capable of reaching the leaves).
For balanced trees, in which the lengths of all paths
from their roots to leaves are equal (in this point and in
point 3 thereafter), both pd and pl values were analyti�
cally given. Namely, suppose that х is a tube and ρ(х) is
the number of tubes before х (inclusively), beginning
from the root tube. Note that |V0|, which is the number
of leaves in the desired S tree, is designated b =
(log2|V0|) + 1). Then pd and pl represent a linear func�
tion; on the segment [1, b] or [2, b], it is determined by
the values at the ends of the same segment, which are
specified above (the second figure is the value of b).

Thus, a set of 1000 artificial trees has been gener�
ated, in which the number of leaves ranged from 32 to
96; on average, 70 leaves and 39 species occur on one
tree. On average, 16 duplications and 37 losses fall on
one tree. After inputting the generated trees into our
program, the algorithm restored accurately the origi�
nal species tree. Each test was repeated 20 times.

2. Reconstruction of a natural bacterial tree with
40 leaves. This supertree S was taken from a previous
study (Fig. 4) [5] and used for the generation of a set of
gene trees as in the previous example. The following
values of the probabilities of the events were taken: pd
and pl decreased gradually from the root to the leaves
within the ranges 0.1 to 0.01 and 0.5 to 0.25, respec�
tively. In its topology, this tree is closer to a “comb”
than to a balanced tree; therefore, the probability of
duplication is reduced as compared to example 1, and
the number of duplications is not too large in compar�
ison with known evolutionary scenarios. For unbal�
anced trees (in this point and in point 4 thereafter), the
more complex pd and pl values were taken. First, bal�
anced +S trees were constructed for the S trees indi�
cated in these points by means of dividing the original
tubes with new vertices with one descendant each; the
meaning of such a partition has been discussed previ�
ously [5] (section Algorithms of Constructing the
Internal Tree and Temporal Layers, item c). The algo�
rithm described in the section has been used for this
purpose. Then the pd and pl values were calculated
using the above linear function for the +S tree. Note
that the S ' tree obtained from the {Gi} set, which was
reconstructed from +S, was compared with the S tree,
because our algorithm of supertree reconstruction
determines a tree just within bifurcations.
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In this manner, a set of 1000 artificial gene trees was
generated, which contained from 30 to 60 leaves (on
average, 51 leaves and 31 species per tree). On average,
15 duplications and 29 losses occur on one tree. After
inputting the generated set of trees into the program,
the algorithm accurately restored the original species
tree. This test was repeated 20 times.

3. Reconstruction of an artificial balanced binary
tree with 128 leaves. In this case, generation of gene
trees from the given S supertree occurred similarly and
with the same probability as in example 1. In this man�
ner, 1000 artificial gene trees were generated, in which
the number of leaves ranged from 64 to 192 (on aver�
age, a tree contained 146 leaves and 77 species). On
average, 33 duplications and 79 losses occur on one
tree. After inputting the generated set of trees into the
program, the algorithm produced a tree, which coin�
cided with the original one. This test was repeated
20 times.

4. Reconstruction of a natural species tree with
169 leaves. In this case, the set of trees was constructed
as in the preceding examples, i.e., along the natural S
supertree with 169 leaves (see the report of Pisani et al.
[1], Fig. 1). The probability values were the same as in
example 2. In this manner, 1500 artificial gene trees
were generated, in which the number of leaves ranged
from 120 to 200 (on average, one tree contained
170 leaves and 130 species). On average, 70 duplica�
tions and 107 losses occur on one tree. The algorithm
restored the original tree with 169 leaves. This test was
repeated 20 times.

CONCLUSIONS

We propose a new formulation of the problem of
reconstruction of a species supertree on the basis of a
set of protein (gene) trees; namely, we assumed that
most clades of the desired species tree are represented
in at least one protein tree from the original set; there�
fore, the search for the supertree is conducted among
the species trees, most clades of which are represented
in at least one of the original protein trees. For the pur�
pose of supertree reconstruction, we developed a new
heuristic algorithm of an almost quadratic complexity.
In the case of the evolutionary scenario without hori�
zontal transfers, this algorithm proved to solve accu�
rately the task and has a cubic complexity when the
initial data are the worst [7]. The case of horizontal
transfer has been previously discussed by us [7]. In our
tests, a set of protein trees has been reconstructed from
some or other species tree by modeling the process of
gene evolution along this tree. Using a set of protein
trees obtained by this method, our algorithm recon�
structed the original supertree; the reconstruction
process was rapid, and it restored accurately the super�
tree. The results of tests, where biological data were
used, are described in the supplementary materials

(item 6). The assumption itself seems to be natural
when considering various biological problems.
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