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Preface to ”Mathematical Logic and Its Applications

2020”

This Special Issue contains articles representing three directions: Descriptive set theory (DTM),

exact polynomial complexity algorithms (EPA), and applications of mathematical logic and algorithm

theory (Appl). We will say a few words about each of the directions.

In accordance with the classical description of Nicolas Luzin, DTM considers simple properties

of simple sets of real numbers R. “Simple” sets are Borel sets (the smallest family containing

open and closed sets in Rn and closed with respect to the operations of countable union and

countable intersection) and projective sets (the smallest family containing Borel sets and closed

with respect to the operations of projecting from Rn to Rm, m < n, and the complement

to the whole space). The question of what is a “simple” property is more complicated, but it

is not important, since in fact we study a small list of individual properties, including the

Lebesgue measurability, Baire property1, and the individual definability of a set, function, or real.

The latest means that there is a formula that holds for a given real number and for no others.

This depends on the class of formulas allowed. Such a natural class consists of formulas of the

form ∀x1 ∃y1 ∀x2 ∃y2 . . . ∀xn ∃yn ψ(x1, y1, . . . , xn, yn, x), where the variables x1, y1, . . . , xn, yn, x run

through the whole R, and the elementary part ψ(x1, y1, . . . , xn, yn, x) is any arithmetic formula (which

contains any quantifiers over the natural numbers, as well as equalities and inequalities that connect

the superpositions of operations from the semiring of natural numbers). To date, the development of

DTM leads to a non-trivial general cultural conclusion: every real number is definable (using countable

ordinals2) or random; in the latter case it does not possess any non-trivial properties. This implies that

there are absolutely undecidable statements3; as well as surprising connections between seemingly

very different absolutely undecidable ones. For example, the measurability implies the Baire property

for a wide class of sets. The first three articles belong to this direction. In particular, they solve the

well-known problem (1948) of A. Tarski on the definability of the notion of definability itself, and

prove the statement (1975) of H. Friedman.

The EPA section contains an article contributing a solution for the meaningful combinatorial and,

at first glance, complicated algorithmic problem of optimization of the functional given on paths of

passing from one graph to another. It is solved by an algorithm of linear complexity, being at the

same time exact. The latter means that for any input data, that is for any ordered pair of graphs A

and B, accompanied by costs of elementary graph transformations, the algorithm produces exactly

the minimal value of the above functional (i.e., the minimum distance between A and B and the

minimum path itself from A to B).

Here the complexity of the problem turned into the logical complexity of this, albeit linear,

algorithm. Our goal was to draw attention to the search for, and possible discussion of, algorithmic

problems that seem to require exhaustive search but are actually solved by exact algorithms of

low polynomial complexity. This ensures their practical significance when working with large data

(terabyte and larger sizes).

The Appl section contains two articles. First of them is devoted to the application of

non-standard analysis (and other logical methods) to the problems of isomorphism in algebra and

mathematical physics (the Jacobian and M. Kontsevich’s conjectures, and algorithmic undecidability).

The second is devoted to the application of logical and algorithmic approaches to the problem of

theoretical medicine — a quantitative description of the balance and the adaptive resource of a human

ix



that determines his resistance to external influences. Applied problems in which logic and theory of

algorithms have shown their usefulness could be of interest.

The Editorial Board of Mathematics (WoS: Q1) has announced the preparation of the issue

“Mathematical Logic and Its Applications 2021”; contributions in these directions and especially in

other ones of this huge mathematical area, including various applications, are invited.

1) The Baire property of a set X says that there is an open set U such that the symmetric difference

X Δ U is a meager set (the union of a countable number of nowhere-dense sets).

2) Countable ordinals are the natural numbers themselves and their natural extension: taking the

limit over all natural numbers we get ω, adding +1 to it consecutively and taking the limit yet

again we get ω + ω = ω · 2, and so on. Each time, the limit is taken over a countable sequence.

3) This means that a natural statement about measurability (or other simple subjects) cannot

be proved or disproved in the natural set theory of ZFC, which seems to contain all the

mathematics used in physics, biology, computer science, and engineering.

Vassily Lyubetsky, Vladimir Kanovei

Editors
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Abstract: Models of set theory are defined, in which nonconstructible reals first appear on a given
level of the projective hierarchy. Our main results are as follows. Suppose that n ≥ 2. Then: 1. If it
holds in the constructible universe L that a ⊆ ω and a /∈ Σ1

n ∪Π1
n , then there is a generic extension

of L in which a ∈ Δ1
n+1 but still a /∈ Σ1

n ∪Π1
n , and moreover, any set x ⊆ ω , x ∈ Σ1

n , is constructible
and Σ1

n in L . 2. There exists a generic extension L in which it is true that there is a nonconstructible
Δ1

n+1 set a ⊆ ω , but all Σ1
n sets x ⊆ ω are constructible and even Σ1

n in L , and in addition, V = L[a]
in the extension. 3. There exists an generic extension of L in which there is a nonconstructible
Σ1

n+1 set a ⊆ ω , but all Δ1
n+1 sets x ⊆ ω are constructible and Δ1

n+1 in L . Thus, nonconstructible
reals (here subsets of ω ) can first appear at a given lightface projective class strictly higher than
Σ1

2 , in an appropriate generic extension of L . The lower limit Σ1
2 is motivated by the Shoenfield

absoluteness theorem, which implies that all Σ1
2 sets a ⊆ ω are constructible. Our methods are based

on almost-disjoint forcing. We add a sufficient number of generic reals to L , which are very similar at
a given projective level n but discernible at the next level n + 1.

Keywords: definability; nonconstructible reals; projective hierarchy; generic models; almost
disjoint forcing

MSC: 03E15; 03E35

1. Introduction

Problems of definability and effective construction of mathematical objects have always been in
the focus of attention during the development of mathematical foundations. In particular, Hadamard,
Borel, Baire, and Lebesgue, participants of the discussion published in [1], in spite of significant
differences in their positions regarding problems of mathematical foundations, emphasized that a
pure existence proof and a direct definition (or an effective construction) of a mathematical object
required are different mathematical results, and the second one of them does not follow from the
first. Problems of definability and effectivity are considered in such contemporary monographs on
foundations as [2–5]. Moschovakis, one of founders of modern set theory, pointed in [6] (p. xiv), that

the central problem of descriptive set theory and definability theory in general [is] to find
and study the characteristic properties of definable objects.

The general goal of the research line of this paper is to explore the existence of effectively definable
structures in descriptive set theory on specific levels of the projective hierarchy. One of the directions
here is the construction of set theoretic models, in which this or another problem is decided, at a
predefined projective level n , differently than it is decided in L , Gödel’s constructible universe,
or, that is equivalent, by adding the axiom of constructibility, dubbed V = L .

Mathematics 2020, 8, 910; doi:10.3390/math8060910 www.mdpi.com/journal/mathematics1
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Such set theoretic models are usually defined as generic extensions of L itself. Any such a generic
extension leads to consistency and independence results in set theory, because if a sentence Φ holds in
L or in a generic extension of L then Φ is consistent with the axioms of ZFC , the Zermelo–Fraenkel
set theory (with the axiom of choice AC).

As a first, and perhaps most immediately interesting problem of this sort, in this paper, we consider
the problem of the existence of effectively definable (that is, occurring in one of lightface classes Σ1

n
of the projective hierarchy) but nonconstructible reals. It follows from Shoenfield’s absoluteness
theorem [7] that every (lightface) Σ1

2 set x ⊆ ω belongs to L . Generic models, in which there exist
nonconstructible reals on effective levels of the projective hierarchy higher than Σ1

2 , were defined
in the early years of forcing; see a brief account in [8]. This culminated in two different generic
extensions [9,10] containing a nonconstructible Π1

2 singleton, hence, a Δ1
3 set a ⊆ ω . (We are

concentrated on generic extensions of L in this paper, and therefore leave aside another research line,
related to models with large cardinals, with many deep and fruitful results connected, in particular,
with properties of Π1

2 singletons, see e.g., [11–13]).
Then it was established in [14] that for any n ≥ 2 there is a generic extension of L in which there

exists a nonconstructible Δ1
n+1 real a ⊆ ω , but all Σ1

n sets x ⊆ ω are constructible. Our motivation
here is to further extend this research line. The next three theorems are the main results in this paper.

Theorem 1. If n ≥ 2 and b ⊆ ω , b /∈ Σ1
n ∪Π1

n , then there is a generic extension of L in which b ∈ Δ1
n+1

but still b /∈ Σ1
n ∪Π1

n , and moreover, any set x ⊆ ω , x ∈ Σ1
n , is constructible and Σ1

n in L .

Theorem 1 shows that being at a certain lightface projective level is hardly an intrinsic property of
a constructible real, unless it is already at that level in L . The theorem definitely fails for n = 1 since
being Δ1

2 is an ablosute property of a real by the Shoenfield absoluteness theorem.

Theorem 2. If n ≥ 2 , then there exists a generic extension of the universe L in which it is true that

(i) there is a nonconstructible Δ1
n+1 set a ⊆ ω , but all Σ1

n sets x ⊆ ω are constructible and Σ1
n in L ;

(ii) we can strengthen (i) by the requirement that V = L[a] in the extension.

Theorem 3. If n ≥ 2 then there exists an extension of L in which there is a nonconstructible Σ1
n+1 set a ⊆ ω

but all Δ1
n+1 sets x ⊆ ω are constructible and Δ1

n+1 in L .

The common denominator of Theorems 2 and 3 is that nonconstructible reals can first appear
at a given lightface projective class strictly higher than Σ1

2 , in an appropriate generic extension of L .
The lower limit Σ1

2 is motivated by the Shoenfield absoluteness theorem.
The generic models, which we define to prove the main theorems, make use of modifications of

the almost-disjoint forcing by Jensen–Solovay [9].
Some other recent results can be mentioned here, which resemble Theorems 1–3 in that they

give models in which a particular property of some kind holds at a certain pre-selected level of the
projective hierarchy. Yet they are different in that they use modifications of Jensen’s minimal Π1

2
singleton forcing [10] and its finite-support products first considered by Enayat [15], as well as its
collapse-style modification by Abraham [16], rather than the almost-disjoint forcing.

• A model defined in [17], in which, for a given n ≥ 2, there is a (lightface) Π1
n Vitali equivalence

class in the real line R (that is, a set of the form x + Q in R ), containing no OD (ordinal definable)
elements, and in the same time every countable Σ1

n set consists of OD elements.
• A model in [18], in which, for a given n ≥ 2, there is a Π1

n singleton {a} , such that a codes a
collapse of ωL

1 , and in the same time every Σ1
n set a ⊆ ω is still constructible.

• A model defined in [19], in which, for a given n ≥ 2, there is a Π1
n non-OD-uniformizable planar

set with countable cross-sections, and at the same time, every Σ1
n set with countable cross-sections

is OD-uniformizable.

2
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Organization of the Paper

Our plan of the proofs of the main results will be to construct, in L , a sequence of forcing notions
P(ν) , ν < ω1 , satisfying the following three key conditions.

1. P(ν) are sufficiently homogeneous and independent of each other in the sense that, for any ν0 ,
there are no P(ν0)-generic reals in a (∏ν �=ν0

P(ν))-generic extensions of L .
2. The property of a real x being P(ν)-generic over L is Π1

n as a binary relation, where n ≥ 2 is a
number chosen in Theorems 1–3.

3. A condition which makes P(ν)-generic reals for different values ν < ω1 undistinguishable from
each other below the Π1

n definability level (at which they are distinguishable by condition 2).

Each P(ν) will be a forcing notion of almost-disjoint type, determined by a set U(ν) ⊆ ωω .
To make the exposition self-contained, we review some basic details related to almost-disjoint forcing,
finite-support products, and related generic extensions, taken mainly from [9], in Sections 2 and 3.

Having the construction of P(ν) , ν < ω1 , accomplished in Section 4, the proof of, e.g., Theorem 1
(Section 7.1) is performed as follows. Let b ∈ L , b ⊆ ω be chosen as in Theorem 1 for a given n ≥ 2.
We consider a P-generic extension L[G] of L , where P = ∏i<ω P(i) . Let ai ⊆ ω be the P(i)-generic
real generated by the i th projection Gi of G ; these reals are nonconstructible and L[G] = L[{ai}i<ω ] .
Let z = {0} ∪ {2k : k ∈ b} ∪ {2k + 1 : k /∈ b} Consider the subextension L[{ai}i∈z] . Then it is true in
L[{ai}i∈z] by condition 1, that

b = {k < ω : there exist P(2k)-generic reals}
= {k < ω : there are no P(2k + 1)-generic reals} ,

so using condition 2, we easily get b ∈ Δ1
n+1 in L[{ai}i∈z] . A similar construction (but with b being

generic over L ) was carried out in the early years of forcing in [9] for n = 2, which is the least possible
value. In the case n = 2, the fact, that all Σ1

2 sets x ⊆ ω in the extension belong to L and are Σ1
2 in L ,

is guaranteed by the Shoenfield absoluteness theorem.
If n ≥ 3, then the Shoenfield absoluteness argument does not work, of course. Still we can argue

that any lightface Σ1
n set x ⊆ ω in L[{ai}i∈z] belongs to L by the general forcing theory, because

the product forcing Pz = ∏i∈z P(i) ∈ L is homogeneous by condition 1. However this does not
immediately imply the lightface definability of b in L , as Pz is defined via z , hence via b . To solve
this difficulty, we make use of condition 3 to prove another absoluteness property: Σ1

n formulas
turn out to be absolute between L[{ai}i∈z] and the entire extension L[G] = L[{ai}i<ω ] , which is an
P-generic extension of L . Here P = ∏i<ω P(i) is a parameter-free definable forcing in L , leading to
the parameter-free definability of b in L . There are two issues here that need to be explained.

First, how to secure condition 3 in a sufficiently effective form. To explain the main technical
device, we recall that by [9] the system of forcing notions P(ν) is the result of certain transfinite
ω1 -long construction of assembling it from countable fragments in L . The construction can be viewed
as a maximal branch in a certain “mega-tree”, say T , whose nodes are such countable fragments, and
each of them is chosen to be the Gödel-least appropriate one over the previous one. The complexity
of this construction is Δ1

2 in the codes, leading in [9] to the Π1
2 definability of the property of being

generic, as in condition 2, in case n = 2.
To adapt this construction for the case n ≥ 3, our method requires us to define a maximal

branch in T that intersects all dense sets in T of class Σ1
n−1 . Such a construction is carried out in

Section 4. This genericity-like condition of meeting all dense Σ1
n−1 sets, results in the Π1

n definability
of the property of being generic in condition 2, and also yields condition 3, since the abundance of
order automorphisms of the “mega-tree” T (including those related to index permutations) allows to
establish some homogeneity properties of a certain auxiliary forcing-style relation.

This auxiliary forcing-style relation, defined and studied in Sections 5 and 6. The auxiliary
relation approximates the truth in P′ -generic extensions, as L[{ai}i∈z] above, up to Σ1

n formulas,

3
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but, unlike the ordinary P′ -forcing relation, is sufficiently homogeneous. In particular, it helps to
obtain the mentioned absoluteness property. This will allow us to accomplish the proof of the main
results, Theorem 1 together with part (i) of Theorem 2 in Section 7, part (ii) of Theorem 2 in Section 8,
Theorem 3 in Section 9. The flowchart can be seen in Figure 1.

The flowchart can be seen in Figure 1. And we added the index and contents as Supplementary
Materials for easy reading.

ALMOST DISJOINT FORCING
PRELIMINARIES, 2.1, 2.2

PRODUCT ALMOST
DISJOINT FORCING, 3.1-3.6

TRANSFORMATIONS
OF A. D. FORCING, 2.3, 2.4

TRANSFORMATIONS
OF PRODUCT

A. D. FORCING, 3.7, 3.8

BASIC FORCING
NOTION, 4.1–4.4

FORCING
APPROXIMATIONS

Section 5

BASIC GENERIC EXTENSION
and SUBEXTENSIONS, 4.5 ELEMENTARY EQUIVALENCE

THEOREM, Section 6

THEOREM 1,
7.1

THEOREM 2,
7.2, 7.3, Section 8

THEOREM 3,
Section 9

CONCLUSION,
SOME FURTHER RESULTS,

Section 10

Figure 1. Flowchart.

General Set-Theoretic Notation Used in This Paper

• ω = {0, 1, 2, . . .} : natural numbers; ω2 = ω×ω .
• X ⊆ Y iff ∀ x (x ∈ X =⇒ x ∈ Y) : the inclusion.
• X � Y means that X ⊆ Y but Y �⊆ X : strict inclusion.
• card X is the cardinality of a set X, equal to the number of elements of X in case X is finite.
• dom P = {x : ∃ y (〈x, y〉 ∈ P)} and ran P = {y : ∃ x (〈x, y〉 ∈ P)} — the domain and range of any

set P that consists of pairs.
• In particular if P = f is a function then dom f and ran f are the domain and the range of f .

4



Mathematics 2020, 8, 910

• Functions are identified with their graphs: if P = f is a function then f = {〈x, f (x)〉 : x ∈ dom f },
so that y = f (x) is equivalent to 〈x, y〉 ∈ f .

• f [X] = { f (x) : x ∈ X ∩ dom f } , the f -image of X .
• f−1[Y] = {x ∈ dom f : f (x) ∈ Y} , the f -pre-image of a set Y .
• f−1(y) = {x ∈ dom f : f (x) = y} , the f - pre-image of an element y .
• Δ is the symmetric difference.
• {xa}a∈A is the map f defined on A by f (a) = xa , ∀ a .
• P (X) = {x : x ⊆ X} , the power set.
• X<ω is the set of all strings (finite sequences) of elements of a set X.
• In particular ω<ω is the set of strings of natural numbers.
• lh s < ω is the length of a string s .
• s�x is the string obtained by adjoining x as the rightmost term to a given string s.
• s ⊂ t means that the string t is a proper extension of s .
• ∅ = Λ is resp. the empty set and the empty string.
• ωω is the Baire space.

2. Almost Disjoint Forcing

In this section, we review basic definitions and results related to almost disjoint forcing, as well as
some rarely used results related, for instance, to symmetries of almost disjoint forcing notions.

Assumption 1. In this paper, we assume that L is the ground universe. Thus all forcing notions are defined in
L while all generic extensions are those of L . (In fact many intermediate results remain true w.r. t. any ground
universe.)

2.1. Almost Disjoint Forcing

We present this forcing in a form based on the fact that the set Fun of all functions f : ω → ω

is almost disjoint in the sense that if f �= g belong to Fun then the infinite sets { f �m : m ∈ ω} and
{g�m : m ∈ ω} of finite strings have a finite intersection.

Definition 1. Seq = ω<ω � {Λ} = all finite non-empty strings of natural numbers. A recursive enumeration
ω<ω = {sk : k ∈ ω} is fixed, such that s0 = Λ , the empty string, and sk ⊆ s� =⇒ k � � . Thus
Seq = ω<ω � {Λ} = {sk : k ≥ 1} . For any s = sk , we let num s = k; in particular numΛ = 0 .

Fun = ωω = all infinite sequences of natural numbers. A set X ⊆ Fun is dense iff for any s ∈ Seq there
is f ∈ X such that s ⊂ f .

Let S ⊆ Seq , f ∈ Fun . If the set S/ f = {n : f �n ∈ S} is infinite then we say that S covers f ,
otherwise S does not cover f .

We underline that Λ , the empty string, does not belong to Seq .
Given a set u ⊆ Fun in the ground universe, the general goal of almost disjoint forcing is to find

a generic set S ⊆ Seq such that the equivalence

f ∈ u ⇐⇒ S does not cover f (1)

holds for each f ∈ Fun in the ground universe. This goal will be achieved by a forcing P[u] introduced
in Definition 4. In fact P[u] will be a part, determined by u , of a common reservoir P∗ .

Definition 2. P∗ is the set of all pairs p = 〈Sp ; Fp〉 of finite sets Fp ⊆ Fun , Sp ⊆ Seq . Elements of P∗ will
sometimes be called (forcing) conditions. If p ∈ P∗ then put F∨p = { f �n : f ∈ Fp ∧ n ≥ 1} . The set F∨p is an
infinite (or else F∨p = Fp = ∅) tree in Seq , without terminal nodes.

Definition 3 (order). Let p, q ∈ P∗ . We define q ≤ p (q is stronger) iff Sp ⊆ Sq , Fp ⊆ Fq , and the difference
Sq � Sp does not intersect F∨p , that is, Sq ∩ F∨p = Sp ∩ F∨p .

5
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Thus any condition p ∈ P∗ is a pair that consists of a “finite” component Sp and an “infinite”
component Fp . Either of the components is a finite set (possibly, empty), but Sp consists of finite
strings of integers while Fp consists of infinite sequences of integers that will be called functions (from
ω to ω ). Both components of a stronger condition q , naturally, increase, but strings t ∈ Sq � Sp must
satisfy t /∈ F∨p —in other words, t is not a substring of any function (infinite sequence) f ∈ Fp .

If p ∈ P∗ then both 〈∅ ; Fp〉 and 〈Sp ; ∅〉 belong to P∗ and p ≤ 〈Sp ; ∅〉 , but p ≤ 〈∅ ; Fp〉 may
fail. In fact p ≤ 〈∅ ; Fp〉 iff Sp ∩ F∨p = ∅ .

Lemma 1. Conditions p, q ∈ P∗ are compatible in P∗ iff 1) Sq � Sp does not intersect F∨p , and 2) Sp � Sq

does not intersect F∨q . Therefore, any p, q ∈ P∗ are compatible in P∗ iff p ∧ q ≤ p and p ∧ q ≤ q.

Proof. The pair p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 is a condition in P∗ . Moreover if 1) and 2) hold then we
have p ∧ q ≤ p and p ∧ q ≤ q , thus p, q are compatible.

Now let us introduce a relativized version of P∗ . The parameter of relativization will be an
arbitrary set u ⊆ Fun served as a reservoir of functions allowed to occur in sets Fp .

Definition 4. If u ⊆ Fun then put P[u] = {p ∈ P∗ : Fp ⊆ u} .

Note that if p , q ∈ P[u] then p∧ q ∈ P[u] . Thus in this case if conditions p , q are compatible in P∗

then they are compatible in P[u] , too. Therefore, we will say that conditions p , q ∈ P∗ are compatible
(or incompatible) without an indication which set P[u] containing both conditions is considered.

Lemma 2. If u ⊆ Fun then P[u] is a ccc forcing.

Proof. If Sp = Sq then p and q are compatible by Lemma 1. However there are only countably many
sets of the form Sp .

2.2. Almost-Disjoint Generic Extensions

Fix, in L , a set u ⊆ Fun and consider a P[u]-generic extension L[G] of the ground (constructible by
Assumption 1) set universe L , obtained by adjoining a P[u]-generic set G ⊆ P[u] . Put SG =

⋃
p∈G Sp ;

thus SG ⊆ Seq . The next lemma reflects the idea of almost-disjoint forcing: elements of u are
distinguished by the property of SG not covering f in the sense of Definition 1.

Lemma 3. Suppose that u ⊆ Fun in the universe L , and G ⊆ P[u] is a set P[u]-generic over L . Then

(i) G belongs to L[SG] ;
(ii) if f ∈ Fun∩ L then f ∈ u iff SG does not cover f ;

(iii) if p ∈ P[u] then p ∈ G iff sp ⊆ SG ∧ (SG � sp) ∩ (F∨p ∪ S∨p ) = ∅ .

Proof. (ii) Let f ∈ u . The set Df = {p ∈ P[u] : f ∈ Fp} is dense in P[u] . (Let q ∈ P[u] . Define
p ∈ P[u] so that Sp = Sq and Fp = Fq ∪ { f } . Then p ∈ Df and p � q .) Therefore Df ∩ G �= ∅ . Pick
any p ∈ Df ∩ G . Then f ∈ Fp . Now every r ∈ G is compatible with p , and hence Sr/ f ⊆ Sp/ f by
Lemma 1. Thus SG/ f = Sp/ f is finite.

Let f /∈ u . The sets Df l = {p ∈ P[u] : sup(Sp/ f ) > l} are dense in P[u] . (If q ∈ P[u] then Fq

is finite. As f /∈ u , there is m > l with f �m /∈ F∨q . Define p so that Fp = Fq and Sp = Sq ∪ { f �m} .
Then p ∈ Df l and p � q .) Let p ∈ Df l ∩ G . Then sup(SG/ f ) > l . As l is arbitrary, SG/ f is infinite.

(iii) Consider any p ∈ P[u] . Suppose that p ∈ G . Then obviously sp ⊆ SG . If there exists
s ∈ (SG � Sp) ∩ F∨p then by definition we have s ∈ Sq for some q ∈ G . However, then p, q are
incompatible by Lemma 1, a contradiction.

Now suppose that p /∈ G . Then there exists q ∈ G incompatible with p . By Lemma 1, there are
two cases. First, there exists s ∈ (Sq � Sp) ∩ F∨p . Then s ∈ SG � Sp , so p is not compatible with SG .

6
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Second, there exists s ∈ (Sp � Sq) ∩ F∨q . Then any condition r ≤ q satisfies s /∈ Sr . Therefore s /∈ SG ,
so Sp �⊆ SG , and p is not compatible with SG .

(i) G = {p ∈ P[u] : sp ⊆ SG ∧ (SG � sp) ∩ F∨p = ∅} by (iii).

2.3. Lipschitz Transformations

Let Lip be the group of all ⊆-automorphisms of Seq ; these transformations may be called
Lipschitz by obvious association. Any λ ∈ Lip preserves the length lh of finite strings, that is,
lh s = lh (λ · s) for all s ∈ Seq . Define the action of any transformation λ ∈ Lip on:

– finite strings s ∈ Seq by: λ · s = λ(s) ;
– functions f ∈ Fun : λ · f ∈ Fun is defined so that (λ · f )�m = λ ·( f �m) ;
– sets S ⊆ Seq , F ⊆ Fun by: λ ·S = {λ · s : s ∈ S} , λ ·F = {λ · f : f ∈ F} ;
– conditions p ∈ P∗ , by: λ · p = 〈λ ·Sp ; λ ·Fp〉 .

Lemma 4 (routine). The action of any λ ∈ Lip is an order-preserving automorphism of P∗. If u ⊆ Fun and
p ∈ P[u] then λ · p ∈ P[λ ·u] .

Lemma 5. Suppose that u, v ⊆ Fun are countable sets topologically dense in Fun , and p ∈ P[u] , q ∈ P[v] .
Then there is λ ∈ Lip and conditions p′ ∈ P[u] , p′ ≤ p and q′ ∈ P[v] , q′ ≤ q, such that λ ·u = v, and
λ · p′ = q′ — therefore conditions λ · p and q are compatible in P[v] .

Proof. Put bas r = {s(0) : s ∈ Sr} ∪ { f (0) : f ∈ Fr} for any r ∈ P∗ ; bas r ⊆ ω is finite. Let M < ω

satisfy bas p ∪ bas q ⊆ M . Because of density, for any i < M there exist fi ∈ u and gi ∈ u′ such that
fi(0) = i and gi(0) = M + i .

For any f �= g ∈ Fun , let N( f , g) be the largest n with f �n = g�n .
We will define enumerations u = { fk : k < ω} and u′ = {gk : k < ω} , without repetitions,

which agree with the above definition for k < M and satisfy N( fk, fl) = N(gk, gl) for all k , l , and
gk(0) = fk(0) for all k ≥ M . As soon as this is accomplished, define λ ∈ Lip as follows. Consider any
s ∈ Seq of length m = lh s . As u is dense, s = fk�m for some k . Put λ(s) = gk�m . Clearly λ ·u = u′ ,
and in particular λ · fk = gk for all k , and hence

(∗) if k < M then λ(〈k〉) = 〈M + k〉 and λ(〈M + k〉) = 〈k〉 , but if k ≥ 2M then λ(〈k〉) = 〈k〉 .

Now to define q′ put r′ = λ · p . Then r′ ∈ P[v] , and bas r′ = β · bas p ⊆ ω � M by (∗), since
bas p ⊆ M . Therefore, bas r′ ∩ bas q = ∅ because bas q ⊆ M as well. It follows that conditions r′ and
q are compatible in P[v] , and hence condition q′ = r′ ∧ q (that is, Sq′ = Sr′ ∪ Sq and Xq′ = Xr′ ∪ Xq )
belongs to P[v] , and obviously q′ ≤ q . Pretty similarly, to define q , we put r = λ−1 ·q ∈ P[u] , thus
bas r ⊆ ω � M , bas r ∩ bas p = ∅ , conditions r , p are compatible, condition p′ = p ∧ r (that is,
Sp′ = Sp ∪ Sr and Xp′ = Xp ∪ Xr ) belongs to P[u] , and p′ ≤ p . Note that q = λ ·r and r′ = λ · p by
construction. It follows that q′ = r′ ∧ q = λ ·(p ∧ r) = λ · p′ , as required.

To define fk and gk by induction, suppose that k ≥ M , f0, . . . , fk−1 and g0, . . . , gk−1 are defined,
and N( fi, f j) = N(gi, gj) holds in this domain. Consider any next function f ∈ u � { f0, . . . , fk−1} , and
let it be fk . There are functions g ∈ Fun satisfying N( f j, fk) = N(gj, g) for all j < k . This property of
g is determined by a certain finite part g�m . By the density the set v contains a function g of this type.
Let gk be any of them. In the special case when N( f j, fk) = 0 for all j < k (then k ≥ 2M ), we take any
gk ∈ v satisfying N( f j, fk) = 0 for all j < k and gk(0) = fk(0) .

2.4. Substitution Transformations

The next lemma (Lemma 6) will help to prove that the forcing notions considered are sufficiently
homogeneous. Assume that p, q ∈ P∗ satisfy the following requirement:

Fp = Fq and Sp ∪ Sq ⊆ F∨p = F∨q . (2)

7
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We define a transformation Hp
q acting as follows. Let p′ ∈ P∗ , p′ ≤ p . Then by definition

Sp ⊆ Sp′ , Fp ⊆ Fp′ , and Sp′ ∩ F∨p = Sp (by (2)). We put Hp
q (p′) = q′ := 〈Sq′ , Fq′ 〉 , where Fq′ = Fp′ and

Sq′ = (Sp′ � Sp) ∪ Sq . Thus the difference between Sq′ and Sp′ lies entirely within the set F∨p = F∨q ,
and in particular Sq′ has Sq there while Sp′ has Sp there.

Lemma 6 (routine). If p, q ∈ P∗ , Fp = Fq , and Sp ∪ Sq ⊆ F∨p = F∨q , then

Hp
q : P = {p′ ∈ P∗ : p′ ≤ p} onto−→ Q = {q′ ∈ P∗ : q′ ≤ q}

is an order isomorphism, and Hp
q = (Hq

p)
−1. If moreover u ⊆ Fun and p , q ∈ P[u] then Hp

q maps the set
{p′ ∈ P[u] : p′ ≤ p} onto {q′ ∈ P[u] : q′ ≤ q} order-preservingly.

3. Almost Disjoint Product Forcing

Here we review the structure and basic properties of product almost-disjoint forcing over L and
corresponding generic extensions of L . In order to support various applications, we make use of ω1-
many independent forcing notions.

3.1. Product Forcing, Systems, Restrictions

We begin with ω1-products of P∗ after which we consider more complicated forcing notions.

Definition 5. Let I = ω1 . This is the index set for the forcing products considered below. Let P∗ be the
product of I copies of the set P∗ (Definition 2), with finite support. That is, P∗ consists of all functions
p : |p| → P∗ such that the set |p| = dom p ⊆ I is finite.

If p ∈ P∗ then put Fp(ν) = Fp(ν) and Sp(ν) = Sp(ν) for all ν ∈ |p| , so that p(ν) = 〈Sp(ν) ; Fp(ν)〉 .
We order P∗ componentwise: p ≤ q iff |q| ⊆ |p| and p(ν) ≤ q(ν) for all ν ∈ |q| . Put

F∨p (ν) = F∨p(ν) = { f �m : f ∈ Fp(ν) ∧m ≥ 1}.

If p, q ∈ P∗ then define a condition r = p ∧ q ∈ P∗ so that |p ∧ q| = |p| ∪ |q| , (p ∧ q)(ν) =

p(ν) ∧ q(ν) whenever ν ∈ |p| ∩ |q| , and if ν ∈ |p|� |q| or ν ∈ |q|� |p| , then (p ∧ q)(ν) = p(ν) , resp.,
(p ∧ q)(ν) = q(ν) . Then Conditions p, q are compatible iff p ∧ q ≤ p and p ∧ q ≤ q .

We consider certain subforcings of the total product almost disjoint forcing notion P∗ .
This involves the following notion of a system.

Definition 6. A system is any map U : |U| → P (Fun) such that |U| ⊆ I and each set U(ν) (ν ∈ |U|) is
topologically dense in Fun . A system U is:

• disjoint, if its components U(ν) ⊆ Fun (ν ∈ I) are pairwise disjoint;
• countable, if the set |U| and each U(ν) (ν ∈ |U|) are at most countable.
• If U, V are systems, |U| ⊆ |V| , and U(ν) ⊆ V(ν) for all ν ∈ |U| then we write that V extends U , in

symbol U � V .
• If {Uξ }ξ<λ is a sequence of systems then define a system U =

∨
ξ<λ Uξ by |U| = ⋃

ξ<λ |Uξ | and
U(ν) =

⋃
ξ<λ,ν∈|Uξ | Uξ(ν) for all ν ∈ |U| .

• If U is a system then let P[U] be the finite support product of sets P[U(ν)] , ν ∈ |U| , that is, P[U] =

{p ∈ P∗ : |p| ⊆ |U| ∧ ∀ ν (Fp(ν) ⊆ U(ν))} .

Definition 7 (restrictions). Suppose that c ⊆ I .
If p ∈ P∗ then define p′ = p� c ∈ P∗ so that |p′| = c ∩ |p| and p′(ν) = p(ν) whenever ν ∈ |p′| .

Accordingly if U is a system then define a system U� c so that |U� c| = c ∩ |U| and (U� c)(ν) = U(ν) for
ν ∈ |U� c| . A special case: if ν ∈ I then let p� �=ν = p� (|p|� {ν}) and U� �=ν = U� (|U|� {ν}) .

8
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Note that writing p� c or U� c , it is not assumed that c ⊆ |p| , resp., c ⊆ |U| .

3.2. Regular Forcing Notions

Unfortunately, product forcing notions of the form P[U] (U being a system in L) do not provide
us with all the definability effects we need. We will make use of certain more complicated forcing
notions K ⊆ P∗ in L . To explain the idea, let a system U ∈ L satyisfy |U| = ω . Let G ⊆ P[U]

be generic over L . The sets SG(ν) = SG(ν) =
⋃

p∈G Sp(ν) ⊆ Seq then belong to L[G] , and in fact
L[G] = L[{SG(ν)}ν<ω ] . As Seq = {sk : k ≥ 1} (a fixed recursive enumeration, Definition 1), let
a0[G] = {k ≥ 1 : sk ∈ S0[G]} and c = {0} ∪ aG(0) . Consider the model L[{SG(ν)}ν∈c] . The first idea
is to make use of U� c , but oops, clearly c /∈ L , and consequently U� c /∈ L and P[U� c] /∈ L , so that
many typical product forcing results do not apply in this case. The next definition attempts to view the
problem from another angle.

Definition 8 (in L). A set K ⊆ P∗ is called a regular subforcing if:

(1) if conditions p, q ∈ K are compatible then p ∧ q ∈ K;
(2) if p, q ∈ K then p� |q| ∈ K — but it is not assumed that p ∈ K necessarily implies p� c ∈ K for an

arbitrary c ⊆ |p| ;
(3) if p, q ∈ P∗ , q ≤ p, and |q| = |p| exactly, then p ∈ K implies q ∈ K;
(4) for any condition p ∈ P∗ , there exist: a condition p∗ ∈ P∗ and a set d ⊆ |p∗| such that p∗ ≤ p,

Fp∗(ν) = Fp(ν) for all ν ∈ |p| , Fp∗(ν) = ∅ for all ν ∈ |p∗|� |p| , p∗� d ∈ K, and every condition
q ∈ K, q ≤ p∗� d, satisfies |q| ∩ |p∗| = d, and hence q is compatible with p∗ and with p.

In this case, if U is a system then define K[U] = K ∩ P[U] . In particular, if simply K = P∗ then
P∗[U] = P∗ ∩ P[U] = P[U] .

Example 1 (trivial). If c ⊆ I in the ground universe L , then P∗� c is a regular forcing. To prove (4) of
Definition 8 let p∗ = p and d = |p| ∩ c .

Example 2 (less trivial). Consider the set K of all conditions p ∈ P∗ such that |p| ⊆ ω and if ν ∈ |p| ,
ν ≥ 1 , then sν ∈ Sp(0) . We claim that K is a regular subforcing.

To verify 8(2), note that if q ∈ K then either 0 ∈ |q| or |q| = ∅ .
To verify 8(4), let p ∈ P∗ . If |p| ⊆ {0} , then setting p∗ = p and d = |p| works, so we assume that

|p| �⊆ {0} . Define p∗ ∈ P∗ so that p∗(ν) = p(ν) for all ν ≥ 1 , Fp∗(0) = Fp(0) , and Sp∗(0) = Sp(0)∪ {sν :
ν ∈ I′ } , where I′ consists of all ν ∈ |p| , ν ≥ 1 , such that sν /∈ Sp(0) ∪ F∨p (0) . Then |p∗| = |p| ∪ |0| ,
p∗ ≤ p, and we have sν ∈ Sp∗(0) ∪ F∨p∗(0) (not necessarily sν ∈ Sp∗(0) ) for all ν ∈ |p| , ν ≥ 1 . Let d ⊆ |p∗|
contain 0 and all ν ∈ |p| , ν ≥ 1 with sν ∈ Sp∗(0) ; easily p∗� d ∈ K.

Now let q ∈ K, q ≤ r = p∗� d. Consider any index ν ∈ |p∗| � d. Then sν /∈ Sp∗(0) = Sr(0) ,
hence sν ∈ F∨p∗(0) = F∨r (0) . We claim that ν /∈ |q| . Indeed otherwise sν ∈ Sq(0) as q ∈ K. However
sν ∈ F∨r (0)� Sr(0) (see above). However, this contradicts sν ∈ Sq(0) , because q ≤ r .

Theorem 4 (in L). The partially ordered set P∗ , and hence each P[U] , and generally each regular subforcing
of P[U] (for any system U ) satisfies CCC (countable antichain condition).

Proof. Suppose towards the contrary that A ⊆ P∗ is an uncountable antichain. We may assume that
there is m ∈ ω such that |p| = m for all p ∈ A . Applying the Δ-lemma argument, we obtain an
uncountable set A′ ⊆ A and a finite set w ⊆ I with cardw < m strictly, such that |p| ∩ |q| = w for all
p �= q in A′ . Then A′′ = {p�w : p ∈ A′ } is still an uncountable antichain, with |p| = w for all p ∈ A′ ,
easily leading to a contradiction (see the proof of Lemma 2).

Lemma 7 (in L). If K ⊆ P∗ is a regular forcing and U is a system then K[U] = K ∩ P[U] is a regular
subforcing of P[U] .
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To show how (4) of Definition 8 works, we prove

Lemma 8 (in L). If U is a system and K ⊆ P[U] is a regular subforcing of P[U] then any set D ⊆ K
pre-dense in K remains pre-dense in P[U] .

Proof. Consider any p ∈ P[U] . Let p∗ ∈ P[U] and d ⊆ |p∗| satisfy (4) of Definition 8. In particular,
p∗ ≤ p and p∗� d ∈ K . By the pre-density, there is a condition q ∈ D compatible with p∗� d . Then by
(1) of Definition 8 there is a condition r = q ∧ (p∗� d) ∈ K such that r ≤ q and r ≤ p∗� d . Then r is
compatible with p by the choice of p∗ and d .

3.3. Outline of Product and Regular Extensions

We consider sets of the form P[U] , U being a system in L , as well as regular subforcings K ⊆ P[U] ,
as forcing notions over L . Accordingly, we will study P[U]-generic and K-generic extensions L[G] of
the ground universe L . Define some elements of these extensions.

Definition 9. Suppose that G ⊆ P∗ . Put |G| = ⋃
p∈G |p| ; |G| ⊆ I . Let

SG(ν) = SG(ν) =
⋃

p∈G Sp(ν) and aG(ν) = aG(ν) = {k ≥ 1 : sk ∈ SG(ν)} ,

for any ν ∈ I , where G(ν) = {p(ν) : p ∈ G} ⊆ P∗ , and Seq = {sk : k ≥ 1} is a fixed recursive
enumeration (see Definition 1).

Thus SG(ν) ⊆ Seq , aG(ν) ⊆ ω � {0} , and SG(ν) = aG(ν) = ∅ for any ν /∈ |G| .
By the way, this defines a sequence �SG = {SG(ν)}ν∈I of subsets of Seq .
If c ⊆ I then let G� c = {p ∈ G : |p| ⊆ c} . It will typically happen that G� c = {p� c : p ∈ G} . Put

G� �=ν = {p ∈ G : ν /∈ |p|} = G� (I � {ν}) .

If U is a system in L , the ground universe, then any P[U]-generic set G ⊆ P[U] splits into the
family of sets G(ν) , ν ∈ I , and each G(ν) is P[U(ν)]-generic.

Lemma 9. Let U be a system and K ⊆ P[U] be a regular subforcing in the ground universe L . Let G ⊆ P[U]

be a set P[U]-generic over L . Then :

(i) G ∈ L[SG] ;
(ii) the set G ∩ K is K-generic over L ;

(iii) L[G ∩ K] = L[G� c] , where c = |G ∩ K| (it is not necessary that c ∈ L !) ;
(iv) if ν /∈ |G ∩ K| then L[G ∩ K] ⊆ L[G� �=ν] ;
(v) if ν ∈ I then SG(ν) /∈ L[G� �=ν] ;

(vi) if ν ∈ |G| then the set G(ν) = {p(ν) : p ∈ G} ∈ L[G] is P[U(ν)]-generic over L , hence if f ∈ Fun∩L

then f ∈ U(ν) ⇐⇒ SG(ν)/ f is finite.

Proof. (ii) This follows from Lemma 8.
(iii) Let us show that G� c = {q ∈ P∗ : ∃ p ∈ G ∩ K (p ≤ q)} ; this proves G� c ∈ L[G ∩ K] .

Suppose that q ∈ G� c , so that q ∈ G and |q| ⊆ c , in other words, |q| ⊆ |p1| ∪ · · · ∪ |pn| for a finite set
of conditions p1, . . . , pn ∈ G ∩ K . Note that p = p1 ∧ · · · ∧ pn ∈ K by Definition 8(1). Thus p ∈ G ∩ K ,
and |q| ⊆ |p| . Yet q ∈ G as well, therefore, p′ = p ∧ q ∈ G , and |p′| = |p| . It follows that p′ ∈ K , by
Definition 8(3), so that p′ ∈ G ∩ K . Finally p′ ≤ q .

Now suppose that p ∈ G ∩ K and p ≤ q ∈ P∗ . Then obviously q belongs to P[U] (since so does
p), hence q ∈ G (since G is generic). Finally |q| ⊆ |p| ⊆ c .

Let us show that G ∩ K = (G� c) ∩ K ; this proves G ∩ K ∈ L[G� c] . Indeed if p ∈ G ∩ K then by
definition |p| ⊆ c = |G ∩ K| , therefore p ∈ G� c , as required.

(iv) This is clear since we have G ∩ K = G� �=ν ∩ K in the case considered.

10
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(v) The set P[U] can be identified with the product P[U]� �=ν × P[U(ν)] . Thus G(ν) and SG(ν)

are P[U(ν)]-generic over L[P[U]� �=ν] .
(vi) The genericity easily follows from Definition 8(3). Then use Lemma 3.
(i) First of all, G = ∏ν G(ν) by the product-forcing theorem. Then, each G(ν) is recovered from

the associated SG(ν) by means of a simple uniform formula, see the proof of Lemma 3(i).

3.4. Names for Sets in Product and Regular Extensions

For any set X we let NX be the set of all P∗-names for subsets of X . Thus NX consists of all sets
τ ⊆ P∗ × X . Let SNX (small names) consist of all at most countable names τ ∈ NX .

We define dom τ = {p : ∃ x (〈p, x〉 ∈ τ)} , |τ| = ⋃{|p| : p ∈ dom τ} for any name τ .
Say that a name τ is below a given p ∈ P∗ if all p′ ∈ dom τ satisfy p′ ≤ p .
For any set K ⊆ P∗ , we let NX(K) be the set of all names τ ∈ NX such that dom τ ⊆ K ,

and accordingly SNX(K) = NX(K) ∩ SNX (small names). In particular, we’ll consider such sets of
names as SNX(P[U]) and SNX(P[U]� c) . Names in NX(K) for different sets X will be called K-names.
Accordingly, names in SNX(K) for different sets X will be called small K-names.

Definition 10 (valuations). If τ ∈ NX and G ⊆ P∗ then define τ[G] = {x : ∃ p ∈ G (〈p, x〉 ∈ τ)} , the G-
valuation of τ ; τ[G] is a subset of X .

Example 3 (some names). Let � ∈ P∗ be the empty condition, that is, |�| = ∅ . This is the weakest
condition in any P[U] . If X is a set in the ground universe then X̆ = {〈�, x〉 : x ∈ X} is a K-name for any
regular forcing K ⊆ P∗ , and X̆[G] = X for any set G containing � .

We will typically use breve-names like X̆ for sets in the ground universe, and dot-names (like .x ) for sets in
generic extensions.

Suppose that K ⊆ P∗ . Let G = {〈p, p〉 : p ∈ K} . (In principle, G depends on K but this dependence
will usually be suppressed.) Clearly G ∈ NK(K) (but G /∈ SNK(K) unless K is countable), and in addition
G[G] = G for any ∅ �= G ⊆ K. Thus G is a name for the generic set G ⊆ K.

Similarly, G� c = {〈p, p〉 : p ∈ K� c} (c ⊆ I ) is a name for G� c (see Definition 9).

3.5. Names for Functions

For any sets X , Y let NX
Y be the set of all P∗-names for functions X → Y ; it consists of all

τ ⊆ P∗ × (X×Y) such that the sets τ ”〈x, y〉 = {p : 〈p, 〈x, y〉〉 ∈ τ} satisfy the following requirement:

if y �= y′ , p ∈ τ ”〈x, y〉 , p′ ∈ τ ”〈x, y′〉 , then p, p′ are incompatible.

Let dom τ =
⋃

x,y τ ”〈x, y〉 and |τ| = ⋃{|p| : p ∈ dom τ} .
As above, SNX

Y consists of all at most countable names τ ∈ NX
Y .

For any set K ⊆ P∗ , we let NX
Y (K) be the set of all names τ ∈ NX

Y such that dom τ ⊆ K , and
accordingly SNX

Y (K) = NX
Y (K) ∩ SNX

Y (small names).
A name τ ∈ NX

Y (K) is K-full iff the union τ ”x =
⋃

y τ ”〈x, y〉 is pre-dense in K for any x ∈ X . A
name τ ∈ NX

Y (K) is K-full below some p0 ∈ K , iff all sets τ ”x are pre-dense in K below p0 , that is,
any condition q ∈ K , q ≤ p0 , is compatible with some r ∈ τx (and this holds for all x ∈ X ).

Note that NX
Y (K) ⊆ NX×Y(K) , and accordingly SNX

Y (K) ⊆ SNX×Y(K) . Thus all names in NX
Y (K)

and in SNX
Y (K) are still K-names in the sense above.

Corollary 1 (of Lemma 8, in L ). If U is a system, K ⊆ P[U] is a regular subforcing, X, Y any sets, and τ is
a name in NX

Y (K) , then τ is K-full (resp., K-full below p ∈ K ) iff τ is P[U]-full (resp., P[U]-full below p ) .

Suppose that τ ∈ NX
Y . Call a set G ⊆ P∗ minimally τ-generic iff it is compatible in itself (if

p, q ∈ G then there is r ∈ G with r ≤ p , r ≤ q), and intersects each set of the form τ ”x , x ∈ X . In this
case put

τ[G] = {〈x, y〉 ∈ X×Y : (τ ”〈x, y〉) ∩ G �= ∅} ,

11
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so that τ[G] ∈ YX and τ[G](x) = y ⇐⇒ τ ”〈x, y〉 ∩ G �= ∅ . If ϕ is a formula in which some names
τ ∈ NX

Y occur (for various sets X, Y ), and a set G ⊆ P∗ is minimally τ-generic for any name τ in ϕ ,
then accordingly ϕ[G] is the result of substitution of τ[G] for each name τ in ϕ .

Claim 1 (obvious). Suppose that, in L , X, Y are any sets, p ∈ K ⊆ P∗ and τ ∈ NX
Y (K) is K-full (resp.,

K-full below p ) . Then, any set G ⊆ K, K-generic over L (resp., K-generic over L and containing p ) , is
minimally τ-generic.

Definition 11 (equivalent names). Names τ, μ ∈ SNω
ω(P

∗) are called equivalent iff conditions q, r are
incompatible whenever q ∈ τ ”〈m, j〉 and r ∈ μ”〈m, k〉 for some m and j �= k. (Recall that τ ”〈m, k〉 = {p :
〈p, 〈m, k〉〉 ∈ τ} .) Similarly, names τ, μ are equivalent below some p ∈ P∗ iff the triple of conditions p, q, r is
incompatible (that is, p ∧ q ∧ r is not ≤ than at least one of p, q, r ) whenever q ∈ τ ”〈m, j〉 and r ∈ μ”〈m, k〉
for some m and j �= k.

Claim 2 (obvious). Suppose that, in L , p ∈ K ⊆ P∗ , and names μ , τ ∈ SNω
ω(K) are equivalent (resp.,

equivalent below p ) . Then, for any G ⊆ K both minimally μ-generic and minimally τ-generic (resp., and
containing p ) , μ[G] = τ[G] .

Lemma 10. Suppose that, in L , U is a system, K ⊆ P[U] is a regular subforcing, p0 ∈ K, A ⊆ P = {p ∈ K :
p ≤ p0} is a countable antichain, and, for any p ∈ A, τp ∈ SNω

ω(K) is a name K-full below p0 . Then there is
a K-full name τ ∈ SNω

ω(K) , equivalent to τp below p for any p ∈ A.

Proof. Let B be a maximal (countable) antichain in the set of all conditions q ∈ K incompatible with
p0 . Then A ∪ B is a countable maximal antichain in K . We let τ consist of: 1) all triples 〈r ∧ q, 〈k, m〉〉 ,
such that q ∈ A and 〈r, 〈k, m〉〉 ∈ τq , and 2) all triples 〈q, 〈k, 0〉〉 , such that q ∈ B and m ∈ ω .

3.6. Names and Sets in Generic Extensions

For any forcing P , let ||−−P denote the P-forcing relation over L as the ground model.

Theorem 5. Suppose that U is a system and K ⊆ P[U] a regular subforcing in L . Let G ⊆ K be a set K-
generic over L . Then :

(i) if p ∈ K and ϕ is a closed formula with K-names as parameters, then

p ||−−K ϕ iff p ||−−P[U] “ L[G ∩ K̆] |= ϕ[G]” ;

(ii) if X, Y are countable sets in L , and f ∈ L[G] , f : X → Y, then there is a K-full name τ ∈ SNX
Y (K) in

L such that f = τ[G] .
(iii) if X ∈ L , y ∈ L[G] , y ⊆ X, then there is a name τ ∈ NX(K) in L such that y = τ[G] , and in addition

if X is countable in L then τ ∈ SNX(K) .
(iv) if X, Y are countable sets in L , p ∈ K, ϕ( f ) is a formula with K-names as parameters, and p ||−−K ∃ f ∈

YX ϕ( f ) , then there is a K-full name τ ∈ SNX
Y (K) in L such that p ||−−K ϕ(τ) .

Proof. (i) Suppose p ||−−K ϕ . To prove p ||−−P[U] “ L[G ∩ K̆] |= ϕ[G]”, consider a set G ⊆ P[U] , P[U]-
generic over L . Then G ∩ K is K-generic over L by Lemma 8, hence ϕ[G] is true in L[G ∩ K] , as
required. Conversely assume ¬ p ||−−K ϕ . There is a condition q ∈ K , q ≤ p , q ||−−k ¬ ϕ . Then
q ||−−P[U] “ L[G ∩ K̆] |= ¬ ϕ[G]” by the above, thus p ||−−P[U] “ L[G ∩ K] |= ϕ[G]” fails.

(ii) It follows from general forcing theory that there is a K-full name σ ∈ NX
Y (K) , not necessarily

countable, such that f = σ[G] . Then all sets Qx = σ”x , x ∈ X , are pre-dense in K . Put τ =

{〈p, 〈x, y〉〉 ∈ σ : x ∈ X ∧ y ∈ Y ∧ p ∈ Ax} , where Ax ⊆ Qx is a maximal (countable, by Theorem 4)
antichain for any x .

12
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(iv) We conclude from (ii) that the set Q of all conditions q ∈ K , q ≤ p , such that q ||−−K ϕ(τ) for
some name τ = τq ∈ SNX

Y (K) , is dense in K below p . Let A ⊆ Q be a maximal antichain in Q ; A is
countable and pre-dense in K below p . Apply Lemma 10 to get a name τ as required.

Example 4. Consider the regular forcing K = P[U� c] , where U is a system and c ⊆ I in L . If G ⊆ P[U]

is P[U]-generic over L then the restricted set G� c = G ∩ (P[U� c]) is P[U� c]-generic over L , by Lemma 9
(with K = P[U� c] ). Furthermore, it follows from Lemma 9 and Theorem 5 that if ν ∈ I then SG(ν) ∈ L[G� c]
iff ν ∈ c , so that L[G� c] = L[{SG(ν)}ν∈c] .

Example 5. Consider the regular forcing K defined in Example 2 in Section 3.2. Suppose that U is a system
in L and G ⊆ P[U] is a set P[U]-generic over L . Then K[U] = K ∩ P[U] is a regular subforcing of P[U] by
Lemma 7. We conclude that G′ = G ∩ K is a set K[U]-generic over L , by Lemma 9.

It follows by the definition of K that the set |G′| = ⋃
p∈G′ |p| satisfies |G′| ⊆ ω , contains 0 , and if ν ≥ 1

then ν ∈ |G′| iff sν ∈ SG(0) . Therefore, by Lemma 9 and Theorem 5, the sets G(0) and SG(0) belong to
L[G′] , and if 1 ≤ ν < ω then SG(ν) ∈ L[G′] iff sν ∈ SG(0) . Thus

L[G′] = L[SG(0), {SG(ν)}sν∈SG(0)] = L[G′] = L[G� c] ,

where c = |G′| = {0} ∪ {ν < ω : sν ∈ SG(0)} /∈ L .

3.7. Transformations Related to Product Forcing

There are three important families of transformations of the whole system of objects related to
product forcing. Two of them are considered in this Subsection.

Family 1: permutations. If c , c′ ⊆ I are sets of equal cardinality then let BIJc
c′ be the set of all

bijections π : c onto−→ c′ . Let |π| = {ν ∈ c : π(ν) �= ν} ∪ {ν ∈ c′ : π−1(ν) �= ν} , so that π is essentially
a bijection c ∩ |π| onto−→ c′ ∩ |π| , equal to the identity on c � |π| = c′ � |π| . Define the action of any
π ∈ BIJc

c′ onto:

– sets e ⊆ c : π · e := {π(ν) : ν ∈ e} — then π · e ⊆ c′ and π ·c = c′ ;
– systems U with |U| ⊆ c : (π ·U)(π(ν)) := U(ν) for all ν ∈ |U| — then |π ·U| = π · |U| ⊆ c′ ;
– conditions p ∈ P∗ with |p| ⊆ c : (π · p)(π(ν)) := p(ν) for all ν ∈ |p| ;
– sets G ⊆ P∗� c : π ·G := {π · p : p ∈ G} — then π ·G ⊆ P∗� c′ ,

in particular, π ·K = {π · p : p ∈ K} ⊆ P∗� c′ for any regular subforcing K ⊆ P∗� c ;
– names τ ∈ NX

Y (P
∗� c) : π ·τ := {〈π · p, 〈�, k〉〉 : 〈p, 〈�, k〉〉 ∈ τ} — then π ·τ ∈ NX

Y (P
∗� c′) ;

Lemma 11. If c , c′ ⊆ I are sets of equal cardinality and π ∈ BIJc
c′ then p �−→ π · p is an order preserving

bijection of P∗� c onto P∗� c′ , and if U is a system and |U| ⊆ c then |π ·U| ⊆ c′ , and we have p ∈
P[U] ⇐⇒ π · p ∈ P[π ·U] .

Family 2: Lipschitz transformations. Let LipI be the I-product of the group Lip (see
Section 2.3), with countable support; this will be our second family of transformations. Thus a
typical element α ∈ LipI is α = {αν}ν∈|α| , where |α| = dom α ⊆ I is at most countable, and αν ∈ Lip ,
∀ ν . We will routinely identify each α ∈ LipI with its extension on I defined so that αν is the
identity map (on Seq) for all ν ∈ I � |α| . Keeping this identification in mind, define the action of any
α ∈ LipI on:

– systems U : |α ·U| := |U| and (α ·U)(ν) := αν ·U(ν) ;
– conditions p ∈ P∗ , by |α · p| = |p| and (α · p)(ν) = αν · p(ν) ;
– sets G ⊆ P∗ : α ·G := {α · p : p ∈ G} ,

in particular, α ·K = {α · p : p ∈ K} for any regular subforcing K ⊆ P∗ ;
– names τ ∈ NX

Y : α ·τ := {〈α · p, 〈n, k〉〉 : 〈p, 〈n, k〉〉 ∈ τ} ;

13
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In the first two lines, we refer to the action of αν ∈ Lip on sets u ⊆ Fun and on forcing conditions,
as defined in Section 2.3.

Lemma 12. If α ∈ LipI then p �−→ π · p is an order preserving bijection of P∗ onto P∗ , and if U is a
system then we have p ∈ P[U] ⇐⇒ α · p ∈ P[α ·U] .

Corollary 2 (of Lemma 5). Suppose that U, V are countable systems, |U| = |V| , and p ∈ P[U] , q ∈ P[V] .
Then there is a transformation α ∈ LipI such that

(i) |α| = |U| = |V| , α ·U = V , and
(ii) there are conditions p′ ∈ P[U] , p′ ≤ p and q′ ∈ P[V] , q′ ≤ q such that α · p′ = q′—in particular,

conditions α · p and q are compatible in P[V] .

Proof. Apply Lemma 5 componentwise for every ν ∈ |U| = |U′| .

3.8. Substitutions and Homogeneous Extensions

Assume that conditions p , q ∈ P∗ satisfy (2) of Section 2.4 for all ν , that is:

|p| = |q| , and Sp(ν) ∪ Sq(ν) ⊆ F∨p (ν) = F∨q (ν) for all ν ∈ |p| = |q| . (3)

Definition 12. If (3) holds and p′ ∈ P∗ , p′ ≤ p, then define q′ = Hp
q (p′) so that |q′| = |p′| , q′(ν) = p′(ν)

whenever ν ∈ |p′|� |p| , but q′(ν) = Hp(ν)
q(ν) (p′(ν)) for all ν ∈ |p| , where Hp(ν)

q(ν) is defined as in Section 2.4.
This is Family 3 of transformations, called substitutions.

Theorem 6. If U is a system, and conditions p , q ∈ P[U] satisfy (3) above, then

Hp
q : P = {p′ ∈ P[U] : p′ ≤ p} onto−→ Q = {q′ ∈ P[U] : q′ ≤ q}

is an order isomorphism.

Proof. Apply Lemma 6 componentwise.

Suppose that U , p , q ∈ P[U] , Hp
q are as in Theorem 6. Extend the action of Hp

q onto names and
formulas. Recall that a name τ ∈ NX

Y is below p iff p′ ≤ p holds for any triple 〈p′, 〈n, k〉〉 ∈ τ .

• If X , Y are any sets and τ ∈ NX
Y is a name below p then put Hp

q (τ) = {〈Hp
q (p′), 〈n, k〉〉 :

〈p′, 〈n, k〉〉 ∈ τ} , so Hp
q (τ) ∈ NX

Y is a name below q .
• If ϕ is a formula with names below p as parameters then Hp

q (ϕ) denotes the result of substitution
of Hp

q (τ) for any name τ in ϕ .

Forcing notions of the form P[U] are quite homogeneous by Theorem 6. The next result is a usual
product forcing application of such a homogeneity.

Theorem 7. Suppose that, in L , U is a system, d ⊆ c ⊆ I , K is a regular subforcing of P[U� d] , and
Q = {p ∈ P[U� c] : p� d ∈ K} = K× P[U� (c � d)] . Let ϕ be a formula which contains as parameters : (∗)
K-names, and (†) names of the form G� e , where e ∈ L , e ⊆ c , and G� e enters ϕ only via L[G� e] . Then :

(i) if p ∈ Q and p ||−−Q ϕ then p� d ||−−Q ϕ ;
(ii) in particular, for d = ∅ (and Q = P[U� c]), Q decides any formula Φ which contains only names for

sets in L and names G� e via L[G� e] of the form (†) with e ⊆ c , as parameters ;
(iii) if p ∈ Q and p ||−−Q ∃ x ∈ L[G� c] ϕ(x) then p� d ||−−Q ∃ x ∈ L[G� c] ϕ(x) .

Proof. (i) Otherwise there are conditions p , q ∈ Q with p� d = q� d , p ||−−Q ϕ , but q ||−−Q ¬ ϕ . We can
w. l.o.g. assume that p, q satisfy (3) above (otherwise extend p, q appropriately). Define P , Q , Hp

q as
in Definition 12 and Theorem 6.

14
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Let G ⊆ Q be a generic set containing p . Assuming w. l.o.g. that G ⊆ P , the set H = {Hp
q (p′) :

p′ ∈ G} ⊆ Q will be generic as well by Theorem 6, and q ∈ H . Therefore ϕ[G] is true in L[G] but
ϕ[H] is false in L[H] . Yet L[G] = L[H] since Hp

q ∈ L . Moreover ϕ[G] coincides with ϕ[H] since 1)
Hp

q is the identity on d (indeed p� d = q� d), and 2) if e ∈ L , e ⊆ c , then L[G� e] = L[H� e] since G� e ,
H� e can be obtained from each other via maps coded in L . This is a contradiction.

(iii) This is a particular case.

Corollary 3. Under the assumptions of Theorem 7, suppose that X , Y are arbitrary sets in L , p ∈ Q,
and p ||−−Q ∃ f ∈ L[G ∩ K] ( f ∈ YX ∧ ϕ( f )) . Then there is a K-full name τ ∈ SNX

Y (K) such that
p� d ||−−Q ϕ(τ) .

Proof. We can assume that |p| ⊆ d by Theorem 7(iii), thus p = p� d ∈ K . It follows from Theorems
5(ii) and 7(i) that there exist: a (countable) antichain A ⊆ K maximal below p , and, for any q ∈ A , a
K-full name τq ∈ SNX

Y (K) such that q ||−−Q ϕ(τq) . Now compose a K-full name τ ∈ SNX
Y (K) , such

that every q ∈ A forces τ = τq , as in the proof of Theorem 5(iv).

4. Basic Forcing Notion and Basic Generic Extension

The proofs of Theorems 1–3, that follow in Sections 7–9, will have something in common. Namely
the generic extensions we employ to get the results required will be parts of a basic extension,
introduced and studied in this section. To define the extension, we’ll define (in L as the ground
universe) an increasing sequence {〈Mξ , Uξ〉}ξ<ω1 of pairs of certain type—a Jensen–Solovay sequence,
since this construction goes back to [9]—and make use of a forcing notion of the form P[U] , where
U =

∨
ξ<ω1

Uξ . It turns out that if such a sequence is n-complete, in sense that it meets all sets of
n-complexity within the whole tree of possible constructions, then the truth of analytic formulas
up to level n in corresponding generic extensions has a remarkable connection with the forcing
approximations studied in Section 5. This will allow us to convert the homogeneity of the construction
of Jensen–Solovay sequences into a uniformity of the corresponding generic extensions, expressed by
Theorem 13.

Recall that V = L assumed in the ground universe by Assumption 1.

4.1. Jensen–Solovay Sequences

If U � V are systems then by definition P[U] ⊆ P[V] holds. However this is not necessarily
a suitably good notion. For instance a dense set X ⊆ P[U] may not be pre-dense in P[V] , thus if
G ⊆ P[V] is a generic set then the “projection” G ∩ P[U] is not necessarily P[U]-generic. Yet there
is a special type of extension of systems, introduced by Jensen and Solovay [9], which preserves the
density. This method is based on the requirement that the functions in Fun that occur in V but not in
U must be generic over a certain model that contains U .

Recall that ZFC− is ZFC minus the Power Set axiom, see Section 5.1 below. Let ZFC−1 be ZFC−

plus the axioms V = L and “every set is at most countable”.

Definition 13. Let U, U′ be a pair of systems. Suppose that M is any transitive model of ZFC− . Define
U �M U′ iff U � U′ and we have:

(a) the set Δ(U, U′) =
⋃

ν∈|U|(U′(ν)�U(ν)) (note the union over |U| rather than |U′| !) is multiply
Cohen generic over M, in the sense that every string 〈 f1, . . . fm〉 of pairwise different functions f� ∈
Δ(U, U′) is Cohen generic over M, and

(b) if ν ∈ |U| and U′(ν)�U(ν) �= ∅ then U′(ν)�U(ν) is dense in Fun = ωω .

Let JS , Jensen–Solovay pairs, be the set of all pairs 〈M, U〉 of a transitive model M |= ZFC− and a disjoint
(ν �= ν′ =⇒ U(ν) ∩U(ν′) = ∅) system U ∈ M. Let sJS , small pairs, consist of all 〈M, U〉 ∈ JS such that
M |= ZFC−1 and M (then U as well) is countable. Define the extension relations:

〈M, U〉 � 〈M′, U′〉 iff M ⊆ M′ and U �M U′ ;
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〈M, U〉 ≺ 〈M′, U′〉 iff 〈M, U〉 � 〈M′, U′〉 and ∀ ν ∈ |U| (U(ν) � U′(ν)) .

It would be a vital simplification to get rid of M as an explicit element of the construction, e.g., by
setting U �∗ U′ iff U � U′ and there is a CTM M containing U and such that U �M U′ .

Lemma 13. Suppose that pairs 〈M, U〉 � 〈M′, U′〉 � 〈M′′, U′′〉 belong to JS . Then 〈M, U〉 � 〈M′′, U′′〉 .
Thus � is a partial order on JS .

Proof. Prove that the set F =
⋃

ν∈|U|(U′′(ν)�U(ν)) is multiply Cohen generic over M . Consider a
simple case when f ∈ U′(ν)�U(ν) and g ∈ U′′(μ)�U′(μ) , where ν, μ ∈ |U| , and prove that 〈 f , g〉
is Cohen generic over M . (The general case does not differ much.) By definition, f is Cohen generic
over M and g is Cohen generic over M′ . Therefore, g is Cohen generic over M[ f ] , which satisfies
M[ f ] ⊆ M′ since f ∈ M′ . It remains to apply the product forcing theorem.

Remark 1. We routinely have 〈M, U〉 � 〈M′, U〉 (the same U ) provided M ⊆ M′ . On the other
hand, 〈M, U〉 � 〈M, U′〉 (with the same M ) is possible only in the case when Δ(U, U′) = ∅ , that is,
U(ν) = U′(ν) for all ν ∈ |U| . In particular, if 〈M, U〉 ∈ JS , c ∈ M , c ⊆ |U| , then 〈M, U� c〉 � 〈M, U〉 .

Lemma 14 (extension). If 〈M, U〉 ∈ sJS and z ⊆ I is countable, then there is a pair 〈M′, U′〉 ∈ sJS such
that 〈M, U〉 ≺ 〈M′, U′〉 and z ⊆ |U′| .

Proof. Let d = |U| ∪ z , and let �f = { fνk}ν∈d,k<ω ∈ (Fun)d×ω be Cohen generic over M . Now define
U′(ν) = U(ν) ∪ { fνk : k ∈ ω} for each ν ∈ d , and let M′ |= ZFC−1 be any CTM satisfying M ⊆ M′

and containing U′ .

Definition 14. A Jensen–Solovay sequence of length λ ≤ ω1 is any strictly ≺-increasing λ-sequence
{〈Mξ , Uξ〉}ξ<λ of pairs 〈Mξ , Uξ〉 ∈ sJS , which satisfies Uη =

∨
ξ<η Uξ on limit steps. Let

−→
JSλ be the

set of all such sequences.

Lemma 15. Suppose that λ ≤ ω1 is a limit ordinal, and {〈Mξ , Uξ〉}ξ<λ belongs to
−→
JSλ . Put U =

∨
ξ<λ Uξ ,

that is, U(ν) =
⋃

ξ<λ Uξ(ν) for all ν ∈ I .
Then Uξ �Mξ

U for every ξ .
If, moreover, λ < ω1 and M is a CTM of ZFC−1 containing {〈Mξ , Uξ〉}ξ<λ then 〈M, U〉 ∈ sJS and

〈Mξ , Uξ〉 ≺ 〈M, U〉 for every ξ .

Proof. The same idea as in the proof of Lemma 13.

4.2. Stability of Dense Sets

Assume that 〈M, U〉 ∈ sJS and D is a pre-dense subset of P[U] (say, a maximal antichain). If U′

is another system satisfying U � U′ , then it may well happen that D is not maximal in P[U′] . The role
of the multiple genericity requirement (a) in Definition 13, first discovered in [9], is to somehow seal
the property of pre-density of sets already in M for any further extensions. This is the content of
the following key theorem. The product forcing arguments allow us to extend the stability result to
pre-dense sets not necessarily in M , as in items (ii), (iii) of the following theorem.

Theorem 8. Assume that, in L , 〈M, U〉 ∈ sJS , U′ is a disjoint system, and U �M U′ . If D is a pre-dense
subset of P[U] (resp., pre-dense below some p ∈ P[U] ) then D remains pre-dense in P[U′] (resp., pre-dense
in P[U′] below p ) in each of the following three cases :

(i) D ∈ M ;
(ii) D ∈ M[G] , where G ⊆ Q is Q-generic over L and Q ∈ M is a PO set ;

(iii) D ∈ M[H] , where H ⊆ U′(ν0) is finite, ν0 ∈ |U| is fixed, and D ⊆ P[U� �=ν0
] .
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Proof. We consider only the case of sets D pre-dense in P[U] itself; the case of pre-density below
some p ∈ P[U] is treated similarly.

(i) Suppose, towards the contrary, that a condition p ∈ P[U′] is incompatible with each q ∈ D .
As D ⊆ P[U] , we can w. l.o.g. assume that |p| ⊆ |U| .

Our plan is to define a condition p′ ∈ P[U] , also incompatible with each q ∈ D , contrary to the
pre-density. To maintain such a construction, consider the finite string �f = 〈 f1, . . . , fm〉 of all elements
f ∈ Fun occurring in

⋃
ν∈|p| Fp(ν) but not in U . It follows from U �M U′ that �f is Cohen-generic

over M . Further analysis shows that p being incompatible with D is implied by the fact that �f meets
a certain M -countable family of Cohen-dense sets. Therefore, we can simulate this in M , getting a
string �g ∈ M which meets the same Cohen-dense sets, and hence yields a condition p′ ∈ P[U] , also
incompatible with each q ∈ D .

This argument was first carried out in [9] in full generality, where we address the reader. However,
to present the key idea in sufficient detail in a somewhat simplified subcase, we assume that (1)
|p| = {ν} is a singleton; ν ∈ |U| . Then p(ν) = 〈Sp(ν) ; Fp(ν)〉 ∈ P[U′(ν)] , where Sp(ν) ⊆ Seq and
Fp(ν) ⊆ U′(ν) are finite sets. The (finite) set X = Fp(ν)� U(ν) is multiply Cohen generic over M
since U �M U′ . To make the argument even more transparent, we suppose that (2) X = { f , g} , where
f �= g and the pair 〈 f , g〉 is Cohen generic over M . (The general case follows the same idea and can
be found in [9]; we leave it to the reader.)

Thus Fp(ν) = F ∪ { f , g} , where F = Fp(ν) ∩U(ν) ∈ M is by definition a finite set.
The plan is to replace the functions f , g by some functions f ′, g′ ∈ U(ν) so that the incompatibility

of p with conditions in D will be preserved.
It holds by the choice of p and Lemma 1 that D = D1( f , g) ∪ D2 , where

D1( f , g) = {q ∈ D : Aq ∩ F∨p (ν) �= ∅}, where Aq = Sq(ν)� Sp(ν) ⊆ Seq ;

D2 = {q ∈ D : (Sp(ν)� Sq(ν)) ∩ F∨q (ν) �= ∅} ∈ M;

and D1 depends on f , g via Fp(ν). (See Section 3.1 on notation.) The equality D = D1( f , g) ∪D2 ∪D3

can be rewritten as Δ ⊆ D1( f , g) , where Δ = D � D2 ∈ M . Further, Δ ⊆ D1( f , g) is equivalent to

(∗) ∀ A ∈ A (A ∩ F∨p (ν) �= ∅) , where A = {Aq : q ∈ D} ∈ M ,

and each Aq = Sq(ν)� Sp(ν) ⊆ Seq is finite. Recall that Fp(ν) = F ∪ { f , g} , therefore F∨p (ν) =

Z ∪ S( f , g) , where Z = {h�m : m ≥ 1 ∧ h ∈ F} ∈ M and S( f , g) =
⋃

m≥1{ f �m, g�m} . Thus (∗) is
equivalent to

(†) ∀ A′ ∈ A ′ (A′ ∩ S( f , g) �= ∅) , where A ′ = {Aq � Z : q ∈ D} ∈ M .

Note that each A′ ∈ A ′ is a finite subset of Seq , so we can reenumerate A ′ = {A′k : k < ω} in M
and rewrite (†) as follows:

(‡) ∀ k (A′k ∩ S( f , g) �= ∅) , where each A′k ⊆ Seq is finite.

As the pair 〈 f , g〉 is Cohen-generic, there is a number m0 such that (‡) is forced over M by 〈σ0, τ0〉 ,
where σ0 = f �m0 and τ0 = g�m0 . In other words, A′k ∩ S( f ′, g′) �= ∅ holds for all k whenever
〈 f ′, g′〉 is Cohen-generic over M and σ0 ⊂ f ′ , τ0 ⊂ g′ . It follows that for any k and strings σ, τ ∈ Seq

extending resp. σ0, τ0 there are strings σ′, τ′ ∈ Seq extending resp. σ, τ , at least one of which extends
one of w ∈ A′k . This allows us to define, in M , a pair of f ′, g′ ∈ Fun such that σ0 ⊂ f ′ , τ0 ⊂ g′ , and
for any k at least one of f ′, g′ extends one of w ∈ A′k . In other words, we have

∀ k (A′k ∩ S( f ′, g′) �= ∅) and ∀ A′ ∈ A ′ (A′ ∩ S( f ′, g′) �= ∅).

It follows that the condition p′ defined by |p′| = {ν} , Sp′(ν) = Sp(ν) , Fp′(ν) = F ∪ { f ′, g′ } , still
satisfies ∀ A ∈ A (A ∩ F∨p′(ν) �= ∅) (compare with (∗)), and further D = D1( f ′, g′) ∪ D2 ∪ D3 ,
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therefore, p′ is incompatible with each q ∈ D . Yet p′ ∈ M since f ′, g′ ∈ M , which contradicts the
pre-density of D .

(ii) The above proof works with M[G] instead of M since the set X as in the proof is multiple
Cohen generic over M[G] by the product forcing theorem.

(iii) Assuming w. l.o.g. that H ⊆ U′(ν0)� U(ν0) , we conclude that M[H] is a Cohen generic
extension of M . Following the above, let ν ∈ |U| , ν �= ν0 . By the definition of � the set F =

Fp(ν)�U(ν) is multiply Cohen generic not only over M but also over M[H] . This allows to carry out
the same argument as above.

Corollary 4. (i) Assume that, in L , 〈M, U〉 ∈ sJS , and 〈M, U〉 � 〈M′, U′〉 ∈ JS . Let a set G ⊆ P[U′]
be P[U′]-generic over M′ . Then G ∩ P[U] is P[U]-generic over M.

(ii) If moreover, K ∈ M, K ⊆ P[U] is a regular subforcing, then G ∩ K is K-generic over M.

Proof. To prove (i), note that if a set D ∈ M , D ⊆ Q(U) , is pre-dense in Q(U) , then it is pre-dense in
Q(U′) by Theorem 8, and hence G ∩ D �= ∅ by the genericity. To prove (ii), apply Lemma 8.

The next corollary returns us to names, the material of Sections 3.4 and 3.5.

Corollary 5 (of Theorem 8(i)). In L , suppose that 〈M, U〉 ∈ sJS , 〈M, U〉 � 〈M′, U′〉 ∈ JS , and X , Y
belong to M. Assume that τ ∈ M ∩ SNX

Y (P[U]) is a P[U]-full name. Then τ remains P[U′]-full. If moreover
p ∈ P[U] and τ is P[U]-full below p, then τ remains P[U′]-full below p.

4.3. Digression: Definability in HC

The next subsection will contain a transfinite construction of a key forcing notion in L relativized
to HC. Recall that HC is the collection of all hereditarily countable sets. In particular, HC = Lω1 in L . In
matters of related definability classes, we refer to e.g., Part B, Chapter 5, Section 4 in [20], or Chapter 13
in [21], on the Lévy hierarchy of ∈-formulas and definability classes ΣX

n , ΠX
n , ΔX

n for any set X , and
especially on ΣHC

n , ΠHC
n , ΔHC

n for X = HC in Sections 8 and 9 in [22], or elsewhere. In particular,

ΣHC
n = all sets X ⊆ HC, definable in HC by a parameter-free Σn formula.

ΣHC
n = all sets X ⊆ HC definable in HC by a Σn formula with sets in HC as parameters.

Something like ΣHC
n (x) , x ∈ HC, means that only x is admitted as a parameter, while ΣHC

n (M) ,
where M ⊆ HC is a transitive model, means that all x ∈ M are admitted as parameters. Collections
like ΠHC

n , ΠHC
n (x) , ΠHC

n (M) are defined similarly, and ΔHC
n = ΣHC

n ∩ΠHC
n , etc.. The boldface classes

are defined as follows: ΣHC
n = ΣHC

n (HC) , ΠHC
n = ΠHC

n (HC) , ΔHC
n = ΔHC

n (HC) .

Remark 2. It is known that the classes ΣHC
n , ΠHC

n , ΔHC
n are equal to resp. Σ1

n+1 , Π1
n+1 , Δ1

n+1 for sets
of reals, and the same for parameters and boldface classes. This well-known result was explicitly
mentioned in [23] (Lemma on p. 281), a detailed proof see Lemma 25.25 in [21], or Theorem 9.1 in [22].

Remark 3. Recall that <L is the Gödel wellordering of L , the constructible universe.
It is known that the restriction <L�HC is a ΔHC

1 relation, and if n ≥ 1, p ∈ ωω is any parameter,
and R(x, y, z, . . . ) is a finitary ΔHC

n (p) relation on HC then the relations ∃ x <L y R(x, y, z, . . . ) and
∀ x <L y R(x, y, z, . . . ) (with arguments y, z, . . . ) are ΔHC

n (p) as well.

4.4. Complete Sequences and the Basic Notion of Forcing

Say that a pair 〈M, U〉 ∈ sJS solves a set D ⊆ sJS iff either 〈M, U〉 ∈ D , or there is no pair
〈M′, U′〉 ∈ D extending 〈M, U〉 . Let Dsolv be the set of all pairs 〈M, U〉 ∈ sJS which solve D .

Definition 15. Let n ≥ 3 . A sequence {〈Mξ , Uξ〉}ξ<ω1 ∈
−→
JSω1 is n- complete iff it intersects every set of

the form Dsolv , where D ⊆ sJS is ΣHC
n−2 . (See Section 4.3 on definability classes in HC .)
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Let us prove the existence of complete sequences.

Theorem 9 (in L). Let n ≥ 2 . There is a sequence {〈Mξ , Uξ〉}ξ<ω1 ∈
−→
JSω1 of class ΔHC

n−1 , n-complete in
case n ≥ 3 , and such that ξ ∈ |Uξ+1| for all ξ — hence the limit system U =

∨
ξ<ω1

Uξ satisfies |U| = I .

Proof. Define pairs 〈Mξ , Uξ〉 , ξ < ω1 , by induction. Let U0 be the null system with |U0| = ∅ , and M0

be the least CTM of ZFC−1 . If λ < ω1 is limit then put Uλ =
∨

ξ<λ Uξ and let Mλ be the least CTM of
ZFC−1 containing the sequence {〈Mξ , Uξ〉}ξ<λ . If 〈Mξ , Uξ〉 ∈ sJS is defined then by Lemma 14 there
is a pair 〈M′, U′〉 ∈ sJS with 〈Mξ , Uξ〉 ≺ 〈M′, U′〉 and ξ ∈ |U′| . Let Θ ⊆ ω1 ×HC be a universal
ΣHC

n−2 set, and Dξ = {z ∈ sJS : 〈ξ, z〉 ∈ Θ} . Let 〈Mξ+1, Uξ+1〉 be the <L-least pair 〈M, U〉 ∈ Dξ
solv

satisfying 〈M′, U′〉 � 〈M, U〉 . To check the definability property use the fact mentioned by Remark 3
in Section 4.3.

Now define the basic forcing notion.

Definition 16 (in L). Fix a number n ≥ 2 . Let {〈Mξ , Uξ〉}ξ<ω1 ∈
−→
JSω1 be any n-complete Jensen–Solovay

sequence of class ΔHC
n−1 as in Theorem 9—in case n ≥ 3 , or just any Jensen–Solovay sequence of class ΔHC

1 —in
case n = 2 , and in both cases ξ ∈ |Uξ+1| for every ξ < ω1 , as in Theorem 9. Put U =

∨
ξ<ω1

Uξ , so U
is a system, |U| = I = ω1 , U(ν) =

⋃
ξ<ω1,ν∈|Uξ | Uξ(ν) for all ν ∈ I . We finally define P = P[U] and

Pγ = P[Uγ] for γ < ω1 .

Thus P is the product of sets P(ν) = P[U(ν)] , ν ∈ I , with finite support.
We proceed with a couple of simple lemmas.

Corollary 6. Suppose that, in L , M is a transitive model of ZFC− containing the sequence {〈Mξ , Uξ〉}ξ<ω1 ∈−→
JSω1 of Definition 16. Then, for every ξ < ω1 :

(i) 〈M, U〉 ∈ JS and 〈Mξ , Uξ〉 ≺ 〈M, U〉 ;
(ii) if ν ∈ I then U(ν) is uncountable and topologically dense in ωω , and if ν �= μ belong to I then

U(ν) ∩U(μ) is empty ;
(iii) any set D ∈ Mξ , D ⊆ Pξ , pre-dense in Pξ (resp., pre-dense in Pξ below some p ∈ Pξ ) , is pre-dense in

P (resp., pre-dense in P below p );
(iv) any name τ ∈ Mξ ∩ SNω

ω(Pξ) , Pξ-full (resp., Pξ-full below some p ∈ Pξ ) , is P-full (resp., P-full below
p );

(v) if G ⊆ P is a set P-generic over the ground universe L then the set Gξ = G ∩ Pξ is Pξ-generic over Mξ .

Proof. To prove (i) use Lemma 15. Both claims of (ii) hold by Definition 13. To prove (iii) and (iv) use
Corollary 5. Finally, (v) follows from (iii).

Now let us address definability issues.

Lemma 16 (in L). The binary relation f ∈ U(ν) is ΔHC
n−1 .

The sets P and SNω
ω(P) (P-names for functions in Fun) are ΔHC

n−1 .

The set of all P-full names in SNω
ω(P) is ΔHC

n−1 .

Proof. The sequence {〈Mξ , Uξ〉}ξ<ω1 is ΔHC
n−1 by definition, hence the relation f ∈ U(ν) is ΣHC

n−1 . On
the other hand, if f ∈ Fun belongs to some Mξ then f ∈ U(ν) obviously implies f ∈ Uξ(ν) , leading to
a ΠHC

n−1 definition of the relation f ∈ U(ν) . To prove the last claim, note that by Corollary 5 if a name
τ ∈ SNω

ω(Pξ) ∩Mξ is Pξ-full then it remains P-full.

4.5. Basic Generic Extension and Regular Subextensions

Recall that an integer n ≥ 2 and sets Uξ , Mξ , U , Pξ , P are fixed in L by Definition 16. These sets
are fixed for the remainder.
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Suppose that, in L , K ⊆ P is a regular subforcing. If G ⊆ P is a set P-generic over L then G ∩ K
is K-generic over L by Lemma 9(vi), and hence L[G ∩ K] is a K-generic extension of L . The following
formulas Γi ( i ∈ I ) will give us a useful coding tool in extensions of this form:

Γν(S) :=def ν ∈ I ∧ S ⊆ Seq ∧ ∀ f ∈ Fun∩ L ( f ∈ U(ν) ⇐⇒ max (S/ f ) < ω).

This is based on the next two results. Recall that |G ∩ K| = ⋃
p∈G∩K |p| .

Lemma 17. Γν(S) as a binary relation belongs to ΠHC
n−1 in any cardinal-preserving generic extension of L .

Proof. The set W = {〈ν, f 〉 : ν ∈ I ∧ f ∈ U(ν)} is ΔHC
n−1 in L , by Lemma 16, and hence so is

W ′ = {〈ν, f 〉 : ν ∈ I ∧ f ∈ Fun � U(ν)} . Let ϕ(ν, f ) and ϕ′(ν, f ) be Σn−1 formulas that define
resp. W , W ′ in HC, in L . Then, in any generic extension of L , Γν(S) is equivalent to ν ∈ I ∧ S ⊆
Seq∧ ∀ f ∈ Fun∩ L Ψ(ν, f ) , where Ψ(ν, f ) is the Πn−1 formula(

(L |= ϕ(ν, f )) =⇒ max (S/ f ) < ω
)
∧

(
(L |= ϕ′(ν, f )) =⇒ max (S/ f ) = ω

)
.

Theorem 10. Suppose that, in L , K ⊆ P is a regular subforcing. Let G ⊆ P be P-generic over L . Then :

(i) if ν ∈ |G ∩ K| , then SG(ν) ∈ L[G ∩ K] and Γν(SG(ν)) holds, but
(ii) if ν /∈ |G ∩ K| , then SG(ν) /∈ L[G ∩ K] , and there is no sets S ⊆ Seq in L[G ∩ K] satisfying Γν(S) .

Proof. (i) This is a corollary of Lemma 9(vi).
(ii) Suppose towards the contrary that some S ∈ L[G ∩ K] satisfies Γν(S) . Note that S ∈ L[G� �=ν]

by Lemma 9(iv). Now we can forget about the given set K . It follows from Theorem 5(iii) (with
K = P� �=ν ), that there is a name τ ∈ SNSeq(P� �=ν) such that S = τ[G� �=ν] . There is an ordinal ξ < ω1

satisfying τ ∈ Mξ and τ ∈ SNSeq(Pξ � �=ν) . Then S = τ[Gξ � �=ν] , where Gξ = G ∩ Pξ is Pξ-generic
over Mξ by Corollary 6, and hence S belongs to Mξ [Gξ � �=ν] .

Note that U(ν) is uncountable by Corollary 6(ii), and hence F = U(ν)�Uξ(ν) is uncountable.
Let f ∈ F . Then f is Cohen generic over the model Mξ by Corollary 6. On the other hand Gξ � �=ν is
Pξ � �=ν-generic over Mξ [ f ] by Theorem 8(iii). Therefore f is Cohen generic over Mξ [Gξ � �=ν] as well.

Recall that S ∈ Mξ [Gξ � �=ν] and Γν(S) holds, hence max (S/ f ) < ω . As f is Cohen generic over
Mξ [Gξ � �=ν] , it follows that there is a string s ∈ Seq , s ⊂ f , such that S contains no strings extending
s . Take any μ ∈ I , j �= ν . By Corollary 6(ii), there exists a function g ∈ U(μ)� Uξ(μ) , g /∈ U(ν) ,
satisfying s ⊂ g . Then, max (S/g) = ω by Γν(S) . However, this is absurd by the choice of s .

Corollary 7. Suppose that, in L , K ⊆ P is a regular forcing. Let G ⊆ P be a set P-generic over L . Then

(i) |G ∩ K| is equal to the set {ν ∈ I : L[G ∩ K] |= ∃ S Γν(S)} ;
(ii) it is true in L[G ∩ K] that the set {〈ν, S〉 : Γν(S)} is ΠHC

n−1 ;
(iii) therefore |G ∩ K| is ΣHC

n in L[G ∩ K] .

Proof. Claim (i) follows from the theorem, because by the regularity we have G ∩ K ∈ L[G� �=ν] for all
ν /∈ |G ∩ K| . Claim (ii) immediately follows from Lemma 17. To prove (iii) note that, by (i) and (ii), it
holds in L[G ∩ K] that the set |G ∩ K| is defined by a ΣHC

n formula ∃ S Γν(S) in HC.

5. Forcing Approximations

Here we define and study here an important forcing-like relation forc. It will give us control over
various phenomena of analytic definability in the generic extensions considered.

We continue to assume V = L in the ground universe by Assumption 1.
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5.1. Models and Absolute Sets

To consider transitive models of weaker theories, we let ZFC− be ZFC minus the Power Set
axiom, with the schema of Collection instead of replacement, and AC in the form of well-orderability
of every set. See [24] on ZFC− in detail.

Let ZFC−1 be ZFC− plus the axioms V = L and “every set is at most countable”.
Let W ⊆ HC. By definition, a set X ⊆ HC is ΔHC

1 (W) iff there exist a Σ1 formula σ(x) and a Π1
formula π(x) , with sets in W as parameters, such that

X = {x ∈ HC : σHC(x)} = {x ∈ HC : πHC(x)}, (4)

in particular, we have σHC(x) ⇐⇒ πHC(x) for all x . However, generally speaking, this does not
imply that X ∩M ∈ ΔM

1 (W) , where M ∈ HC is a countable transitive model (CTM). The goal of the
next two definitions is to distinguish and formalize this kind of absoluteness.

Definition 17. If for a given ΔHC
1 (W) set X , there exists such a pair of formulas, containing only parameters

in W and satisfying (4) and ∀ x ∈ M (σM(x) ⇐⇒ πM(x)) for all countable transitive models M |= ZFC−

containing all parameters that occur in σ and/or in π , then we say that X is absolute ΔHC
1 (W) . In this case, if

M is as indicated then the set X ∩M is ΔM
1 (W) via the same pair of formulas. In particular, any ΔHC

0 (W) set
is absolute ΔHC

1 (W) by obvious reasons.

Definition 18. In continuation of the last definition, a function f : D → HC , defined on a set D ⊆ HC , is
absolute ΔHC

1 (W) function, if f is absolute ΔHC
1 (W) as a set of pairs in the sense of Definition 17, and in

addition, if M |= ZFC− is a CTM and x ∈ D ∩M then f (x) ∈ M.

5.2. Formulas

Here we introduce a language that will help us study analytic definability in P[U]-generic
extensions, for different systems U , and their submodels.

Definition 19. Let L be the 2nd order Peano language, with variables of type 1 over ωω . If K ⊆ P∗ then an
L(K) formula is any formula of L , with some free variables of types 0, 1 replaced by resp. numbers in ω and
names in SNω

ω(K) , and some type 1 quantifiers are allowed to have bounding indices B (i.e., ∃B , ∀B ) such that
B ⊆ I is finite or countable.

Typically K will be a regular forcing in Definition 19, in the sense of Definition 8, or a regular
subforcing of the form K[U] , U being a system.

If ϕ is a L(P∗) formula then let

NAM ϕ = the set of all names τ that occur in ϕ;

|ϕ| =
⋃

τ∈NAM ϕ |τ| (at most countable);

IND ϕ = the set of all quantifier indices B which occur in ϕ;

||ϕ|| = |ϕ| ∪
( ⋃

IND ϕ
)

(at most countable).

Note that |ϕ| ⊆ ||ϕ|| ⊆ I provided ϕ is an L(P∗) formula.
If a set G ⊆ P∗ is minimally ϕ-generic (i.e., minimally τ-generic w.r. t. every name τ ∈ NAM ϕ ,

in the sense of Section 3.5), then let the valuation ϕ[G] be the result of substitution of τ[G] for any
name τ ∈ NAM ϕ , and changing each quantifier ∃Bx , ∀Bx to ∃ (∀ ) x ∈ ωω ∩ L[G�B] respectively,
while index-free type 1 quantifiers are relativized to ωω ; ϕ[G] is a formula of L with real parameters,
and with some quantifiers of type 1 explicitly relativized to certain submodels of L[G] .
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An arithmetic formula in L(K) is a formula with no quantifiers of type 1 (names in SNω
ω(K) as

in Definition 19 are allowed). If n < ω then let a LΣ1
n(K) , resp., LΠ1

n(K) formula be a formula of
the form

∃◦x1 ∀◦x2 . . . ∀◦(∃◦) xn−1 ∃ (∀ ) xn ψ , ∀◦x1 ∃◦x2 . . . ∃◦(∀◦) xn−1 ∀ (∃ ) xn ψ

respectively, where ψ is an arithmetic formula in L(K) , all variables xi are of type 1 (over ωω ), the
sign ◦ means that this quantifier can have a bounding index as in Definition 19, and it is required that
the rightmost (closest to the kernel ψ) quantifier doesn’t have a bounding index.

If in addition M |= ZFC− is a transitive model and U ∈ M a system then define

LΣ1
n(K[U], M) = all LΣ1

n(K) formulas ϕ such that NAM ϕ ⊆ SNω
ω(K[U]) ∩ M and all indices B ∈

IND ϕ belong to M and satisfy B ⊆ |U| .

Define LΠ1
n(K[U], M) similarly. All formulas in LΣ1

n(K[U], M)∪LΠ1
n(K[U], M) are by definition

(finite) strings in M .

5.3. Forcing Approximation

The next definition invents a convenient forcing-type relation forc for pairs 〈M, U〉 in sJS and
formulas ϕ in L(K[U]) , associated with the truth in K[U]-generic extensions of L , where K ⊆ P∗ is a
regular forcing. Recall that K[U] = K ∩ P[U] whenever K ⊆ P∗ is a regular forcing and U is a system.

Definition 20 (in L). We introduce a relation p KforcM
U ϕ . First of all,

(F1) Writing p KforcM
U ϕ , it is assumed that:

(a) 〈M, U〉 ∈ sJS ,
(b) K ⊆ P∗ is a regular forcing and an absolute ΔHC

1 (M) set,
(c) p belongs to K[U] (a regular subforcing of P[U] by Lemma 7),
(d) ϕ is a closed formula in LΠ1

k (K[U], M) ∪ LΣ1
k+1(K[U], M) for some k ≥ 1 , and each name

τ ∈ NAM ϕ is K[U]-full below p.

Under these assumptions, the sets U , K[U] , p , NAM ϕ , IND ϕ belong to M. The property of K[U]-
fullness in (F1)d is equivalent to just P[U]-fullness, by Corollary 1, since K[U] is a regular subforcing of P[U]

by Lemma 7.
The definition of forc goes on by induction on the complexity of formulas.

(F2) If 〈M, U〉 ∈ sJS , p ∈ K[U] , and ϕ is a closed formula in LΠ1
1(K[U], M) (then by definition it has no

quantifier indices), then: p KforcM
U ϕ iff (F1) holds and p K[U]-forces ϕ over M in the usual sense.

Note that the forcing notion K[U] belongs to M in this case by (F1)b.
(F3) If ϕ(x) ∈ LΠ1

k (K[U], M) , k ≥ 1 , then:

(a) p KforcM
U ∃Bx ϕ(x) iff there is a name τ ∈ M ∩ SNω

ω(K[U]�B) , K[U]-full below p (by (F1)d)
and such that p KforcM

U ϕ(τ) .
(b) p KforcM

U ∃ x ϕ(x) iff there is a name τ ∈ M ∩ SNω
ω(K[U]) , K[U]-full below p (by (F1)d) and

such that p KforcM
U ϕ(τ) .

(F4) If k ≥ 2 , ϕ is a closed LΠ1
k (K[U], M) formula, p ∈ K[U] , and (F1) holds, then p KforcM

U ϕ iff we
have ¬ q KforcM′

U′ ϕ¬ for every pair 〈M′, U′〉 ∈ sJS extending 〈M, U〉 , and every condition q ∈ K[U′] ,
q ≤ p, where ϕ¬ is the result of canonical conversion of ¬ ϕ to LΣ1

k(K[U], M) .

Lemma 18 (in L). Let K , 〈M, U〉 , p , ϕ satisfy (F1) of Definition 20. Then :

(i) if p KforcM
U ϕ , 〈M, U〉 � 〈M′, U′〉 ∈ sJS and q ∈ K[U′] , q ≤ p, then q KforcM′

U′ ϕ ;
(ii) if k ≥ 2 , ϕ is LΠ1

k (K[U], M) , and p KforcM
U ϕ , then p KforcM

U ϕ¬ fails.
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Thus by the first claim of the lemma forc is monotone w.r. t. both the extension of pairs in sJS

and the strengthening of forcing conditions.

Proof. (i) Let ϕ = ϕ(τ1, . . . , τm) be a closed formula in LΠ1
1(K[U], M) , where all names τj ∈

SNω
ω(K[U]) ∩ M are K[U]-full below the condition p ∈ K[U] considered. Then all names τj remain

K[U′]-full below p , and below q as well since q ≤ p , by Corollary 5. Consider a set G′ ⊆ K[U′] ,
K[U′]-generic over M′ and containing q . We have to prove that ϕ[G′] is true in M′[G′] . Note that
the set G = G′ ∩ K[U] is K[U]-generic over M by Corollary 4, and we have p ∈ G . Moreover the
valuation ϕ[G′] coincides with ϕ[G] since all names in ϕ belong to SNω

ω(K[U]) . ϕ[G] is true in M[G]

as p KforcM
U ϕ . It remains to apply Mostowski’s absoluteness between the models M[G] ⊆ M′[G′] .

The inductive steps related to (F3), (F4) of Definition 20 are easy.
Claim (ii) immediately follows from (F4) of Definition 20.

The next theorem classifies the complexity of forc in terms of projective hierarchy. Recall that all
formulas in

⋃
n
(
LΣ1

n(K, M) ∪ LΠ1
n(K, M)

)
are by definition (finite) strings in M . This allows us to

consider and analyze sets

ForcK
w(Σ

1
n) =

{
〈M, U, p, ϕ〉 : 〈M, U〉 ∈ sJS ∧ w ∈ M ∧ p ∈ K[U] ∧
ϕ is a closed LΣ1

n(K[U], M) formula ∧ p KforcM
U ϕ

}
;

and similarly defined ForcK
w(Π

1
n) , where it is assumed that w ∈ ωω and K ⊆ P∗ is a regular forcing

and an absolute ΔHC
1 (w) set.

Theorem 11 (in L). Let w ∈ ωω and K ⊆ P∗ be a regular forcing and an absolute ΔHC
1 (w) set. Then :

(i) ForcK
w(Π

1
1) and ForcK

w(Σ
1
2) are ΔHC

1 (w) ;
(ii) if k ≥ 2 then ForcK

w(Π
1
k ) and ForcK

w(Σ
1
k+1) are ΠHC

k−1(w) .

Proof (sketch). Suppose that ϕ is LΠ1
1 . Under the assumptions of the theorem, items (F1)a, (F1)c,

(F1)d of Definition 20(F1) are ΔHC
1 (w) relations, (F1)b is automatic, while (F2) is reducible to a forcing

relation over M that we can relativize to M . The inductive step goes on straightforwardly using (F3),
(F4) of Definition 20. Note that the quantifier over names in (F3) is a bounded quantifier (bounded by
M ), hence it does not add any extra complexity.

5.4. Advanced Properties of Forcing Approximations

The following lemma works whenever the domain K ⊆ P∗ (a regular forcing) of conditions p
related to the definition of p KforcM

U ϕ is bounded by a set c ⊆ I . (Compare with Theorem 7.)

Lemma 19 (restriction lemma, in L). Suppose that K , 〈M, U〉 , p , ϕ satisfy (F1) of Definition 20, a set
c ⊆ I is absolute ΔHC

1 (M) , K ⊆ P∗� c , and p KforcM
U ϕ . Then p KforcM

U� c ϕ .

Note that |U| ⊆ c is not assumed in the lemma. On the other hand, we have |p| ⊆ c by
Definition 20(F1)c, because p ∈ K[U] and K ⊆ P∗� c , and |ϕ| ⊆ c holds because ϕ is an L(K[U])

formula. In addition, U� c ∈ M by the choice of c .

Proof. The direction ⇐= immediately follows from Lemma 18(i) since we have 〈M, U� c〉 � 〈M, U〉
by Remark 1 in Section 4.1. Prove the opposite implication by induction.

Case of LΠ1
1 formulas: K[U] = K[U� c] under the assumptions of the lemma.

Step LΠ1
n → LΣ1

n+1 . Let ψ(x) be a LΠ1
n(K[U], M) formula, and ϕ be ∃Bx ψ(x) , B ⊆ I , B ∈ M .

If p KforcM
U ϕ then there is a name τ ∈ M ∩ SNω

ω(K[U]�B) such that p KforcM
U ψ(τ) . We conclude that

p KforcM
U� c ψ(τ) by the inductive hypothesis. However we have SNω

ω(K[U]�B) = SNω
ω(K[U� c]�B)

since |K| ⊆ c . Thus p KforcM
U� c ϕ . The case ϕ being ∃ x ψ(x) is similar.
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Step LΣ1
n → LΠ1

n , n ≥ 2 . Let ϕ be a LΠ1
n(K[U], M) formula. Suppose towards the contrary

that p KforcM
U ϕ holds, but p KforcM

U� c ϕ fails, so that there exist a pair 〈M′, V〉 ∈ sJS and a condition

q ∈ K[V] , such that 〈M, U� c〉 � 〈M′, V〉 , q ≤ p , and q KforcM′
V ϕ¬ . Then q KforcM′

V� c ϕ¬ by the
inductive hypothesis. Note that |q| ⊆ c by the choice of K , but not necessarily |V| ⊆ c .

Define a system W ∈ M′ such that |W| = (|V| ∩ c) ∪ (|U|� c) , W� (|V| ∩ c) = V� (|V| ∩ c) , and
W� (|U|� c) = U� (|U|� c) . Then 〈M′, V� c〉 � 〈M′, W〉 , therefore still q KforcM′

W ϕ¬ by Lemma 18(i).
Now we claim that 〈M, U〉 � 〈M′, W〉 . Indeed, suppose that ν ∈ |U| . If ν /∈ c then W(ν) =

U(ν) . If ν ∈ c then U(ν) ⊆ V(ν) = W(ν) by construction. It follows that |U| ⊆ |W| , U � W ,
and Δ(U, W) ⊆ Δ(U� c, V)—which implies U �M W , since 〈M, U� c〉 � 〈M′, V〉 . Thus 〈M, U〉 �
〈M′, W〉 .

We have q ≤ p as well. This contradicts the assumption p KforcM
U ϕ by Lemma 18(ii).

Lemma 20 (in L ). Let K , 〈M, U〉 , p , ϕ , k satisfy (F1) of Definition 20, NAM ϕ = {τ1, . . . , τm} , μ1, . . . , μm

be another list of names in SNω
ω(K[U]) ∩M, K[U]-full below p and such that τ� and μ� are equivalent below

p for each � = 1, . . . , m. Then p KforcM
U ϕ(τ1, . . . , τm) iff p KforcM

U ϕ(μ1, . . . , μm) .

Proof. It suffices to consider the case of Π1
1 formulas; the induction steps LΠ1

k → LΣ1
k+1 and

LΣ1
k → LΠ1

k are rather easy.
Suppose that ϕ is LΠ1

1 and p KforcM
U ϕ(τ1, . . . , τm) . Suppose that G ⊆ K[U] is a set K[U]-generic

over M , and p ∈ G . We claim that τ�[G] = μ�[G] for all � ; this obviously implies the result required.
Suppose that this is not the case. Then, by definition, there exist numbers m and j �= k and conditions
q ∈ G ∩ (τ ”〈m, j〉) and r ∈ G ∩ (μ”〈m, k〉) . Then p, q, r must be compatible (as elements of the same
generic set), which is a contradiction.

Lemma 21 (in L). Suppose that K , 〈M, U〉 , p , ϕ , k satisfy (F1) of Definition 20, ϕ is LΠ1
k (K[U], M) ,

P = {q ∈ K[U] : q ≤ p} , a set A ∈ M, A ⊆ P is a maximal antichain in P, and q KforcM
U ϕ for all q ∈ A.

Then p KforcM
U ϕ .

Proof. If ϕ is a LΠ1
1 formula then the result follows from (F2) of Definition 20 and known properties of

the ordinary forcing over M . Now let ϕ be Π1
k , k ≥ 2. Suppose towards the contrary that p KforcM

U ϕ

fails. Then there exist: a pair 〈M′, U′〉 ∈ sJS extending 〈M, U〉 , and a condition r ∈ K[U′] , r ≤ p , such
that r KforcM′

U′ ϕ¬ . Note that A remains a maximal antichain in the set Q = {q ∈ P[U] : q ≤ p} (bigger
than P above), by Lemma 8. Therefore, A is still a maximal antichain in Q′ = {q ∈ P[U′] : q ≤ p} , by
Theorem 8(i), hence a maximal antichain in P′ = {q ∈ K[U′] : q ≤ p} . It follows that r is compatible
in K[U′] with at least one condition q ∈ A . However, r KforcM′

U′ ϕ¬ while q KforcM
U ϕ , easily leading to

a contradiction with Lemma 19.

5.5. Transformations and Invariance

Here we show that, under certain assumptions, the transformations of the first two groups defined
in Section 3.7 preserve forcing approximations forc. This is not an absolutely elementary thing: there
is no way to reasonably apply transformations to transitive models M involved in the definition of
forc . What we can do is to require that the transformations involved belong to the models involved.
This leads to certain complications of different sort.

Family 1: permutations. First of all we have to extend the definition of the action of π in
Section 3.7 to include formulas. Suppose that c , c′ ⊆ I . Define the action of any π ∈ BIJc

c′ onto
formulas ϕ of L(P∗) such that ||ϕ|| ⊆ c :

– to get πϕ substitute π ·τ for any τ ∈ NAM ϕ and π ·B for any B ∈ IND ϕ .

Lemma 22. Suppose that 〈M, U〉 , K , p , ϕ satisfy (F1) of Definition 20, sets c, c′ ⊆ I have equal cardinality
and are absolute ΔHC

1 (M) , π ∈ BIJc
c′ is an absolute ΔHC

1 (M) function, and ||ϕ|| ⊆ c , |U| ⊆ c , K ⊆ P∗� c .
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Then, p KforcM
U ϕ iff (π · p) π ·KforcM

π ·U πϕ .

Proof. Under the assumptions of the lemma, in particular, the requirement of c, c′, π being absolute
ΔHC

1 (M) , π acts as an isomorphism on all relevant domains and preserves all relevant relations
between the objects involved. Thus 〈M, π ·U〉 , π ·K , π · p , πϕ still satisfy Definition 20(F1), and
||πϕ|| ⊆ c′ , |π ·U| ⊆ c′ , π ·K ⊆ P∗� c′ . (For instance, to show that π ·U still belongs to M , note that
the set |U| ⊆ c belongs to M , thus π� |U| ∈ M , too, since π is an absolute ΔHC

1 (M) function.) This
allows to prove the lemma by induction on the complexity of ϕ .

Suppose that ϕ is a closed formula in LΠ1
1(K[U], M) . Then πϕ is a closed formula in

LΠ1
1((π ·K)[π ·U], M) . Then easily P′ = (π ·K)[π ·U] = π ·(K[U]) ⊆ P∗ is a set in M order

isomorphic to P = K[U] itself by means of the map p �−→ π · p . Moreover a set G ⊆ P is P-
generic over M iff π ·G is, accordingly, P′-generic over M and the valuated formulas ϕ[G] and
(πϕ)[π ·G] coincide. Now the result for Π1

1 formulas follows from (F2) of Definition 20.
Step Π1

n → Σ1
n+1 , n ≥ 1. Let ψ(x) be a LΠ1

n(K[U], M) formula, and ϕ be ∃ x ψ(x) . Assume
p KforcM

U ϕ . By definition there is a name τ ∈ SNω
ω(K[U]) ∩M such that p KforcM

U ψ(τ) . Then, by the
inductive hypothesis, π · p π ·KforcM

π ·U (πψ)(π ·τ) , and hence by definition π · p π ·KforcM
π ·U πϕ .

The case of ϕ being ∃Bx ψ(x) is similar.
Step Σ1

n → Π1
n , n ≥ 2. This is somewhat less trivial. Assume that ϕ is a closed LΠ1

n(K[U], M)

formula; all names in ϕ belong to SNω
ω(K[U]) ∩M and are K[U]-full below a given p ∈ K[U] . Then,

by rather obvious reasons, πϕ is a closed LΠ1
n((π ·K)[π ·U], M) formula, whose all names belong

to SNω
ω((π ·K)[π ·U]) ∩ M and are (π ·K)[π ·U]-full below π · p . Suppose that p KforcM

U ϕ fails. By
definition there exist a pair 〈M1, U1〉 ∈ sJS with 〈M, U〉 � 〈M1, U1〉 , and a condition q ∈ K[U1] , q ≤ p ,
such that q Kforc

M1
U1

ϕ¬ . We can also assume by Lemma 19, that |U1| ⊆ c . Then (π ·q) π ·Kforc
M1
π ·U1

πϕ¬

by the inductive hypothesis. Yet the pair 〈M1, π ·U1〉 belongs to sJS and extends 〈M, π ·U〉 . (As π is
absolute ΔHC

1 (M) and U ∈ M , the restriction π� |U| belongs to M .) In addition, π ·q ∈ (π ·K)[π ·U1] ,
and π ·q ≤ π · p . Therefore the statement (π · p) KforcM

π ·U πϕ fails, as required.

Family 2: Lipschitz transformations. We extend the action of α ∈ LipI to formulas of L(P∗) :

– to get πϕ substitute π ·τ for any τ ∈ NAM ϕ but do not change the quantifier indices B .

Note that the action of any α ∈ LipI ∩ M on systems, conditions, names, and formulas, as defined
there, is absolute ΔHC

1 (M) . This allows to prove the next invariance lemma similarly to Lemma 22,
which we leave for the reader.

Lemma 23. Suppose that 〈M, U〉 , K , p , ϕ satisfy (F1) of Definition 20, and α ∈ LipI ∩M. Then p KforcM
U ϕ

iff (α · p) α ·KforcM
α ·U αϕ .

6. Elementary Equivalence Theorem

This section presents further properties of P-generic extensions of L and their subextensions,
including Theorem 13 and its corollaties on the elementary equivalence of different subextensions.

Assumption 2. We continue to assume V = L in the ground universe. Below in this section, a number
n ≥ 2 is fixed, and pairs 〈Mξ , Uξ〉 , the system U =

∨
ξ<ω1

Uξ , the forcing notions Pξ = P[Uξ ] and
P = P[U] =

⋃
ξ<ω1

Pξ are as in Definition 16 for this n .

6.1. Further Properties of Forcing Approximations

Coming back to the complete sequence of pairs 〈Mξ , Uξ〉 introduced by Definition 16, we consider
the auxiliary forcing relation forc with respect to those pairs. We begin with the following definition.
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Definition 21 (in L). Let K ⊆ P∗ be a regular forcing. Recall that

K[U] = K ∩ P and K[Uξ ] = K ∩ P[Uξ ] = K ∩ Pξ

for any ξ < ω1 . Let p Kforcξ ϕ mean p Kforc
Mξ

Uξ
ϕ—then by definition K has to be an absolute ΔHC

1 (Mξ) set,

by the way. We let p Kforc∞ ϕ mean: ∃ ξ < ω1 (p Kforcξ ϕ) .

Thus, if p Kforcξ ϕ then definitely K is an absolute ΔHC
1 (Mξ) set, p ∈ K[Uξ ] , ϕ is a formula with

names in Mξ ∩ SNω
ω(K[Uξ ]) as parameters, all names τ ∈ NAM ϕ are K[Uξ ]-full below p , all indices

B ∈ IND ϕ belong to Mξ . The following is an easy consequence of Lemma 18.

Lemma 24 (in L). Let K ⊆ P∗ be a regular forcing. Assume that ϕ is a closed formula in LΠ1
k (K[U]) ∪

LΣ1
k+1(K[U]) , 1 ≤ k, p ∈ K[U] . Then:

(i) if p Kforcξ ϕ and ξ � ζ < ω1 , q ∈ K[Uζ ] , q � p, then q Kforcζ ϕ ;
(ii) p Kforc∞ ϕ and p Kforc∞ ϕ¬ contradict to each other ;

(iii) if ϕ is a LΠ1
k (K[U]) formula, A ⊆ Q = {q ∈ K[U] : q ≤ p} is a maximal antichain in Q, and

q Kforc∞ ϕ for all q ∈ A, then p Kforc∞ ϕ .

Proof. (iii) As A is a countable set, there exists an ordinal ξ < ω1 such that q Kforcξ ϕ for all q ∈ A .
Apply Lemma 21.

Lemma 25 (in L). Assume that K ⊆ P∗ is a regular forcing, ϕ is a closed formula in LΠ1
k (K[U]) ∪

LΣ1
k(K[U]) , 2 ≤ k < n , p ∈ K[U] , all names in ϕ are K[U]-full below p, and finally w ∈ ωω and K is

absolute ΔHC
1 (w) . Then :

(i) there is q ∈ K[U] , q � p, such that q Kforc∞ ϕ or q Kforc∞ ϕ¬ ;
(ii) if ϕ is LΠ1

k (K[U]) , 2 ≤ k < n , then p Kforc∞ ϕ iff there is no condition q ∈ K[U] , q ≤ p, such that
q Kforc∞ ϕ¬ .

Proof. (i) As any name is a countable object, there is an ordinal η < ω1 such that p ∈ K[Uη ] , w ∈ Mη ,
and all names in ϕ belong to Mη ∩ SNω

ω(K[Uη ]) ; then all names in ϕ are K[Uη ]-full below p , of course.
As k < n , the set D of all pairs 〈M, U〉 ∈ sJS that extend 〈Mη , Uη〉 and there is a condition q ∈ K[U] ,
q � p , satisfying q KforcM

U ϕ¬ , belongs to ΣHC
n−2 by Theorem 11. Therefore, by the n-completeness of

the sequence {〈Mξ , Uξ〉}ξ<ω1 , there is an ordinal ζ , η � ζ < ω1 , such that 〈Mζ , Uζ〉 ∈ Dsolv . (By the
way, this is the only use of the n-completeness!)

We have two cases.
Case 1: 〈Mζ , Uζ〉 ∈ D . Then there is a condition q ∈ K[Uζ ] , q ≤ p , satisfying q Kforcζ ϕ¬ .

However, obviously q ∈ K[U] .
Case 2: there is no pair 〈M, U〉 ∈ D extending 〈Mζ , Uζ〉 . Prove p Kforcζ ϕ . Suppose otherwise.

Then by the choice of η and (F4) of Definition 20 there exist a pair 〈M, U〉 ∈ sJS extending 〈Mζ , Uζ〉 ,
and a condition q ∈ K[U] , q ≤ p , such that q KforcM

U ϕ¬ . Then 〈M, U〉 ∈ D , a contradiction.
(ii) Suppose that there is no condition q ∈ K[U] , q ≤ p , with q Kforc∞ ϕ¬ . Then by (i) the set

Q = {q ∈ K[U] : q ≤ p ∧ q Kforc∞ ϕ} is dense in K[U] below p . Let A ⊆ Q be a maximal antichain.
It remains to apply Lemma 24(iii).

6.2. Relations to the Truth in Generic Extensions

According to the next theorem, the truth in the generic extensions considered is connected in the
usual way with the relation forc∞ up to the n-th level of analytic hierarchy. Recall that V = L is
assumed in the ground universe.
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Theorem 12. Assume that, in L , K ⊆ P∗ is a regular forcing, ϕ is a closed formula in LΠ1
k (K[U]) ∪

LΣ1
k+1(K[U]) , 1 ≤ k ≤ n , all names in NAM ϕ are K[U]-full, w ∈ ωω, and K is an absolute ΔHC

1 (w) set.
Let G ⊆ P be a P-generic set over L . Then :

(i) if p ∈ G and p Kforc∞ ϕ , then ϕ[G] is true in L[G ∩ K[U]] ;
(ii) conversely, if ϕ[G] is true in L[G ∩ K[U]] and strictly k < n holds, then ∃ p ∈ G ∩ K (p Kforc∞ ϕ) .

The formulas ϕ[G] , ϕ[G ∩ K] coincide under the assumptions of the theorem.

Proof. (ii) We argue by induction on the complexity of ϕ .

The case of LΠ1
1 formulas. Let ϕ be a closed formula in LΠ1

1(K[U]) . As names in the
formulas considered are countable objects, there is an ordinal ξ < ω1 such that w ∈ Mξ and ϕ

is a LΠ1
1(K[Uξ ], Mξ) formula. As G ⊆ P is P-generic over L , the smaller set Gξ = G ∩ K[Uξ ] is

K[Uξ ]-generic over Mξ by Corollary 4, and the formulas ϕ[G] , ϕ[Gξ ] coincide by the choice of ξ .
Therefore if ϕ[G] holds in L[G ∩ K[U]] then ϕ[Gξ ] holds in Mξ [Gξ ] , by Shoenfield’s absoluteness
theorem, and hence there is a condition p ∈ Gξ which K[Uξ ]-forces ϕ over Mξ , that is, p Kforcξ ϕ by
(F2) of Definition 20, and finally p Kforc∞ ϕ , as required. If conversely, p ∈ G ∩ K[U] , ζ , ξ ≤ ζ < ω1 ,
and p Kforcζ ϕ , then by definition p K[Uζ ]-forces ϕ over Mξ . It follows that ϕ[Gξ ] holds in Mξ [Gξ ] ,
and hence ϕ[G] holds in L[G ∩ K[U]] as well by the Shoenfield absoluteness.

Step LΠ1
k → LΣ1

k+1 , k < n . Let ϕ(x) be a LΠ1
k (K[U]) formula; let us prove the result for

∃ x ϕ(x) . If p ∈ G and p Kforcξ ∃ x ϕ(x) then by definition there is a name τ ∈ Mξ ∩ SNω
ω(K[Uξ ]) ,

K[Uξ ]-full below p , and such that p Kforcξ ϕ(τ) . By Lemma 10, there is a K[Uξ ]-full name τ′ ∈
Mξ ∩ SNω

ω(K[Uξ ]) , equivalent to τ below p . Then p Kforcξ ϕ(τ′) by Lemma 20. Note that τ′ is
Pξ-full by Corollary 1, hence P-full by Corollary 6(iv), and K[U]-full, too. It follows that ϕ(τ′)[G]

holds in L[G ∩ K[U]] by the inductive hypothesis, thus (∃ x ϕ(x))[G] holds in L[G ∩ K[U]] because
τ′[G] = τ[G] ∈ L[G ∩ K[U]] by the choice of τ .

If conversely (∃ x ϕ(x))[G] is true in L[G ∩ K[U]] then by definition there is an element x ∈
L[G ∩ K] = L[G ∩ K[U]] such that ϕ[G](x) is true in L[G ∩ K[U]] . By Theorem 5(ii), there is a K[U]-
full name τ ∈ SNω

ω(K[U]) such that x = τ[G] . Thus ϕ(τ)[G] is true in L[G ∩ K[U]] . Note that τ is P-
full as well, by Corollary 1, and hence K[U]-full, too. By the inductive hypothesis, there is a condition
p ∈ G such that p Kforc∞ ϕ(τ) . It follows that p Kforc∞ ∃ x ϕ(x) .

Step LΣ1
k → LΠ1

k , 2 ≤ k < n . Prove the theorem for a LΠ1
k (K[U]) formula ϕ , assuming that

the result holds for ϕ¬ . If ϕ[G] is false in L[G] then ϕ¬[G] is true. Thus by the inductive hypothesis,
there is a condition p ∈ G such that p Kforc∞ ϕ¬ . Then q Kforc∞ ϕ for any q ∈ G is impossible by
Lemma 24(ii). Conversely, suppose that p Kforc∞ ϕ fails for all p ∈ G ∩ K . Then by Lemma 25(i) there
is q ∈ G ∩ K[U] such that q Kforc∞ ϕ¬ . It follows that ϕ¬[G] is true in L[G ∩ K[U]] by the inductive
hypothesis, therefore ϕ[G] is false.

(i) Let ϕ be a LΠ1
n(K[U]) formula, p ∈ G ∩ K[U] , p Kforc∞ ϕ . By Lemma 24(ii), there is no

q ∈ G ∩ K[U] such that q Kforc∞ ϕ¬ . However, ϕ¬ is LΣ1
n(K[U]) , thus ¬ ϕ[G] in L[G ∩ K] holds

by (ii).
Finally prove (i) for a formula ϕ := ∃ x ψ(x) , ψ being LΠ1

n(K[U]) . Suppose that p ∈ G ∩ K[U]

and p Kforc∞ ϕ . Then there is a name τ ∈ SNω
ω(K[U]) , K[U]-full below p and such that p Kforc∞ ψ(τ) .

We can w. l.o.g. assume that τ is totally K[U]-full, by Lemmas 10 and 20. We have to prove that
the formula ψ(τ)[G] , that is, ψ[G](τ[G]) , holds in L[G ∩ K]—then ϕ[G] holds in L[G ∩ K] as well.
Suppose to the contrary that ψ(τ)[G] fails in L[G ∩ K] . However, ψ(τ)¬ is a Σ1

n formula. Therefore,
by the first claim of the lemma, there is a condition q ∈ G ∩ K such that q Kforc∞ ψ(τ)¬ . However,
p Kforc∞ ψ(τ) and p, q are compatible (as they belong to the same generic set). This contradicts
Lemma 24(ii).
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6.3. Consequences for the Ordinary Forcing Relation

For any forcing P ∈ L , we let ||−−P be the ordinary P-forcing relation over L as the ground
universe. In particular ||−−P is the P-forcing relation over L .

Corollary 8 (in L). Under the assumptions of Theorem 12, let p ∈ K[U] . Then :

(i) if ϕ is LΠ1
k (K[U]) or LΣ1

k+1(K[U]) and p Kforc∞ ϕ , then p ||−−K[U] ϕ ;
(ii) if ϕ is LΠ1

k (K[U]) , then p ||−−K[U] ϕ iff ¬ ∃ q ∈ K[U] (q ≤ p ∧ q Kforc∞ ϕ¬) ;
(iii) if k < n strictly, ϕ belongs to LΠ1

k (K[U]) or LΣ1
k+1(K[U]) , and p ||−−K[U] ϕ , then

∃ q ∈ K[U] (q ≤ p ∧ q Kforc∞ ϕ) ;
(iv) if k < n strictly, ϕ is LΠ1

k (K[U]) , and p ||−−K[U] ϕ then p Kforc∞ ϕ .

Proof. (i) follows from Theorem 12(i).
(iii) Let G ⊆ P be P-generic over L , and p ∈ G . If p ||−−K[U] ϕ then ϕ[G] is true in L[G ∩ K[U]] ,

and hence there is r ∈ G ∩ K such that r Kforc∞ ϕ , by Theorem 12. However, then p, r are compatible
(as members of G ), hence q = p ∧ r still is a condition, and q ∈ K[U] .

(iv) If p Kforc∞ ϕ fails, then by Lemma 25(ii) there is a condition q ∈ K[U] , q ≤ p , such that
q Kforc∞ ϕ¬ . Then q ||−−K[U] ϕ¬ by (i), thus p ||−−K[U] ϕ fails.

(ii) Suppose that q ∈ K[U] , q ≤ p , q Kforc∞ ϕ¬ . Then q ||−−K[U] ¬ ϕ by (i), and hence p ||−−K[U] ϕ

fails. Now suppose that p ||−−K[U] ϕ fails. Then there is a condition r ∈ K[U] , r ≤ p , r ||−−K[U] ϕ¬ .
However, then, by (iii), there is a condition q ∈ K[U] , q ≤ r , q Kforc∞ ϕ¬ , as required.

The next corollary evaluates the complexity of the ordinary forcing relations ||−−K[U] . The result is
related to formulas in classes LΠ1

n and higher.

Corollary 9 (in L). Let ϕ(x1, . . . , xm) be an L(∅) formula (that is, no names), and K ⊆ P∗ be a regular
forcing. Suppose that w ∈ ωω , and K is an absolute ΔHC

1 (w) set. Then :

(i) if ϕ belongs to LΠ1
k , k ≥ n , then the following set is ΠHC

k−1(w) :

FORCK(ϕ) =
{
〈p, τ1, . . . , τm〉 : p ∈ K[U] ∧
τ1, . . . , τm ∈ SNω

ω(K[U]) are K[U]-full names ∧
p ||−−K[U] ϕ(τ1, . . . , τm)

}
;

(ii) similarly, if ϕ is LΣ1
k , k > n , then FORCK(ϕ) is ΣHC

k−1(w) .

Proof. We argue by induction on k ≥ n . Suppose that ϕ is LΠ1
n and τ1, . . . , τm ∈ SNω

ω(K[U]) are
K[U]-full names. It follows from Corollary 8(ii) that 〈p, τ1, . . . , τm〉 ∈ FORCK(ϕ) iff

¬ ∃ ξ < ω1 ∃ q ∈ K[Uξ ] (q ≤ p ∧ q Kforc
Mξ

Uξ
ϕ¬(τ1, . . . , τm)) .

The formula q Kforc
Mξ

Uξ
ϕ¬(τ1, . . . , τm) can be replaced by

〈Mξ , Uξ , q, ϕ(τ1, . . . , τm)〉 ∈ ForcK
w(Σ

1
n)

(see a definition in Theorem 11). However, ForcK
w(Σ

1
n) is ΔHC

n−1(w) by Theorem 11 (even ΠHC
n−2(w)

provided n ≥ 3). On the other hand, the maps ξ �−→ Mξ and ξ �−→ Uξ are ΔHC
n−1 by construction

(Definition 16). As K is ΔHC
1 (w) , it easily follows that ξ �−→ K[Uξ ] is ΔHC

n−1(w) . We conclude that
FORCK(ϕ) is ΠHC

n−1(w) .

Step LΠ1
k → LΣ1

k+1 . Suppose that ϕ(�τ) is a LΣ1
k+1 formula of the form ∃ y ψ(y,�τ) , where

accordingly ψ is LΠ1
k . Let us show that simply

〈p,�τ〉 ∈ FORCK(ϕ) ⇐⇒ ∃ σ ∈ SNω
ω(K[U]) (〈p, σ,�τ〉 ∈ FORCK(ψ)) , (5)
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which obviously suffices to carry out the step LΠ1
k → LΣ1

k+1 .
If σ is a name as in the right-hand side then obviously any p forces σ[G] ∈ L[G ∩ K[U]] , and on

the other hand by definition p ||−−K[U] ψ(σ,�τ) . Thus p ||−−K[U] ϕ(�τ) , hence, 〈p,�τ〉 ∈ FORCK(ϕ) , as
required. Now suppose that p ||−−K[U] ϕ(�τ) . This means, by definition, that p ||−−K[U] ∃ y ψ(y,�τ) . By
Theorem 5(iv), there is a K[U]-full name σ ∈ SNω

ω(K[U]) such that p ||−−K[U] ψ(σ,�τ) , thus 〈p, σ,�τ〉 ∈
FORCK(ψ) .

Step LΣ1
k → LΠ1

k , k > n . Suppose that ϕ is a LΠ1
k formula; accordingly, ϕ¬ is LΣ1

k . It is clear
that, under the assumptions that p ∈ K[U] and τ1, . . . , τm ∈ SNω

ω(K[U]) are K[U]-full names, the
following holds:

〈p,�τ〉 ∈ FORCK(ϕ) ⇐⇒ ¬ ∃ q ∈ K[U] (q ≤ p ∧ 〈p,�τ〉 ∈ FORCK(ϕ¬)) , (6)

which is sufficient to accomplish the step LΣ1
k → LΠ1

k .

6.4. Elementary Equivalence Theorem

According to Theorem 10, sets S satisfying Γi(S) are different for different indices i ∈ I , and the
difference can be determined, in the extensions of the form L[G� z] , at the level ΠHC

n−1 by Corollary 7,
that is, Π1

n (see Remark 2 in Section 4.3). On the other hand, the extensions considered remain rather
amorphous w.r. t. lower levels of definability, as witnessed by the following key theorem.

Theorem 13. Suppose that, in L : d ⊆ I , w ∈ ωω, sets b , c ⊆ d� = I � d have equal cardinality, d� is
uncountable, K ⊆ P∗� d is a regular forcing, Ψ(y) is a Π1

n−1 formula with parameters in ωω ∩ L[G ∩ K] ,
and K , b , c , d are absolute ΔHC

1 (w) sets. Let G ⊆ P be P-generic over L .
Then, if there is a real y ∈ ωω ∩ L[G ∩ K, G� b] such that Ψ(y) holds in L[G ∩ K, G� d�] , then there

exists y′ ∈ L[G ∩ K, G� c] such that Ψ(y′) holds in L[G ∩ K, G� d�] .

Recall that ΔHC
1 (w) means that w is admitted as the only parameter. The assumption that d� is

uncountable, can be avoided at the cost of extra complications, but the case of d� countable is not
considered below. The proof makes use of the transformations introduced in Section 3.7.

Proof. As all cardinals are preserved in L[G] , we w. l.o.g. assume that b, c are countably infinite (or
finite of equal cardinality) in L . Suppose towards the contrary that

(A) there is a real y ∈ L[G ∩ K, G� b] such that Ψ(y) holds in L[G ∩ K, G� d�] , but

(B) there is no y′ ∈ L[G ∩ K, G� c] satisfying Ψ(y′) in L[G ∩ K, G� d�] .

By Theorem 5(ii), for every real parameter z in Ψ there is a K[U]-full name τz ∈ SNω
ω(K[U]) such

that z = τz[G] . Replace each parameter z in Ψ(x) by such a name τz in L , and let ψ(x) be the
LΠ1

n−1(K[U]) formula obtained. Then |ψ| ⊆ d . Further, the set

K′ = {p ∈ P∗� (d ∪ b) : p� d ∈ K} = K× (P∗� b) ⊆ P∗� (d ∪ b)

is a regular forcing, and L[G ∩ K, G� b] = L[G ∩ K′] . Choose y by (A). Once again, Theorem 5(ii),
yields a K′[U]-full name τy ∈ SNω

ω(K′[U]) such that y = τy[G] . The name τy is small, hence the set
|τy| ⊆ d ∪ b is countable (in L). We let d0 = |τy| ∩ d ; the set B = d0 ∪ b is still countable and |τy| ⊆ B .
Thus the formula ∃By ψ(y)[G] is true in L[G ∩ K, G� d�] .

Now let Q = {p ∈ P∗ : p� d ∈ K} = K × (P∗� d�) . Thus Q is a regular forcing, and L[G ∩
K, G� d�] = L[G ∩ Q] = L[G ∩ Q[U]] . Therefore ∃By ψ(y)[G] is true in L[G ∩ Q[U]] by the above. It
follows by Theorem 12(ii) that there is a condition p ∈ G ∩ Q such that p Qforc∞ ∃By ψ(y) , and, by
(B), we can also assume that p Q[U]-forces ¬ ∃Cy ψ(y) over L where C = d0 ∪ c . Further, in L , there
exists an ordinal ξ < ω1 such that

p QforcM
U ∃By ψ(y), (7)
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where M = Mξ and U = Uξ , and in addition the countable sets d0, b, c belong to M , w ∈ M ,
p ∈ Q[U] , d0 ∪ b ∪ c ⊆ A = |U| , and all names in ψ belong to M ∩ SNω

ω(K[U]) , so that ψ(x) is a
LΠ1

n−1(K[U], M) formula.
Now we can assume that both sets |U|� (d ∪ b) and |U|� (d ∪ c) are infinite. (Otherwise take

a suitably bigger ξ .) Then there is a bijection f ∈ M , f : |U| onto−→ |U| , such that f � d is the identity
and f [b] = c . Define a bijection π ∈ BIJII such that π� |U| coincides with f and π� (I � |U|) is the
identity. Let q = π · p and V = π ·U . Acting by π on (7), we obtain, by Lemma 22,

q QforcM
V ∃Cy ψ(y), (8)

Comments: 1) π ·Q = Q since π� d is the identity by construction and K ⊆ P∗� d ; 2) π ·B = π[B] =
f [B] = C by construction; 3) π ·ψ(x) is ψ(x) because |ψ| ⊆ d and π� d is the identity.

Note that V ∈ M is a system with |V| = π · |U| = |U| , and p ∈ U , q ∈ V , U� d = V� d and
q� d = p� d by the choice of π and f . In addition, U , V are countable systems in M |= ZFC−1 .
Corollary 2 yields a transformation α ∈ LipI in M such that |α| = |U| = |V| , α ·V = U , conditions
q′ = α ·q ∈ Q[U] and p are compatible, and α� d is the identity (as U� d = V� d and p� d = q� d).
However, then α ·Q = Q , and α(∃Cx ψ(x)) coincides with ∃Cx ψ(x) since |ψ| ⊆ d . Therefore
q′ QforcM

U ∃Cy ψ(y) by (8) and Lemma 23. This implies q′ Qforc∞ ∃Cy ψ(y) . We conclude that q′

Q[U]-forces ∃Cy ψ(y) over L , by Corollary 8(i). However, q′ is compatible with p and p forces the
negation of this sentence. The contradiction completes the proof.

Corollary 10. Under the assumptions of Theorem 13, if c is uncountable in L , then L[G ∩ K, G� c] is an
elementary submodel of L[G ∩ K, G� d�] w.r. t. all Σ1

n formulas with parameters in ωω ∩ L[G ∩ K, G� c] .

Proof. Prove by induction that if k ≤ n then L[G ∩ K, G� c] is an elementary submodel of L[G ∩
K, G� d�] w.r. t. all Σ1

k formulas with parameters in L[G ∩ K, G� c] . If k = 2 then the result holds
by the Shoenfield absoluteness theorem. It remains to carry out the step k → k + 1 (k < n). Let
ϕ(x) be a Π1

k formula with parameters in L[G ∩ K, G� c] ; we have to prove the result for the Σ1
k

formula ∃ x ϕ(x) , assuming k < n . First of all, as the cardinals are preserved, there is a set δ ∈ L ,
δ ⊆ d� , countable in L and such that all parameters of ϕ belong to L[G ∩ K, G� δ] . Let d′ = d ∪ δ

and K′ = {p ∈ P∗� d′ : p� d ∈ K} ; we can identify K′ with K× (P∗� δ) , of course. Then, in L , K′ is a
regular forcing, K′ ⊆ P∗� d′ , and all parameters of ϕ belong to L[G ∩ K′] .

Now suppose that ∃ x ϕ(x) holds in L[G ∩ K, G� d�] , the bigger of the two models of the lemma.
Let this be witnessed by a real x0 ∈ L[G ∩ K, G� d�] = L[G ∩ K′, G� (d′)�] , where (d′)� = I � d′ =
d� � δ , so that ϕ(x0) holds in the model L[G ∩ K, G� d�] = L[G ∩ K′, G� (d′)�] . As the cardinals
are preserved, there is a set b′ ∈ L , b′ ⊆ (d′)� , countably infinite in L and such that x0 belongs
to L[G ∩ K′, G� b′] . Since c is uncountable, there exists a set c′ ∈ L , c′ ⊆ (d′)� ∩ c , countably
infinite in L . By the choice of δ , there is a real w′ ∈ ωω ∩ L such that the sets K′ , d′ , c′ , b′ are
absolute ΔHC

1 (w′) in L . By Theorem 13, there is a real y0 ∈ L[G ∩ K′, G� c′] such that ϕ(y0) holds in
L[G ∩ K′, G� (d′)�] = L[G ∩ K, G� d�] , and then in L[G ∩ K, G� c] by the inductive assumption.

Note that if say c is uncountable but b countable, and d is countable, then Theorem 13 fails
by means of the formula “there is a real x such that all reals belong to L[x, G ∩ K]”, and G ∩ K is
equiconstructible with a real in this case.

Question 1. It would be very interesting to figure out whether Theorem 13 and Corollary 10 hold also
for sets b , c not necessarily constructible.

The following corollary presents a partial positive result.
A set z ⊆ I = ωL

1 is bounded iff there is α < ωL
1 such that z ⊆ α .

Corollary 11. Suppose that G ⊆ P is P-generic over L , and z ⊆ I is a set unbounded in I , locally
constructible in the sense that z ∩ α ∈ L for all α ∈ I , and all L-cardinals are preserved in L[G� z] . Then
L[G� z] is elementarily equivalent to L[G] w.r. t. all Σ1

n formulas with parameters in L[G� z] .
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Remark: under the assumptions of the corollary, it is not necessary that L[G� z] ⊆ L[G] , since the
set z is not assumed to belong to L[G] , but we necessarily have L[G� z] ∩ωω ⊆ L[G] ∩ωω by rather
obvious reasons.

Proof. Prove by induction that for any k ≤ n , L[G� z] is elementarily equivalent to L[G] w.r. t. all
Σ1

k formulas with parameters in L[G� z] . For k = 2 use Shoenfield’s absoluteness. To carry out the
step k → k + 1 (k < n), let ϕ := ∃ y ψ(y) be a Σ1

k+1 formula with parameters in L[G� z] . Then, by the
choice of z , 1) there is a set d ∈ L , d ⊆ z , countable in L and such that all parameters in ϕ belong to
L[G� d] , and 2) there is a set e ∈ L , e ⊆ z � d , countably infinite in L .

Now suppose that ∃ y ψ(y) is true in L[G] . This is witnessed by a real y′ ∈ L[G� (d ∪ e′)] for a
set e′ ∈ L , e′ ⊆ I � d , countably infinite in L . Then, by Theorem 13 with K = P∗� d , there is a real
y ∈ L[G� (d ∪ e)] , hence, y ∈ L[G� z] , such that ψ(y) is true in L[G] . However, then ψ(y) is true in
L[G� z] by the inductive hypothesis. Hence ϕ is true in L[G� z] as well, as required.

7. Application 1: Nonconstructible Δ1
n Reals

In this section, we proveTheorems 1 and 2(i). Theorem 1 provides change of definability of reals
situated in the ground set universe L , in generic extensions of L . Thus, any real a /∈ Σ1

n ∪Π1
n in L

can be placed exactly at Δ1
n+1 in an appropriate (almost disjoint) extension of L . Theorem 2 contains

several results for nonconstructible reals. The proofs of these results will make use of various results in
Sections 5 and 6, in particular, a result (Theorem 11) related to definability of relevant forcing relations.

Assumption 3. We continue to assume V = L in the ground universe. We fix an integer n ≥ 2 , for
which Theorems 1 and 2 will be proved, and make use of a system U and the forcing notion P = P[U] as in
Definition 16; both U and P belong to L .

7.1. Changing Definability of an Old Real

Proof (Theorem 1). Fix a set b ⊆ ω , b /∈ Σ1
n ∪Π1

n , in L , and define

c = {2k : k ∈ b} ∪ {2k + 1 : k /∈ b} and K = P∗� c = {p ∈ P∗ : |p| ⊆ c} .

Thus c ⊆ ω ⊆ I = ω1 , c ∈ L , K ⊆ P∗ is a regular forcing. Let G ⊆ P be a P-generic set over L . Then
the set G ∩ K = G� c is K[U]-generic over L by Lemma 9(ii), where K[U] = K ∩ P[U] , as usual.

Define S(ν) = SG(ν) ⊆ Seq and aν = aG(ν) = {k ≥ 1 : sk ∈ SG(ν)} for every ν , as in
Definition 9. We assert that the submodel L[G� c] = L[G ∩ K] = L[{am}m∈c] of the whole generic
extension L[G] witnesses Theorem 1. This amounts to the two following claims:

Claim 3. It is true in L[G� c] that c is Σ1
n+1 , therefore b is Δ1

n+1 .

Proof. By definition we have c = |K| = |K ∩ G| . Therefore c is ΣHC
n in L[G� c] by Corollary 7(iii),

hence Σ1
n+1 (see Remark 2 in Section 4.3), and b = {k : 2k ∈ c} = {k : 2k + 1 /∈ c} ∈ Δ1

n+1 , as required.
In more detail,

c = {m : SG(m) ∈ L[G� c]} = {m : L[G� c] |= ∃ S Γm(S)}, hence

a = {k : SG(2k) ∈ L[G� c]} = {k : L[G� c] |= ∃ S Γ2k(S)}
= {k : SG(2k + 1) /∈ L[G� c]} = {k : L[G� c] |= ¬ ∃ S Γ2k+1(S)}

by Theorem 10, and it remains to apply Lemma 17.

Claim 4. In L[G� c] : if x ⊆ ω is Σ1
n then x ∈ L and x is Σ1

n in L .

Proof (Claim 4). Let x = {m : ϕ(m)} in L[G� c] , where ϕ(m) is a Σ1
n formula. Define c′ = ω ,

K′ = P∗�ω , and K′[U] = K′ ∩ P[U] , as usual. Prove that

m ∈ x ⇐⇒ ∃ 〈M, U〉 ∈ sJS ∃ p ∈ K′[U] (p K′forcM
U ϕ(m)). (9)
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The right-hand side of (9) is relativized to L and is Σ1
n in L by Theorem 11. Thus (9) implies Claim 4.

To verify =⇒ in (9), suppose that m ∈ x , that is, ϕ(m) holds in L[G� c] = L[G ∩ K] . Then by
Theorem 12(ii) there is a condition p ∈ G ∩ K such that p Kforc∞ ϕ(m) , that is, p KforcM

U ϕ(m) , where
M = Mξ , U = Uξ for some ξ < ω1 . As Mξ = M |= ZFC−1 , M contains c , c′ , and the increasing
bijection π ∈ BIJc

c′ . It follows that q K′forcM
U′ ϕ(m) , by Lemma 22, where U′ = π ·U and q = π · p , as

obviously π ·K = K′ . This implies the right-hand side of (9).
To verify ⇐= , let 〈M′, U′〉 ∈ sJS , p′ ∈ K′[U′] , and p′ K′forcM′

U′ ϕ(m) . Suppose towards the
contrary that ϕ(m) fails in L[G ∩ K] , so that there is a condition q ∈ G ∩ K such that q ||−−K[U] ¬ ϕ(m) .
Then q ∈ K[U] (since G ⊆ P), and hence there is an ordinal ξ < ω1 such that q ∈ K[Uξ ] , ω ∪ |U′| ⊆
|Uξ | and M′ ⊆ Mξ . Then still p′ K′forc

Mξ

U′ ϕ(m) by Lemma 18, and Lemma 22 implies p Kforc
Mξ

U ϕ(m) ,
where p = π−1 · p′ and U = π−1 ·U′ . (By obvious reasons, K = π−1 ·K′ .) Note that |U| ⊆ |Uξ | by
the choice of ξ . Therefore, we can define a system V ∈ Mξ such that V� |U| = U and V(ν) = Uξ(ν)

for all ν /∈ |U| . Then obviously 〈Mξ , U〉 � 〈Mξ , V〉 , therefore p Kforc
Mξ

V ϕ(m) .
Now, V and Uξ are countable systems in Mξ with |V| = |Uξ | and p ∈ K[V] but q ∈ K[Uξ ] .

Corollary 2 yields a transformation α ∈ LipI in M such that |α| ⊆ c , α ·V = Uξ , and conditions

r = α · p ∈ K[Uξ ] and q are compatible. Then r Kforc
Mξ

Uξ
ϕ(m) by Lemma 23. (Comment: αϕ is ϕ , and

α ·K = K because regular forcings of the form K = P∗� c are invariant w.r. t. the transformations in
LipI .) Thus r Kforc∞ ϕ(m) , and hence r ||−−K[U] ϕ(m) by Corollary 8(i). However, r is compatible
with q , and q forces the opposite, a contradiction. This ends the proof of (9). (Claim 4)

(Theorem 1)

7.2. Nonconstructible Δ1
n+1 Real, Part 1

Here we begin the proof of Theorem 2(i). Suppose that a set G ⊆ P is P-generic over L . Define
S(ν) = SG(ν) ⊆ Seq and aν = aG(ν) = {k ≥ 1 : sk ∈ SG(ν)} for every ν as in Definition 9. Emulating
the construction in Section 7.1, put

z = zG = {0} ∪ {2k + 2 : k ∈ a0} ∪ {2k + 1 : k /∈ a0}. (10)

The sets SG(ν) and aν do not belong to L , accordingly, z = zG ∈ L[a0] � L—unlike c in
Section 7.1. Nevertheless, we are going to prove that the extension L[G� z] = L[{am}m∈z] witnesses
Theorem 2(i) with a = a0 .

Note that the setup here is not exactly the same as in the proof of Theorem 1 in Section 7.1 since
the set z does not belong to L , the ground universe. Therefore we cannot treat P∗� z as a forcing in L .
Instead of P∗� z , we make use of the set K of all conditions p ∈ P∗�ω such that for any k ≥ 1:

(A) if 2k ∈ |p| then sk ∈ Sp(0) ;

(B) if 2k− 1 ∈ |p| then sk ∈ F∨p (0)� Sp(0)—and hence 2k /∈ |p| by (A).

as well as the related set K[U] = K ∩ P = K ∩ P[U] .

Lemma 26. K is a regular forcing in L . If G ⊆ P is P-generic over L then G ∩ K = G ∩ K[U] is a set K[U]-
generic over L and L[G ∩ K] = L[G� zG].

Proof. The nontrivial item of the regularity property here is (4) of Definition 8. If p ∈ P∗ then define
p∗ ∈ P∗ to be equal to p everywhere except for Sp∗(0) = Sp(0) ∪ S , where S consists of all strings
s = sk such that 1) 2k ∈ |p| or 2k− 1 ∈ |p| , and 2) s /∈ F∨p (0) (to make sure that p∗ ≤ p). Now we
let d contain 0, all numbers 2k ∈ |p∗| such that sk ∈ Sp∗(0) , and all numbers 2k− 1 ∈ |p∗| such that
sk ∈ F∨p (0)� Sp∗(0) . (Compare to Example 2 in Section 3.2!)

The rest of the lemma follows from Lemma 9.
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Thus extensions of the form L[G� zG] considered here are exactly K[U]-generic extensions of L .
To check that those extensions satisfy Theorem 2(i), we prove the following Claims 5 and 6. The first of
them is entirely similar to Claim 3, so the proof is omitted (left to the reader).

Claim 5. It is true in L[G� z] that z is Σ1
n+1 , therefore a0 is Δ1

n+1 .

Claim 6. In L[G� z] , if x ⊆ ω is Σ1
n , then x ∈ L and x is Σ1

n in L .

The proof of this claim involves the following lemma.

Lemma 27 (proved below in Section 7.3). Suppose that 〈M, U〉 ∈ sJS , p ∈ K[U] , q ∈ K[U] . Let Φ be any
closed parameter-free Σ1

n formula. Then it is impossible that simultaneously q ||−−K[U] ¬Φ and p KforcM
U Φ .

Proof (Claim 6 from the lemma). Assume that x = {m : ϕ(m)} in L[G� c] = L[G ∩ K] , where ϕ(m) is
a Σ1

n formula. We claim that then

m ∈ x ⇐⇒ ∃ 〈M, U〉 ∈ sJS ∃ p ∈ K[U] (p KforcM
U ϕ(m)). (11)

This proves Claim 6, of course, by Theorem 11. Now let us check (11) itself; this will be similar to the
proof of (9) in Section 7.1.

Assume that m ∈ x , that is, ϕ(m) holds in L[G ∩ K] . By Theorem 12(ii) there is a condition
p ∈ G ∩ K such that p Kforc∞ ϕ(m) , that is, p KforcM

U ϕ(m) , where M = Mξ , U = Uξ , ξ < ω1 .
However, this implies the right-hand side of (9).

Now assume that 〈M, U〉 ∈ sJS , p ∈ K[U] , and p KforcM
U ϕ(m) . Suppose towards the contrary

that ϕ(m) is false in L[G ∩ K] , so that there is a condition q ∈ G ∩ K such that q ||−−K[U] ¬ ϕ(m) .
However, this contradicts Lemma 27. (Claim 6 and Theorem 2(i) modulo Lemma 27)

7.3. Nonconstructible Δ1
n+1 Real, Part 2

We continue the proof of Theorem 2(i).
The proof of Lemma 27 that follows below makes use of transformations in BIJω

ω (bijections of
ω ) and those in the set Lipω = {α ∈ LipI : |α| ⊆ ω} , essentially the ω-product of Lip . Yet this will
be somewhat more complicated than the proof of Theorem 1 above, because in this case K is not
preserved under the action of arbitrary transformations in BIJω

ω and Lipω . This is why we have to
consider certain combinations of those transformations.

Namely consider superpositions of the form σ = π ◦ α , where π ∈ BIJω
ω and α ∈ Lipω . (Such σ

acts so that σ ·x = π ·(α ·x) for any applicable object x .)

Remark 4. The set Σ of all σ of this form is a group under the superposition, because the
transformations of the two families considered commute so that α ◦ π = π ◦ α′ , where α′ = π ·α , that
is, α′k = απ(k) for all k .

Definition 22. A transformation σ = π ◦ α ∈ Σ is K-preserving, if p ∈ K ⇐⇒ σ · p ∈ K for all p ∈ P∗�ω .

Not all π ∈ BIJω
ω are K-preserving, and neither is any α ∈ Lipω with α0 �= the identity. Yet there

are plenty of K-preserving transformations in Σ .

Lemma 28. Let U , V be countable systems with |U| = |V| = ω , and p ∈ K[U] , q ∈ K[V] . There is a K-
preserving transformation σ = π ◦ α ∈ Σ such that σ ·U = V , and the conditions σ · p and q are compatible.

Proof. First of all, Lemma 5 yields a transformation α0 ∈ Lip such that α0 ·U(0) = V(0) and the
conditions α0 · p(0) and q(0) (in P∗ ) are compatible. Define α = {αi}i∈ω ∈ Lipω so that α0 has
just been defined, and αk = the identity for all k > 0. Note that α0 is a ⊆-preserving bijection of
the set Seq of all non-empty strings of integers. Let f : ω

onto−→ ω be the associated permutation of
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integers, so that f (k) = n iff α0(sk) = sn (and f (0) = 0). Define π ∈ BIJω
ω so that π(0) = 0 and then

π(2k + 2) = 2 f (k) + 2 and π(2k + 1) = 2 f (k) + 1. It is quite obvious that ρ = π ◦ α is K-preserving.
Let U′ = ρ ·U and p′ = ρ · p . Thus U′ is a countable system with |U′| = ω , p′ ∈ K[U′] , and in
addition U′(0) = V(0) and the conditions p′(0) = α0 · p(0) and q(0) are compatible.

It follows from Lemma 5 that there is a transformation γ = {γν}ν<ω ∈ Lipω such that γ0 is the
identity (and hence γ is K-preserving) and for any k ≥ 1 we have γk ·U′(k) = V(k) and γ · p′(k) is
compatible with q(k) . We conclude that the transformation σ = γ ◦ ρ = γ ◦ π ◦ α is K-preserving,
V = γ ·U′ = σ ·U , and the condition γ · p′ = (γ ◦π ◦ α) · p is compatible with q . Then, we have σ ∈ Σ
by Remark 4 in Section 7.3.

Proof (Lemma 27). Suppose towards the contrary that both q ||−−K[U] ¬Φ and p KforcM
U Φ . By the way

we can w. l.o.g. assume that |U| ⊆ ω , by Lemma 19, and moreover, that |U| = ω exactly. (Otherwise
extend U by U(ν) = Q for all ν ∈ ω � |U| , where Q = all eventually-0 functions f ∈ Fun .)

There is an ordinal ξ < ω1 such that q ∈ K[Uξ ] , ω ⊆ |Uξ | , and M ⊆ Mξ . Let V = Uξ �ω . Note
that |q| ⊆ ω since K ⊆ P∗�ω . Thus q ∈ K[V] . Apply Lemma 28 in Mξ . It gives a K-preserving
transformation σ = α ◦ π ∈ Mξ such that σ ·U = V and the conditions r = σ · p and q (both in K[V])

are compatible. On the other hand, we have r Kforc
Mξ

V Φ by Lemmas 22 and 23, and hence r Kforc
Mξ

Uξ
Φ

by Lemma 18, that is, r Kforc∞ Φ . Thus r ||−−K[U] Φ by Corollary 8(i). However, r is compatible with q ,
and q forces the opposite, a contradiction. (Lemma 27) (Claim 6) (Theorem 2(i))

8. Application 2: Nonconstructible Self-Definable Δ1
n Reals

Note that the set a as in Theorem 2(i) is definable in the generic extension of L , considered in
Section 7.2, by means of other reals in that extension, including those which do not necessarily belong
to L[a] . Claim (ii) of Theorem 2 achieves the same effect with the advantage that a is definable inside
L[a] .

The key idea (originally from [9] Section 4) can be explained as follows. Recall that a set of
the form a0 = aG(0) was made definable in a generic extension of the form L[G� zG] by means of
the presence/absense of other sets of the form SG(ν) , ν < ω , in L[G� z] , see Sections 7.2 and 7.3.
Our plan will now be to make each of the according sets aG(ν) ∈ L[G� z] (note that aG(ν) ⊆ ω � {0} ,
see Definition 9), as well as the whole sequence of them, Δ1

n+1 -definable in L[G� z] . In order to do this,
we need to develop a suitable coding construction.

Assumption 4. We continue to assume V = L in the ground universe. We fix an integer n ≥ 2 , for which
Theorem 1(ii) will be proved, and make use of a system U and the forcing notion P = P[U] as in Definition 16;
both U and P belong to L .

8.1. Nonconstructible Self-Definable Δ1
n+1 Reals: The Model

Here we begin the proof of Theorem 2(ii). Recall that ωω = {sk : k < ω} is a fixed recursive
enumeration of strings of natural numbers, such that s0 = Λ , the empty string, and sk ⊆ sk′ =⇒ k ≤ k′ .
Let �k

i = num (sk
�i) , thus s

�k
i
= sk

�i . Then we have:

• Each set L(k) = {�k
i : i < ω} ⊆ ω is countably infinite, k < mini �

k
i ,

k �= k′ =⇒ L(k) ∩ L(k′) = ∅ and i �= j =⇒ �k
i �= �k

j , and finally

each m ≥ 1 is equal to �k
i for exactly one pair of indices of i, k < ω .

Define a partial order � on ω so that i � k iff si ⊂ sk . Obviously k � �k
i for all i , k ∈ ω , and 0 is

the �-least element.
For any sequence �a = {ak}k<ω of sets ak ⊆ ω , we define a set ζ�a ⊆ ω so that:

1) 0 ∈ ζ�a ;
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2) if k ∈ ζ�a then, for every i : if i ∈ ak then �k
2i ∈ ζ�a and �k

2i+1 /∈ ζ�a , but
if i /∈ ak then �k

2i /∈ ζ�a and �k
2i+1 ∈ ζ�a ;

3) if k /∈ ζ�a then �k
i /∈ ζ�a for all i .

The next theorem obviously implies Theorem 2(ii).

Theorem 14. Let G ⊆ P be P-generic over L . Define �a[G] = {aG(i)}i<ω and ζ = ζ�a[G] ⊆ ω . Then
L[ζ] = L[G� ζ] , and it holds in L[ζ] that :

(i) ζ is Δ1
n+1 ;

(ii) if x ⊆ ω is Σ1
n , then x ∈ L and x is Σ1

n in L .

Proof (will continue towards the end of Section 7). Our arguments will be a more elaborate version of
arguments in Sections 7.2, 7.3. We’ll make use of the set K of all conditions p ∈ P∗�ω such that for all
i and k :

(A) if �k
2i ∈ |p| then si ∈ Sp(k) ;

(B) if �k
2i+1 ∈ |p| then si ∈ F∨p (k)� Sp(k)—and hence �k

2i /∈ |p| by (A).

(compare to (A), (B) in Section 7.2), and the related set K[U] = K ∩ P .

Lemma 29. K is a regular forcing in L . If G ⊆ P is a set P-generic over L then G ∩ K = G ∩ K[U] is K[U]-
generic over L , |G ∩ K| = ζ�a[G] , and accordingly L[G ∩ K] = L[G� ζ�a[G]] = L[ζ�a[G]] .

Proof. As above, the nontrivial item of the regularity property is (4) of Definition 8. Suppose that
p ∈ P∗ . Then |p| ⊆ ω is finite. Let δ be the least �-initial segment of ω satisfying |p| ⊆ δ ; δ is
finite as well. Define p∗ ∈ P∗ so that |p∗| = δ and Fp∗(k) = Fp(k) for all k , but the sets Sp∗(k) may
be strictly bigger than the corresponding sets Sp(k) . The definition of Sp∗(k) goes on by �-inverse
induction on k ∈ δ . If k ∈ δ is �-maximal in δ then obviously k ∈ |p| , and we put Sp∗(k) = Sp(k) .
Assume that k ∈ δ is not �-maximal in δ , and the value of p∗(�k

m) = 〈Sp∗(�
k
m) ; Fp(�

k
m)〉 is defined

for all m such that �k
m ∈ δ . Put Sp∗(k) = Sp(k) ∪ S , where S consists of all strings s = si such that

(a) �k
2i+1 ∈ |p∗| = γ or �k

2i ∈ |p∗| , and

(b) s /∈ F∨p (k) (to make sure that p∗ ≤ p).

By definition, |p∗| = δ , and if i, k ∈ ω and at least one of the numbers �k
2i+1 , �k

2i belongs to δ , then the
string si belongs to F∨p∗(k) ∪ Sp∗(k) .

Now we define a set d ⊆ δ so that the decision whether a number k ∈ δ belongs to d is made by
direct �-induction. We put 0 ∈ d . Suppose that some k ∈ δ already belongs to d . We define:

(1) �k
2i ∈ d , if �k

2i+1 ∈ δ and si ∈ Sp∗(k) ;

(2) �k
2i+1 ∈ d , if �k

2i ∈ δ and si ∈ F∨p∗(k)� Sp∗(k) .

A simple verification that p∗ and d satisfy Definition 8(4) is left to the reader.
Further, the set G ∩ K = G ∩ K[U] is K[U]-generic by Lemma 9(ii).
By definition if k ∈ ζ�a[G] then aG(k) = {i : �k

2i ∈ ζ�a[G]} = {i : �k
2i+1 /∈ ζ�a[G]} ∈ L[ζ�a[G]] , therefore

G� ζ�a[G] ∈ L[ζ�a[G]] and L[G� ζ�a[G]] = L[ζ�a[G]] .
Now to prove L[G ∩ K[U]] = L[G� ζ�a[G]] it remains to show that |G ∩ K| = ζ�a[G]—then use

Lemma 9(iii). Note that both |p| for any p ∈ K and ζ�a[G] are �-initial segments. Thus it suffices to
check that if k ∈ |G ∩ K| ∩ ζ�a[G] then

�k
2i+1 ∈ |G ∩ K| ⇐⇒ �k

2i+1 ∈ ζ�a[G] and �k
2i ∈ |G ∩ K| ⇐⇒ �k

2i ∈ ζ�a[G] .

Prove, e.g., the first equivalence. Suppose that �k
2i+1 ∈ |G ∩ K| . Then �k

2i+1 ∈ |p| for some p ∈ K
in G , and we have si ∈ F∨p (k)� Sp(k) by (B), so that si /∈ SG(k) and accordingly i /∈ aG(k) , thus
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by definition �k
2i+1 ∈ ζ�a[G] . Suppose conversely that �k

2i+1 ∈ ζ�a[G] . Then by definition i /∈ aG(k) ,
hence si /∈ GG(k) . This must be forced by some p ∈ K ∩ G , and, as k ∈ |G ∩ K| , we can assume that
k ∈ |p| . However, in this case forcing si /∈ GG(k) means by necessity that just si ∈ F∨p (k)� Sp(k) ,

so there exists a stronger condition p′ ∈ K ∩ G with �k
2i+1 ∈ |p′| . We conclude that �k

2i+1 ∈ |G ∩ K| .
(Lemma)

It follows that ζ�a[G] is Σ1
n+1 in L[G� ζ] by Corollary 7. On the other hand, by definition, if

k ∈ ζ�a[G] , then, for any k , we have �k
2i ∈ ζ�a[G] iff �k

2i+1 /∈ ζ�a[G] . This easily leads to a Π1
n+1 definition

of ζ�a[G] . Thus ζ�a[G] is Δ1
n+1 in L[G� ζ] , and hence we have claim (i) of Theorem 14. The proof of claim

(ii) follows in the next two subsections.

Remark 5. A slightly more elaborate argument, like in the end of Section 4 in [9], shows that even more
{ζ�a[G]} is a Π1

n singleton in L[ζ�a[G]] since ζ�a[G] is equalto the only set ζ ⊆ ω in L[ζ�a[G]] satisfyings
the following requirements:

(a) 0 ∈ ζ , and if k /∈ ζ then �k
2i /∈ ζ and �k

2i /∈ ζ for all i ;
(b) if k ∈ ζ then we have �k

2i ∈ ζ iff �k
2i+1 /∈ ζ for every i , and

(c) if k ∈ ζ then the set Sζk = {si : �k
2i ∈ ζ} satisfies Γk(Sζk) .

The conjunction of them amounts to a Π1
n definition of {ζ} in L[ζ] .

8.2. Key Lemma

As in Section 7.2, Claim (ii) of Theorem 14 is a consequence of the following lemma (the key
lemma from the title), the proof of which will end the proof of theorems 14 and 2(ii).

Lemma 30 (in L). Suppose that 〈M, U〉 ∈ sJS , p ∈ K[U] , q ∈ K[U] . Let Φ be any closed parameter-free
Σ1

n formula. Then it is impossible that simultaneously q ||−−K[U] ¬Φ and p KforcM
U Φ .

Following Definition 22, a transformation σ ∈ Σ (see Remark 4 in Section 7.3 on Σ) is called K-
preserving, if p ∈ K ⇐⇒ σ · p ∈ K for all p ∈ P∗�ω . Clearly the regular forcing K here is different
(and way more complex in some aspects) than K in Section 7.3. The following lemma is analogous to
Lemma 28.

Lemma 31 (in L ). Suppose that U , V are countable systems with |U| = |V| = ω , and p ∈ K[U] , q ∈ K[V] .
Then there is a K-preserving transformation σ ∈ Σ such that σ ·U = V , and the conditions σ · p and q are
compatible.

Proof. The proof resembles the proof of Lemma 28, but is somewhat more complicated. Essentially,
we’ll have a ramified ω-long iteration in which the construction employed in Lemma 28 will be just
one step. We define �-cones Ck = {i ∈ ω : k � i} and C′k = Ck ∪ {k} for any k ∈ ω .

Claim 7. If α = {αk}k<ω ∈ Lipω , k0 ∈ ω , and αk is the identity for each k �= k0 then there is a bijection
π = π[αk0 ] ∈ BIJω

ω , recursive in α , �-preserving, and such that π(k) = k for all k /∈ Ck0 and π ◦ α is K-
preserving.

Proof. Note that αk0 is a ⊆-preserving bijection of the set Seq of all finite non-empty strings of

integers. Let f = fαk0
: ω

onto−→ ω be the associated permutation of integers, so that f (i) = j iff
α0(si) = sj . Let the transformation π = π[αk0 ] be the identity outside of the strict �-cone Ck0 ; in

particular, π(k0) = k0 . Beyond this, put π(�k0
2i ) = �k0

2 f (i) and π(�k0
2i+1) = �k0

2 f (i)+1 for all i . Now, if

k ∈ Ck0 and π(k) = k′ is defined then put π(�k
2m) = �k′

2m for all m . (Claim)
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8.3. Matching Permutation

Now, in continuation of the proof of Lemma 31, given any α ∈ Lipω we outline a construction
of a permutation Π ∈ BIJω

ω such that the superposition α ◦Π is K-preserving. Suppose that α =

{αk}k<ω ∈ Lipω . We define

(I) a sequence of numbers km , m < ω , such that k0 = 0 and, for any m , km+1 is the least (in the
usual order of ω ) �-minimal element of ω � dm , where dm = {ki : i ≤ m} ,—then

⋃
m dm = ω

and each dm is a �-initial segment of ω ;
(II) for every m , a transformation αm = {αm

k }k<ω ∈ Lipω , such that αm
k is the identity for all k �= km

but αm
km

= αkm , and a matching permutation πm = π[αm
km
] ∈ BIJω

ω by Claim 7 — thus πm is the
identity outside of the cone Ckm ;

(III) a K-preserving superposition ρm = πm ◦ αm , equal to the identity outside of the extended � -cone
C′km

= Ckm ∪ {km} , in the sense that if U is a system with |U| = ω , or a condition p ∈ P∗ satisfies
|p| ⊆ ω , then (ρm ·U)(k) = U(k) and (ρm · p)(k) = p(k) for all k ∈ ω � C′km

.

The whole sequence of transformations is thereby specified by the choice of the components
αm

km
∈ Lip , m ∈ ω ; we address this issue below. Now put

Tm = ρm ◦ · · · ◦ ρ2 ◦ ρ1 ◦ ρ0 ∈ Σ , Πm = πm ◦ · · · ◦ π2 ◦ π1 ◦ π0 ∈ BIJω
ω . (12)

Claim 8. (i) the sets Dm = (Πm)−1(dm) satisfy
⋃

m Dm = ω ;
(ii) If m ≤ i and k ∈ Dm then Πi(k) = Πm(k) ;

(iii) there is a single permutation Π ∈ BIJω
ω such that Π(k) = Πm(k) = Πi(k) whenever i ≥ m and

k ∈ Dm .

Proof. (i) Suppose that k < ω belongs to some Dm . Prove that any number j = �k
2i or j = �k

2i+1 ,
i < ω , also belongs to some Dm′ . By definition k′ = Πm(k) ∈ dm . The number j′ = Πm(j) either
belongs to dm , QED, or is �-minimal in ω � dm . In the latter case, we have ¬ km′ � j′ for all m′ > m ,
and hence Πm′(j) is equal to j′ for every m′ > m . Take m′ > m big enough for j′ ∈ dm′ ; then j ∈ Dm′ .

To prove (ii) apply assumption (II) above. Finally (iii) easily follows from items (i), (ii).

The transformation Π as in item (iii) of the claim can be understood as the infinite superposition
· · · ◦ πm ◦ · · · ◦ π2 ◦ π1 ◦ π0 .

Claim 9. Suppose that m ≤ i , U is a system, |U| = ω , and p ∈ P∗ , |p| ⊆ ω . Then (Ti ·U)(km) =

((α ◦Π) ·U)(km) and (Ti · p)(km) = ((α ◦Π) · p)(km) .

Proof. By Claim 8(ii), there is an index j ∈ Dm such that km = Π(j) = Πi(j) for all i ≥ m . Thus
(Ti ·U)(km) is equal to αm

km
·U(j) = αm

km
·((Ti ·U)(km)) .

The argument for p is similar. (Claim)

It follows that the superposition α ◦Π ∈ Σ is K-preserving. Indeed, since sets |p| are finite, if
p ∈ K then there is m such that |p| ⊆ dm ∩ Dm . However, then (α ◦Π) · p = Ti · p by Claim 9, and on
the other hand Ti is K-preserving as a finite superposition of K-preserving transformations ρm .

8.4. Final Argument

Now let U , V , p , q be as in Lemma 31. To accomplish the proof of Lemma 31, we note that the
construction of αm , πm , ρm depends on αkm rather than on α = {αk}k<ω ∈ Lipω as a whole. This
enables us to carry out the following definition of αkm ∈ Lip (m ∈ ω ) by induction on m .

Definition 23. Choose, using Lemma 5, a transformation αk0 ∈ Lip such that αk0 ·U(k0) = V(k0) and the
conditions αk0 · p(k0) and q(k0) (in P∗ ) are compatible.

Now suppose that transformations αk0 , . . . , αkm ∈ Lip have been defined, and define αkm+1 ∈ Lip . Note
that km+1 is a �-minimal element in ω � dm , where dm = {k0, . . . , km} , as above. First of all if μ ≤ m
then define:
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– αμ = {α
μ
k }k<ω ∈ Lipω so that α

μ
kμ

= αkμ
, but α

μ
k is the identity, whenever k �= kμ ;

– πμ = π[α
μ
kμ
] ∈ BIJω

ω as in assumption (II) of Section 8.3 — thus πμ is the identity outside of Ckμ
;

– a K-preserving superposition ρμ = πμ ◦ αμ , equal to the identity outside of the extended cone C′kμ
, as in

assumption (III) of Section 8.3.

Define Πm and Tm by (12) above. Put Um = Tm ·U and pm = Tm · p. By Lemma 5, there is a
transformation αkm+1 ∈ Lip such that αkm+1 ·Um(km+1) = V(km+1) and the conditions αkm+1 · pm(km+1)

and q(km+1) are compatible.

After we have defined αkm ∈ Lip by induction on m , let’s take the transformation α = {αk}k<ω ∈
Lipω as the input of the construction in Section 8.3. The latter gives us a permutation Π ∈ BIJω

ω

of Claim 8, such that the superposition σ = α ◦Π ∈ Σ is K-preserving. It remains to check that 1)
σ ·U = V and that 2) σ · p and q are compatible conditions.

To prove 1), consider any k = km+1 ∈ ω . (The argument will also work for the case m = −1, that
is, k = 0.) By definition, we have

V(km+1) = αkm+1 ·Um(km+1) = (αm+1 ·Um)(km+1) ,

and hence, as obviously πm+1(km+1) = km+1 ,

V(km+1) = ((πm+1 ◦ αm+1 ◦ Tm) ·U))(km+1) = (Tm+1 ·U))(km+1) ,

therefore V(km+1) = ((α ◦Π) ·U)(km+1) = (σ ·U)(km+1) by Claim 9, as required. (Lemma 31)

Proof (Lemma 30). Similar to the proof of Lemma 27, but using Lemma 31 just proved.

(Theorem 14) (Theorem 2(ii))

9. Application 3: Nonconstructible Σ1
n Reals

Here we prove Theorem 3.

Assumption 5. We continue to assume V = L in the ground universe. We fix an integer n ≥ 2 , for which
Theorem 3 will be proved, and make use of a system U and the forcing notion P = P[U] as in Definition 16;
both U and P belong to L .

9.1. Nonconstructible Σ1
n+1 Reals: The Model

The most obvious idea as of getting an extension required is to slightly modify the proof of
Theorem 2(ii) in the following direction. Suppose that G ⊆ P be P-generic over L , and let SG(ν)

and aν = aG(ν) = {k ≥ 1 : sk ∈ S(i)} be defined as in Definition 9. We proved (see the proof of
Theorem 2(i) above) that if

z = {0} ∪ {2k + 2 : k ∈ a0} ∪ {2k + 1 : k /∈ a0}

by (10) of Section 7.2 then the set a0 is Δ1
n+1 in L[G� z] , and the part {2k + 2 : k ∈ a0} of z is

responsible for a0 being Σ1
n+1 in L[G� z] (by means of the equality a0 = {k : ∃ S Γ2k+2(S)}) while the

part {2k + 1 : k /∈ a0} is responsible for a0 being Π1
n+1 in L[G� z] (by means of the equality a0 = {k :

¬ ∃ S Γ2k+1(S)}). As now the second part is not needed, one might hope that if y is defined by

y = yG := {0} ∪ a0 = {0} ∪ aG(0) (13)

then L[G� y] will be a model for Theorem 3. At least a0 will be Σ1
n+1 in L[G� y] by exactly the same

reasons. However we have not been able to prove the second part of the theorem, i.e., that all reals
Δ1

n+1 in L[G� y] belong to L . The point of difficulty is the following hypothesis:
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Conjecture 1. Under the assumptions above, if m /∈ y = yG then any parameter-free Σ1
n+1 formula

true in L[G� y] is true in L[G� y, am] as well.

We definitely cannot expect the conjecture to be true for formulas with parameters in L[G� y] (the
smaller model) since if p ∈ L[G� y] , p ⊆ ω codes the sequence {ai}i∈y then Fun ⊆ L[p] is true in
L[G� y] but false in L[G� y, am] .

We have a near-counterexample to Conjecture 1: the formula ∃ x (Γ0(x) ∧ Fun ⊆ L[x]) of class
Σ1

n+1 (assuming n ≥ 3) holds in L[a0] and fails in L[a0, a1] . The set y = {a0} is definitely not of the
form (13), so this is not literally a counterexample, yet it casts doubts on the approach based on (13).

Now we describe the extension involved in the proof of Theorem 3.
The model we define will be a submodel of the whole extension L[G] , where G is P-generic over

L , and a set y of (13) is involved in the definition. We let

Y = YG = yG ∪ (I � ω) = {0} ∪ a0 ∪ (I � ω) , (14)

where a0 = aG(0) (then Y ∈ L[a0]� L) and yG is defined by (13). The goal is to prove that L[G�Y]
witnesses Theorem 3 with a = a0 . The task splits in two claims:

Claim 10. In L[G�Y] , y is Σ1
n+1 , therefore a0 is Σ1

n+1 as well.

Claim 11. In L[G�Y] , if x ⊆ ω is Δ1
n+1 then x ∈ L and x is Δ1

n+1 in L .

Claim 10 is established just as similar claims above, so we leave it for the reader.
Let us concentrate on Claim 11. We make use of the set K0 of all conditions p ∈ P∗�ω such that

if k ≥ 1 and k ∈ |p| , then sk ∈ Sp(0) (= Example 2 in Section 3.2); (15)

as well as the related sets: K = K0 × (P∗� (I � ω)) = {p ∈ P∗ : p�ω ∈ K0} , K0[U] = K0 ∩ P , and
accordingly K[U] = K ∩ P .

Lemma 32. It is true in L that : K0 and K are regular forcings and absolute ΔHC
1 sets, and if z ⊆ I contains

0 then the restrictions K� z, K0� z are regular forcings, too.
If G ⊆ P is a set P-generic over L then G ∩ K = G ∩ K[U] is a set K[U]-generic over L , G ∩ K0 =

G ∩ K0[U] is a set K0[U]-generic over L , and

L[G ∩ K0] = L[G� yG] , L[G ∩ K] = L[G�YG] = L[G� yG, G� (I � ω)] .

Proof. To check (4) of Definition 8 for K0 see Example 2 in Section 3.2. To prove, that the set K0� z =

{p ∈ K0 : |p| ⊆ z} (z ∈ L , z ⊆ ω ) is regular, argue as in Example 2 in Section 3.2. The rest of the
lemma is easy: apply Lemma 9.

9.2. Key Lemma

Here we establish the following key lemma. Recall that sets yG , YG are defined by (13) and (14).

Lemma 33. Suppose that G ⊆ P is P-generic over L , and yG = {0} ∪ aG(0) , y ⊆ ω , the symmetric
difference δ = y Δ yG is finite, and 0 /∈ δ . Then the models L[G�YG] = L[G� yG, G� (I � ω)] and
L[G� y, G� (I � ω)] are K[U]-generic extensions of L , elementarily equivalent w. r. t. all Σ1

n formulas with
parameters in the common part L[G� (yG ∩ y), G� (I � ω)] of the two models.

Proof. That L[G� yG, G� (I � ω)] = L[G ∩ K[U]] is a K[U]-generic extension of L follows from
Lemma 32. Consider L[G� y, G� (I � ω)] , the other model.

Let u = y � yG and v = yG � y ; thus δ = u ∪ v . Then v ⊆ aG(0) but u ∩ aG(0) = ∅ by the
definition of yG . In other words, the finite disjoint sets Su = {sk : k ∈ u} and Sv = {sk : k ∈ v}
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satisfy Sv ⊆ SG(0) but Su ∩ SG(0) = ∅ . It follows that there is a condition p ∈ G ∩ K[U] such that
|p| = {0} , Sv ⊆ Sp(0) , and Su ⊆ F∨p (0)� Sp(0) . We can increase Fp(0) if necessary for Sp(0) ⊆ F∨p (0)
(a technical requirement) to hold.

Now let q be a condition obtained by the following modification of p : still |q| = {0} and
Fq(0) = Fp(0) (therefore, q belongs to K[U] together with p), and Sq(0) = (Sp(0) ∪ Su)� Sv . It is
clear that Sq(0) ⊆ F∨q (0) = F∨p (0) , so p, q satisfy (3) in Section 3.7. Therefore the map (Definition 12)

Hp
q : P = {p′ ∈ P∗ : p′ ≤ p} onto−→ Q = {q′ ∈ P∗ : q′ ≤ q}

is an order isomorphism of P onto Q by Theorem 6, acting so that:

(∗) if p′ ∈ P then q′ = Hp
q (p′) satisfies |p′| = |q′| , p′(i) = q′(i) for all i �= 0, and even Fq′(0) =

Fp′(0) , but Sq′(0) = (Sp′(0) ∪ Su)� Sv .

We conclude that Hp
q also is an order isomorphism of P ∩ P onto Q ∩ P by (∗), and hence the set

H = {Hp
q (p′) : p′ ∈ G} ⊆ Q is P-generic over L . Moreover it follows from (∗) that SH(i) = SG(i) and

aH(i) = aG(i) for all i > 0, but SH(0) = (SG(0) ∪ Su)� Sv and aH(0) = (aG(0) ∪ u)� v . Therefore
yH = (yG ∪ u)� v = y , thus L[G� y, G� (I � ω)] is a K[U]-generic extension of L .

As for the elementary equivalence claim, note first of all that the common part L[G� (yG ∩
y), G� (I � ω)] of the two models also is a K[U]-generic extension of L by the above. (Take yG ∩ y as a
new y .) Thus in fact it suffices to prove that under the assumptions of the theorem if j ∈ ω � yG then
L[G� yG, aG(j), G� (I � ω)] is an elementary extension of L[G� yG, G� (I � ω)] w.r. t. all Σ1

n formulas.
Let Φ be a closed Σ1

n formula with parameters in L[G� yG, G� (I � ω)] . It can be deduced,
using either Theorem 5(ii) or directly the CCC property of P (Theorem 4) that there is an ordinal γ ,
ω ≤ γ < ω1 , such that all parameters of Φ belong to L[G� yG, G� h] , where h = γ � ω .

Put d = γ � { j} ; the sets b = I � γ , c = b ∪ { j} have cardinality ω1 , and Y = h ∪ b while
Y ∪ { j} = h ∪ c . It follows from Lemma 32 that K′ = K� d is a regular forcing, and in fact G�γ ⊆ K′

since j /∈ yG . Moreover, by definition all of K0 , K , K′ , d , b , c are absolute ΔHC
1 (w) sets in L for some

w ∈ ωω . Therefore by Corollary 10 Φ is simultaneously true in L[G ∩ K′, G� b] and in L[G ∩ K′, G� c] .
However,

L[G ∩ K′, G� b] = L[G ∩ K0, G� (γ � ω), G� (I � γ)] = L[yG, G� (I � ω)] ,

and similarly L[G ∩ K′, G� c] = L[yG, aG(j), G� (I � ω)] , as required.

9.3. Second Key Lemma

In continuation of the proof of Claim 11, we establish another key lemma (Lemma 35).
Suppose that

(I) G ⊆ P is P-generic over L , x ⊆ ω , x ∈ L[G�YG] , and ϕ(m) , ψ(m) are parameter-free Σ1
n+1

formulas that give a Δ1
n+1 definition for x = {m ∈ ω : ϕ(m)} = {m : ¬ ψ(m)} in L[G�YG] .

Thus it is true in L[G] that “the equivalence ∀m (ϕ(m) ⇐⇒ ¬ ψ(m)) holds in the model L[G�YG]”.
It follows that there is a condition p0 ∈ G with

(II) p0 ||−−P “L[G�YG] |= ∀m (ϕ(m) ⇐⇒ ¬ ψ(m))”.

Lemma 34. If p0 ∈ G satisfies (II) then so does p0� {0} .

Proof. We assume w. l.o.g. that 0 ∈ |p0| . Let u = |p0| � {0} . In the context of Theorem 7, put
d = I , c = ω � u , and K′ = K0� c (a regular forcing by Lemma 32). Then YG = (I � ω) ∪ yG =

(I � ω) ∪ (yG ∩ c) ∪ (yG ∩ u) , hence

L[G�YG] = L[G� (I � ω)] ∪ L[G� (yG ∩ c)] ∪ L[G� (yG ∩ u)] .

40



Mathematics 2020, 8, 910

Here I � ω ⊆ d � c is constructible while yG ∩ u ⊆ d � c is finite and hence constructible as well.
We conclude by Theorem 7(i) that p0� c P-forces “L[G�YG] |= ∀m (ϕ(m) ⇐⇒ ¬ ψ(m))”. However,
c ∩ |p0| = {0} , so we are done.

Following the lemma, fix a condition p0 ∈ G satisfying |p0| = {0} and (II).

Lemma 35. Assume (I) and (II) above. Let m < ω . Then the sentence ϕ(m) is K[U]-decided by p0 : either
p0 ||−−K[U] ϕ(m) or p0 ||−−K[U] ¬ ϕ(m) .

Proof. It will be technically easier to establish the result in the following form equivalent to the original
form by Theorem 5(i):

1◦: the sentence “ L[G�YG] |= ϕ(m)” is P-decided by p0 .

Assume that this fails; then there exist two conditions p , q ∈ P stronger than p0 and satisfying:

2◦: q ||−−P “ L[G�YG] |= ϕ(m)” and p ||−−P “ L[G�YG] |= ¬ ϕ(m)”.

We can assume that |p| = |q| = {0} ; otherwise apply Lemma 34 to formulas ϕ and ¬ ϕ . Strengthening
p , q , if necessary, we can w. l.o.g. assume that

(a) Fq(0) = Fp(0) and Sp(0) ∪ Sq(0) ⊆ F∨p (0) = F∨q (0) . (= (3) in Section 3.8.)

Working towards a contradiction, we w. l.o.g. assume that, in addition to (a), the following holds:

(b) the symmetric difference Sp(0) Δ Sq(0) contains a single element s ∈ Seq .

(Any pair of conditions p , q ≤ p0 satisfying (a) can be connected by a finite chain of conditions in
which any two neighbours satisfy (b) and are ≤ p0 .)

Thus suppose that p , q ≤ p0 , |p| = |q| = {0} , (a), (b), 2◦ hold; the goal is to infer a contradiction.
The associated transformation Hp

q (Definition 12) maps P = {p′ ∈ P : p′ ≤ p} onto Q = {q′ ∈ P :
q′ ≤ q} order-preservingly by Theorem 6. Let G ⊆ P be a set P-generic over L and containing p .
Then H = {Hp

q (p′) : p′ ∈ G} ⊆ Q is P-generic as well, q ∈ H , and hence L[H�YH ] |= ϕ(m) , while
L[H�YG] |= ¬ ϕ(m) by 2◦.

Case 1: Sp(0) = Sq(0) ∪ {s} , where s = s� ∈ Seq � Sq(0) . Then the map Hp
q acts so that

q′ = Hp
q (p′) is defined by |p′| = |q′| ⊇ |p| = |q| , p′(ν) = q′(ν) for all ν ∈ I , ν �= 0, Fq′(0) = Fp′(0) ,

but Sp′(0) = Sq′(0)∪ {s} . It follows that SH(ν) = SG(ν) for all ν �= 0 but SG(0) = SH(0)∪ {s} . Thus
aG(ν) = aH(ν) for ν �= 0 but aG(0) = aH(0) ∪ {�} since s = s� . In other words, aG(0) = aH(0) ∪ {�} ,
therefore yG = yH ∪ {�} and L[G�YG] = L[H�YH , aH(�)] . It follows from Lemma 33 that any Σ1

n+1
formula true in L[H�YH ] remains true in L[G�YG] . In particular, L[G�YG] |= ϕ(m) , a contradiction.

Case 2: Sq(0) = Sp(0) ∪ {s} , where s = s� ∈ Seq � Sp(0) . Then, similarly to the above,
aG(ν) = aH(ν) for ν �= 0, but aH(0) = aG(0) ∪ {�} . Therefore, yH = yG ∪ {�} and L[H�YH ] =

L[G�YG, aG(�)] . Thus any Π1
n+1 formula true in L[H�YH ] remains true in L[G�YG] by Lemma 33.

Apply this to the formula ¬ ψ(m) , equivalent to ϕ(m) in both models by (II) above. (Note that
p, q ≤ p0 , hence p0 ∈ G ∩ H .) We have L[G�YG] |= ϕ(m) , a contradiction. (Lemma 35)

9.4. Final Argument

Here we finish the proof of both Claim 11 in Section 9.1 and Theorem 3. Suppose that G ⊆ P is a
set P-generic over L , Y = YG , and a set x ⊆ ω in L[G�Y] , formulas ϕ , ψ , and a condition p0 satisfy
assumptions (I), (II) above. Then, by Lemma 35,

x = {m < ω : p0 ||−−K[U] ϕ(m)} = {m : A(p0, m)} , (16)

where, in L , A ⊆ K[U]×ω is a ΣHC
n set such that A(p, m) ⇐⇒ p ||−−K[U] ϕ(m) for all p ∈ K[U] and

m (Corollary 9). It follows that, in L , x is ΣHC
n (p0) , hence Σ1

n+1(w) (see Remark 2 in Section 4.3),
where w ∈ L ∩ωω is a suitable code of p0 .
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To eliminate p0 , consider the set Q of all conditions p ∈ K[U] such that |p| = |p0| and Sp(ν) =

Sp0(ν) for all ν ∈ |p| = |p0| . Note that K[U] = K ∩ P is a set of the same complexity as P , that is,
ΔHC

n−1 , and hence so is Q because |p0| and all Sp0(ν) , ν ∈ |p0| are finite sets. It follows that Q is ΔHC
n−1 .

We now claim that, in L , x = {m ∈ ω : ∃ p ∈ Q A(p, m)} ; this obviously yields x being lightface
Σ1

n+1 in L . Indeed ⊆ follows by taking p = p0 ∈ Q and applying (16). Now suppose that p ∈ Q
and A(p, m) , that is, p ||−−K[U] ϕ(m) . Recall that p0 decides ϕ(m) by Lemma 35. However, p0 ||−−K[U]

¬ ϕ(m) is impossible since any condition in Q is compatible with p0 . Therefore p0 ||−−K[U] ϕ(m) as
required. Thus x ∈ Σ1

n+1 in L is established.
That the complementary set ω � x is Σ1

n+1 as well is verified the same way, using the formula ψ

instead of ϕ . (Theorem 3)

10. Conclusions and Some Further Results

With proofs of the main theorems accomplished, in this final section some further results are
briefly discussed, which we plan to achieve and publish elsewhere.

10.1. Separation

This is another application of submodels of the same basic model. Recall that given a class K of
pointsets, the separation principle K-Sep claims that any two disjoint K -sets in the same space can be
separated by a set in K ∩ K� , where K� consists of all complements of K -sets. The separation principle
was introduced by N. Luzin. Luzin proved (see [25]) that Σ1

1-Sep holds, and then P. Novikov [26,27]
demonstrated that Π1

1-Sep fails, while at the second projective level, the other way around, Π1
2-Sep

holds but Σ1
2-Sep fails.

As for higher projective levels, the separation problem belongs to a considerable list of problems
related to the projective hieharchy in Luzin’s book [25], Chapter V. Further development of set theory
showed that Luzin’s problems are very hard to solve. Some of them are now known to be independent
of the Zermelo–Fraenkel set theory ZFC , while some others are still open in different aspects, but it is
known that adding Gödel’s axiom of constructibility V = L solves most of them. In particular, V = L

implies [28,29] that Π1
n-Sep holds but Σ1

n-Sep fails for all n ≥ 3—similarly to the classical case n = 2.
It follows that the statement ∀ n ≥ 3 (Π1

n-Sep∧ ¬ Σ1
n-Sep) is consistent with ZFC , and the problem is

then to find a model in which we have Σ1
n-Sep and/or ¬Π1

n-Sep (opposite to the state of affairs in
L) for one or several or all indices n ≥ 3. This was the content of problems P 3029 and 3030 in the
survey [8] of early years of forcing.

This turns out a very difficult question, and still open in its general forms, especially w.r. t. Σ1
n-

Sep. (Compare to Problem 9 in [30], Section 9.) As for the ¬Π1
n-Sep side, there are indications in the

set-theoretic literature, that generic extensions, where both Σ1
n-Sep and Π1

n-Sep fail, are constructed
by L. Harrington for n = 3 (see 5B.3 in [6]) and for arbitrary n ≥ 3 (see [8] and [31], p. 230). These
results were indeed announced in Harrington’s handwritten notes (Addendum A in [32]), with brief
outline of some key arguments related mainly to case n = 3 and based on almost-disjoint forcing.
There are no such results in Harrington’s published works, assumed methods in their principal part
(arbitrary n) are not used even for any other results, and separability theorems in this context are not
considered. An article by Harrington, entitled “Consistency and independence results in descriptive
set theory”, which apparently might have contained these results, was announced in the References
list in [31], to appear in Ann. of Math., 1978, but in fact it has never been published.

The following conjecture concludes Addendum A of Harrington’s note [32]:

In fact (we believe) there is a model of ZFC in which Separation fails for all of the following at once :
Σ1

n , Π1
n , 3 ≤ n < ω , Σm

n , Πm
n , 1 ≤ n < ω , 2 ≤ m < ω . ( Σm

n , Πm
n are classes arising in the

type-theoretic hierarchy).

The hypothesis is partially confirmed by the following our theorem (to appear elsewhere).
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Theorem 15 (originally Harrington [32]). If n ≥ 2 then there is a generic extension of L in which Π1
n+1-

Sep and Σ1
n+1-Sep fail, and moreover

(i) there exist disjoint Π1
n+1 sets of reals unseparable by disjoint Σ1

n+1 sets,
(ii) there exist disjoint Σ1

n+1 sets of reals unseparable by disjoint Π1
n+1 sets.

Moreover there is a generic extension of L in which (i) and (i) simultaneously hold for all n ≥ 2 .

Note that generic models are defined in [33] in which both Σ1
3-Sep and Π1

3-Sep fail. We used
different technique in [33], mostly related to Jensen’s minimal Π1

2 singleton forcing [10] and its iterated
forms (see [34–36]) rather than the almost-disjoint forcing as in this paper.

10.2. Projections of Uniform Sets

In his monograph [25] (pp. 276–291) Nikolas Luzin formulated a number of problems about the
structure of the projective classes Σ1

n , Π1
n , Δ1

n (or An, CAn, Bn in the old notational system). Their
general meaning was to extend the results obtained by Luzin himself and P. S. Novikov for classes Σ1

1 ,
Π1

1 , Δ1
1 (level n = 1 of the projective hierarchy) to higher levels. Among these problems, the following

stands out, along with the separation problem discussed above:

Projection problem: given n ≥ 2, find out the nature of projections of uniform (planar) Π1
n sets in

comparison with the class Σ1
n+1 of arbitrary projections of Π1

n sets and with the narrower class
Δ1

n . (A planar set is uniform, if it intersects every vertical line at no more than one point.)

Further research has shown the key importance of structural theorems on projective classes for the
development of descriptive set theory. For example, separation principles play essential role in research
on subsystems of second-order arithmetic, in particular, in the context of reverse mathematics [5].

If n = 1 then every Σ1
2 set is equal to the projection of a uniform Π1

1 set by the
Novikov–Kondo–Addison uniformization theorem [6, 4E.4]. Under V = L , the uniformization
theorem fails for classes Π1

n , n ≥ 2, but nevertheless it is known that if n ≥ 2 then every Σ1
n+1 set is

equal to the projection of a uniform Π1
n set [37]. The next theorem (to appear elsewhere) demonstrates

that this property is violated in suitable generic models.

Theorem 16. If n ≥ 2 then there is a generic extension of L in which :

(i) there is a Σ1
n+1 set not equal to the projection of a uniform Π1

n+1 sets,
(ii) there is a Δ1

n+1 set not equal to the projection of a uniform Π1
n set.

10.3. Harvey Friedman’s Δ1
n Problem

Problem 87 in [38] requires to prove that for each n > 2 there is a model of

ZFC + “the constructible reals are precisely the Δ1
n reals”. (17)

It is noted in the very end of [38] that Harrington had solved this problem affirmatively. Indeed,
a sketch is given in the same handwritten notes [32], of a generic extension of L , in which it is true
that ωω ∩ L = Δ1

3 , as well as a few sentences added as how Harrington planned to get a model in
which ωω ∩ L = Δ1

n holds for a given (arbitrary) n ≥ 3, and a model in which ωω ∩ L = Δ1
∞ , where

Δ1
∞ =

⋃
n Δ1

n (all analytically definable reals). This positively solves Problem 87, including the case
n = ∞ . Full proofs have never been published except for an independent proof of the consistency of
ωω ∩ L = Δ1

∞ in [39]. Our plan will be to restore Harrington’s proof of the next theorem elsewhere.

Theorem 17 (originally Harrington [32]). (i) If n ≥ 2 then there is a generic extension of L in which it
is true that ωω ∩ L = Δ1

n+1 .
(ii) There is a generic extension of L in which it is true that ωω ∩ L = Δ1

∞ .
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Friedman concludes [38] with a modified version of the above problem, given as Problem 87 ′ :
find a model of

ZFC + “for any reals x, y , we have: if x ∈ L[y] then x is Δ1
3 in y”. (18)

This was solved in the positive by David [40], yet so far it is unknown whether this result generalizes
to higher classes Δ1

n , n ≥ 4, or Δ1
∞ . We also note that problems (17) and (18) were known in the early

years of forcing, see, e.g., problems P 3110, 3111, 3112 in [8].

10.4. Axiom Schemata in 2nd Order Arithmetic

Different axiomatic systems in second-order arithmetic Z2 is widely represented in modern
research, in particular, in the context of reverse mathematics and other sections of proof theory. See
e.g., Simpson [5] (Part B), and numerous articles, and from older sources—for example, Kreisel [41],
where the choice of subsystems is called the central problem. These systems are obtained by joining a
particular combination of comprehension schema CA , countable choice AC , dependent choice DC ,
transfinite induction TI and recursion TR , etc., to the basic theory, say ACA0 . The schemata can be
specifieded by the complexity of the core formula in the Kleene hierarchy, as well as by allowing or
prohibiting parameters. (For the importance of parameters, see [41], section III.)

The relationships between the subsystems have been actively studied. In particular, it is known
that Σ1

n+1 -CA is strictly stronger, than Σ1
n -CA, and the same for AC and DC. Proofs of these results in

e.g., [5, Chapter VII] use the fact that the schema at a higher quantifier level allows to get strictly more
countable ordinals, than the schema at a lower level, but in essence, it is utilized that the (n + 1)th
level schema proves the consistency of the n th level schema.

A few more complex results are known, where the compared systems are equiconsistent, despite
the increase in quantifier complexity in the schemata, so the consistency argument doesn’t work. It
such a case one has to resort to set theoretic methods. This is the old result of A. Levy [42] that Σ1

3 -AC

does not follow from CA , as well as a recent theorem in [43] saying that Σ1
3 -DC does not follow from

AC ; both are obtained using complex generic models of ZF without the full axiom of choice. The task
of our further research in this direction will be to prove consistency theorems that demonstrate the
importance of both the quantifier complexity and the presence of parameters in the Z2 schemata.

Theorem 18 (to appear elsewhere). If n ≥ 2 , then the theory ACA0 + CA∗ + Σ1
n-CA does not imply

Σ1
n+1 -CA (unless inconsistent, of course) .

Here CA* is the parameter-free part of the comprehension schema CA. Thus, both the quantifier
complexity and the presence of parameters are essential for the deductive power of the comprehension
schema in second-order arithmetic.

Theorem 19 (to appear elsewhere). If n ≥ 2 , then the theory ACA0 +CA+AC+ Σ1
n-DC does not imply

Σ1
n+1 -DC (unless inconsistent) .

Remark 6. We are grateful to one of the reviewers for pointing out possible connections of our research
with some questions of fuzzy set theory [44,45], yet this issue cannot be considered for a short time.
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n of all (lightface) Δ1
n reals. The result was

announced long ago by Leo Harrington, but its proof has never been published. Our methods are
based on almost-disjoint forcing. To obtain a generic extension as required, we make use of a forcing
notion of the form Q = C ×∏ν Qν in L, where C adds a generic collapse surjection b from ω

onto P (ω) ∩ L, whereas each Qν , ν < ωL
2 , is an almost-disjoint forcing notion in the ω1-version,

that adjoins a subset Sν of ωL
1 . The forcing notions involved are independent in the sense that no

Qν -generic object can be added by the product of C and all Qξ , ξ �= ν . This allows the definition
of each constructible real by a Σ1

n formula in a suitably constructed subextension of the Q -generic
extension. The subextension is generated by the surjection b , sets Sω·k+j with j ∈ b(k) , and sets Sξ

with ξ ≥ ω · ω . A special character of the construction of forcing notions Qν is L, which depends
on a given n ≥ 3, obscures things with definability in the subextension enough for vice versa any
Δ1

n real to be constructible; here the method of hidden invariance is applied. A discussion of possible
further applications is added in the conclusive section.

Keywords: Harvey Friedman’s problem; definability; nonconstructible reals; projective hierarchy;
generic models; almost-disjoint forcing
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1. Introduction

Problem 87 in Harvey Friedman’s treatise One hundred and two problems in mathematical logic [1]
requires proof that for each n in the domain 2 < n ≤ ω there is a model of

ZFC + “the constructible reals are precisely the Δ1
n reals”. (1)

(For n ≤ 2 this is definitely impossible e.g., by the Shoenfield’s absoluteness theorem.) This problem
was generally known in the early years of forcing, see, e.g., problems 3110, 3111, 3112 in an early
survey [2] (the original preprint of 1968) by Mathias. At the very end of [1], it is noted that Leo
Harrington had solved this problem affirmatively. For a similar remark, see [2] (p. 166), a comment to
P 3110. And indeed, Harrington’s handwritten notes [3] (pp. 1–4) contain a sketch of a generic extension
of L, based on the almost-disjoint forcing of Jensen and Solovay [4], in which it is true that ωω ∩ L = Δ1

3.
Then a few sentences are added on page 5 of [3], which explain, as how Harrington planned to get
a model in which ωω ∩ L = Δ1

n holds for a given (arbitrary) natural index n ≥ 3, and a model in which

Mathematics 2020, 8, 1477; doi:10.3390/math8091477 www.mdpi.com/journal/mathematics47
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ωω ∩ L = Δ1
∞, where Δ1

∞=
⋃

n Δ1
n (all analytically definable reals). This positively solves Problem 87,

including the case n = ∞. Different cases of higher order definability are observed in [3] as well.
Yet no detailed proofs have ever emerged in Harrington’s published works. An article

by Harrington, entitled “Consistency and independence results in descriptive set theory”,
which apparently might have contained these results among others, was announced in the References
list in Peter Hinman’s book [5] (p. 462) to appear in Ann. of Math., 1978, but in fact, this or similar
article has never been published by Harrington.

One may note that finding a model for (1) belongs to the “definability of definable” type of
mathematical problems, introduced by Alfred Tarski in [6], where the definability properties of the set
D1M , of all sets x ⊆ ω definable by a parameter-free type-theoretic formula with quantifiers bounded
by type M , are discussed for different values of M < ω . In this context, case n = ∞ in (1) is equivalent
to case M = 1 in the Tarski problem, whereas cases n < ∞ in (1) can be seen as refinements of case
m = 1 in the Tarski problem, because classes Δ1

n are well-defined subclasses of D11 =
⋃

n<ω Δ1
n.

The goal of this paper is to present a complete proof of the following part of Harrington’s
statement that solves the mentioned Friedman’s problem. No such proof has been known so far in
mathematical publications, and this is the motivation for our research.

Theorem 1 (Harrington). If 2 ≤ n < ∞ then there is a generic extension of L in which it is true that the
constructible reals are precisely the Δ1

n+1 reals.

The Δ1
∞ case of Harrington’s result, as well as different results related to Tarski’s problems in [6],

will be subject of a forthcoming publication.
This paper is dedicated to the proof of Theorem 1. This will be another application of the technique

introduced in our previous paper [7] in this Journal, and in that sense this paper is a continuation and
development of the research started in [7]. However, the problem considered here, i.e., getting a model
for (1), is different from and irreducible to the problems considered in [7] and related to definability
and constructability of individual reals. Subsequently the technique applied in [7] is considerably
modified and developed here for the purposes of this new application. In particular, as the models
involved here by necessity satisfy ω1

L < ω1 (unlike the models considered in [7], which satisfy the
equality ω1

L = ω1), the almost-disjoint forcing is combined with a cardinal collapse forcing in this
paper. And hence we will have to substantially deviate from the layout in [7], towards a modification
that shifts the whole almost-disjoint machinery from ω to ω1.

Section 2: we set up the almost-disjoint forcing in the ω1-version. That is, we consider the sets
SEQ = (ω1)

<ω1 and FUN = (ω1)
ω1 in L, the constructible universe, and, given u ⊆ FUN , we define

a forcing notion Q[u] which adds a set G ⊆ SEQ such that if f ∈ FUN in L then G covers f iff f /∈ u ,
where covering means that f � ξ ∈ G for unbounded-many ξ < ω1

L. We also consider two types of
transformations related to forcing notions of the form Q[u] .

Section 3. We let I = ω2
L be the index set. Arguing in L, we consider systems

U = {U(ν)}ν∈I , where each U(ν) ⊆ FUN is dense. Given such U , the product almost-disjoint forcing
Q[U] = C×∏ν∈I+ Q[U(ν)] (with finite support) is defined in L, where C = (P (ω))<ω is a version
of Cohen’s collapse forcing. Such a forcing notion adjoins a generic map bG : ω

onto−→ P (ω) ∩ L to L,
and adds an array of sets G(ν) ⊆ SEQ (where ν ∈ I ) as well, so that each G(ν) is a Q[U(ν)] -generic set
over L. We also investigate the structure of related product-generic extensions and their subextensions,
and transformations of forcing notions of the form Q[U] .

Section 4. Given n ≥ 2, we define a system U ∈ L as above, which has some remarkable
properties, in particular, (1) being Q[U(ν)]-generic is essentially a Π1

n property in all suitable generic
extensions, (2) if ν ∈ I and G ⊆ Q[U] is generic over L, then the extension L[bG , {G(ν′)}ν′ �=ν]

contains no Q[U(ν)]-generic reals, and (3) all submodels of L[G] of certain kind are elementarily
equivalent w.r. t. Σ1

n formulas. The latter property is summarized in the key technical instrument,
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Theorem 4 (the elementary equivalence theorem), whose proof is placed in a separate Section 6.
To prove Theorem 1, we make use of a related generic extension L[bG , {G(ν)}ν∈W[G]] , where

W[G] = w[G] ∪W = {ω · k + 2j : j ∈ bG(k)} ∪ {ω · k + 3j : j, k < ω} ∪ {ν ∈ I : ν ≥ ω2}

(see Lemma 23), and · is the ordinal multiplication. The first term in W[G] provides a suitable
definition of each set x = bG(k) ∈ L in the model L[bG , {G(ν)}ν∈W[G]] , namely

bG(k) = { j : there exists a Q[U(ν)]-generic set over L},

while the second and third terms in W[G] are added for technical reasons. The proof itself goes on in
Section 4.5, modulo Theorem 4.

We introduce forcing approximations in Section 5, a forcing-like relation used to prove the
elementary equivalence theorem. Its key advantage is the invariance under some transformations,
including the permutations of the index set I , see Section 5.4. The actual forcing notion Q = Q[U] is
absolutely not invariant under permutations, but the n-completeness property, maintained through
the inductive construction of U in L, allows us to prove that the auxiliary forcing relation is connected
to the truth in Q -generic extensions exactly as the true Q -forcing relation does—up to the level
Σ1

n of the projective hierarchy (Lemma 33). We call this construction the hidden invariance technique
(see Section 6.1).

Finally, Section 6 presents the proof of the elementary equivalence theorem, with the help of
forcing approximations, and hence completes the proof of Theorem 1.

The flowchart can be seen in Figure 1 on page 3. And we added the index and contents as
Supplementary Materials for easy reading.

ALMOST-DISJOINT FORCING
PRELIMINARIES, SECTIONS 2.1, 2.2

PRODUCT ALMOST DISJOINT
(A. D.) FORCING, SECTIONS 3.1, 3.2
PRODUCT A. D. EXTENSIONS, LEMMA 9
NAMES FOR REALS IN A. D. EXTENSIONS SECTIONS 3.4, 3.5

TRANSFORMATIONS
OF A. D. FORCING, SECTIONS 2.3, 2.4

TRANSFORMATIONS OF PRODUCT
A. D. FORCING, SECTIONS 3.6, 3.7, 3.8

LEMMA 17

JENSEN–SOLOVAY CONSTRUCTION SECTION 4.1
STABILITY THEOREM (THM 2 IN SECTION 4.2),
COMPLETE SEQUENCES (THM 3 IN SECTION 4.3),
BASIC FORCING NOTION Q = Q[U]

FORCING APPROXIMATIONS
SECTION 5

INVARIANCE LEMMAS 29, 30, 31
IN SECTION 5.4

BASIC GENERIC EXTENSION
AND SUBEXTENSIONS, SECTION 4.4
STRUCTURE LEMMA: LEMMA 22

ELEMENTARY EQUIVALENCE THEOREM
(THEOREM 4 IN SECTION 4.4), PROVED IN SECTION 6.3

THE MODEL FOR THEOREM 1, SECTION 4.5
THEOREM 1, PROVED IN SECTION 4.5

VIA THEOREM 4 AND LEMMA 23

CONCLUSION,
SOME FURTHER RESULTS,

SECTION 7

Figure 1. Flowchart.
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2. Almost-Disjoint Forcing

Almost-disjoint forcing as a set theoretic tool was invented by Jensen and Solovay [4]. It has
been applied in many research directions in modern set theory, in particular, in our paper [7] in this
Journal. Here we make use of a considerably different version of the almost-disjoint forcing technique,
which, comparably to [7], (1) considers countable cardinality instead of finite cardinalities in some
key positions, (2) accordingly considers cardinality ω1 instead of countable cardinality. In particular,
sequences of finite length change to those of length < ω1. And so on.

Assumption 1. During arguments in this section, we assume that the ground set universe is L,
the constructible universe. Recall that in L, HC = Lω1 and Hω2 = Lω2 .

For the sake of brevity, we call ω1-size sets those X satisfying card X ≤ ω1.

2.1. Almost-Disjoint Forcing: ω1-Version

This subsection contains a review the basic notation related to almost-disjoint forcing in the
ω1- version. Arguing in L, we put FUN = ω1

ω1 = all ω1-sequences of ordinals < ω1.

• A set X ⊆ FUN is dense iff for any s ∈ SEQ there is f ∈ X such that s ⊂ f .

• We let SEQ = ω1
<ω1 � {Λ} , the set of all non-empty sequences s of ordinals < ω1, of length

lh s = dom s < ω1. We underline that Λ , the empty sequence, does not belong to SEQ .

• If S ⊆ SEQ , f ∈ FUN then let S/ f = sup{ξ < ω1 : f � ξ ∈ S} . If S/ f is unbounded in ω1 then
say that S covers f , otherwise S does not cover f .

The following or very similar version of the almost-disjoint forcing was defined by Jensen and
Solovay in [4] ([§ 5]). Its goal can be formulated as follows: given a set u ⊆ FUN in the ground universe,
find a generic set S ⊆ SEQ such that the equivalence

f ∈ u ⇐⇒ S does not cover f (2)

holds for each f ∈ FUN in the ground universe.

Definition 1 (in L). Q∗ is the set of all pairs p = 〈Sp ; Fp〉 of finite sets Fp ⊆ FUN , Sp ⊆ SEQ . Elements of
Q∗ will be called (forcing) conditions. If p ∈ Q∗ then put

F∨p = { f � ξ : f ∈ Fp ∧ 1 ≤ ξ < ω1} ,

a tree in SEQ . If p, q ∈ Q∗ then let p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 ; a condition in Q∗ .
Let p, q ∈ Q∗ . Define q � p (that is, q is stronger as a forcing condition) iff Sp ⊆ Sq , Fp ⊆ Fq , and the

difference Sq � Sp does not intersect F∨p , i.e., Sq ∩ F∨p = Sp ∩ F∨p . Clearly, we have q � p iff Sp ⊆ Sq ,
Fp ⊆ Fq , and Sq ∩ F∨p = Sp ∩ F∨p .

Lemma 1 (in L). Conditions p, q ∈ Q∗ are compatible in Q∗ iff (1) Sq � Sp does not intersect F∨p , and (2)
Sp � Sq does not intersect F∨q . Therefore any p, q ∈ P∗ are compatible in P∗ iff p ∧ q � p and p ∧ q � q.

Proof. If (1), (2) hold then p ∧ q � p and p ∧ q � q , thus p, q are compatible.

If u ⊆ FUN then put Q[u] = {p ∈ Q∗ : Fp ⊆ u} .
Any conditions p , q ∈ Q[u] are compatible in Q[u] iff they are compatible in Q∗ iff the condition

p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 ∈ Q[u] satisfies both p ∧ q � p and p ∧ q � q . Therefore, we can say that
conditions p , q ∈ Q∗ are compatible (or incompatible) without an explicit indication which forcing
notion Q[u] containing p, q is considered.
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Lemma 2 (in L). If u ⊆ FUN and A ⊆ Q[u] is an antichain then card A ≤ ω1.

Proof. Suppose towards the contrary that card A > ω1. If p �= q in A are incompatible then obviously
Sp �= Sq . Yet {Sp : p ∈ Q∗} = all finite subsets of SEQ , is a set of cardinality ω1, a contradiction.

2.2. Almost-Disjoint Generic Extensions

To work with L-sets FUN and SEQ in generic extensions of L, possibly in those obtained by
means of cardinal collapse, we let

FUN
L = (ωL

1)
ωL

1 ∩ L and SEQ
L = ((ωL

1)
<ωL

1 ∩ L)� {Λ} (3)

—in other words, FUNL and SEQ
L are just FUN and SEQ defined in L.

Lemma 3. Suppose that in L, u ⊆ FUN is dense. Let G ⊆ Q[u] be a set Q[u]-generic over L. We define
SG =

⋃
p∈G Sp ; thus SG ⊆ SEQ

L. Then

(i) if f ∈ FUNL then f ∈ u iff SG does not cover f ;

(ii) if p ∈ Q[u] then p ∈ G iff Sp ⊆ SG ∧ (SG � Sp) ∩ F∨p = ∅ .

(iii) L[G] = L[SG] ;

(iv) if f ∈ FUNL� u then X f = {ξ < ωL
1 : f � ξ ∈ SG} is a cofinal subset of ωL

1 of order type ω ;

(v) ω1
L[G] = ωL

2 .

Proof. (i) Consider any f ∈ u . We claim that Df = {p ∈ P[u] : f ∈ Fp} is dense in P[u] . (Indeed if
q ∈ P[u] then define p ∈ P[u] by Sp = Sq and Fp = Fq ∪ { f } ; we have p ∈ Df and p � q .) It follows
that Df ∩ G �= ∅ . Choose any p ∈ Df ∩ G ; we have f ∈ Fp . Each condition r ∈ G is compatible with
p , therefore, by Lemma 1, Sr/ f ⊆ Sp/ f . We conclude that SG/ f = Sp/ f .

Now assume that f /∈ u . The set Df l = {p ∈ P[u] : sup(Sp/ f ) > l} is dense in P[u] for
any l < ω . (Let q ∈ P[u] . Then Fq is finite. There exists m > l with f �m /∈ F∨q , since f /∈ u .
Define a condition p by Fp = Fq and Sp = Sq ∪ { f �m} ; we have p ∈ Df l and p � q .) Pick,
by the density, any p ∈ Df l ∩ G . Then sup(SG/ f ) > l . We conclude that SG/ f is infinite because l
is arbitrary.

(ii) Let p ∈ G . Then obviously sp ⊆ SG . If there exists s ∈ (SG � Sp) ∩ F∨p then s ∈ Sq for some
q ∈ G . Then conditions p, q are incompatible by Lemma 1, which is a contradiction.

Now assume that p ∈ P[u]� G . There is a condition q ∈ G incompatible with p . We have
two cases by Lemma 1. First, there is some s ∈ (Sq � Sp) ∩ F∨p . Then s ∈ SG � Sp , so p is not
compatible with SG . Second, there is some s ∈ (Sp � Sq) ∩ F∨q . In this case, s /∈ Sr holds for any
condition r ≤ q . It follows that s /∈ SG , hence Sp �⊆ SG , and p cannot be compatible with SG .

Further it follows from (ii) that G = {p ∈ P[u] : sp ⊆ SG ∧ (SG � sp) ∩ F∨p = ∅} , hence, we have
(iii). Claim (v) is an immediate corollary of (iv) since ωL

2 remains a cardinal in L[G] by Lemma 2.
Finally, to prove (iv) let f ∈ FUNL� u and λ < ωL

1 . The set Df λ of all conditions p ∈ Q[u] ,
such that f �λ ⊂ g for some g ∈ Sp , is dense in Q[u] . Therefore G contains some p ∈ Df λ . Let this be
witnessed by some g ∈ Sp . Now, if ξ < λ belongs to X f , so that s = f � ξ ∈ SG , then s must belong to
Sp by (ii), therefore ξ belongs to the finite set {lh s : s ∈ Sp} . Thus, X f ∩ λ is finite. That X f ∩ωL

1 is
infinite follows from (i) (recall that f /∈ u).

Now we consider two types of transformations related to the forcing notion Q∗ .
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2.3. Lipschitz Transformations

We argue in L. Let LIP be the group of all ⊆-automorphisms of SEQ , called Lipschitz
transformations. Any λ ∈ LIP preserves the length lh of sequences, i.e., lh s = lh (λ · s) for all
s ∈ SEQ . Any transformation λ ∈ LIP acts on:

– sequences s ∈ SEQ : by λ · s = λ(s) ;

– functions f ∈ FUN : by λ · f ∈ FUN and (λ · f )� ξ = λ ·( f � ξ) for all ξ < ω1;

– sets S ⊆ SEQ , F ⊆ FUN : by λ ·S = {λ · s : s ∈ S} , λ ·F = {λ · f : f ∈ F} ;

– conditions p ∈ Q∗ : by λ · p = 〈λ ·Sp ; λ ·Fp〉 ∈ Q∗ .

Lemma 4 (routine). The action of any λ ∈ LIP is an order-preserving automorphism of Q∗. If u ⊆ FUN

and p ∈ Q[u] then λ · p ∈ Q[λ ·u] .

We proceed with an important existence lemma. If f �= g belongs to FUN then let β( f , g) be
equal to the least ordinal β < ω1 such that f (β) �= g(β) (or, similarly, the largest ordinal β with
f � β = g� β). Say that sets X, Y ⊆ FUN are intersection-similar, or i-similar for brevity, if there is
a bijection b : X onto−→ Y such that β( f , g) = β(b( f ), b(g)) for all f �= g in X—such a bijection b will
be called an i-similarity bijection.

Lemma 5. Suppose that u, v ⊆ FUN are ω1-sizesets, dense in FUN . Then u, v are i-similar. Moreover, if
X ⊆ u, Y ⊆ v are finite and i-similar then

(i) there is an i-similarity bijection b : u onto−→ v such that b[X] = Y,

(ii) there exists a transformation λ ∈ LIP such that λ ·u = v and λ ·X = Y.

Proof. The key argument is that if A ⊆ u , B ⊆ v are at most countable, b : A onto−→ B is an i-similarity
bijection, and f ∈ u � A , then by the density of v there is g ∈ v � B such that the extended
map b ∪ {〈 f , g〉} : A ∪ { f } onto−→ B ∪ {g} is still an i-similarity bijection. This allows proof of
(i), iteratively extending an initial i-similarity bijection b0 : X onto−→ Y by a ω1-step back-and-forth
argument involving eventually all elements f ∈ u and g ∈ v , to an i-similarity bijection u onto−→ v
required. See the proof of Lemma 5 in [7] for more detail.

To get (ii) from (i), consider any sequence s ∈ SEQ . Let β = lh s . As u is dense, there exist
f , f ′ ∈ u such that β( f , f ′) = β and s ⊂ f , s ⊂ f ′ . Put g = b( f ) , g′ = b( f ′) . Then still β(g, g′) = β ,
hence g� β = g′� β . Therefore, we can define λ(s) = g� β = g′� β .

2.4. Substitution Transformations

We continue to argue in L. Assume that conditions p, q ∈ Q∗ satisfy

Fp = Fq and Sp ∪ Sq ⊆ F∨p = F∨q . (4)

We define a transformation hpq acting as follows.
If p = q then define hpq(r) = r for all r ∈ Q∗ , the identity.
Suppose that p �= q . Then p, q are incompatible by (4) and Lemma 1.

Define dpq = {r ∈ Q∗ : r � p ∨ r � q} , the domain of hpq . Let r ∈ dpq . We put hpq(r) = r′ := 〈Sr′ , Fr′ 〉 ,
where Fr′ = Fr and

Sr′ =

⎧⎨⎩ (Sr � Sp) ∪ Sq in case r � p ,

(Sr � Sq) ∪ Sp in case r � q .
(5)

Thus, assuming (4), the difference between Sr and Sr′ lies entirely within the set X = F∨p = F∨q , so that
if r � p then Sr ∩ X = Sp but Sr′ ∩ X = Sq , while if r � q then Sr ∩ X = Sq but Sr′ ∩ X = Sp .
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Lemma 6. (i) If u ⊆ FUN is dense and p0, q0 ∈ Q[u] then there exist conditions p, q ∈ Q[u] with p � p0 ,
q � q0 , satisfying (4).

(ii) Let p, q ∈ Q∗ satisfy (4). If p = q then hpq is the identity transformation. If p �= q then hpq an order
automorphism of dpq = {r ∈ Q∗ : r � p ∨ r � q} , satisfying hpq(p) = q and hpq = (hpq)−1 = hqp .

(iii) If u ⊆ FUN and p , q ∈ Q[u] satisfy (4) then hpq maps the set Q[u] ∩ dpq onto itself order-preserving.

Proof. (i) By the density of u there is a finite set F ⊆ FUN satisfying Fp ∪ Fq ⊆ F and
Sp ∪ Sq ⊆ F∨ = { f � ξ : f ∈ F ∧ 1 ≤ ξ < ω1} . Put p = 〈Sp, F〉 and q = 〈Sq, F〉 . Claims (ii), (iii)
are routine.

Please note that unlike the Lipschitz transformations above, transformations of the form hpq ,
called substitutions in this paper, act within any given forcing notion of the form Q[u] by claim (iii) of
the lemma, and hence the forcing notions of the form Q[u] considered are sufficiently homogeneous.

3. Almost-Disjoint Product Forcing

Here we review the structure and basic properties of product almost-disjoint forcing and
corresponding generic extensions in the ω1-version. There is an important issue here: a forcing
C , which collapses ω1 to ω , enters as a factor in the product forcing notions considered.

3.1. Product Forcing

In L, we define C = P (ω)<ω , the set of all finite sequences of subsets of ω , an ordinary forcing
to collapse P (ω) ∩ L down to ω . We will make use of an ω2-product of Q∗ with C as an extra factor.
(In fact, C can be eliminated since Q∗ collapses ωL

1 anyway by Lemma 3 (v). Yet the presence of C
somehow facilitates the arguments since C has a more transparent forcing structure.)

Technically, we put I = ω2 (in L) and consider the index set I+ = I ∪ {−1} . Let Q∗ be the
finite-support product of C and I copies of Q∗ (Definition 1 in Section 2.1), ordered componentwise.
That is, Q∗ consists of all maps p defined on a finite set dom p = |p|+ ⊆ I+ so that p(ν) ∈ Q∗ for all
ν ∈ |p| := |p|+ � {−1} , and if −1 ∈ |p|+ then bp := p(−1) ∈ C . If p ∈ Q∗ then put Fp(ν) = Fp(ν)
and Sp(ν) = Sp(ν) for all ν ∈ |p| , so that p(ν) = 〈Sp(ν) ; Fp(ν)〉 .

We order Q∗ componentwise: p � q ( p is stronger as a forcing condition) iff |q|+ ⊆ |p|+ , bq ⊆ bp

in case −1 ∈ |q|+ , and p(ν) � q(ν) in Q∗ for all ν ∈ |q| . Put

F∨p (ν) = F∨p(ν) = { f � ξ : f ∈ Fp(ν) ∧ 1 ≤ ξ < ω1}.

In particular, Q∗ contains the empty condition � ∈ Q∗ satisfying |�|+ = ∅ ; obviously � is the �-least
(and weakest as a forcing condition) element of Q∗ .

Because of the factor C , it takes some effort to define p ∧ q for p, q ∈ Q∗ , and only assuming
that bp, bq are compatible, i.e., bp ⊆ bq or bq ⊆ bp . In such a case define p ∧ q ∈ Q∗ as
follows. First, |p ∧ q|+ = |p|+ ∪ |q|+ . If ν ∈ |p|+ � |q|+ then put (p ∧ q)(ν) = p(ν) , and similarly if
ν ∈ |q|+ � |p|+ then (p ∧ q)(ν) = q(ν) . Now suppose that ν ∈ |p|+ ∩ |q|+ .

If ν �= −1 then (p ∧ q)(ν) = p(ν) ∧ q(ν) in the sense of Definition 1 in Section 2.1.
If ν = −1 ∈ |p|+ ∩ |q|+ , then, by the compatibility, either bp ⊆ bq —and then define bp∧q = bq ,

or bq ⊆ bp —and then accordingly bp∧q = bp .

Lemma 7. Let p, q ∈ Q∗ be compatible. Then (p ∧ q) ∈ Q∗ , (p ∧ q) � p, (p ∧ q) � q, and if r ∈ Q∗ ,
r � p, r � q, then r � (p ∧ q) .

3.2. Systems

Arguing in L, we consider certain subforcings of the total product forcing notion Q∗ .
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Let a system be any map U : |U| → P (FUN) such that |U| ⊆ I , each set U(ν) (ν ∈ |U| ) is dense
in FUN , and the components U(ν) ⊆ FUN (ν ∈ |U|) are pairwise disjoint.

• A system U is small, if both |U| and each set U(ν) (ν ∈ |U|) has cardinality ≤ ω1.

• If U, V are systems, |U| ⊆ |V| , and U(ν) ⊆ V(ν) for all ν ∈ |U| , then say that V extends U ,
in symbol U � V .

• If {Uξ }ξ<λ is a �-increasing sequence of systems then define a system U =
∨

ξ<λ Uξ by
|U| = ⋃

ξ<λ |Uξ | and U(ν) =
⋃

ξ<λ,ν∈|Uξ | Uξ(ν) for all ν ∈ |U| .

• If U is a system, then Q[U] is the finite-support product of C and sets Q[U(ν)] , ν ∈ |U| , i.e.,

Q[U] = {p ∈ Q∗ : |p| ⊆ |U| ∧ ∀ ν ∈ |p| (Fp(ν) ⊆ U(ν))} .

Suppose that c ⊆ I+ . If p ∈ Q∗ then define p′ = p� c ∈ Q∗ so that |p′|+ = c ∩ |p|+ and
p′(ν) = p(ν) whenever ν ∈ |p′|+ . A special case: if ν ∈ I+ then let p� �=ν = p� (|p|+ � {ν}) .
Similarly, if U is a system then define a system U′ = U� c so that |U′| = c ∩ |U| and U′(ν) = U(ν)

whenever ν ∈ |U′| . A special case: if ν ∈ I+ then let U� �=ν = U� (|p|� {ν}) . And if Q ⊆ Q∗ then
let Q� c = {p ∈ Q : |p|+ ⊆ c} (will usually coincide with {p� c : p ∈ Q} .

Writing p� c , U� c etc., it is not assumed that c ⊆ |p|+ .

Lemma 8 (in L). If U is a system and A ⊆ Q[U] is an antichain then card A ≤ ω1.

Proof. Suppose that card A > ω1. As cardC = ω1, we can w. l.o.g. assume that bp = bq for all
p, q ∈ A . It follows by the Δ-system lemma that there is a set A′ ⊆ A of the same cardinality
card A′ = card A > ω1, and a finite set d ⊆ I+ , such that |p|+ = d for all p ∈ A′ . Then we have
Sp �= Sq for all p �= q in A′ , easily leading to a contradiction, as in the proof of Lemma 2.

3.3. Outline of Product Extensions

We consider sets of the form Q[U] , U being a system in L, as forcing notions over L.
Accordingly, we’ll study Q[U]-generic extensions L[G] of the ground universe L. Define some elements
of these extensions. Suppose that G ⊆ Q∗ . Put |G| = ⋃

p∈G |p| ; |G| ⊆ I . Let

bG =
⋃

p∈G bp , and SG(ν) = SG(ν) =
⋃

p∈G Sp(ν)

for any ν ∈ |G| , where G(ν) = {p(ν) : p ∈ G} ⊆ Q∗ .
Thus, SG(ν) ⊆ SEQ

L, and SG(ν) = ∅ for any ν /∈ |G| .
By the way, this defines a sequence �SG = {SG(ν)}ν∈I of subsets of SEQ .
If c ⊆ I+ then let G� c = {p ∈ G : |p|+ ⊆ c} . It will typically happen that G� c = {p� c : p ∈ G} .

Put G� �=ν = {p ∈ G : ν /∈ |p|+} = G� (I+ � {ν}) .
If U is a system in L, then any Q[U]-generic set G ⊆ Q[U] splits into the family of sets G(ν) ,

ν ∈ I , and a separate map bG : ω
onto−→ P (ω) ∩ L. It will follow from (ii) of the next lemma that Q[U]-

generic extensions of L satisfy ω1 = ωL
2 .

Lemma 9. Let U be a system in L, and G ⊆ Q[U] be a set Q[U]-generic over L. Then :

(i) bG is a C-generic map from ω onto P (ω) ∩ L ;

(ii) if ν ∈ I then L[G(ν)] = L[SG(ν)] and ω1
L[bG ] = ω1

L[G(ν)] = ωL
2 = ω1

L[G] ;

(iii) L[G] = L[�SG] and |G|+ = I ;

(iv) if ν ∈ I and c ∈ L[G� �=ν] , ν /∈ c ⊆ I+ , then L[G� c] ⊆ L[G� �=ν] ;

(v) if ν ∈ I then SG(ν) /∈ L[G� �=ν] ;
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(vi) if ν ∈ I then the set G(ν) = {p(ν) : p ∈ G} ∈ L[G] is P[U(ν)]-generic over L, hence if f ∈ FUNL

then f ∈ U(ν) iff SG(ν) does not cover f .

Proof. Proofs of (i) and (iii)–(vi) are similar to ([7] (Lemma 9)). To prove ω1
L[G(ν)] = ωL

2 in (ii) apply
Lemma 3 (v). Finally, to see that ωL

2 remains a cardinal in L[G] apply Lemma 8.

3.4. Names for Sets in Product Extensions

The next definition introduces names for elements of product-generic extensions of L considered.
Assume that in L, K ⊆ Q∗ , e.g., K = Q[U] , where U is a system, and X is any set. By NX(K)

(K-names for subsets of X ) we denote the set of all sets τ ⊆ K × X in L. Furthermore, SNX(K)
(small names) consist of all ω1-size names τ ∈ SNX(K) ; in other words, it is required that card τ ≤ ω1.

Suppose that τ ∈ NX(Q
∗) . We put

dom τ = {p : ∃ x (〈p, x〉 ∈ τ} , |τ|+ =
⋃

p∈dom τ

|p|+ , |τ| =
⋃

p∈dom τ

|p| .

If G ⊆ Q∗ then define

τ[G] = {x ∈ X : (τ ”x) ∩ G �= ∅} , where τ ”x = {p : 〈p, x〉 ∈ τ},

so that τ[G] ⊆ X . If ϕ is a formula in which some names τ ∈ SNω
ω(Q

∗) occur, and G ⊆ Q∗ ,
then accordingly ϕ[G] is the result of substitution of τ[G] for each name τ in ϕ .

Lemma 10. Suppose that X ∈ L, card X ≤ ω1 in L, U is a system in L, and G ⊆ Q[U] is a set Q[U]-
generic over L. Then for any set Y ∈ L[G] , Y ⊆ X, there is a name τ ∈ SNX(Q[U]) in L such that Y = τ[G] .
If in addition c ∈ L, c ⊆ I+ , and Y ∈ L[G� c] , then there is a name τ ∈ SNX(Q[U]� c) in L such that
Y = τ[G] .

Proof. It follows from general forcing theory that there is a name σ ∈ NX(Q[U]) , not necessarily
an ω1-size name, such that X = σ[G] . Let Qx = σ”x for all x ∈ X . Arguing in L, put

τ = {〈p, x〉 ∈ σ : x ∈ X ∧ p ∈ Ax} ,

where Ax ⊆ Qx is a maximal antichain for any x . We observe that card Ax ≤ ω1 in L for all x by
Lemma 8, hence τ ∈ SNX(Q[U]) . And on the other hand, we have τ[G] = σ[G] = Y .

To prove the additional claim, note that by the product forcing theorem if Y ∈ L[G� c] then the
original name σ can be chosen in NX(Q[U]� c) , and repeat the argument.

3.5. Names for Reals in Product Extensions

Now we introduce names for reals (elements of ωω ) in generic extensions of L considered. This is
an important particular case of the content of Section 3.4.

Assume that in L, K ⊆ Q∗ , e.g., K = Q[U] , where U is a system. By Nω
ω(K) (K-names for reals

in ωω ) we denote the set of all τ ⊆ K × (ω×ω) such that the sets τ ”〈j, k〉 = {p : 〈p, 〈j, k〉〉 ∈ τ}
satisfy the following requirement:

if k �= k′ , p ∈ τ ”〈j, k〉 , p′ ∈ τ ”〈j, k′〉 , then conditions p, p′ are incompatible.

We let τ ”j =
⋃

k τ ”〈j, k〉 , dom τ =
⋃

j,k<ω τ ”〈j, k〉 , |τ|+ =
⋃{|p|+ : p ∈ dom τ} .

Let SNω
ω(K) (small names) consist of all ω1-size names τ ∈ Nω

ω(K) ; in other words, it is required
that card (τ ”〈j, k〉) ≤ ω1 for all j, k < ω .

Define the restrictions SNω
ω(K)� c = {τ ∈ SNω

ω(K) : |τ|+ ⊆ c} .
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A name τ ∈ SNω
ω(K) is K-full iff the set τ ”j is pre-dense in K for any j < ω . A name τ ∈ SNω

ω(K)
is K-full below some p0 ∈ K , iff all sets τ ”j are pre-dense in K below p0 , i.e., any condition q ∈ K ,
q � p0 , is compatible with some r ∈ τj (and this holds for all j < ω ).

Suppose that τ ∈ SNω
ω(Q

∗) . A set G ⊆ K is minimally τ-generic iff it is compatible in itself
(if p, q ∈ G then there is r ∈ G with r � p , r � q ), and intersects each set τ ”x , x ∈ X . In this case, put

τ[G] = {〈j, k〉 ∈ ωω ×ωω : (τ ”〈j, k〉) ∩ G �= ∅} ,

so that τ[G] ∈ ωω and τ[G](j) = k ⇐⇒ τ ”〈j, k〉 ∩ G �= ∅ . If ϕ is a formula in which some names
τ ∈ SNω

ω(Q
∗) occur, and a set G ⊆ Q∗ is minimally τ-generic for any name τ in ϕ , then accordingly

ϕ[G] is the result of substitution of τ[G] for each name τ in ϕ .

Lemma 11. Suppose that U is a system in L, and G ⊆ Q[U] is Q[U]-generic over L. Then for any real
x ∈ L[G] ∩ ωω there is a Q[U]-full name τ ∈ SNω

ω(Q[U]) in L such that x = τ[G] . If in addition c ∈ L,
c ⊆ I+ , and x ∈ L[G� c] , then there is a Q[U]-full name τ ∈ SNω

ω(Q[U]� c) in L such that x = τ[G] .

Proof. It follows from general forcing theory that there is a Q[U]-full name σ ∈ Nω
ω(Q[U]) ,

not necessarily an ω1-size name, such that f = σ[G] . Then all sets Qj = σ”j , j < ω , are pre-dense
in Q[U] . Arguing in L, put τ = {〈p, 〈j, k〉〉 ∈ σ : j, k < ω ∧ p ∈ Aj} , where Aj ⊆ Qj is a maximal
antichain for any j < ω . We conclude by Lemma 8 that card Aj ≤ ω1 in L for all j , hence in fact
τ ∈ SNω

ω(Q[U]) . And on the other hand, we have τ[G] = σ[G] = f .

Equivalent names. Names τ, μ ∈ SNω
ω(Q

∗) are equivalent iff conditions q, r are incompatible
whenever q ∈ τ ”〈j, k〉 and r ∈ μ”〈j, k′〉 for some j and k′ �= k . Names τ, μ are equivalent below some
p ∈ Q∗ iff the triple of conditions p, q, r is incompatible (that is, no common strengthening) whenever
q ∈ τ ”〈j, k〉 and r ∈ μ”〈j, k′〉 for some j and k′ �= k .

Lemma 12. Suppose that in L, p ∈ Q∗ , and names μ , τ ∈ SNω
ω(Q

∗) are equivalent (resp., equivalent below
p ) . If G ⊆ Q∗ is minimally μ-generic and minimally τ-generic (resp., and containing p ) , then μ[G] = τ[G] .

Proof. Suppose that this is not the case. Then by definition there exist numbers j and k′ �= k and
conditions q ∈ G ∩ (τ ”〈j, k〉) and r ∈ G ∩ (μ”〈j, k′〉) . Then p, q, r are compatible (as elements of the
same generic set), contradiction.

The next lemma provides a useful transformation of names. Recall that p′ ∧ p is defined
in Section 3.1.

Lemma 13 (in L). If p ∈ Q∗ and τ ∈ SNω
ω(Q

∗) , then

τ�p = {〈p′ ∧ p, 〈j, k〉〉 : 〈p′, 〈j, k〉〉 ∈ τ and p′ is compatible with p}

is still a name in SNω
ω(Q

∗) , equivalent to τ below p, and |τ�p|+ ⊆ |τ|+ ∪ |p|+ .
If U is a system and p ∈ Q[U] , τ ∈ SNω

ω(Q[U]) , then τ�p ∈ SNω
ω(Q[U]) .

Moreover, if τ is Q[U]-full below p then τ�p is Q[U]-full below p, too.

Proof. Routine.

3.6. Permutations

We continue to argue in L. There are three important families of transformations of the whole
system of objects related to product forcing, considered in this Subsection and the two following ones.
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We begin with permutations, the first family. Let BIJ be the set of all bijections π : I onto−→ I ,
i.e., permutations of the set I , such that the set |π| = {ν ∈ I : π(ν) �= ν} (the essential domain) satisfies
card |π| ≤ ω1. Please note that π is the identity outside of |π| . Any permutation π ∈ BIJ acts onto:

– sets e ⊆ I : by π · e := {π(ν) : ν ∈ e} ;

– systems U : by (π ·U)(π(ν)) := U(ν) for all ν ∈ |U|—then |π ·U| = π · |U| ;
– conditions p ∈ Q∗ : if −1 ∈ |p|+ then −1 ∈ |π · p|+ and bπ · p = bp , and if ν ∈ |p| then

(π · p)(π(ν)) := p(ν) , so |π · p| = π · |p| ;
– sets G ⊆ Q∗ : by π ·G := {π · p : p ∈ G}—then π ·G ⊆ Q∗ ;

– names τ ∈ SNω
ω(Q

∗) : by π ·τ := {〈π · p, 〈�, k〉〉 : 〈p, 〈�, k〉〉 ∈ τ} ∈ SNω
ω(Q

∗) .

Lemma 14 (routine). If π ∈ BIJ then p �−→ π · p is an order-preserving bijection of Q∗ onto Q∗ , and if U
is a system then p ∈ Q[U] ⇐⇒ π · p ∈ Q[π ·U] .

3.7. Multi-Lipschitz Transformations

Still arguing in L, we let LIPI be the I-product of the group LIP (see Section 2.3), this will
be our second family of transformations, called multi-Lipschitz. Thus, a typical element λ ∈ LIPI

is λ = {λν}ν∈|λ| , where |λ| = domλ ⊆ I+ has ω1-size, λν ∈ LIP , ∀ ν . Define the action of any
λ ∈ LIPI on:

– systems U : |λ ·U| := |U| , and (λ ·U)(ν) := λν ·U(ν) for all elements ν ∈ |λ| ∩ |U| ,
but (λ ·U)(ν) := U(ν) for all ν ∈ |U|� |λ| ;

– conditions p ∈ Q∗ : |λ · p|+ = |p|+ , if −1 ∈ |p|+ then bλ · p = bp , if ν ∈ |p| ∩ |λ| then
(λ · p)(ν) = λν · p(ν) , but if ν ∈ |p|� |λ| , then (λ · p)(ν) = p(ν) ;

– sets G ⊆ Q∗ : λ ·G := {λ · p : p ∈ G} ;

– names τ ∈ SNω
ω(Q

∗) : λ ·τ := {〈λ · p, 〈n, k〉〉 : 〈p, 〈n, k〉〉 ∈ τ} ;

In the first two items, we refer to the action of λν ∈ LIP on sets u ⊆ FUN and on forcing conditions,
as defined in Section 2.3.

Lemma 15 (routine). If λ ∈ LIPI then p �−→ π · p is an order-preserving bijection of Q∗ onto Q∗ , and if
U is a system then p ∈ Q[U] ⇐⇒ λ · p ∈ Q[λ ·U] .

Lemma 16. Suppose that U, V are systems, |U| = |V| , p ∈ Q[U] , q ∈ Q[V] , |p| = |q| , and sets F∨p (ν) ,
F∨q (ν) are i-similar for all ν ∈ |p| = |q| . Then there is λ ∈ LIPI such that |λ| = |U| = |V| , λ ·U = V ,
and F∨q (ν) = F∨λ · p(ν) for all ν ∈ |p| = |q| .

Proof. Apply Lemma 5 componentwise for every ν ∈ I .

3.8. Multi-Substitutions

Assume that conditions p , q ∈ Q∗ satisfy the following:

(6i) − 1 ∈ |p|+ = |q|+ and lh bp = lh bq , and

(6ii) if ν ∈ |p| then Fp(ν) = Fq(ν) and Sp(ν) ∪ Sq(ν) ⊆ F∨p (ν) = F∨q (ν) .

}
(6)

In particular, (4) of Section 2.4 holds for all ν . We define a transformation Hpq acting as follows. First,
we let Dpq , the domain of Hpq , contain all conditions r ∈ Q∗ such that

(a) if −1 ∈ |r|+ and bp �= bq , then bp ⊆ br or bq ⊆ br ;

(b) if ν ∈ |r| ∩ |p| and p(ν) �= q(ν) , then r(ν) � p(ν) or r(ν) � q(ν) , thus, in other words,
r(ν) ∈ dp(ν)p(ν) in the sense of Section 2.4.
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Please note that all conditions r � p and all r � p belong to Dpq . On the other hand, if r ∈ Q∗ satisfies
|r| ∩ |p| = ∅ and (a), then r belongs to Dpq as well. In particular, � ∈ Dpq .

If r ∈ Dpq , then define r′ = Hpq(r) ∈ Q∗ so that |r′|+ = |r|+ and:

(a1) if −1 ∈ |r|+ and bp = bq then simply br′ = br ,

(a2) if −1 ∈ |r|+ and bp �= bq , then by (a) either br = bp
�s or br = bq

�s , where s ∈ P (ω)<ω —we
put br′ = bq

�s in the first case, and br′ = bp
�s in the second case;

(b1) if either ν ∈ |r|� |p| , or ν ∈ |r| ∩ |p| ∧ p(ν) = q(ν) , then put r′(ν) = r(ν) ,

(b2) if ν ∈ |p| = |q| and p(ν) �= q(ν) , then we put r′(ν) = hp(ν)q(ν)(r(ν)) , where hp(ν)q(ν) is defined
in Section 2.4.

Transformations of the form Hpq will be called multi-substitutions.

Lemma 17 (in L). (i) If U is a system and p0, q0 ∈ Q[U] then there exist conditions p, q ∈ Q[U] with
p � p0 , q � q0 , satisfying (6).

(ii) If conditions p, q ∈ Q∗ satisfy (6), then Hpq is an order automorphism of Dpq = Dqp , and we have
Hpq = (Hpq)−1 = Hqp and Hpq(p) = q.

(iii) If U is a system, and p , q ∈ Q[U] satisfy (6), then Hpq maps the set Q[U] ∩ Dpq onto itself
order-preserving.

Proof. Apply Lemma 6 componentwise.

Corollary 1 (of Lemma 17). If U is a system then Q[U] is homogeneous in the following sense :
if p0, q0 ∈ Q[U] then there exist stronger conditions p � p0 and q � q0 in Q[U] , such that the according
lower cones {p′ ∈ Q[U] : p′ � p} and {q′ ∈ Q[U] : q′ � q} are order-isomorphic.

Action of Hpq on names. Assume that conditions p, q ∈ Q∗ satisfy (6). Let SNω
ω(Q

∗)pq contain
all names τ ∈ SNω

ω(Q
∗) such that dom τ ⊆ Dpq . If τ ∈ SNω

ω(Q
∗)pq then put

Hpq ·τ = {〈Hpq(p′), 〈n, k〉〉 : 〈p′, 〈n, k〉〉 ∈ τ} .

Then obviously Hpq ·τ ∈ SNω
ω(Q

∗)qp .

4. The Basic Forcing Notion and the Model

In this paper, we let ZFC− be ZFC minus the Power Set axiom, with the schema of Collection
instead of Replacement, with AC is assumed in the form of well-orderability of every set, and with the
axiom: “ω1 exists”. See [8] on versions of ZFC sans the Power Set axiom in detail.

Let ZFC−2 be ZFC− plus the axioms: V = L, and the axiom “every set x satisfies card x ≤ ω1”.

4.1. Jensen—Solovay Sequences

Arguing in L, let U, V be systems. Suppose that M is any transitive model of ZFC−2 .
Define U �M U′ iff U � U′ and the following holds:

(a) the set Δ(U, U′) =
⋃

ν∈|U|(U′(ν)�U(ν)) is multiply SEQ -generic over M , in the sense that every
sequence 〈 f1, . . . fm〉 of pairwise different functions f� ∈ Δ(U, U′) is generic over M in the sense
of SEQ = ω1

<ω1 as the forcing notion in L, and

(b) if ν ∈ |U| then U′(ν)�U(ν) is dense in FUN , therefore uncountable.

Let JS , Jensen—Solovay pairs, be the set of all pairs 〈M, U〉 of:

− a transitive model M |= ZFC−2 , and a system U ,
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− such that the sets ω1 and U belong to M—then sets SEQ , Q[U] also belong to M .

Let sJS , small Jensen—Solovay pairs, be the set of all pairs 〈M, U〉 ∈ JS such that both U and M have
cardinality ≤ ω1. We define:

〈M, U〉 � 〈M′, U′〉 (〈M′, U′〉 extends 〈M, U〉) iff M ⊆ M′ and U �M U′ ;
〈M, U〉 ≺ 〈M′, U′〉 (strict extension) iff 〈M, U〉 � 〈M′, U′〉 and ∀ ν ∈ I (U(ν) � U′(ν)) .

Lemma 18 (in L). If 〈M, U〉 ∈ sJS and z ⊆ I , card z ≤ ω1, then there is a pair 〈M′, U′〉 ∈ sJS , such that
〈M, U〉 ≺ 〈M′, U′〉 and z ⊆ |U′| .

Proof. Let d = |U| ∪ z . By definition SEQ is ω-closed as a forcing: any ⊆-increasing sequence
{sn}n<ω of sn ∈ SEQ has the least upper bound in SEQ , equal to the union of all sn . It follows
that the countable-support product SEQ

(d×ω1) is ω-closed, too. Therefore, as card M ≤ ω1,
there exists a system �f = { fνξ }ν∈d, ξ<ω1 ∈ (Fun)d×ω1 , SEQ

(d×ω1) -generic over M . Now define
U′(ν) = U(ν) ∪ { fνξ : ξ < ω1} for each ν ∈ d (assuming that U(ν) = ∅ in case ν /∈ |U|), and let
M′ |= ZFC−1 be any transitive model of cardinality ω1, satisfying M ⊆ M′ and containing U′ .

Lemma 19 (in L). Suppose that pairs 〈M, U〉 � 〈M′, U′〉 � 〈M′′, U′′〉 belong to JS .
Then 〈M, U〉 � 〈M′′, U′′〉 . Thus � is a partial order on JS .

Proof. We claim that F =
⋃

ν∈|U|(U′′(ν)�U(ν)) is multiply SEQ -generic over M . Suppose, for the
sake of brevity, that F = { f , g} , where f ∈ U′(ν) � U(ν)—then f ∈ M′ , g ∈ U′′(μ) � U′(μ) ,
and ν, μ ∈ |U| . (The general case does not differ much.) By definition, f is Cohen generic over M
and g is Cohen generic over M′ . Therefore, g is Cohen generic over M[ f ] , because M[ f ] ⊆ M′

(as f ∈ M′ ). It remains to apply the product forcing theorem.

Now, still in L, a Jensen—Solovay sequence of length λ ≤ ω2 is any strictly ≺-increasing λ-sequence
{〈Mξ , Uξ〉}ξ<λ of pairs 〈Mξ , Uξ〉 ∈ sJS , satisfying Uη =

∨
ξ<η Uξ on limit steps. Let

−→
JSλ be the set of

all such sequences.

Lemma 20 (in L). Let λ be a limit ordinal, and {〈Mξ , Uξ〉}ξ<λ ∈
−→
JSλ . Put U =

∨
ξ<λ Uξ . Then

(i) Uξ �Mξ
U for every ξ .

(ii) If moreover λ < ω2 and M |= ZFC−2 is a transitive model containing {〈Mξ , Uξ〉}ξ<λ then
〈M, U〉 ∈ sJS and 〈Mξ , Uξ〉 ≺ 〈M, U〉 , ∀ ξ .

(iii) The same is true in case λ = ω2, but then the model M is not necessarily a ω1-sizemodel, and we require
〈M, U〉 ∈ JS rather than sJS , of course.

Proof. The same arguments work as in the proof of Lemma 19.

4.2. Stability of Dense Sets

If U is a system, D is a pre-dense subset of P[U] , and U′ is another system extending U , then in
principle D does not necessarily remain maximal in P[U′] , a bigger set. This is where the genericity
requirement (a) in Section 4.1 plays its role to seal the pre-density of sets in M w.r. t. further extensions.
This is the content of the following key theorem. Moreover, the product forcing arguments will allow us
to extend the stability result in pre-dense sets not necessarily in M , as in items (ii), (iii) of the theorem.

Theorem 2 (stability of dense sets). Assume that, in L, 〈M, U〉 ∈ sJS , U′ is a system, and U �M U′ .
If D is a pre-dense subset of Q[U] (resp., pre-dense below some p ∈ Q[U] ) then D remains pre-dense in
Q[U′] (resp., pre-dense below p ) in each of the following three cases :
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(i) D ∈ M ;

(ii) D ∈ M[G] , where G ⊆ P is P-generic over L, and P ∈ M is a PO set ;

(iii) D ∈ M[H] , where H ⊆ U′(ν1) is finite, ν1 ∈ I is fixed, and D ⊆ Q[U]� �=ν1
= {q ∈ Q[U] : ν1 /∈ |q|} .

Proof. Arguing in L, we consider only the case of sets D pre-dense in Q[U] itself; the case of
pre-density below some p ∈ Q[U] is treated similarly.

(i) Suppose, towards the contrary, that a condition p ∈ Q[U′] is incompatible with each q ∈ D .
As D ⊆ P[U] , we can w. l.o.g. assume that |p| ⊆ |U| .

We are going to define a condition p′ ∈ Q[U] , also incompatible with each q ∈ D , contrary to the
pre-density. To maintain the construction, consider the finite sequence �f = 〈 f1, . . . , fm〉 of all elements
f ∈ FUN occurring in

⋃
ν∈|p| Fp(ν) but not in U . It follows from U �M U′ that �f is SEQ

m -generic

over M . Moreover, p being incompatible with D is implied by the fact that �f meets a certain family
of dense sets in SEQ

m , of cardinality ≤ ω1 in M . Therefore, we will be able to simulate this in M ,
getting a sequence �g ∈ M which meets the same dense sets, and hence yields a condition p′ ∈ Q[U] ,
also incompatible with each q ∈ D .

To present the key idea in sufficient detail in a rather simplified subcase, we assume that

|p| = {ν0} is a singleton; ν0 ∈ |U| . (7)

Then p(ν0) = 〈Sp(ν0) ; Fp(ν0)〉 ∈ Q[U′(ν0)] , where Sp(ν0) ⊆ SEQ and Fp(ν0) ⊆ U′(ν0) are finite sets.
The (finite) set X = Fp(ν0)� U(ν0) is multiply SEQ -generic over M since U �M U′ . To make the
argument even more transparent, we suppose that

X = { f , g} , where f �= g and the pair 〈 f , g〉 is SEQ
2 -generic over M . (8)

(The general case follows the same idea and can be found in [4]; we leave it to the reader.)
Thus, Fp(ν0) = F ∪ { f , g} , where F = Fp(ν0) ∩U(ν0) ∈ M is by definition a finite set.
The plan is to replace the functions f , g by some functions f ′, g′ ∈ U(ν0) so that the

incompatibility of p with conditions in D will be preserved.
It holds by the choice of p and Lemma 1 that D = D1( f , g) ∪ D2 , where

D1( f , g) = {q ∈ D : Aq ∩ F∨p (ν0) �= ∅}, where Aq = Sq(ν0)� Sp(ν0) ⊆ SEQ ;

D2 = {q ∈ D : (Sp(ν0)� Sq(ν)) ∩ F∨q (ν0) �= ∅} ∈ M;

and D1 depends on f , g via Fp(ν0). The equality D = D1( f , g) ∪D2 can be rewritten as Δ ⊆ D1( f , g) ,
where Δ = D � D2 ∈ M . Furthermore, Δ ⊆ D1( f , g) is equivalent to

∀ A ∈ A (A ∩ F∨p (ν) �= ∅) , where A = {Aq : q ∈ D} ∈ M , (9)

and each Aq = Sq(ν0) � Sp(ν0) ⊆ SEQ is finite. Recall that Fp(ν0) = F ∪ { f , g} ,
therefore F∨p (ν0) = Z ∪ S( f , g) , where Z = {h�μ : 1 ≤ μ < ω1 ∧ h ∈ F} ∈ M and
S( f , g) =

⋃
1≤μ<ω1

{ f �μ, g�μ} . Thus, (9) is equivalent to

∀ A′ ∈ A ′ (A′ ∩ S( f , g) �= ∅) , where A ′ = {Aq � Z : q ∈ D} ∈ M . (10)

Please note that each A′ ∈ A ′ is a finite subset of SEQ , so we can re-enumerate A ′ = {A′κ : κ < ω1}
in M and rewrite (10) as follows:

∀ κ < ω1 (A′κ ∩ S( f , g) �= ∅) , where each A′κ ⊆ SEQ is finite. (11)
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As the pair 〈 f , g〉 is SEQ -generic, there is an index μ0 < ω1 such that (11) is forced over M by 〈σ0, τ0〉 ,
where σ0 = f �μ0 and τ0 = g�μ0 . In other words, A′κ ∩ S( f ′, g′) �= ∅ holds for all κ < ω1 whenever
〈 f ′, g′〉 is SEQ -generic over M and σ0 ⊂ f ′ , τ0 ⊂ g′ . It follows that for any κ < ω1 and sequences
σ, τ ∈ SEQ extending resp. σ0, τ0 there are sequences σ′, τ′ ∈ SEQ extending resp. σ, τ , at least one
of which extends one of sequences w ∈ A′κ . This allows us to define, in M , a pair of sequences
f ′, g′ ∈ FUN , such that σ0 ⊂ f ′ , τ0 ⊂ g′ , and for any κ < ω1 at least one of f ′, g′ extends one of
w ∈ A′k . In other words, we have

∀ κ < ω1 (A′κ ∩ S( f ′, g′) �= ∅) and ∀ A′ ∈ A ′ (A′ ∩ S( f ′, g′) �= ∅).

It follows that the condition p′ defined by |p′| = {ν0} , Sp′(ν0) = Sp(ν0) , Fp′(ν0) = F ∪ { f ′, g′ } ,
still satisfies ∀ A ∈ A (A ∩ F∨p′(ν0) �= ∅) (compare with (9)), and further D = D1( f ′, g′) ∪ D2 , thus p′

is incompatible with each q ∈ D . Yet p′ ∈ M since f ′, g′ ∈ M , which contradicts the pre-density of D .

(ii) The above proof works with M[G] instead of M since the set X as in the proof is multiple
SEQ -generic over M[G] by the product forcing theorem.

(iii) Assuming w. l.o.g. that H ⊆ U′(ν1) � U(ν1) , we conclude that M[H] is a SEQ -generic
extension of M . Now, if p ∈ Q[U′]� �=ν1

, then, following the above argument, let ν0 ∈ |p| , ν0 �= ν1 .
By the definition of � the set F = Fp(ν0)�U(ν0) is multiply SEQ -generic not only over M but also
over M[H] . This allows the carrying out of the same argument as above.

Corollary 2. Under the assumptions of Theorem 2, if a set G ⊆ Q[U′] is Q[U′]-generic over a transitive
model M′ |= ZFC−2 containing M and U′ ( including the case M′ = L) , then the intersection G ∩Q[U] is
Q[U]-generic over M.

Proof. If a set D ∈ M , D ⊆ Q[U] , is pre-dense in Q[U] , then it is pre-dense in Q[U′] by Theorem 2,
and hence G ∩ D �= ∅ by the genericity.

Corollary 3 (in L). Under the assumptions of Theorem 2, if τ ∈ M ∩ SNω
ω(Q[U]) is a Q[U]-full name then

τ remains Q[U′]-full, and if p ∈ Q[U] and τ is Q[U]-full below p, then τ remains Q[U′]-full below p.

4.3. Complete Sequences and the Basic Forcing Notion

In L, we say that a pair 〈M, U〉 ∈ sJS solves a set D ⊆ sJS iff either 〈M, U〉 ∈ D or there is no
pair 〈M′, U′〉 ∈ D that extends 〈M, U〉 . Let Dsolv be the set of all pairs 〈M, U〉 ∈ sJS which solve
a given set D ⊆ sJS . A sequence {〈Mξ , Uξ〉}ξ<ω2 ∈

−→
JSω2 is called n-complete (n ≥ 3) iff it intersects

every set of the form Dsolv , where D ⊆ sJS is a ΣHω2
n−2(Hω2) set.

Recall that Hω2 is the collection of all sets x whose transitive closure TC(x) has cardinality
card (TC(x)) < ω2. Furthermore, ΣHω2

n−2(Hω2) means definability by a Σn−2 formula of the ∈-
language, in which any definability parameters in Hω2 are allowed, while ΣHω2

n−2 means parameter-free
definability. Similarly, ΔHω2

n−1({ω1}) in the next theorem means that ω1 is allowed as a sole parameter.

It is a simple exercise that sets {SEQ} and SEQ are ΔHω2
1 ({ω1}) under V = L.

Generally, we refer to e.g., ([9] (Part B, 5.4)), or ([10] (Chapter 13)) on the Lévy hierarchy of
∈-formulas and definability classes ΣH

n , ΠH
n , ΔH

n for any transitive set H .

Theorem 3 (in L). Let n ≥ 2 . There is a sequence {〈Mξ , Uξ〉}ξ<ω2 ∈
−→
JSω2 of class ΔHω2

n−1({ω1}) , hence,
ΔHω2

n−1 in case n ≥ 3 , n-complete in case n ≥ 3 , and such that ξ ∈ |Uξ+1| for all ξ < ω2.

Proof. To account forω1 as a parameter, note that the set ω1 is ΣHω2
1 , and hence the singleton {ω1} is

ΔHω2
2 . Indeed “being ω1” is equivalent to the conjunction of “being uncountable”—which is ΠHω2

1 ,
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and “every smaller ordinal is countable”—which is ΣHω2
1 since the quantifier “for all smaller ordinals”

is bounded, hence, it does not increase the complexity.
It follows that ΔHω2

n−1({ω1}) = ΔHω2
n−1 in case n ≥ 3, supporting the “hence” claim of the theorem.

Then, it can be verified that the sets Q∗ , Q∗ , sJS are ΔHω2
1 ({ω1}) . (Indeed “being finite” and

“being countable” are ΔHω2
1 relations, while “being of cardinality ω1” is ΔHω2

1 ({ω1}) ; the Π1 definition
says that there is no injection from ω1 into a given set.)

Define pairs 〈Mξ , Uξ〉 , ξ < ω2, by induction. Let U0 be the null system with |U0| = ∅ , and M0

be the least CTM of ZFC−2 . If λ < ω1 is a limit, then put Uλ =
∨

ξ<λ Uξ and let Mλ be the least CTM
of ZFC−2 containing the sequence {〈Mξ , Uξ〉}ξ<λ . If 〈Mξ , Uξ〉 ∈ sJS is defined, then by Lemma 18
there is a pair 〈M′, U′〉 ∈ sJS with 〈Mξ , Uξ〉 ≺ 〈M′, U′〉 and ξ ∈ |U′| . Further let Θ ⊆ ω1×Hω2 be
a universal ΣHω2

n−2 set, and if ξ < ω2 then Dξ = {z ∈ sJS : 〈ξ, z〉 ∈ Θ} . Let 〈Mξ+1, Uξ+1〉 be the <L-
least pair 〈M, U〉 ∈ Dξ

solv satisfying 〈M′, U′〉 � 〈M, U〉 , where <L is the Gödel wellordering of L,
the constructible universe. This completes the inductive construction of 〈Mξ , Uξ〉 ∈ sJS , ξ < ω2.

To check the definability property, make use of the well-known fact that the restriction <L�Hω2

is a ΔHω2
1 relation, and if n ≥ 1, p ∈ ωω is any parameter, and R(x, y, z, . . . ) is a finitary ΔHω2

n (p)
relation on HC then the relations ∃ x <L y R(x, y, z, . . . ) and ∀ x <L y R(x, y, z, . . . ) (with arguments
y, z, . . . ) are ΔHω2

n (p) as well.

Definition 2 (in L). Fix a number n ≥ 2 during the proof of Theorem 1.

• Let �js = {〈Mξ , Uξ〉}ξ<ω2 ∈
−→
JSω2 be any n-complete Jensen–Solovay sequence of class ΔHω2

n−1 as in
Theorem 3—in case n ≥ 3 , or just any Jensen–Solovay sequence of class ΔHω2

1 ({ω1})—in case n = 2 ,
as in Theorem 3, including ξ ∈ |Uξ+1| for all ξ in both cases.

• Put U =
∨

ξ<ω1
Uξ , so U(ν) =

⋃
ξ<ω2,ν∈|Uξ | Uξ(ν) for all ν ∈ I . Thus, U ∈ L is a system and

|U| = I since ξ ∈ |Uξ+1| for all ξ .

We define Q = Q[U] (the basic forcing notion), and Qξ = Q[Uξ ] for ξ < ω2. Thus, Q is the finite-support
product of the set C and sets Q(ν) = Q[U(ν)] , i ∈ I ; so that Q ∈ L.

Corollary 4. Suppose that in L, ξ < ω2 and M is a TM of ZFC−2 containing the sequence �js . Then

(i) 〈M, U〉 ∈ JS , 〈Mξ , Uξ〉 ≺ 〈M, U〉 , and if ν ∈ I then card(Uξ(ν)) = ω1 < ω2 = card(U(ν)) in L.

(ii) If G ⊆ Q is a set Q-generic over L then the set Gξ = G ∩ Qξ is Qξ-generic over Mξ .

Proof. Make use of Lemma 20 and Corollary 2 in Section 4.2.

Lemma 21 (in L). The binary relation f ∈ U(ν) , the sets Q and SNω
ω(Q) (Q-names for reals in ωω ),

and the set of all Q-full names in SNω
ω(Q) are ΔHω2

n−1({ω1}) , and even ΔHω2
n−1 in case n ≥ 3 .

Proof. The sequence {〈Mξ , Uξ〉}ξ<ω1 is ΔHω2
n−1 by definition, hence the relation f ∈ U(ν) is ΣHω2

n−1 .
On the other hand, if f ∈ Fun belongs to some Mξ then f ∈ U(ν) obviously implies f ∈ Uξ(ν) ,
leading to a ΠHC

n−1 definition of the relation f ∈ U(ν) . To prove the last claim, note that by Corollary 3
if a name τ ∈ SNω

ω(Pξ) ∩Mξ is Pξ-full then it remains P-full.

4.4. Basic Generic Extension

The proof of Theorem 1 makes use of a generic extension of the form L[G� z] , where G ⊆ Q is a
set Q-generic over L, and z ⊆ I+ , z /∈ L. The following two theorems will play the key role in the
proof. Define formulas Γν (ν ∈ I ) as follows:

Γν(S) :=def S ⊆ SEQ
L ∧ ∀ f ∈ FUN

L
(

f ∈ U(ν) ⇐⇒ S does not cover f ).

Lemma 22. Suppose that a set G ⊆ Q is Q-generic over L, and ν ∈ I , c ∈ L[G] , ∅ �= c ⊆ I+ . Then
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(i) ω1
L[G� c] = ωL

2 ,

(ii) if −1 ∈ c then bG ∈ L[G� c] , and if ν ∈ c then SG(ν) ∈ L[G� c] ,

(iii) Γν(SG(ν)) holds,

(iv) SG(ν) /∈ L[G� �=ν] , and generally, there are no sets S ⊆ SEQ
L in L[G� �=ν] satisfying Γν(S) .

Proof. To prove (i) apply Lemma 9 (ii); (ii) is easy. Furthermore, Lemma 9 (vi) immediately implies
(iii).

To prove (iv), we need more work. Let X = SEQ
L. Suppose towards the contrary that

some S ∈ L[G� �=ν] , S ⊆ X = SEQ
L satisfies Γν(S) . It follows from Lemma 10 (with U = U and

c = I+ � {ν} ), that there is a name τ ∈ SNX(Q)� �=ν in L such that S = τ[G� �=ν] . There is an ordinal
ξ < ω1 satisfying τ ∈ Mξ and τ ∈ SNX(Qξ � �=ν) . Then S = τ[Gξ � �=ν] , where Gξ = G ∩ Pξ is Pξ-
generic over Mξ by Corollary 4 (ii), and by the way S belongs to Mξ [Gξ � �=ν] by the choice of ξ .

Please note that F = U(ν) � Uξ(ν) �= ∅ by Corollary 4 (i). Let f ∈ F . Then f is Cohen
generic over the model Mξ by Corollary 4. On the other hand, Gξ � �=ν is Pξ � �=ν-generic over Mξ [ f ] by
Theorem 2 (iii). Therefore f is Cohen generic over Mξ [Gξ � �=ν] as well.

Recall that S ∈ Mξ [Gξ � �=ν] and Γν(S) holds, hence S does not cover f . As f is Cohen generic over
Mξ [Gξ � �=ν] , it follows that there is a sequence s ∈ SEQ

L, s ⊂ f , such that S contains no subsequences
of f extending s . Take any μ ∈ I , μ �= ν . By Corollary 4 (i), there exists a function g ∈ U(μ)�Uξ(μ) ,
g /∈ U(ν) , satisfying s ⊂ g . Then, S covers g by Γν(S) . However, this is absurd by the choice of s .

The proof of the next important elementary equivalence theorem will be given below in Section 6.3.

Theorem 4 (elementary equivalence theorem). Assume that in L, −1 ∈ d ⊆ I+ , sets Z′, Z ⊆ I � d
satisfy card (I � Z) ≤ ω1 and card (I � Z′) ≤ ω1, the symmetric difference Z Δ Z′ is at most countable,
and the complementary set I � (d ∪ Z ∪ Z′) is infinite.

Let G ⊆ Q be Q-generic over L, and x0 ∈ L[G� d] be any real. Then any closed Σ1
n formula ϕ , with real

parameters in L[x0] , is simultaneously true in L[x0, G�Z] and in L[x0, G�Z′] .

4.5. The Main Theorem Modulo the Elementary Equivalence Theorem: The Model

Here we begin the proof of Theorem 1 on the base of Theorem 4 of Section 4.4. We fix a number
n ≥ 2 during the proof. The goal is to define a generic extension of L in which for any set x ⊆ ω the
following is true: x ∈ L iff x ∈ Δ1

n+1. The model is a part of the basic generic extension defined in
Section 4.4.

In the notation of Definition 2 in Section 4.3, consider a set G ⊆ Q , Q-generic over L.
Then bG =

⋃
G(−1) is a C-generic map from ω onto P(ω)∩ L by Lemma 9 (i). We define

w[G] = {ωk + 2j : k < ω ∧ j ∈ bG(k)} ∪ {ωk + 3j : j, k < ω} ⊆ ω2, (12)

and w+[G] = {−1} ∪ w[G] . We also define, for any m < ω ,

w≥m[G] = {ωk + � ∈ w[G] : k ≥ m} , w<m[G] = {ωk + � ∈ w[G] : k < m} ,

and accordingly w+
≥m[G] = {−1} ∪ w≥m[G] and w+

<m[G] = {−1} ∪ w<m[G] .
With these definitions, each k th slice

wk[G] = {ωk + 2j : j ∈ bG(k)} ∪ {ωk + 3j : j < ω} (13)

of w[G] is necessarily infinite and coinfinite, and it codes the target set bG(k) since

bG(k) = { j < ω : ωk + 2j ∈ wk[G]} = { j < ω : ωk + 2j ∈ w+[G]}. (14)
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It will be important below that definition (12) is monotone w.r. t. bG , i.e., if bG(k) ⊆ bG′(k) for all k ,
then w[G] ⊆ w[G′] and w+[G] ⊆ w+[G′] . Non-monotone modifications, like e.g.,

w[G] = {ωk + 2j : j ∈ bG(k)} ∪ {ωk + 3j : j /∈ bG(k)}

would not work. Finally, let
W = [ω2, ω2) = {ζ : ω2 ≤ ζ < ω2} .

Anyway, w+[G] ⊆ ω2 = ω · ω (the ordinal product) is a set in the model
L[bG] = L[w+[G]] = L[w[G]] = L[w≥m[G]] for each m , containing −1, while w<m[G] ∈ L for
all m . We are going to prove the following lemma:

Lemma 23. The model L[G� (w+[G] ∪W)] witnesses Theorem 1. That is, let a set G ⊆ Q be Q-generic over
L. Then it holds in L[G� (w+[G] ∪W)] that

(i) w[G] is Σ1
n+1 and each set x ∈ L, x ⊆ ω is Δ1

n+1 ;

(ii) if x ⊆ ω is Δ1
n+1 then x ∈ L.

Recall that if Z ⊆ I+ then G�Z = {p ∈ G : |p|+ ⊆ Z} .

Proof (Claim (i) of the lemma). Consider an arbitrary ordinal ν = ωk + � ; k, � < ω . We claim that

ν ∈ w[G] ⇐⇒ ∃ S Γν(S) (15)

holds in L[G� (w+[G] ∪W)] . Indeed, assume that ν ∈ w[G] . Then S = SG(ν) ∈ L[G�w+[G]] ,
and we have Γν(S) in L[G� (w+[G] ∪W)] by Lemma 22 (ii), (iii). Conversely assume that ν /∈ w[G] .
Then we have w+[G] ∈ L[bG] ⊆ L[G�w+[G]] ⊆ L[G� �=ν] , but L[G� �=ν] contains no S with Γν(S) by
Lemma 22 (iv).

However, the right-hand side of (15) defines a ΣHω2
n ({ω1

L, SEQ
L}) relation in L[G� (w+[G] ∪W)]

by Lemma 21. (Indeed, (Hω2)
L = Lω2

L = Lω1 in L[G� (w+[G] ∪W)] , therefore (Hω2)
L is ΣHω2

1

in L[G� (w+[G] ∪W)] .) On the other hand, the sets {ω1
L} and {SEQ

L} remain ΔHω2
2 singletons

in L[G� (w+[G] ∪ W)] , so they can be eliminated since n ≥ 2. This yields w[G] ∈ ΣHC
n in

L[G� (w+[G] ∪W)] . It follows that w[G] ∈ Σ1
n+1 by ([10] (Lemma 25.25)), as required.

Consider an arbitrary set x ∈ L, x ⊆ ω . By genericity there exists k < ω such that bG(k) = x .
Then x = { j : ωk + 2j ∈ w[G]} by (12), therefore x is Σ1

n+1 as well. However, ω � x ∈ Σ1
n+1 by the

same argument. Thus, x is Δ1
n+1 in L[G� (w+[G] ∪W)] , as required. (Claim (i) of Lemma 23)

4.6. Proof of the Key Claim of Lemma 23

The proof of Lemma 23 (ii) is based on several intermediate lemmas.
Recall that W = [ω2, ω2) = {ξ : ω2 ≤ ξ < ω2} .

Lemma 24 (compare with Lemma 33 in [7]). Suppose that G ⊆ Q is Q-generic over L, and m < ω .
Let c ⊆ w<m[G] be any set in L. Then any closed Σ1

n formula Φ , with reals in L[G� (c ∪ w+
≥m[G] ∪W)] as

parameters, is simultaneously true in L[G� (c ∪ w+
≥m[G] ∪W)] and in L[G� (w+[G] ∪W)] .

It follows that if c′ ⊆ c ⊆ w<m[G] in L, then any closed Σ1
n+1 formula Ψ , with parameters in

L[G� (c′ ∪ w+
≥m[G] ∪W)] , true in L[G� (c′ ∪ w+

≥m[G] ∪W)] , is true in L[G� (c ∪ w+
≥m[G] ∪W)] as well.

Proof (Lemma 24). There is an ordinal ξ < ω2 such that all parameters in ϕ belong to L[G�Y] ,
where Y = c ∪ w+

≥m[G] ∪ X and X = [ω2, ξ) = {γ : ω2 ≤ γ < ξ} . The set Y belongs to L[bG] , in
fact, L[Y] = L[bG] . Therefore G�Y is equi-constructible with the pair 〈bG, {SG(ν)}ν∈X′ 〉 , where bG is
a map from ω onto, essentially, ω1

L. It follows that there is a real x0 with L[G�Y] = L[x0] . Then all
parameters of ϕ belong to L[x0] .
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To prepare for Theorem 4 of Section 4.4, put Z′ = [ξ, ω2) , e = w<m[G]� c , Z = e ∪ Z′ ,

d = {−1} ∪ {ωk + j : k ≥ m ∧ j < ω} ∪ X .

As w+
≥m[G] ⊆ {−1} ∪ {ωk + j : k ≥ m ∧ j < ω} , we have Y = c ∪ w+

≥m[G] ∪ X ⊆ d , and hence
x0 ∈ L[G� d] . It follows by Theorem 4 that ϕ is simultaneously true in L[x0, G�Z] and in
L[x0, G�Z′] . However, L[x0, G�Z′] = L[G� (Y ∪ Z′)] = L[G� (c ∪ w+

≥m[G] ∪W)] by construction,
while L[x0, G�Z] = L[G� (w+[G] ∪W)] , and we are done.

In continuation of the proof of Lemma 23 (ii), suppose that

(†) ϕ(·) and ψ(·) are parameter-free Σ1
n+1 formulas that provide a Δ1

n+1 definition for a set x ⊆ ω ,
x ∈ L[G� (w+[G] ∪W)] , i.e., we have

x = {� < ω : ϕ(�)} = {� < ω : ¬ ψ(�)}

in L[G� (w+[G] ∪W)] . Thus, the equivalence ∀ � (ϕ(�) ⇐⇒ ¬ ψ(�)) is forced to be true in
L[G� (w+[G] ∪ W̌)] by a condition p0 ∈ G .

Here, G is the canonical Q-name for the generic set G ⊆ Q , as usual, while W̌ is a name for W ∈ L.

Lemma 25. Assume (†). If � < ω then the sentence “L[G� (w+[G] ∪ W̌)] |= ϕ(�)” is Q-decided by p0 .

Proof. Suppose, for the sake of simplicity, that p0 is the empty condition � (i.e., |p0|+ = ∅);
the general case does not differ much. Then ∀ � (ϕ(�) ⇐⇒ ¬ ψ(�)) holds in L[G� (w+[G] ∪W)]

for any generic set G ⊆ Q .
Say that conditions p, q ∈ Q = Q[U] are close neighbours iff −1 ∈ |p|+ ∩ |q|+ and one of the

following holds:

(I) bp = bq (recall that bp = p(−1)), or

(II) p� �=−1 = q� �=−1 , lh bp = lh bq , and either (a) bp(k) ⊆ bq(k) for all k < lh bp , or (b)
bq(k) ⊆ bp(k) for all k < lh bp .

Proposition 1. If conditions p, q ∈ Q are close neighbours, satisfying (6) in Section 3.8, � < ω , and p Q-
forces the sentence “L[G� (w+[G] ∪ W̌)] |= ϕ(�)”, then so does q.

Proof (Proposition). Suppose on the contrary that q does not force “L[G� (w+[G] ∪ W̌)] |= ϕ(�)”.
As p, q satisfy (6), the associated transformation Hpq maps the set Q�p = {p′ ∈ Q : p′ � p} onto
Q�q = {q′ ∈ Q : q′ � q} order-preserving by Lemma 17 (with U = U). By the choice of q , there is
a set Gq ⊆ Q�q , generic over L, containing q , and such that ϕ(�) is false in L[Gq� (w+[Gq] ∪W)] .
Then ψ(�) is true in L[Gq� (w+[Gq] ∪W)] by (†) (and the assumption that p0 = �).

The set Gp = {(Hpq)−1(q′) : q′ ∈ Gq ∧ q′ � q} ⊆ Q�p is Q-generic over L as well (as Hpq is
an order isomorphism), and contains p , and hence ϕ(�) is true and ψ(�) false in L[Gp� (w+[Gp] ∪W)] .

Case 1: (I) holds, i.e., bp = bq . Then by definition bGp = bGq , so that w+[Gp] = w+[Gq] .
On the other hand, the sets Gp and Gq are equi-constructible by means of the application of Hpq ,
and hence Gp� (w+[Gp] ∪W) and Gq� (w+[Gq] ∪W) are equi-constructible, that is, the classes
L[Gp� (w+[Gp] ∪W)] and L[Gq� (w+[Gq] ∪W)] coincide. However, ϕ(�) is true in one of them and
false in the other one, a contradiction.

Case 2: (II) holds. Let m = lh bp = lh bq . Then bGp(k) = bGq(k) for all k ≥ m via Hpq .
This implies L[bGp ] = L[bGq ] , and also implies w+

≥m[Gp] = w+
≥m[Gq] , while the difference between the

sets w<m[Gp] , w<m[Gq] is that for any k < m and any j ,

ωk + 2j ∈ w<m[Gq] ⇐⇒ j ∈ bq(k) and ωk + 2j ∈ w<m[Gp] ⇐⇒ j ∈ bp(k) . (16)
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Moreover, (II) implies Gp� �=−1 = Gq� �=−1 , and hence SGp(ν) = SGq(ν) for all ν ∈ I via
Hpq . We conclude that L[Gp�Z] = L[Gq�Z] for any set Z ∈ L[bGp ] , Z ⊆ I+ , in particular,
L[Gp� (w+[Gq] ∪W)] = L[Gq� (w+[Gq] ∪W)] .

If now (II) (a) holds, then c′ = w<m[Gp] ⊆ c = w<m[Gq] = c′ ∪ z by (16), where

z = {ωk + 2j : k < m ∧ j ∈ bq(k)� bp(k)} ∈ L .

However, ϕ(�) holds in L[Gp� (w+[Gp] ∪W)] , see above. It follows by Lemma 24 that ϕ(�) holds in
L[Gp� (w+[Gq] ∪W)] . However, we know that L[Gp� (w+[Gq] ∪W)] = L[Gq� (w+[Gq] ∪W)] . Thus,
ϕ(�) holds in L[Gq� (w+[Gq] ∪W)] , which is a contradiction to the above. If (II) (b) holds, then argue
similarly using the formula ψ(�) . (Proposition 1)

Coming back to Lemma 25, suppose towards the contrary that “L[G� (w+[G] ∪ W̌)] |= ϕ(�)”
is not Q-decided by p0 = � . There are two conditions p, q ∈ Q such that p Q-forces
“L[G� (w+[G] ∪ W̌)] |= ϕ(�)” while q Q-forces the negation. We may w. l.o.g. assume, by Lemma 17
(i), that p, q satisfy (6) of Section 3.8. We claim that p , q can be connected by a finite chain of conditions
in Q in which each two consecutive terms are close neighbours in the sense above, satisfying (6) in
Section 3.8— then Proposition 1 implies a contradiction and concludes the proof of Lemma 25.

Thus, it remains to prove the connection claim. Let p′ ∈ Q be defined by bp′ = bp and
p′� �=−1 = q� �=−1 . Then p, p′ are close neighbours and (6) holds for this pair as it holds for p, q .
Let r ∈ Q be defined by br(k) = bp(k) ∪ bq(k) for all k < � = lh bp = lh bq and p′� �=−1 = q� �=−1 .
Still r is a close neighbour to both p′ and q , and (6) holds for p′, r and q, r . Thus, the chain
p— p′—r—q proves the connection claim. (Lemma 25)

Now, to accomplish the proof of Lemma 23 (ii), apply Lemma 25.

(Lemma 23 (ii)) �

(Theorem 1 modulo Theorem 4 of Section 4.4) �

5. Forcing Approximation

To prove Theorem 4 of Section 4.4 and thus complete the proof of Theorem 1 in the next Section 6,
we define here a forcing-like relation forc, and exploit certain symmetries of objects related to forc.
This similarity will allow us to only outline really analogous issues but concentrate on several things
which bear some difference.

We argue under Blanket Assumption 1.
Recall that ZFC− is ZFC minus the Power Set axiom, with the schema of Collection instead of

Replacement, with the axiom “ω1 exists”, and with AC in the form of wellorderability of every set,
and ZFC−2 is ZFC− plus the axioms: V = L, and “every set x satisfies card x ≤ ω1”.

5.1. Formulas

Here we introduce a language that will help us to study analytic definability in Q[U]-generic
extensions, for different systems U , and their submodels.

Let L be the 2nd order Peano language, with variables of type 1 over ωω . If K ⊆ Q∗ then an L(K)
formula is any formula of L , with some free variables of types 0, 1 replaced by resp. numbers in ω

and names in SNω
ω(K) , and some type 1 quantifiers are allowed to have bounding indices B (i.e., ∃B ,

∀B ) such that B ⊆ I+ satisfies either card B ≤ ω1 or card(I � B) ≤ ω1 (in L). In particular, I+ itself
can serve as an index, and the absence
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If ϕ is a L(Q∗) formula, then let

NAM ϕ = the set of all names τ that occur in ϕ;

IND ϕ = the set of all quantifier indices B which occur in ϕ;

|ϕ|+ =
⋃

τ∈NAM ϕ |τ|+ (a set of ω1-size);

||ϕ|| = |ϕ|+ ∪
( ⋃

IND ϕ
)
− so that |ϕ|+ ⊆ ||ϕ|| ⊆ I+.

If a set G ⊆ Q∗ is minimally ϕ-generic (that is, minimally τ-generic w.r. t. every name τ ∈ NAM ϕ ,
in the sense of Section 3.5), then the valuation ϕ[G] is the result of substitution of τ[G] for any name
τ ∈ NAM ϕ , and changing each quantifier ∃Bx , ∀Bx to resp. ∃ (∀ ) x ∈ ωω ∩ L[G�B] , while index-free
type 1 quantifiers are relativized to ωω ; ϕ[G] is a formula of L with real parameters, and some
quantifiers of type 1 relativized to certain submodels of L[G] .

An arithmetic formula in L(K) is a formula with no quantifiers of type 1 (names in SNω
ω(K) are

allowed). If n < ω then let a LΣ1
n(K) , resp., LΠ1

n(K) formula be a formula of the form

∃◦x1 ∀◦x2 . . . ∀◦(∃◦) xn−1 ∃ (∀ ) xn ψ , ∀◦x1 ∃◦x2 . . . ∃◦(∀◦) xn−1 ∀ (∃ ) xn ψ

respectively, where ψ is an arithmetic formula in L(K) , all variables xi are of type 1 (over ωω ), the sign
◦ means that this quantifier can have a bounding index as above, and it is required that the rightmost
(closest to the kernel ψ) quantifier does not have a bounding index.

If in addition M |= ZFC− is a transitive model and K ⊆ Q∗ then define

LΣ1
n(K, M) = all LΣ1

n(K) formulas ϕ such that NAM ϕ ⊆ SNω
ω(K) ∩ M and each index B ∈ IND ϕ

satisfies the requirement: either B ∈ M or I � B ∈ M .

Define LΠ1
n(K, M) similarly.

5.2. Forcing Approximation

We introduce a convenient forcing-type relation p forcM
U ϕ for pairs 〈M, U〉 in sJS and formulas

ϕ in L(K) , associated with the truth in K-generic extensions of L, where K = Q[U] ⊆ Q∗ and U ∈ L

is a system.

(F1) First, writing p forcM
U ϕ , it is assumed that:

(a) 〈M, U〉 ∈ sJS and p belongs to Q[U] ,

(b) ϕ is a closed formula in LΠ1
k (Q[U], M) ∪ LΣ1

k+1(Q[U], M) for some k ≥ 1, and each
name τ ∈ NAM ϕ is Q[U]-full below p .

Under these assumptions, the sets U , Q[U] , p , NAM ϕ belong to M .

The definition of forc goes on by induction on the complexity of formulas.

(F2) If 〈M, U〉 ∈ sJS , p ∈ Q[U] , and ϕ is a closed formula in LΠ1
1(Q[U], M) (then by definition it

has no quantifier indices), then: p forcM
U ϕ iff (F1) holds and p Q[U]-forces ϕ[G] over M in the

usual sense. Please note that the forcing notion Q[U] belongs to M in this case by (F1).

(F3) If ϕ(x) ∈ LΠ1
k (Q[U], M) , k ≥ 1, then:

(a) p forcM
U ∃Bx ϕ(x) iff there is a name τ ∈ M∩SNω

ω(Q[U])�B , Q[U]-full below p (by (F1)b)
and such that p forcM

U ϕ(τ) .

(b) p forcM
U ∃ x ϕ(x) iff there is a name τ ∈ M ∩ SNω

ω(Q[U]) , Q[U]-full below p (by (F1)b)
and such that p forcM

U ϕ(τ) .
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(F4) If k ≥ 2, ϕ is a closed LΠ1
k (Q[U], M) formula, p ∈ Q[U] , and (F1) holds, then p forcM

U ϕ iff

we have ¬ q forcM′
U′ ϕ¬ for every pair 〈M′, U′〉 ∈ sJS extending 〈M, U〉 , and every condition

q ∈ Q[U′] , q � p , where ϕ¬ is the result of canonical conversion of ¬ ϕ to LΣ1
k(Q[U], M) .

The next theorem classifies the complexity of forc in terms of projective hierarchy. Please note
that if 〈M, U〉 ∈ sJS and k ≥ 1 then any formula ϕ in LΠ1

k (Q[U], M) ∪ LΣ1
k+1(Q[U], M) belongs

to M if we somehow “label” any large index B ∈ IND ϕ (such that card(I � B) ≤ ω1) by its small
complement I � B ∈ M . Therefore, the sets

Forc(Π1
k ) =

{
〈M, U, p, ϕ〉 : 〈M, U〉 ∈ sJS ∧ p ∈ Q[U]∧
∧ ϕ is a closed formula in LΠ1

k (Q[U], M) ∧ p forcM
U ϕ

}
,

and Forc(Σ1
k) similarly defined, are subsets of Hω2 (in L).

Lemma 26 (in L). The sets Forc(Π1
1) and Forc(Σ1

2) belong to ΔHω2
1 .

If k ≥ 2 then the sets Forc(Π1
k ) and Forc(Σ1

k+1) belong to ΠHω2
k−1 .

Proof (sketch). Suppose that ϕ is LΠ1
1 . Under the assumptions of the theorem, items (F1)a, (F1)b of

(F1) are ΔHω2
1 relations, while (F2) is reducible to a forcing relation over M that we can relativize to

M . The inductive step goes on straightforwardly using (F3), (F4). Please note that the quantifier over
names in (F3) is a bounded quantifier (bounded by M ), hence it does not add any extra complexity.

5.3. Further Properties of Forcing Approximations

The notion of names ν, τ ∈ SNω
ω(Q

∗) being equivalent below some p ∈ Q∗ , is introduced in
Subsection 3.5. We continue with a couple of routine lemmas.

Lemma 27. Suppose that 〈M, U〉 , p , ϕ satisfy (F1) of Section 5.2, and NAM ϕ = {τ1, . . . , τm} . Let
μ1, . . . , μm be another list of names in SNω

ω(Q[U]) , Q[U]-full below p, and such that τj and μj are
equivalent below p for each j = 1, . . . , m. Then p forcM

U ϕ(τ1, . . . , τm) iff p forcM
U ϕ(μ1, . . . , μm) .

Proof. Suppose that ϕ is LΠ1
1 . Let G ⊆ Q[U] be a set Q[U]-generic over M , and containing p .

Then τ�[G] = μ�[G] for all � by Lemma 12. This implies the result required, by (F2) of Section 5.2.
The induction steps LΠ1

k → LΣ1
k+1 and LΣ1

k → LΠ1
k are carried out by an easy reduction to

items (F3), (F4) of Section 5.2.

Lemma 28 (in L). Let 〈M, U〉 , p , ϕ satisfy (F1) of Section 5.2. Then :

(i) if k ≥ 2 , ϕ is LΠ1
k (Q[U], M) , and p forcM

U ϕ , then p forcM
U ϕ¬ fails ;

(ii) if p forcM
U ϕ , 〈M, U〉 � 〈M′, U′〉 ∈ sJS , and q ∈ Q[U′] , q � p, then q forcM′

U′ ϕ .

Proof. Claim (i) immediately follows from (F4) of Section 5.2.
To prove (ii) let ϕ = ϕ(τ1, . . . , τm) be a closed formula in LΠ1

1(Q[U], M) , where all Q[U]-
names τj belong to M and are Q[U]-full below p . Then all names τj remain Q[U′]-full below p by
Corollary 3 in Section 4.2, therefore below q as well since q � p . Consider a set G′ ⊆ Q[U′] , Q[U′]-
generic over M′ and containing q . We have to prove that ϕ[G′] is true in M′[G′] . Please note that
the set G = G′ ∩Q[U] is Q[U]-generic over M by Corollary 2 in Section 4.2, and we have p ∈ G .
Moreover, the valuation ϕ[G′] coincides with ϕ[G] since all names in ϕ belong to SNω

ω(Q[U]) . And
ϕ[G] is true in M[G] as p forcM

U ϕ . It remains to apply Mostowski’s absoluteness (see [10] (p. 484)
or [11]) between the models M[G] ⊆ M′[G′] .

The induction steps related to (F3), (F4) of Section 5.2 are easy.
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5.4. Transformations and Invariance

To prove Theorem 4 of Section 4.4, we make use of the transformations considered in
Sections 3.6–3.8. In addition to the definitions given there, define, in L, the action of any transformation
π ∈ BIJ (permutation), λ ∈ LIPI (multi-Lipschitz), or one of the form Hpq (multisubstitution), on
L-formulas with quantifier indices and names in SNω

ω(Q
∗) as parameters.

(I) Assume that π ∈ BIJ . To get πϕ replace each quantifier index B (in ∃B or ∀B ) by π ·B and each
name τ ∈ SNω

ω(Q
∗) by π ·τ .

(II) Assume that λ ∈ LIPI . To get λϕ replace each name τ ∈ SNω
ω(Q

∗) in ϕ by α ·τ , but do not
change quantifier indices.

(III) Assume that p, q ∈ Q∗ satisfy (6) of Section 3.8, and all names τ occurring in ϕ belong to
SNω

ω(Q
∗)pq . To get Hpq ϕ replace each name τ ∈ SNω

ω(Q
∗)pq in ϕ by Hpq ·τ ∈ SNω

ω(Q
∗)qp ,

but do not change quantifier indices.

Lemma 29 (in L). Suppose that 〈M, U〉 ∈ sJS , p ∈ Q[U] , k ≥ 1 , ϕ is a formula in
LΣ1

k+1(Q[U], M) ∪ LΠ1
k (Q[U], M) , and π ∈ BIJ is coded in M in the sense that |π| ∈ M and

π� |π| ∈ M. Then : p forcM
U ϕ iff (π · p) forcM

π ·U πϕ .

Proof. Under the conditions of the lemma, π acts as an isomorphism on all relevant domains and
preserves all relevant relations between the objects involved. Thus, 〈M, π ·U〉 , π · p , πϕ still satisfy
(F1) in Section 5.2. This allows proof of the lemma by induction on the complexity of ϕ .

Base. Suppose that ϕ is a closed formula in LΠ1
1(Q[U], M) . Then πϕ is a closed formula in

LΠ1
1(Q[π ·U], M) . Moreover, the map p �−→ π · p is an order isomorphism (in M ) Q[U]

onto−→ Q[π ·U]

by Lemma 14. We conclude that a set G ⊆ P is Q[U]-generic over M iff π ·G is, accordingly, Q[π ·U]-
generic over M , and the valuated formulas ϕ[G] and (πϕ)[π ·G] coincide. Now the result for Π1

1
formulas follows from (F2) in Section 5.2.

Step Π1
n → Σ1

n+1 , n ≥ 1. Let ψ(x) be a LΠ1
k (Q[U], M) formula, and ϕ be ∃ x ψ(x) .

Assume p forcM
U ϕ . By definition there is a name τ ∈ SNω

ω(Q[U]) ∩ M , Q[U]-full below
the given p ∈ Q[U] , such that p forcM

U ψ(τ) . Then, by the inductive hypothesis, we have
π · p forcM

π ·U (πψ)(π ·τ) , and hence by definition π · p forcM
π ·U πϕ .

The case of ϕ being ∃Bx ψ(x) is similar.
Step Σ1

n → Π1
n , n ≥ 2. This is somewhat less trivial. Assume that ϕ is a closed LΠ1

k (Q[U], M)

formula; all names in ϕ belong to SNω
ω(Q[U]) ∩M and are Q[U]-full below p . Then πϕ is a closed

LΠ1
k (Q[π ·U], M) formula, whose all names belong to SNω

ω(Q[π ·U])∩M and are Q[π ·U]-full below
π · p . Suppose that p forcM

U ϕ fails.
By definition there exist a pair 〈M1, U1〉 ∈ sJS with 〈M, U〉 � 〈M1, U1〉 , and a condition

q ∈ Q[U1] , q � p , such that q forc
M1
U1

ϕ¬ . Then (π ·q) forc
M1
π ·U1

πϕ¬ by the inductive hypothesis.
Yet the pair 〈M1, π ·U1〉 belongs to sJS and extends 〈M, π ·U〉 . (Recall that U ∈ M and π is coded in
M .) In addition, π ·q ∈ Q[π ·U1] , and π ·q � π · p . Therefore, the statement (π · p) forcM

π ·U πϕ fails,
as required.

Lemma 30 (in L). Suppose that 〈M, U〉 ∈ sJS , p ∈ Q[U] , k ≥ 1 , ϕ is a formula in
LΠ1

k (Q[U], M) ∪ LΣ1
k+1(Q[U], M) , and α ∈ LIPI ∩M. Then : p forcM

U ϕ iff (α · p) forcM
α ·U αϕ .

Proof. Similar to the previous one, but with a reference to Lemma 15 rather than Lemma 14.

Lemma 31 (in L). Assume that 〈M, U〉 ∈ sJS , conditions p , q ∈ Q[U] satisfy (6) of Section 3.8, k ≥ 1 , ϕ is
a closed formula in LΠ1

k (Q[U], M) ∪ LΣ1
k+1(Q[U], M) with all names in SNω

ω(Q
∗)pq (see Section 3.8),

and r ∈ Q[U] , r � p. Then : r forcM
U ϕ iff Hpq ·r forcM

U Hpq ϕ .
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Proof. Similar to the proof of Lemma 29, except for the step Π1
k → Σ1

k+1 , k ≥ 1, where we need to
take additional care to keep the names involved in SNω

ω(Q[U])pq . Thus, let ψ(x) be a LΠ1
k (Q[U], M)

formula, with names in SNω
ω(Q[U])pq , and let ϕ be ∃ x ψ(x) . Assume that r forcM

U ϕ .

By definition there is a name τ ∈ SNω
ω(Q[U]) ∩ M , Q[U]-full below r , such that r forcM

U ψ(τ) .
Please note that τ does not necessarily belong to SNω

ω(Q[U])pq . However, the restricted name
τ′ = τ�r (see Lemma 13 in Section 3.8) is still a name in SNω

ω(Q[U]) because r ∈ Q[U] , and we have
r′ ∈ dom τ′ =⇒ r′ � r � p , so that τ′ ∈ SNω

ω(Q[U])pq . Moreover, τ′ is equivalent to τ below r by

Lemma 13. We conclude that r forcM
U ψ(τ′) , by Lemma 27.

Then, by the inductive hypothesis, we have Hpq ·r forcM
U (Hpq ψ)(Hpq ·τ′) , and hence by

definition Hpq ·r forcM
U Hpq ϕ via Hpq ·τ′ .

6. Elementary Equivalence Theorem

The goal of this section is to prove Theorem 4 of Section 4.4, and accomplish the proof of
Theorem 1. We make use of the relation forc defined above, and exploit certain symmetries in forc

studied in Section 5.4.

6.1. Hidden Invariance

To explain the idea, one may note first that elementary equivalence of subextensions of a given
generic extension is usually a corollary of the fact that the forcing notion considered is enough
homogeneous, or in different words, invariant w.r. t. a sufficiently large system of order-preserving
transformations. The forcing notion Q = Q[U] we consider, as well as basically any Q[U] , is invariant
w.r. t. multi-substitutions by Lemma 17. However, for a straightaway proof of Theorem 4 we would
naturally need the invariance under permutations of Section 3.6—to interchange the domains Z and
Z′ , whereas Q is definitely not invariant w.r. t. permutations.

On the other hand, the relation forc is invariant w.r. t. both permutations (Lemma 29) and
multi-Lipschitz (Lemma 30), as well as still w.r. t. multi-substitutions by Lemma 31. To bridge the
gap between forc (not explicitly connected with Q in any way) and Q -generic extensions, we prove
Lemma 33, which ensures that forc admits a forcing-style association with the truth in Q -generic
extensions, bounded to formulas of type Σ1

n and below. This key result will be based on the
n-completeness property (Definition 2 in Section 4.3). Speaking loosely, one may say that some
transformations, i.e., permutations and multi-Lipschitz, are hidden in construction of Q , so that they do
not act per se, but their influence up to nth level, is preserved.

This method of hidden invariance, i.e., invariance properties (of an auxiliary forcing-type
relationship like forc) hidden in Q by a suitable generic-style construction of Q , was introduced
in Harrington’s notes [3] in a somewhat different terminology. We may note that the hidden
invariance technique is well known in some other fields of mathematics, including more applied
fields, see e.g., [12,13].

6.2. Approximations of the n-Complete Forcing Notion

We return to the forcing notion Q = Q[U] defined in L as in Definition 2 in Section 4.3 for a given
number n ≥ 2 of Theorem 1. Arguing in L, we let the pairs 〈Mξ , Uξ〉 , ξ < ω2, also be as in Definition 2.

Let forcξ denote the relation forc
Mξ

Uξ
, and let p forc∞ ϕ mean: ∃ ξ < ω2 (p forcξ ϕ) .

Claims (i), (ii) of Lemma 28 take the form:

(I) p forcξ ϕ and p forcη ϕ¬ (ξ , η < ω2) contradict to each other.

(II) If p forcξ ϕ and ξ ≤ ζ < ω2, q ∈ Q[Uζ ] , q � p , then q forcζ ϕ .

The next lemma shows that forc∞ satisfies a key property of forcing relations up to the level of
Π1

n−1 formulas.
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Lemma 32. If ϕ is a closed formula in LΠ1
k (Q) , 2 ≤ k < n , p ∈ Q , and all names in ϕ are Q-full below p,

then there is a condition q ∈ Q , q � p, such that either q forc∞ ϕ , or q forc∞ ϕ¬ .

Proof. As the names considered are ω1-sizeobjects, there is an ordinal η < ω2 such that p ∈ Qη ,
and all names in ϕ belong to Mη ∩ SNω

ω(Qη) ; then all names in ϕ are Qη-full below p , of course.
As k < n , the set D of all pairs 〈M, U〉 ∈ sJS that extend 〈Mη , Uη〉 and there is a condition q ∈ Q[U] ,
q � p , satisfying q forcM

U ϕ¬ , belongs to ΣHC
n−2 by Lemma 26. Therefore, by the n-completeness of the

sequence {〈Mξ , Uξ〉}ξ<ω1 , there is an ordinal ζ , η ≤ ζ < ω1, such that 〈Mζ , Uζ〉 ∈ Dsolv .
We have two cases.
Case 1: 〈Mζ , Uζ〉 ∈ D . Then there is a condition q ∈ K[Uζ ] , q � p , satisfying q forc

Mζ

Uζ
ϕ¬ , that is,

q forc∞ ϕ¬ . However, obviously q ∈ Q .
Case 2: there is no pair 〈M, U〉 ∈ D extending 〈Mζ , Uζ〉 . Prove p forcζ ϕ . Suppose otherwise.

Then by the choice of η and (F4) in Section 5.2, there exist: a pair 〈M, U〉 ∈ sJS extending 〈Mζ , Uζ〉 ,
and a condition q ∈ Q[U] , q � p , such that q forcM

U ϕ¬ . Then 〈M, U〉 ∈ D , a contradiction.

Now we prove another key lemma which connects, in a forcing-style way, the relation forc∞ and
the truth in Q -generic extensions of L, up to the level of Σ1

n formulas.

Lemma 33. Suppose that ϕ is a formula in LΠ1
k (Q)∪LΣ1

k+1(Q) , 1 ≤ k < n , and all names in ϕ are Q-full.
Let G ⊆ Q be Q-generic over L. Then ϕ[G] is true in L[G] iff there is a condition p ∈ G such that
p forc∞ ϕ .

Proof. We proceed by induction and begin with the case of LΠ1
1 formulas. Consider a closed formula

ϕ in LΠ1
1(Q) . As names in the formulas considered are ω1-sizenames in SNω

ω(Q) , there is an ordinal
ξ < ω2 such that ϕ is a LΠ1

1(Qξ) formula. Please note that since G ⊆ P is Q-generic over L, the
smaller set Gξ = G ∩ Qξ is Qξ-generic over Mξ by Corollary 2 in Section 4.2, and the formulas ϕ[G] ,
ϕ[Gξ ] coincide by the choice of ξ . Therefore

ϕ[G] holds in L[G] :

iff ϕ[Gξ ] holds in Mξ [Gξ ] by the Mostowski absoluteness [10] (p. 484),

iff there is p ∈ Gξ which Qξ-forces ϕ over Mξ ,

iff ∃ p ∈ Gξ (p forcξ ϕ) by (F2) in Section 5.2,

easily getting the result required since ξ is arbitrary.

The step from LΣ1
k to LΠ1

k , k ≥ 2 . Prove the theorem for a LΠ1
k (Q) formula ϕ , assuming that

the result holds for ϕ¬ . Suppose that ϕ[G] is false in L[G] . Then ϕ¬[G] is true, and hence by the
inductive hypothesis, there is a condition p ∈ G� c such that p forc∞ ϕ¬ . Then it follows from (I) and
(II) above that q forc∞ ϕ fails for all q ∈ G .

Conversely let p forc∞ ϕ fail for all p ∈ G . Then by Lemma 32 there exists q ∈ G satisfying
q forc∞ ϕ¬ . It follows that ϕ¬[G] is true by the inductive hypothesis, therefore ϕ[G] is false.

The step from LΠ1
k to LΣ1

k+1 . Let ϕ(x) be a LΠ1
k (Q) formula; prove the result for a formula

∃Bx ϕ(x) . If p ∈ G and p forcξ ∃Bx ϕ(x) then by definition there is a name τ ∈ Mξ ∩ SNω
ω(Qξ)�B ,

Qξ-full below p , and such that p forcξ ϕ(τ) . Then ϕ(τ)[G] holds by the inductive hypothesis, and this
implies (∃Bx ϕ(x))[G] since obviously τ[G] ∈ L[G�B] .

If conversely (∃Bx ϕ(x))[G] is true, then by Lemma 11 there is a Q-full name τ ∈ SNω
ω(Q)�B

such that ϕ(τ)[G] is true. Then, by the inductive hypothesis, there is a condition p ∈ G such that
p forc∞ ϕ(τ) . Therefore p forc∞ ∃Bx ϕ(x) by the choice of τ .

The case of ∃ x ϕ(x) is treated similarly.

6.3. The Elementary Equivalence Theorem

We begin the proof of Theorem 4 of Section 4.4, so let d, Z, Z′, x0 be as in the theorem.

71



Mathematics 2020, 8, 1477

Step 1. We assume w. l.o.g. that x0 itself is the only parameter in the Σ1
n formula Φ of

Theorem 4. By Lemma 11, there exists, in L, a Q-full name τ ∈ SNω
ω(Q) such that x0 = τ[G]

and |τ|+ ⊆ d . Thus, Φ is ϕ(τ[G]) , where ϕ(·) is a parameter-free Σ1
n formula with a single free

variable. Then |ϕ(τ)|+ = |τ|+ ⊆ d .
We also assume w. l.o.g. that the sets Z, Z′ satisfy the requirement that Z � Z′ and Z′ � Z are

infinite (countable) sets. Indeed, otherwise, under the assumptions of Theorem 4, one easily defines
a third set Z′′ such that each of the pairs Z, Z′′ and Z′, Z′′ still satisfies the assumptions of the theorem,
and in addition, all four sets Z � Z′′ , Z′′ � Z , Z′′ � Z′ and Z′ � Z′′ are infinite. Please note that this
argument necessarily requires that the complementary set I � (d ∪ Z ∪ Z′) is infinite.

Step 2. We are going to reorganize the quantifier prefix of ϕ , in particular, by assigning the indices
Z and Z′ to certain quantifiers, to reflect the relativization to classes L[x0, G�Z] and L[x0, G�Z′] . This is
not an easy task because generally speaking there is no set Z0 ⊆ I in L satisfying L[x0] = L[G�Z0] .
However, nevertheless we will define an LΣ1

n formula, say ψZ(v) , and then ψZ′(v) by the substitution
of Z′ for Z , such that the following will hold:

(A) For any set G ⊆ Q , Q-generic over L :

ϕ(τ[G]) is true in L[τ[G], G�Z] iff ψZ(τ)[G] is true in L[G], and

ϕ(τ[G]) is true in L[τ[G], G�Z′] iff ψZ′(τ)[G] is true in L[G].

(See Section 5.1 on the interpretation ψ[G] for any L-formula ψ .)
To explain this transformation, assume that n = 4 for the sake of brevity, and hence ϕ(v) has the

form ∃ x ∀ y ϑ(v, x, y) , where ϑ is a Σ1
2 formula. To begin with, we define

ψZ
1 (v) := ∃Zx′ ∃ x ∈ L[x′, v] ∀Zy′ ∀ y ∈ L[v, y′] ϑ(v, x, y) , (17)

and define ψZ′
1 (v) accordingly.

Lemma 34. The formulas ψZ
1 , ψZ′

1 satisfy (A).

Proof. To prove the implication =⇒ , suppose that ϕ(τ[G]) holds in L[τ[G], G�Z] , so that there is
a real x1 ∈ ωω ∩ L[τ[G], G�Z] satisfying ∀ y ϑ(τ[G], x1, y) in L[τ[G], G�Z] . By a standard argument
there is a real x′ ∈ ωω ∩ L[G�Z] with x1 ∈ ωω ∩ L[τ[G], x′] . We claim that these reals x′ and x1

witness that ψZ
1 (τ)[G] holds in L[G] , that is, we have ∀Zy′ ∀ y ∈ L[τ[G], y′] ϑ(τ[G], x1, y) in L[G] .

Indeed, suppose that y′ ∈ ωω ∩ L[G�Z] and y ∈ ωω ∩ L[τ[G], y′] . Then y ∈ L[τ[G], G�Z] ,
of course. Therefore ϑ(τ[G], x1, y) is true in L[τ[G], G�Z] by the choice of x1 . We conclude that
ϑ(τ[G], x1, y) is true in L[G] as well by the Shoenfield absoluteness theorem, as ϑ is a Σ1

2 formula.
The inverse implication is proved similarly. (Lemma)

Thus, the formulas ψZ
1 , ψZ′

1 do satisfy (A), but they are not LΣ1
n formulas as defined in Section 5.1,

of course. It will take some effort to convert them to a LΣ1
n form. We must recall some instrumentarium

known in Gödel’s theory of constructability of reals.

• If x ∈ ωω then define reals (x)ev and (x)odd in ωω by (x)ev(k) = x(2k) and
(x)odd(k) = x(2k + 1) for all k . If y, z ∈ ωω then define x∗y ∈ ωω such that (x∗y)ev = x ,
(x∗y)odd = y .

• There is a Π1
1 set WO = {w ∈ ωω : wo(x)} of codes of countable ordinals, defined by a Π1

1 formula
wo , so that |w| is the ordinal coded by w ∈ WO , and ω1 = {|w| : w ∈ WO} , see ([14] (1E))).

As a one more pre-requisite, we make use of a system of maps f ξ : ωω → ωω , ξ < ω1, such that:

(a) if x ∈ ωω then L[x] ∩ωω = { f ξ(x) : ξ < ω1} , and
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(b) there exist a Σ1
1 formula S(x, y, w) and a Π1

1 formula P(x, y, w) such that if w ∈ WO then
f |w|(x) = y ⇐⇒ S(x, y, w) ⇐⇒ P(x, y, w) for all x, y ∈ ωω ,

see e.g., ([14] (Theorem 2.6)). Recall that ω1
L[G] = ω1

L[G� Z] = ω2
L by Lemma 22.

Now consider the formula

ψZ
2 (v) := ∃Zx

(
wo((x)ev) ∧ ∀Zy [wo((y)ev) =⇒

=⇒ ϑ(v, f |(x)ev|(v∗(x)odd), f |(y)ev|(v∗(y)odd))]
)

,
(18)

and define ψZ′
2 (v) similarly.

We keep the global understanding that the quantifiers ∃Z , ∀Z are relativized to L[G�Z] ∩ωω .

Lemma 35. The formulas ψZ
1 (τ[G]) and ψZ

2 (τ[G]) are equivalent in L[G] , and the same for ψZ′
1 and ψZ′

2 .

Proof (Lemma). To prove the implication =⇒ , assume that ψZ
1 (τ[G]) holds in L[G] , and this

is witnessed by reals x′ ∈ ωω ∩ L[G�Z] and x1 ∈ ωω ∩ L[τ[G], x′] = ωω ∩ L[τ[G]∗x′] satisfying
∀Zy′ ∀ y ∈ L[τ[G], y′] ϑ(τ[G], x1, y) in L[G] . Please note that ω1

L[G� Z] = ω1
L[G] = ωL

2 by Lemma 9 (ii).
It follows by (a) that there is an ordinal ξ < ω1

L[G� Z] with x1 = f ξ(τ[G]∗x′) , and then there is a real
w ∈ WO∩ L[G�Z] with ξ = |w| .

Now let x̃ = w∗x′ , so that w = (x̃)ev , x′ = (x̃)odd , and x1 = f |(x̃)ev|(τ[G]∗(x̃)odd) . We claim
that x̃ witnesses ψZ

2 (τ[G]) in L[G] . Indeed, assume that ỹ ∈ ωω ∩ L[G�Z] and w = (ỹ)ev ∈ WO ,
η = |(ỹ)ev| , and y1 = f η(τ[G]∗(ỹ)odd) ; we must prove that ϑ(τ[G], x1, y1) is true in L[G] .

However, we have y1 ∈ L[τ[G], y′] by construction, where y′ = (ỹ)odd ∈ L[G�Z] by the choice of
ỹ . Now it follows by the choice of x1 that ϑ(τ[G], x1, y1) indeed holds, as required.

The proof of the inverse implication is similar. (Lemma)

Please note that the formula ψZ
2 (v) can be converted to the following logically equivalent form:

ψZ
3 (v) := ∃Zx ∀Zy

[
wo((x)ev) ∧

(
wo((y)ev) =⇒

=⇒ ϑ(v, f |(x)ev|(v∗(x)odd), f |(y)ev|(v∗(y)odd))
)]

.
(19)

And here the kernel
[

. . .
]

can be converted to a true Σ1
2 form, say χ(v, x, y) , with the help of

the formulas S and P of (b), and because wo(·) is Π1
1 and ϑ is Σ1

2 . This yields a LΣ1
4 formula

ψZ(v) := ∃Zx ∀Zy χ(v, x, y) , equivalent to ψZ
1 , and hence satisfying (A) by Lemmas 34 and 35,

as required.

Step 3. Assuming that the formula Φ := ϕ(τ[G]) is true in L[x0, G�Z] , the transformed formula
ψZ(τ)[G] holds in L[G] by (A). By Lemma 33 there is a condition p ∈ G such that p forc∞ ψZ(τ)

that is, there is an ordinal ξ < ω2 such that p forcξ ψZ(τ)—then by definition p ∈ Q[Uξ ] . We w. l.o.g.
assume that p and ζ satisfy the following two requirements:

(B) card (|p| ∩ (Z � Z′)) = card (|p| ∩ (Z′ � Z)) (recall that Z′ � Z , Z � Z′ are infinite, Step 1).

(C) −1 ∈ |p|+ , and if ν, ν′ ∈ |p| then Sp(ν) ⊆ F∨p (ν) and the sets F∨p (ν) and F∨p (ν′) are i-similar
(see Section 2.3).

Please note that if ξ < η < ω2 then still p forcη ψZ(τ) by Lemma 28. Therefore, we can increase ξ

below ω2 so that the following holds:

(D) the sets d , Z � Z′ , Z′ � Z belong to Mξ and are subsets of |Uξ | .

Step 4. Now, to finalize the proof of Theorem 4, it suffices (by Lemma 33) to prove:

Lemma 36. We have p forc∞ ψZ′(τ) as well.
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Proof (Lemma). Let δ = d ∪ (Z Δ Z′) ; then δ ∈ Mξ by (D), and δ ⊆ |Uξ | . There is a bijection f ∈ M ,

f : δ
onto−→ δ , such that

(E) f � d is the identity, f maps Z � Z′ onto Z′ � Z and vice versa.

Then, by (B), f maps |p| onto |p| . Let π be the trivial extension of f onto I : π(ν) = ν for ν /∈ δ .

Thus, π is coded in Mξ in the sense of Lemma 29, and |π| ⊆ δ ⊆ |Uξ | . We have p forc
Mξ

Uξ
ψZ(τ) by

the choice of ξ , hence Uξ ∈ Mξ and p ∈ Pξ = Q[Uξ ] ∈ Mξ . Moreover, π ·τ = τ because |τ|+ ⊆ d and

π� d is the identity by (E). It follows that p′ forc
Mξ

U′ ϕZ′(τ) by Lemma 29, where U′ = π ·Uξ , p′ = π · p .
Please note that p′ ∈ Q[U′] , |p′|+ = |p|+ , |U′| = |Uξ | , U′� d = Uξ � d , p′� d = p� d . Also note that

(F) if ν ∈ |p′| = |p| then the sets F∨p (ν) , F∨p′(ν) are i-similar by (C), (E).

We conclude, by Lemma 16, that there is a transformation λ = {λν}ν∈|Uξ | ∈ LIPI ∩ Mξ , such that
λ ·U′ = Uξ , λν = the identity for all ν ∈ d , and F∨p (ν) = F∨q (ν) for all ν ∈ |p| = |p′| = |q| ,
where q = λ · p′ ∈ Q[Uξ ] . Then we have q forc

Mξ

Uξ
ψZ′(τ) by Lemma 30. Here λ ·ψZ′(τ) = ψZ′(τ) by

the choice of λ , because |τ|+ ⊆ d . And q� d = p� d holds by the same reason.

It remains to derive p forc
Mξ

Uξ
ψZ′(τ) from q forc

Mξ

Uξ
ψZ′(τ) . Please note that p, q satisfy (6) of

Section 3.8 by construction, hence the transformation Hqp is defined. Moreover, the only name τ

occurring in ψZ′(τ) satisfies |τ|+ ⊆ d , and π� d is the identity by (E). It follows that τ ∈ SNω
ω(Q

∗)qp ,

and π ·τ = τ . We conclude that Lemma 31 is applicable. This yields p forc
Mξ

Uξ
ψZ′(τ) , as required.

(Lemma 36)

(Theorem 4 of Section 4.4) �

(Theorem 1, see Section 4.5) �

7. Conclusions and Discussion

In this study, the method of almost-disjoint forcing was employed to the problem of getting
a model of ZFC in which the constructible reals are precisely the Δ1

n reals, for different values n > 2.
The problem appeared under no 87 in Harvey Friedman’s treatise One hundred and two problems in
mathematical logic [1], and was generally known in the early years of forcing, see, e.g., problems
3110, 3111, 3112 in an early survey [2] by A. Mathias. The problem was solved by Leo Harrington,
as mentioned in [1,2] and a sketch of the proof mainly related to the case n = 3 in Harrington’s own
handwritten notes [3].

From this study, it is concluded that the hidden invariance technique (as outlined in Section 6.1)
allows the solution of the general case of the problem (an arbitrary n ≥ 3), by providing a generic
extension of L in which the constructible reals are precisely the Δ1

n reals, for a chosen value
n ≥ 3, as sketched by Harrington. The hidden invariance technique has been applied in recent
papers [7,15–17] for the problem of getting a set theoretic structure of this or another kind at
a pre-selected projective level. We may note here that the hidden invariance technique, as a true
mathematical technique, also has multiple applications both in the physical and engineering fields.
In this regard, we cite works [18,19] that have exploited this technique (albeit simplified) for
engineering applications.

We continue with a brief discussion with a few possible future research lines.
1. Harvey Friedman completes [1] with a modified version of the above problem, defined as

Problem 87 ′ : find a model of

ZFC + “ for any reals x, y , we have: x ∈ L[y] =⇒ x is Δ1
3 in y”. (20)

This problem was also known in the early years of forcing, see, e.g., problem 3111 in [2]. Problem (20)
was solved in the positive by René David [20], where the question is attributed to Harrington. So far it
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is unknown whether this result generalizes to higher classes Δ1
n, n ≥ 4, or Δ1

∞, and whether it can be
strengthened towards ⇐⇒ instead of =⇒ . This is a very interesting and perhaps difficult question.

2. Another question to be mentioned here is the following. Please note that in any extension of
L satisfying Theorem 1, it is true that every universal Σ1

n+1 set u ⊆ ω×ω is by necessity Σ1
n+1 but

non-Δ1
n+1, and hence nonconstructible. This gives another proof of Theorem 3 in [7]. (It claims, for any

n ≥ 2, the existence of a generic extension of L in which there is a nonconstructible Σ1
n+1 set a ⊆ ω

whereas all Δ1
n+1 sets are constructible.) And the problem is, given n ≥ 2, to find a model in which

all Δ1
n+1 reals are constructible, but there exists a Σ1

n+1 nonconstructible real u ⊆ ω ,
which satisfies V = L[u] .

Neither the model considered in Section 4.5 above, nor the model for ([7] (Theorem 3)), suffice to solve
the problem, because these models in principle are incompatible with V = L[u] for a real u .

3. For any n < ω , let D1n be the set of all reals (here subsets of ω = {0, 1, 2, . . .}), definable by
a type-theoretic parameter-free formula whose quantifiers have types bounded by n from above.
In particular, D10 = arithmetically definable reals and D11 = analytically definable reals. Alfred Tarski
asked in [6] whether it is true that for a given n ≥ 1, the set D1n belongs to D2n , that is, is itself
definable by a type-theoretic parameter-free formula whose quantifiers have types bounded by n .
The axiom of constructibility V = L implies that D1n /∈ D2n , so the problem is to find a generic model
in which D1n ∈ D2n holds, and moreso the equality D1n = L∩P (ω) holds. We believe that such
a model can be constructed by an appropriate modification of the methods developed in this paper.

4. It will be interesting to apply the hidden invariance technique to some other forcing notions
and coding systems (those not of the almost-disjoint type), such as in [21,22].

5. This is a rather technical question. One may want to consider a smaller extension L[w+[G]]

instead of L[w+[G], G�W] in Lemma 23. Claim (i) of Lemma 23 then holds for such a smaller model in
virtue of the same argument as above. However, the proof of Claim (ii) of Lemma 23, as given above
for L[w+[G], G�W] , does not go through for L[w+[G]] . The obstacle is that if we try to carry out the
proof of Lemma 24 for L[w+[G]] , then it may well happen that say Z′ = ∅ , and then Theorem 4 is not
applicable. It is an interesting problem to figure out whether in fact Claim (ii) of Lemma 23 holds in
L[w+[G]] .
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1. Introduction

This paper continues our research project on the issues of definability in models of set theory,
that was started in [1–3] among other papers, and most recently in [4,5] in this Journal. Questions of
definability of mathematical objects were raised in the course of discussions on the foundations of
mathematics, set theory, and the axiom of choice in the early twentieth century, such as, for instance,
the famous discussion between Baire, Borel, Hadamard, and Lebesgue published in Sinq lettres [6].
Various aspects of definability in models of set theory have since remained the focus of work on the
foundations of mathematics, see, for example, [7–13] among many important recent studies.

The topic of this paper goes back to the profound research by Alfred Tarski, who demonstrated
in [14] that ‘being definable’ (in most general, unrestricted sense) is not a mathematically well-defined
notion (see Murawski [15] on the history of this discovery and the role of Gödel, and Addison [16]
on the modern perspective of the Tarski definability theory). More specificly, restricted notions of
definability, in particular, type-theoretic definability, were considered by Tarski in [17] and later work
in [18].

Definition 1 (Tarski). If m, k < ω then Dkm is the set of all elements of order k , definable by a parameter free
type-theoretic formula of order m.

Here elements of order 0 are just natural numbers (members of the set ω = {0, 1, 2, . . .} ),
elements of order 1 are sets of natural numbers (commonly called reals in modern set theory),
and generally, elements of order k + 1 (k < ω ) are arbitrary sets of elements of order k (see details in
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Section 2.1 below). The order of a type-theoretic formula is the largest order of all its quantified and
free variables. The notion of definability is taken in the form:

xk = {yk−1 of order k− 1 : ϕ(yk−1)} , (1)

where the upper index routinely denotes the order of a variable or element.

1.1. The Problem

Investigating the definability properties of sets Dkm , Tarski notes in [18] that Dkm ∈ Dk+1,m+1 .
To prove this result, one can exploit the fact that the truth of all formulas of order m can be suitably
expressed by a single formula of order m + 1. Using such a formula, one easily gets Dkm ∈ Dk+1,m+1 .
Then Tarski turns to the question whether a stronger sentence Dkm ∈ Dk+1,m holds. Tarski comes to
the following conclusion (verbatim):

the solution of the problem is (trivially) positive if k = 0 ; the solution is negative if k ≥ 2 ; in the
(perhaps most interesting) case k = 1 the problem remains open.

The negative result for k ≥ 2 (and m ≥ k− 1, to avoid trivialities) is obtained in [18] (page 110)
essentially by virtue of the fact that countable ordinals admit a definable embedding into the set of all
elements of order 2. This leaves:

D1m ∈ D2m (m ≥ 1) (2)

as a major open problem in [18].
Tarski notes in [18], with a reference to Gödel’s work on constructibility [19], that it seems:

very unlikely that an affirmative solution of the problem is possible.

Tarski does not elaborate on this point, but it is quite clear that the axiom of constructibility V = L

(and even a weaker hypothesis, see Lemma 2 below) implies D1m /∈ D2m for all m ≥ 1, and hence no
proof of D1m ∈ D2m for even one single m ≥ 1 (the “affirmative solution” in Tarski’s words), can be
maintained in ZFC . In other words, the hypothesis:

D1m /∈ D2m holds for all m ≥ 1

(the negative solution of (2) for all m ≥ 1 simultaneously) does not contradict the ZFC axioms.
The problem of consistency of the affirmative sentences D1m ∈ D2m was left open in [18].

This paper is devoted to this problem of Alfred Tarski.

1.2. Further Reformulations and Harrington’s Statement

The problem emerged once again in the early years of forcing, especially in the case
m = 1 corresponding to analytic definability in second-order arithmetic. The early survey [20] by
A. R. D. Mathias (the original typescript has been known to set theorists since 1968) contains Problem
3112, that requires finding a model of ZFC in which it is true that:

the set of analytically definable reals is analytically definable

that is, D11 ∈ D21 . Recall that reals in this context mean subsets of ω . Another problem there, P 3110,
suggests a sharper form of this statement, namely; find a model in which it is true that

analytically definable reals are precisely the constructible reals

that is, D11 = P(ω) ∩ L . The set P(ω) ∩ L of all constructible reals is (lightface) Σ1
2 , and hence D21 ,

so that the equality D11 = P(ω) ∩ L implies D11 ∈ D21 , that is the case m = 1 of the sentence (2).
Somewhat later, Problem 87 in Harvey Friedman’s survey One hundred and two problems in

mathematical logic [21] requires to prove that for each n in the domain 2 < n ≤ ω there is a model of:
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ZFC + “the constructible reals are precisely the Δ1
n reals”. (3)

For n ≤ 2 this is definitely impossible by the Shoenfield absoluteness theorem. As Δ1
ω is the same as

D11 = all analytically definable reals, the case n = ω in (3) is just a reformulation of D11 = P(ω) ∩ L .
At the very end of [21], it is noted that Leo Harrington had solved problem (3) affirmatively.

A similar remark, see in [20] (p. 166), a comment to P 3110. And indeed, Harrington’s handwritten
notes [22] present the following major result quoted here verbatim:

Theorem 1 (Harrington [22] (p. 1)). There are models of ZFC in which the set of constructible reals is,
respectively, exactly the following set of reals :

Δ1
3, Δ1

4, . . . , Δ1
ω = projective, Δm

n , 1 ≤ n ≤ ω, 2 ≤ m ≤ ω .

We may note that Δ1
ω = D11 and generally Δm

ω = D1m for any m ≥ 2 in the context of Theorem 1.
On the other hand the set P(ω) ∩ L of constructible reals is Σ1

2 , and hence D21 . Therefore Theorem 1
implies the consistency of the affirmative sentences D1 ∈ D2 and D1m ∈ D2m for any particular value
m ≥ 1, and hence shows that the Tarski problems considered are independent of ZFC .

Based on the almost-disjoint forcing tool of Jensen and Solovay [23], a sketch of a generic extension
of L , in which it is true that ωω ∩ L = Δ1

3 , follows in [22] (pp. 2–4). Then a few sentences are added
on page 5 of [22], which explain, without much going into details, as how Harrington planned to get
some other models claimed by the theorem, in particular, a model in which ωω ∩ L = Δ1

n holds for a
given (arbitrary) natural index n > 3, and a model in which ωω ∩ L = Δ1

ω , where Δ1
ω =

⋃
n Δ1

n = D11

(all analytically definable reals). This positively solves Problem 87 of [21], including the case n = ω ,
of course. Different cases of higher order definability are briefly observed in [22] (p. 5) as well.

Yet, for all we know, no detailed proofs have ever emerged in Harrington’s published works.
An article by Harrington, entitled “Consistency and independence results in descriptive set theory”,
which apparently might have contained these results among others, was announced in the References
list in Peter Hinman’s book [24] (p. 462) to appear in Ann. of Math., 1978, but in fact this or a similar
article has never been published in Annals of Mathematics or any other journal. Some methods sketched
in [22] were later used in [25], but with respect to different questions and only in relation to the
definability classes of the 2nd and 3rd projective level.

1.3. The Main Theorem

The goal of this paper is to present a complete proof of the following part of Harrington’s
statement in Theorem 1, related to the consistency of the Tarski sentence D1m ∈ D2m and the equality
D1m = P(ω) ∩ L , strengthened by extra claims (ii) and (iii). This is the main result of this paper.

Theorem 2. Let M ≥ 1. There is a generic extension of L in which it is true that

(i) D1M = P(ω) ∩ L , that is, constructible reals are precisely reals in D1M — in particular, D1M is a Σ1
2

set, hence, D1M ∈ D21 , and even moreso, D1M ∈ D2M ;

(ii) if n �= M then D1n /∈ D2n ;

(iii) the general continuum hypothesis GCH holds.

Thus, for every particular M ≥ 1, there exists a generic extension of L in which the Tarski sentence
D1M ∈ D2M holds whereas D1n /∈ D2n for all other values n �= M . We recall that D1M ∈ D2M fails in L

itself for all M , see above.

Corollary 1. If M ≥ 1 then the sentence D1M ∈ D2M is undecidable in ZFC , even in the presence of
∀ n �= M (D1n /∈ D2n) .
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This paper is dedicated to the proof of Theorem 2. This will be another application of the methods
sketched by Harrington and developed in detail in our previous papers [4,5] in this Journal, but here
modified and further developed for the purpose of a solution to the Tarski problem.

We may note that problems of construction of models of set theory in which this or another
effect is obtained at a certain prescribed definability level (not necessarily the least possible one) are
considered in modern set theory, see e.g., Problem 9 in [26] (Section 9) or Problem 11 in [27] (page 209).
Some results of this type have recently been obtained in set theory, namely:

(A) a model [3] in which, for a given n ≥ 3, there exists a countable non-empty Π1
n set of reals,

containing no OD element, while every countable Σ1
n set of reals contains only OD reals;

(B) a model [28] in which, for a given n ≥ 2, there is a Π1
n real singleton that effectively codes a

cofinal map ω → ωL
1 , minimal over L , while every Σ1

n real is constructible;
(C) a model [29] in which, for a given n ≥ 2, there exists a planar non-ROD-uniformizable lightface

Π1
n set, all of whose vertical cross-sections are countable, whereas all boldface Σ1

n sets with
countable cross-sections are Δ1

n+1 -uniformizable;
(D) a model [30] in which, for a given n ≥ 3, the Separation principle fails for Π1

n .

Theorem 2 of this paper naturally extends this research line.

1.4. Structure of the Proof

To define a model for Theorem 2, we employ the product of two forcing notions. The first forcing
C is a Cohen-style collapse forcing that adjoins a generic collapse map ζ : ω

onto−→ Ξ = P(ω) ∩ L ,
Section 2.7. The collapse is necessary since any model for Theorem 2 has to satisfy the inequality
ωL

1 < ω1 .
The second forcing notion has the form of the product PΩ = ∏n,i<ω PΩ(n, i) ∈ L , where each

factor PΩ(n, i) is an almost-disjoint type forcing determined by a set:

UΩ(n, i) ∈ L , UΩ(n, i) ⊆ FunΩ = (ΩΩ) ∩ L ,

dense in FunΩ , where Ω = ωL
M and M ≥ 1 is the number we are dealing with in Theorem 2.

This forcing PΩ adjoins an according system of generic sets S(n, i) ⊆ SeqΩ = (Ω<Ω) ∩ L , such that:

(∗) if f ∈ FunΩ in L then S(n, i) covers f (that is, f � ξ ∈ S(n, i) for unbounded-many ξ < Ω ) iff
f /∈ UΩ(n, i) (Lemma 15).

Basically any system U ∈ L of dense sets U(n, i) ⊆ FunΩ defines a similar product forcing
P[U] = ∏n,i<ω P[U(n, i)] ∈ L (see Section 3.2). Forcing notions of the form P[U] satisfy certain chain
and distributivity conditions in L (Lemma 14), that imply some general properties of related generic
extensions (Lemmas 15 and 16).

The key system UΩ is defined in Section 4.4 (Definition 6, on the base of Theorem 6 in Section 4.2),
in the form of componentwise union UΩ =

∨
α<Ω⊕ UΩ

α , i.e., UΩ(n, i) =
⋃

α<Ω⊕ UΩ
α (n, i) for all n, i < ω ,

where Ω⊕ = ωL
M+1 is the L-cardinal next to Ω , and the systems UΩ

α ∈ L are:

- Increasing, i.e., UΩ
α (n, i) ⊆ UΩ

γ (n, i) for all α < γ and n, i < ω ,
- Small, i.e., cardUΩ

α (n, i) ≤ Ω in L for all n, i < ω , and,
- Disjoint, i.e., the components UΩ

α (n, i) are pairwise disjoint.

We apply a diamond-based argument in Section 4 to ensure that the resulting system UΩ ∈ L

has its different slices {UΩ(n, i)}i<ω (n < ω ) satisfying different definability and inner genericity
requirements (Theorem 6 in Section 4.2), so that the descriptive complexity and the level of inner
genericity (or completeness) of n th ‘slice’ tends to infinity with n → ∞ . This is a major novelty of
the construction.
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Then we consider the key product forcing notion PΩ = P[UΩ] = ∏n,i<ω PΩ(n, i) . We extend

L by a collapse-generic map ζ : ω
onto−→ P(ω) ∩ L to L , as above, and define the partial product

PΩ�w = ∏〈n,i〉∈w PΩ(n, i) ∈ L[ζ] as a forcing notion in L[ζ] , where:

w = w[ζ] = {〈n, i〉 : n ∈ ω ∧ i ∈ ζ(n)}.

Adjoining a (PΩ�w)-generic set G to L[ζ] , we get a model L[ζ, G] for Theorem 2. In particular,
if x = ζ(n) ∈ P(ω) ∩ L , then x is definable in L[ζ, G] by means of the equivalence:

i ∈ x ⇐⇒ ∃S ⊆ SeqΩ ∀ f ∈ FunΩ
(
S covers f iff f /∈ UΩ(n, i)

)
, (4)

in which the implication =⇒ follows from (∗) via S = S(n, i) (note that S(n, i) ∈ L[ζ, G] since
〈n, i〉 ∈ w in case i ∈ x = ζ(n) ), whereas the inverse implication ⇐= is based on the completeness
properties of the system UΩ . It also takes some effort to check that the right-hand side of (4) really
defines a D1M relation in L[ζ, G] ; for that purpose Theorem 3 is proved beforehand in Section 2.3.

To prove that, conversely, every x ∈ D1M in L[ζ, G] belongs to L , we introduce forcing
approximations in Section 5, a forcing-like relation used to prove the elementary equivalence theorem.
Its key advantage is the invariance under some transformations, including the permutations of the
index set I , see Section 6.5. The actual forcing notion PΩ = P[UΩ] is absolutely not invariant under
permutations of I , but the M -completeness property, maintained through the inductive construction of
UΩ in L , allows us to prove that the auxiliary forcing is in the same relation to the truth in PΩ -generic
extensions, as the true PΩ -forcing relation (Theorem 10). We call this construction hidden invariance
(see Section 6.1), and this is the other major novelty of this paper.

Finally, Section 6 presents the proof of the invariance theorem (Theorem 11), with the help of
forcing approximations, and thereby completes the proof of Theorem 2.

The flowchart of the proof can be seen in Figure 1 on page 6.

DEFINABILITY AND FORCING
PRELIMINARIES, SECTION 2

ALMOST DISJOINT FORCING
SETUP, SECTION 3

FORCING CONSTRUCTION
SUBSECTIONS 4.1 TO 4.4

THE MODEL, DEFINABILITY OF
CONSTRUCTIBLE REALS
SUBSECTIONS 4.5, 4.6

FORCING APPROXIMATIONS
SECTION 5

TRUTH LEMMA FOR APPROXIMATIONS
SUBSECTION 5.4

INVARIANCE
SECTION 6

TRANSFORMATIONS
SUBSECTION 6.5

CONSTRUCTIBILITY OF DEFINABLE REALS
AND FINALIZATION, SUBSECTION 6.6

Figure 1. Flowchart of the proof of Theorem 2.

82



Mathematics 2020, 8, 2214

2. Preliminaries

This Section contains several definitions and results that will be very instrumental in the proof of
Theorem 2.

2.1. Definability Issues

Beginning with the type-theoretic definability, we recall some details of Tarski’s constructions
from [18]. The type-theoretic language deals with variables xk, yk, . . . of orders k < ω , and includes the
Peano arithmetic language for order 0 and the atomic predicate ∈ of membership used as xk ∈ yk+1 .
The order of a formula ϕ is equal to the highest order of all variables in ϕ . Variables of each order k
can be substituted with elements of the corresponding iteration:

P k(ω) = P(P(. . . P(ω) . . . ))︸ ︷︷ ︸
k times the powerset operation P (·)

, the set of all elements of order k

of the powerset operation. In particular, P0(ω) = ω (natural numbers), P1(ω) = P(ω) (the reals),
P2(ω) = P(P(ω)) (sets of reals), and so on. Accordingly each quantifier ∃ xk , ∀ xk in a
type-theoretic formula is naturally relativized to P k(ω) , and the truth of a closed type-theoretic
formula (with or without parameters) is understood in the sense of such a relativization.

If k, m < ω , k ≥ 1, then, by Definition 1, Dkm is the set of all xk ∈ P k(ω) , definable in the form:

xk = {yk−1 ∈ P k−1(ω) : ϕ(yk−1)}

by a parameter free formula ϕ of order ≤ m ; thus Dkm ⊆ P k(ω) .

Remark 1. We will occasionally extend the definition of Dkm to binary relations, especially in the case k = 1 .
Namely a set X ⊆ P k−1(ω)×P k−1(ω) belongs to Dkm if it is definable by a parameter free formula of order
≤ m with two free variables.

In matters of ∈-definability, we refer to e.g., [31] (Part B, 5.4), or [32] (Chapter 13) on the Lévy
hierarchy of ∈ -formulas and definability classes ΣH

n , ΠH
n , ΔH

n for any transitive set H . In particular,

ΣH
n = all sets X ⊆ H , definable in H by a parameter-free Σn formula;

Σn(H) = all sets X ⊆ H definable in H by a Σn formula with any sets in H as parameters.

Something like ΣH
n (x) , x ∈ H , means that only x is admitted as a parameter, while ΣH

n (P) ,
where P ⊆ H , means that all x ∈ P can be parameters. Collections like ΠH

n , ΠH
n (x) , ΠH

n (P) are
defined similarly, and ΔH

n = ΣH
n ∩ΠH

n , etc. These definitions usually work with transitive sets of
the form:

H = Hκ = {x : card (TC (x)) < κ}, where κ is an infinite cardinal,

and TC is the transitive closure. In particular, HC = Hω1 , all heredidarily-countable sets.

2.2. Constructibility Issues

As usual, L is the constructible universe, and <L will denote the Gödel wellordering of L . Let κ
be an infinite regular cardinal. The following are well-known facts in the theory of constructibility,
see e.g., [33] and Lemma 6.3 ff in [31] (Section B.5):

1◦. The set Hκ ∩ L belongs to ΣHκ
1 and is equal to (Hκ)L = Lκ .

2◦. The restriction <L � (Hκ)L is a wellordering of (Hκ)L of length κ and a Δ
(Hκ)L

1 relation.

3◦. On the other hand, the set P(ω) ∩ L and relation <L � (P(ω) ∩ L) belong to Σ1
2 and to D21 .
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4◦. The map x �−→ pr x = {y : y <L x} : (Hκ)L → (Hκ)L is Δ
(Hκ)L

1 as well.

The last statement implies the following useful definability estimation.

5◦. Assume that m ≥ 1 and P ⊆ (Hκ)L × (Hκ)L is Δ
(Hκ)L

m . If x ∈ D = {x ∈ (Hκ)L : ∃ y P(x, y)} ,

then let yx ∈ (Hκ)L be the <L-least witness. Then P′ = {〈x, yx〉 : x ∈ D} ⊆ P is Δ
(Hκ)L

m as well.

Indeed y = yx is equivalent to P(x, y) ∧ ∀ z ∈ pr y ¬ P(x, z) , where:

∀ z ∈ pr y ¬ P(x, z) ⇐⇒ ∃Z
(
Z = pr y ∧ ∀ z ∈ Z ¬ P(x, z)

)
⇐⇒ ∀Z

(
Z = pr y =⇒ ∀ z ∈ Z ¬ P(x, z)

)
,

and the bounded quantifiers ∀ z ∈ Z do not influence the definability class.
We proceed with several easy and rather known lemmas.

Lemma 1. Assume that x, y ∈ P(ω) ∩ L and y <L x . Then y ∈ Δ1
2(x) , and hence if y ∈ D1n , n ≥ 1 ,

or y ∈ D1 , then x ∈ D1n , resp., x ∈ D1 as well.

Proof. By the Shoenfield absoluteness, it suffices to prove that y ∈ Δ1
2(x) is true in L .

We argue in L. Let κ = ω1 , so that Hκ = (Hκ)L = HC (hereditarily countable). The set:

P = {〈z, f 〉 : z ⊆ ω ∧ f : ω → P(ω) ∧ ran f = pr z}

belongs to ΔHC
1 by 4◦ since:

ran f = pr z ⇐⇒ ∃u
(
u = pr z ∧ ∀n ( f (n) ∈ u) ∧ ∀ z′ ∈ u ∃n ( f (n) = z′)

)
⇐⇒ ∀u

(
u = pr z =⇒ ∀n ( f (n) ∈ u) ∧ ∀ z′ ∈ u ∃n ( f (n) = z′)

)
.

Let fz be the <L-least f such that 〈z, f 〉 ∈ P ; then P′ = {〈z, fz〉 : z ⊆ ω} is ΔHC
1 by 5◦. It follows

that fx is ΔHC
1 (x) (with x as the only parameter). Therefore, as y <L x , we have y ∈ ΔHC

1 (x) because
y = fx(n) for some n . It follows that y ∈ Δ1

2(x) . (See e.g., [34] (p. 281) on this translation result.)

Remark 2 (Essentially Tarski [18]). If n ≥ 1 and ωL
1 = ω1 then D1n /∈ D2n .

Proof. If ωL
1 = ω1 then the set Y = P(ω) ∩ L is uncountable. On the other hand X = D1n is

countable, hence Z = Y � X �= ∅ . Note that Y ∈ D21 by 3◦ above. It follows that if X ∈ D2n then Z
belongs to D2n , too, and then the <L-least element z0 of the set Z belongs to D1n because <L is D21

on Y still by 3◦. However z0 /∈ X = D1n by construction. This is a contradiction.

Lemma 2. If 1 ≤ n < m < ω and D1m ⊆ L , then D1n /∈ D2n .

Proof. We have D1n � D1m since n < m . Therefore D1n � D1m ⊆ Y = P(ω) ∩ L . If, to the contrary,
D1n ∈ D2n , then the set Y � D1n belongs to D2n as well since Y ∈ D21 by 3◦ above. We conclude
that the <L-least element y0 ∈ Y � D1n belongs to D1n , because <L is D21 on Y by 3◦. This is a
contradiction since z0 /∈ D1n by construction.

2.3. Type-Theoretic Definability vs. ∈-Definability

It occurs that the definability classes in sets of the form Hκ correspond to the Tarski definability
classes, in the sense of the following theorem:

Theorem 3. Assume that the generalized continuum hypothesis 2ϑ = ϑ+ holds for all infinite cardinals
ϑ < ωm−1 . If m ≥ 1 and x ⊆ ω , then x is D1m if x is ∈-definable in Hωm .
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In case m = 1 (then Hωm = Hω1 = HC and the GCH premice is vacuous), this result was
explicitly mentioned, in [34] (p. 281), a detailed proof see e.g., [32] (Lemma 25.25).

Proof. The GCH premice of the theorem is equivalent to Pm(ω) ⊆ Hωm . This implies =⇒ : if
x ∈ D1m then x is surely ∈-definable in Hωm .

The inverse implication takes more effort. We have to somehow model the ∈-structure of Hωm

in D1m . For this purpose, if k < ω and x, y ∈ P k(ω) then define a quasi-pair 〈x, y〉k ∈ P k(ω) by
induction as follows. If k = 0, so that x, y ∈ ω , then put 〈x, y〉0 = 2x · 3y ∈ ω . If x, y ∈ P k+1(ω)

then put 〈x, y〉k+1 = {〈0, x′〉k : x′ ∈ x} ∪ {〈1, y′〉k : y′ ∈ y} ∈ P k+1(ω) . Note that elements 0 = ∅
and 1 = {∅} belong to every type-theoretic level P k(ω) . It can be easily established by induction
that if x, y, a, b ∈ P k(ω) and 〈x, y〉k = 〈a, b〉k then x = a and y = b .

Following [32] (25.13), we associate, with each r ∈ Pm(ω) , a binary relation Er defined so that:

x Er y iff x, y ∈ M = Pm−1(ω) and 〈x, y〉m−1 ∈ r .

on the set M = Pm−1(ω) . Let WFE0 contain all sets r ∈ Pm(ω) such that Er is an extensional
well-founded relation on |r| = {0} ∪ {x ∈ M : ∃ y ∈ M (x Er y ∨ y Er x)} , with the additional
property that 0 is the only top element of |r| , that is, 0 Er x holds for no x ∈ |r| . If r ∈ WFE0 then let
πr be the unique 1-1 map defined on |r| and satisfying πr(x) = {πr(y) : y Er x} for all x ∈ |r| — the
transitive collapse. We put F(r) = πr(0) .

Under our assumptions, F is a map from WFE0 onto Hωm , ∈-definable in Hωm .
One easily proves that WFE0 belongs to Dmm , that is, it is type-theoretically definable with

quantifiers only over order levels ≤ m . Moreover the binary relations EQ , IN defined on WFE0 by:

r EQ q iff F(r) = F(q) , and r IN q iff F(r) ∈ F(q) ,

belong to Dmm as well. Namely, let a bisimulation for r, q ∈ WFE0 be any binary relation B ⊆ |r| × |q|
satisfying 0 B 0 and, for all x ∈ |r| and y ∈ |q| ,

x B y iff ∀ x′ ∃ y′ (x′ Er x =⇒ y′ Eq y ∧ x′ B y′) ∧ ∀ y′ ∃ x′ (y′ Eq y =⇒ x′ Er x ∧ x′ B y′) .

Then, on the one hand, F(r) = F(q) iff there exists a bisimulation for r, q iff there exists b ∈ Pm(ω)

such that Eb is a bisimulation for r, q . On the other hand, we can express the property “Eb is a
bisimulation for r, q” by a type-theoretic formula with quantifiers only over orders ≤ m , by suitably
replacing pairs 〈·, ·〉 with quasipairs 〈·, ·〉m−1 .

To treat IN , we have to only change 0 B 0 above to ∃ y0 ∈ |q| (0 B y0 ∧ y0 Eq 0) .
Finally if n < ω then let rn = {〈i, j〉m−1 : 1 ≤ i < j ≤ n} ∪ {〈i, 0〉m−1 : 1 ≤ i ≤ n} , so that

rn ∈ WFE0 and F(rn) = n .
And now let x = {n < ω : Hωm |= ϕ(n)} ⊆ ω be ∈-definable in Hωm by a parameter free

formula ϕ(·) . Then we have x = {n < ω : Φ(rn)} , where Φ is obtained from ϕ by substitution of
EQ for = and IN for ∈ and relativization of all quantifiers to WFE0 . This proves x ∈ D1m .

2.4. Reduction to the Powerset Definability

Let � be the wellordering of Ord×Ord defined so that 〈ξ, η〉 � 〈ξ ′, η′〉 iff:

〈max{ξ, η}, ξ, η〉 �lex 〈max{ξ ′, η′ }, ξ ′, η′〉

lexicographically. Let p : Ord ×Ord
onto−→ Ord be the order preserving map: 〈ξ, η〉 � 〈ξ ′, η′〉 iff

p(ξ, η) ≤ p(ξ ′, η′)—the canonical pairing function. Let p1 and p2 be the inverse functions, so that
α = p(p1(α), p2(α)) for all α .
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Lemma 3 (routine). If Ω is an infinite cardinal and κ = Ω+ , then p maps Ω ×Ω onto Ω bijectively,
and the restriction p� (Ω×Ω) is constructible and ΔHκ

1 .

Now we prove another reduction-type definability theorem.

Theorem 4. If Ω is a regular cardinal, κ = Ω+ , X, Y ⊆ ω , and X is ∈-definable in Hκ with Y as the
only parameter, then X is ∈-definable in the structure 〈P(Ω) ; ∈, p〉 with Y as the only parameter.

Proof (sketch). If x ⊆ Ω then let E′x = {〈ξ, η〉 : ξ, η < Ω ∧ p(ξ, η) ∈ x} be a binary relation on its
domain |x| = domE′x ∪ ranE′x . Following the proof of Theorem 3, let WFE′0 contain all sets x ⊆ Ω
such that E′x is an extensional well-founded relation on |x| , with the additional property that 0 ∈ |x|
and 0 is the only top element of |x| , that is, 0 E′x ξ holds for no ξ ∈ |x| . If x ∈ WFE′0 then let ϕx be the
unique 1-1 map defined on |x| and satisfying ϕx(ξ) = {ϕx(η) : η E′x ξ} for all ξ ∈ |x|—the transitive
collapse. We put F′(x) = ϕx(0) ; F′ is a map from WFE′0 onto Hκ , ∈-definable in Hκ .

Both WFE′0 and the binary relations EQ′ , IN′ defined on WFE′0 by:

x EQ′ y iff F′(x) = F′(y) , and x IN′ y iff F′(x) ∈ F′(y) ,

are ∈-definable in 〈P(Ω) ; ∈, p〉 by the same bisimulation argument as in the proof of Theorem 3.
Finally if n < ω then let xn = {p(i, j) : 1 ≤ i < j ≤ n} ∪ {p(i, 0) : 1 ≤ i ≤ n} , so that xn ∈ WFE′0 and
F′(xn) = n .

Now let X = {n < ω : Hκ |= Φ(n, Y)} ⊆ ω be ∈-definable in Hκ by a formula ϕ(·, Y) . Then we
have X = {n < ω : Φ′(xn)} , where Φ′ is obtained from Φ by the substitution of EQ′ for = and IN′

for ∈ and relativization of all quantifiers to WFE′0 . This proves the theorem.

2.5. A Useful Result in Forcing Theory

We remind that, by [32] (Chapter 15), if κ is an infinite ordinal, then a forcing notion P = 〈P ;≤〉 :

• Is κ-closed, if any ≤-decreasing sequence {pα}α<λ in P , of length λ ≤ κ , has a lower bound
in P ;

• Is κ-distributive, if the intersection of κ -many open dense sets is open dense, and a set D ⊆ P is
open, iff q � p ∈ D =⇒ q ∈ D , and dense, iff for any p ∈ P there is q ∈ D , q � p .

• Satisfies κ-chain condition, or κ-CC, if every antichain A ⊆ P has cardinality strictly less than κ.

We will make use of the following general result in forcing theory.

Lemma 4. Assume that, in L , ϑ < Ω = ϑ+ are regular infinite cardinals, and Q, P ∈ L are forcing notions,
Q satisfies Ω -CC in L , and P is ϑ -closed in L . Assume that 〈F, G〉 is a pair (Q× P) -generic over L . Then,

(i) P remains ϑ -distributive in L[F] ,

(ii) Ω is still a cardinal in L[F, G] ,

(iii) Every set X ∈ L[F, G] , X ⊆ Ω , bounded in Ω , belongs to L[F] .

Proof. (i) Consider any sequence {Dα}α<ϑ in L[F] of open dense sets Dα ⊆ P . Prove that their
intersection is dense. Let p̂ ∈ P . Then D = {〈α, p〉 : α < ϑ ∧ p ∈ Dα} belongs to L[F] . Therefore there
is a name t ∈ L , t ⊆ Q× (ϑ× P) , satisfying D = t[F] . Then Dα = tα[F] for all α , where tα = {〈q, p〉 :
〈q, 〈α, p〉〉 ∈ t} . There exists a condition q0 ∈ F which Q-forces

(A) “ tα[F] is open dense in P”

over L for every α < ϑ . We can w. l.o.g. assume that 1Q forces (A), otherwise replace Q by Q′ =
{q ∈ Q : q � q0} . Under this assumption, we have the following:

86



Mathematics 2020, 8, 2214

(B) If α < ϑ , p ∈ P , and q ∈ Q then there exist q′ ∈ Q and p′ ∈ P such that q′ � q , p′ � p , and q′

Q-forces p′ ∈ tα[F] over L .

Now we prove a stronger fact:

(C) If γ < ϑ and p ∈ P , then there is p′ ∈ P , p′ � p , such that 1Q forces p′ ∈ tγ[F] over L .

Indeed, arguing in L , and using (B) and the assumption that P is ϑ-closed, we can define a decreasing
sequence {pα}α<η of conditions in P , where η < Ω , and a sequence {qα}α<η of conditions in Q ,
such that q0 = q , qα is incompatible with qβ whenever α �= β , and each qα Q-forces pα+1 ∈ tγ[F] .
Note that the construction really has to stop at some η < Ω otherwise we have an antichain in Q of
cardinality Ω . Thus A = {qα : α < η} is a maximal antichain, and on the other hand, as P is ϑ-closed
and η < Ω = ϑ+ , there is a condition p ∈ P satisfying p � pα for all α < η . Then every q ∈ A Q-
forces p ∈ tγ[F] by construction, therefore, as A is a maximal antichain, q witnesses (C).

To accomplish the proof of (i), we define, using (C), a decreasing sequence {pγ}γ<ϑ ∈ L of
conditions in P , such that p0 � p̂ and, for any γ < ϑ , 1Q forces pγ+1 ∈ tγ[F] over L . Once again,
there is a condition p ∈ P , p � pγ for all γ . Then 1Q forces p ∈ tγ[F] for all γ , hence p ∈ ⋂

γ Dγ ,
as required.

Finally, as Q is Ω-CC in L , Ω remains a cardinal in L[F] . Then, as P is ϑ -distributive in L[F] ,
we obtain (ii) and (iii) by standard arguments.

2.6. Definable Names

Let Q ∈ L be any forcing notion. It is well known (see, e.g., Lemma 2.5 in Chapter B.4 of [31])
that if F ⊆ Q is a Q-generic filter over L , X ∈ L , and Y ∈ L[F] , Y ⊆ X , then there is a set t ∈ L ,
t ⊆ Q× X , such that:

Y = t[Q] := {x ∈ X : ∃ q ∈ F (〈q, x〉 ∈ t)} ;

such a t is called a Q -name (for Y ), whereas t[G] is the G-valuation, or G-interpretation of t . There is a
more comprehensive system of names and valuations, which involves all sets Y in generic extensions,
not only those included in the groung model, see e.g., Chapter IV in [35], but it will not be used in this
paper. The next theorem claims that in certain cases such a name t as above can be chosen of nearly
the same definability level as the set Y itself.

Theorem 5. Assume that Q ∈ L is any forcing, F ⊆ Q is Q-generic over L , κ > ω is a cardinal in L[F]
(hence, in L , too), n ≥ 1 , H = (Hκ)L , H[F] = (Hκ)L[F] , and Y ∈ L[F] , Y ⊆ H . Then,

(i) If Y belongs to ΣH
n (hence to L ), then Y also belongs to Σ

H[F]
n ;

(ii) If Q ∈ H and Y belongs to Σn(H[F]) (meaning Σn in H[F] with arbitrary definability parameters
in H[F] allowed) then there exists a Σn(H) name t ∈ L , t ⊆ Q× H , such that Y = t[F] .

Proof. To prove (i) note that H = H[F] ∩ L . But the formula “ x is contructible” is Σ1 [31] (Part B,

5.4). It follows that H is Σ
H[F]
1 . Now the result is clear: We formally relativize, to the Σ

H[F]
1 set H ,

all quantifiers in the Σn definition of Y in H , getting a Σn definition of Y in H[F] .
To prove (ii), assume that Q ∈ H . We utilize a more complex system of representation of sets

in L[F] , affecting all these sets, not just subsets of sets in L . We take it from [36]. Inductively on the
∈-rank rk (a) , each set a is mapped to the set K(a) = {K(b) : ∃ q ∈ F (〈q, b〉 ∈ a)} (depends on F !).
The next lemma continues the proof of Theorem 5.

Lemma 5. H[F] = {K(a) : a ∈ H} .

Proof. From right to left, an elementary induction argument works. Prove it from left to right.
Induction by the ∈-rank rk (x) , for each x ∈ H[F] we define a set ax ∈ H such that x = K(ax) .
If x = ∅ , then ax = ∅ will do. Assume that rk (x) > 0 and ay is already defined for each y ∈ x .
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The set A = {ay : y ∈ x} ∈ L[F] , A ⊆ H has cardinality < κ in L[F] . Moreover, there is a set
B ∈ L , B ⊆ H , of cardinality ≤ κ in L , such that A ⊆ B . (Indeed, H ∈ L has cardinality κ in L .
Let {tα}α<κ be a constructible enumeration of elements of H . As card A < κ strictly, there is γ < κ
such that A ⊆ B = {tα : α < γ} . The set B is as required.)

According to the above, we have A = τ[F] for some τ ∈ L , τ ⊆ Q× B . Then τ ∈ H . On the
other hand, it is easy to check that x = {K(b) : b ∈ A} = K(τ) , that is, you can take ax = τ . This ends
the proof of the lemma.

In continuation of the proof of Theorem 5(ii), we introduce, following [36], the forcing relation
q � ϕ (where q ∈ Q ) by induction on the logical complexity of the formula ϕ (a closed formula with
parameters in H ); it corresponds to H[F] as a Q -generic extension of H . Below � is the partial order
on Q , and q � q′ means that q is a stronger condition.

(I) q � a ∈ b iff ∃ 〈q′, c〉 ∈ b (q � q′ ∧ q � a = c) ;

(II) q � a �= b iff ∃ 〈q′, c〉 ∈ b (q � q′ ∧ q � c /∈ a) or ∃ 〈q′, c〉 ∈ a (q � q′ ∧ q � c /∈ b) ;

(III) q � ¬ ϕ iff ¬ ∃ q′ (q′ � q ∧ q′ � ϕ) ;

(IV) q � ϕ ∨ ψ iff q � ϕ or q � ψ ;

(V) q � ∃ x ∈ b ϕ(x) iff ∃ 〈q′, c〉 ∈ b (q � q′ ∧ q � ϕ(c)) ;

(VI) q � ∃ x ϕ(x) iff ∃ c ∈ H (q � ϕ(c)) .

This definition assumes that some logical connectives are expressed in a certain way via other
connectives. For each parameter free formula ϕ(x1, . . . , xk) , define a set:

Fϕ = {(q, a1, . . . , ak) : a1, . . . , ak ∈ H ∧ q ∈ Q ∧ q � ϕ(a1, . . . , ak)}.

Lemma 6. If k > 1 and ϕ is a Σk formula, then Fϕ is ΣH
k ({Q}) ( Q is allowed as a sole parameter).

Proof. All quantifiers of definitions (I)–(V) are bounded either by the set Q ∈ H , or by a set of the form
Q× a , where still a ∈ H . Therefore it is not difficult to show that Fϕ ∈ ΣH

1 for any bounded formula
ϕ . (The sole unbounded quantifier will express the existence of a full description of all subformulas of
the form a ∈ b , a = b , that appear in accordance with (I)–(III).) Induction on k proves the result.

The next lemma is similar to the Truth Lemma as in [36], so the proof is omitted.

Lemma 7. Let Φ be a closed formula with parameters in H , and Φ′ obtained from Φ so that each a ∈ H is
replaced by K(a) . Then Φ′ is true in H[F] iff there exists q ∈ F such that q � Φ .

Let us finish the proof of Theorem 5(ii). Let Y ∈ Σn(H[F]) , Y ⊆ H . There is a parameter free Σn
formula ϕ(·, ·) , and a parameter y ∈ H[F] , such that X = {x ∈ H : ϕ(x, y) holds in H[F]} . For each
x ∈ H , we define the set x̆ ∈ H by induction, so that ∅̆ = ∅ , and if x �= ∅ then x̆ = {〈q, z̆〉 :
q ∈ Q ∧ z ∈ x} . Then K(x̆) = x for all x . It follows by Lemma 7 that:

X = {x ∈ H : ∃ q ∈ F (q � ϕ(x̆, b))} = t[F] ,

where b ∈ H is such that y = K(b) (exists by Lemma 5), whereas:

t = {〈q, x〉 : q ∈ Q ∧ x ∈ H ∧ q � ϕ(x̆, b)} .

Finally, note that the function x �−→ x̆ belongs to ΔH
1 ({Q}) . We conclude that t ∈ Σn(H) by Lemma 6,

as required. This completes the proof of Theorem 5.
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2.7. Collapse Forcing

We conclude from Lemma 2 that the construction of any generic extension of L , in which
D1n ∈ D2n holds for some n ≥ 1, has to involve a collapse of ωL

1 down to ω , explicitly or implicitly.
To set up such a collapse in a technically convenient form, we let Ξ = P(ω) ∩ L be the set of all
constructible sets x ⊆ ω , and let C = Ξ<ω . Thus C ∈ L is the ordinary Cohen-style collapse forcing
that makes Ξ (and ωL

1 as well) countable in C -generic extensions. The choice of Ξ as the collapse
domain, instead of ωL

1 , is made by technical reasons that will be clear below. Note that C adjoins

generic maps ζ : ω
onto−→ Ξ to L . A map ζ ∈ Ξω is C-generic over L iff the set Gζ = {e ∈ C : e ⊂ ζ} is

C-generic in the usual sense.

Lemma 8 (Routine). If ζ ∈ Ξω is C -generic over L then ω
L[ζ]
ξ = ωL

ξ+1 for all ξ ∈ Ord .

The representation result, as in the beginning of Section 2.6, takes the following form: If ζ ∈ Ξω

is C -generic over L , X ∈ L , and Y ∈ L[ζ] , Y ⊆ X , then there is a set t ∈ L , t ⊆ C× X , such that:

Y = t[ζ] := {x ∈ X : ∃ e ∈ Gζ (〈e, x〉 ∈ t)} ;

such a t is called a C -name (for Y ).
Theorem 5 is applicable for Q = C and any L-cardinal κ ≥ ωL

2 , whereas if ξ ∈ Ord , ξ ≥ 1,
then Lemma 4 is applicable for Q = C , ϑ = ωL

ξ , Ω = ωL
ξ+1 , and any forcing P ∈ L , ϑ-complete in L .

3. Almost Disjoint Forcing, Uncountable Version

Here we introduce the main coding tool used in the proof of Theorem 2, an uncountable version
of almost disjoint forcing of Jensen–Solovay [23].

3.1. Introduction to almost Disjoint Forcing

Definition 2. Fix an uncountable successor L-cardinal Ω = ωL
μ+1 . The value of Ω will be specified in

Section 4.5 with respect to the integer M of Theorem 2, namely, Ω = ωL
M , but until then we will view Ω as an

arbitrary successor L-cardinal.
We put Ω� = ωL

μ and Ω⊕ = ωL
μ+2 . Here ⊕ , resp., � mean the next, resp., previous L -cardinal,

which may not be true cardinals in generic extensions of L .
We finally put:

H = (HΩ⊕)L = {x ∈ L : card (TC (x)) < Ω⊕ in L}. (5)

Moreover if L[G] is a generic extension of L then we define:

H[G] = (HΩ⊕)L[G] = {x ∈ L[G] : card (TC (x)) < Ω⊕ in L[G]}. (6)

provided Ω⊕ remains a cardinal in L[G] .

• Let SeqΩ = (Ω<Ω � {Λ}) ∩ L , the set of all constructible non-empty sequences s of ordinals
< Ω , of length lh s = dom s < Ω , called strings. We underline that SeqΩ ∈ L , and Λ , the empty
string, does not belong to SeqΩ ;

• Let FunΩ = ΩΩ ∩ L = all constructible Ω-sequences of ordinals < Ω ; FunΩ ∈ L ;

• If X ⊆ FunΩ then put X∨ = { f � ξ : f ∈ Fp ∧ 1 ≤ ξ < Ω} , a tree in SeqΩ , without terminal
nodes;

• A set X ⊆ FunΩ is dense iff X∨ = SeqΩ , i. e. for any s ∈ SeqΩ there is f ∈ X such that s ⊂ f ;

• If S ⊆ SeqΩ , f ∈ FunΩ then let S/ f = sup{ξ < Ω : f � ξ ∈ S} . If S/ f is unbounded in Ω then
say that S covers f , otherwise S does not cover f .
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Definition 3 (in L ). ∗PΩ is the set of all pairs p = 〈Sp ; Fp〉 ∈ L of sets Fp ⊆ FunΩ , Sp ⊆ SeqΩ of
cardinality strictly less than Ω in L . Elements of ∗PΩ will be called (forcing) conditions.

If p, q ∈ ∗PΩ then p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 ; a condition in ∗PΩ .
Let p, q ∈ ∗PΩ . Define q � p (q is stronger as a forcing condition) iff Sp ⊆ Sq , Fp ⊆ Fq , and the

difference Sq � Sp does not intersect F∨p , that is, Sq ∩ F∨p = Sp ∩ F∨p . Here F∨p = (Fp)∨ .

Lemma 9 (in L ). The sets SeqΩ , FunΩ , ∗PΩ belong to L and card (SeqΩ) = Ω while card (FunΩ) =

card ∗PΩ = Ω⊕ in L .

Clearly q � p iff Sp ⊆ Sq , Fp ⊆ Fq , and Sq ∩ F∨p = Sp ∩ F∨p .

Lemma 10 (in L ). Conditions p, q ∈ ∗PΩ are compatible in ∗PΩ iff 1) Sq � Sp does not intersect F∨p , and 2)
Sp � Sq does not intersect F∨q . Therefore any p, q ∈ P∗ are compatible in P∗ iff p ∧ q � p and p ∧ q � q .

Proof. If (1), (2) hold then p ∧ q � p and p ∧ q � q , thus p, q are compatible.

If u ⊆ FunΩ then put P[u] = {p ∈ ∗PΩ : Fp ⊆ u} . Thus if u ∈ L then P[u] ∈ L .
Any conditions p , q ∈ P[u] are compatible in P[u] iff they are compatible in ∗PΩ iff p ∧ q =

〈Sp ∪ Sq ; Fp ∪ Fq〉 ∈ P[u] satisfies both (p ∧ q) � p and (p ∧ q) � q . Thus we say that conditions
p , q ∈ ∗PΩ are compatible (or incompatible) without an indication which set P[u] containing p, q is
considered.

Lemma 11 (in L ). Let ∅ �= u ⊆ FunΩ . Then it is true in L that card P[u] ≤ Ω⊕ , and the forcing notion
P[u] satisfies Ω⊕-CC, and is Ω�-closed, hence Ω�-distributive. Moreover P[u] satisfies Ω⊕-CC in any generic
extension L[H] of L , in which Ω⊕ remains a cardinal.

Proof. The closed/distributive claim is obvious on the base of the cardinality restrictions in Definition 3.
To prove the Ω⊕-CC claim, argue in L[H] . If p �= q belong to an antichain A ⊆ P[u] then Sp �= Sq by
Lemma 10. Let M = {Sp : p ∈ ∗PΩ} = all subsets S ⊆ SeqΩ , S ∈ L , with card S < Ω in L . Then M
is a set of cardinality Ω in L , hence in L[H] as well.

If u ⊆ FunΩ in L , and G ⊆ P[u] is a P[u]-generic set, then put SG =
⋃

p∈G Sp ; thus SG ⊆ SeqΩ .
The next lemma witnesses that forcing notions of the form P[u] belong to the type of almost disjoint
(AD, for brevity) forcing, invented in [23] (§ 5).

Lemma 12. Suppose that, in L , u ⊆ FunΩ is dense. Let G ⊆ P[u] be a set P[u]-generic over L . Then:

(i) If f ∈ FunΩ in L then f ∈ u ⇐⇒ SG does not cover f ;

(ii) G = {p ∈ P[u] : Sp ⊆ SG ∧ (SG � Sp) ∩ F∨p = ∅} , hence L[G] = L[SG] .

Proof. (i) Let f ∈ u . The set Df = {p ∈ P[u] : f ∈ Fp} is dense in P[u] . (Let q ∈ P[u] . Define p ∈ P[u]
so that Sp = Sq and Fp = Fq ∪ { f } . Then p ∈ Df and p � q .) Therefore Df ∩ G �= ∅ . Pick any
p ∈ Df ∩ G . Then f ∈ Fp . Now every r ∈ G is compatible with p , and hence Sr/ f ⊆ Sp/ f by
Lemma 10. Thus SG/ f = Sp/ f is bounded in Ω . Let f /∈ u . If ξ < Ω then the set Df ξ = {p ∈ P[u] :
sup(Sp/ f ) > ξ} is dense in P[u] . (If q ∈ P[u] then card (F∨q ) < Ω . As f /∈ u , there is η > ξ , η < Ω ,
with f �η /∈ F∨q . Define p so that Fp = Fq and Sp = Sq ∪ { f �η} . Then p ∈ Df ξ and p � q .) Let
p ∈ Df ξ ∩ G . Then sup(SG/ f ) > ξ . As ξ < Ω is arbitrary, SG/ f is unbounded.

(ii) Consider any p ∈ P[u] . Suppose p ∈ G . Then Sp ⊆ SG . If there exists s ∈ (SG � Sp) ∩ F∨p
then by definition we have s ∈ Sq for some q ∈ G . However, then p, q are incompatible by Lemma 10,
a contradiction. Now suppose p /∈ G . Then there exists q ∈ G incompatible with p . By Lemma 10,
there are two cases. First, there exists s ∈ (Sq � Sp) ∩ F∨p . Then s ∈ SG � Sp , so p is not compatible
with SG . Second, there exists s ∈ (Sp � Sq) ∩ F∨q . Then any condition r � q satisfies s /∈ Sr . Therefore
s /∈ SG , so Sp �⊆ SG , and p is not compatible with SG .
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3.2. Product Almost Disjoint Forcing

Arguing under the assumptions and notation of Definition 2, we consider I = ω × ω ,
the cartesian product, as the index set for a product forcing.

Definition 4 (in L ). ∗PΩ (note the boldface upright form) is the L-product of I copies of ∗PΩ (Definition 3 in
Section 3.1), ordered componentwise: p � q ( p is stronger) iff p(n, i) � q(n, i) in ∗PΩ for all n, i < ω .

That is, ∗PΩ ∈ L and ∗PΩ consists of all maps p ∈ L , p : I → ∗PΩ . If p ∈ ∗PΩ then put Fp(n, i) =
Fp(n,i) and Sp(n, i) = Sp(n,i) for all n, i < ω , so that p(n, i) = 〈Sp(n, i) ; Fp(n, i)〉 , where Sp : I →
P<Ω(SeqΩ) and Fp : I → P<Ω(FunΩ) are arbitrary, and P<Ω means all subsets of cardinality <Ω strictly.

• Note that, unlike product almost-disjoint forcing notions developed in [4,5], ∗PΩ is not a
finite-support product;

• If p ∈ ∗PΩ then we define |p| = {〈n, i〉 : p(n, i) �= 〈∅,∅〉} and

F∨p (n, i) = F∨p(n,i) = { f � ξ : f ∈ Fp(n, i) ∧ 1 ≤ ξ < Ω};

• If p, q ∈ ∗PΩ then define p∧ q ∈ ∗PΩ by (p∧ q)(n, i) = p(n, i)∧ q(n, i) , in the sense of Definition 3
in Section 3.1, for all n, i < ω .

Lemma 13. Conditions p, q ∈ ∗PΩ are compatible in ∗PΩ iff (p ∧ q) � p and (p ∧ q) � q .

Let an Ω-system be any map U ∈ L , U : I → P(FunΩ) such that each set U(n, i) is empty or
dense in FunΩ . In this case, let |U| = {〈n, i〉 : U(n, i) �= ∅}.

• If U is an Ω-system then P[U] = {p ∈ ∗PΩ : ∀ 〈n, i〉 ∈ |p| (Fp(n, i) ⊆ U(n, i))} is the L-product
of the sets P[U(n, i)] , n, i < ω .

Lemma 14 (in L ). Let U be an Ω-system. Then it is true in L that cardP[U] = Ω⊕ , and the forcing notion
P[U] is Ω�-closed, hence Ω�-distributive, and satisfies Ω⊕-CC, and the product C× P[U] satisfies Ω⊕-CC as
well. Moreover P[U] satisfies Ω⊕-CC in any generic extension of L in which Ω⊕ remains a cardinal.

Proof. The closed/distributive claims follow from Lemma 11. To prove the antichain claim we observe
that if p, q ∈ ∗PΩ satisfy Sp = Sq then p, q are compatible. However the set ΔS = {Sp : p ∈ ∗PΩ} has
cardinality ≤ Ω < Ω⊕ in L as it consists of all functions Sp : I → P<Ω(SeqΩ) . To extend the result to
the product C× P[U] , note that cardC = ωL

1 ≤ Ω .

Definition 5. Suppose that z ⊆ I . If p ∈ ∗PΩ then define p′ = p� z to be the usual restriction, so that
dom (p� z) = z and p′(n, i) = p(n, i) for all 〈n, i〉 ∈ z . A special case: If n, i < ω then let p� �=〈n,i〉 = p� z ,
where z = (I � {〈n, i〉}) . If U is an Ω-system then define U � z to be the ordinary restriction as well.
Furthermore, if m < ω then define:

p�<m = p� z and U �<m = U � z, where z = {k : k < m} ×ω,

p�≥m = p� z and U �≥m = U � z, where z = {k : k ≥ m} ×ω,

p� m = p� z and U � m = U � z, where z = {m} ×ω.

Finally, if Q ⊆ ∗PΩ then let Q� z = {p� z : p ∈ Q} ; Q� z ⊆ ∗PΩ� z . This will be applied, e.g., in case
Q = P[U] , where U ∈ L is a Ω-system, and then we get P[U]� z = {p� z : p ∈ P[U]} , P[U]� �=〈n,i〉 ,
P[U]�≥m , etc.
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Remark 3. Suppose that z ∈ L in Definition 5. If p ∈ ∗PΩ , then p� z can be identified with a condition
q ∈ ∗PΩ such that q� z = p� z and q(n, i) = 〈∅ ; ∅〉 for all 〈n, i〉 ∈ I � z . For instance, this applies w. r. t.
p� �=〈n,i〉 , p�≥m , p�<m , p� m .

With such an identification, we have ∗PΩ� z ⊆ ∗PΩ , and Q� z ⊆ ∗PΩ for Q ⊆ ∗PΩ (in case z ∈ L ).
However, if z /∈ L then such an identification fails. This is a consequence of our deviation from the

finite-support product approach taken in [4,5], which would not work in the setting of this paper.
The same applies for the restrictions U � z of Ω-systems U .

3.3. Structure of Product almost Disjoint Generic Extensions

Arguing under the assumptions and notation of Definition 2, we let U be an Ω-system in L .
Consider P[U] as a forcing notion. We will study P[U]-generic extensions L[G] of the ground universe
L . Define some elements of these extensions. Suppose that G ⊆ P[U] is a generic set. Let,

SG(n, i) = SG(n,i) =
⋃

p∈G Sp(n, i) for any n, i < ω ,

where G(n, i) = {p(n, i) : p ∈ G} ⊆ P[U(n, i)] ; thus SG(n, i) ⊆ SeqΩ and G ⊆ P[U] splits into the
family of sets G(n, i) , n, i < ω . This defines a sequence �SG = {SG(n, i)}n,i<ω of subsets of SeqΩ .

If z ⊆ I then let G� z = {p� z : p ∈ G} . If z ∈ L then G� z can be identified with {p ∈ G :
|p| ⊆ z} .

Put G� �=〈n,i〉 = {p ∈ G : 〈n, i〉 /∈ |p|} = G� (I � {〈n, i〉}) .

Lemma 15. Let U be an Ω-system in L , and G ⊆ P[U] be a set P[U]-generic over L . Then :

(i) L[G] = L[�SG] ;

(ii) If n, i < ω then the set G(n, i) = {p(n, i) : p ∈ G} ∈ L[G] is P[U(n, i)]-generic over L , hence if
f ∈ FunΩ then f ∈ U(n, i) ⇐⇒ SG(n, i) does not cover f ;

(iii) If X ∈ L[G] , X ⊆ Ω is bounded, then X ∈ L ;

(iv) All L-cardinals are preserved in L[G] , and GCH holds in L[G] .

Proof. To prove (i) apply Lemma 12(ii).
The genericity in (ii) holds by the product forcing theorem, then use Lemma 12(i).
Claim (iii) follows from the Ω�-closure claim of Lemma 14.
(iv) We conclude from (iii) that all L-cardinals ≤ Ω remain cardinals in L[G] , and GCH holds

for all L-cardinals < Ω strictly. It follows from the Ω⊕-CC claim of Lemma 14 that all L-cardinals
≥ Ω⊕ remain cardinals in L[G] , and since cardP[U] ≤ Ω⊕ in L , GCH holds for all of them in L[G] .
And finally we still have exp(Ω) = Ω⊕ in L[G] since by (i) the model L[G] is an extension of L by
adjoining a subset of Ω obtained by a suitable wrapping of �SG .

The next lemma is useful in dealing with combined (C× P[U])-generic extensions L[ζ, G] of L ,
where, by the product forcing theorem, ζ ∈ Ξω is C-generic over L and G is P[U]-generic over L[ζ] ,
or equivalently, G is P[U]-generic over L and ζ is C-generic over L[G] .

Lemma 16. Let U be an Ω-system in L , and a pair 〈ζ, G〉 is (C× P[U])-generic over L . Then :

(i) All L[ζ]-cardinals are preserved in L[ζ, G] , so that ω
L[ζ,G]
ξ = ω

L[ζ]
ξ = ωL

ξ+1 for all ξ ≥ 1 ;

(ii) GCH holds in L[ζ, G] ;

(iii) If Ω ≥ ωL
2 and X ∈ L[ζ, G] , X ⊆ Ω is bounded, then X ∈ L[ζ] ;

(iv) If 1 ≤ k < ω and ωL
k < Ω , then (HΩ)L[ζ,G] = (HΩ)L[ζ] and P k(ω) ∩ L[ζ, G] = P k(ω) ∩ L[ζ] .

Note that Claims (iii), (iv) are not applicable in case Ω = ωL
1 .
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Proof. To prove (i), (ii) recall that all L-cardinals remain cardinals in L[G] , and GCH holds in L[G] ,
by Lemma 15(iv). It remains to note that ζ is C-generic over L[G] and make use of Lemma 8. To prove
(iii) apply Lemma 4 with ϑ = Ω� , P = P[U] , Q = C . Note that cardC = ωL

1 ≤ Ω� in case Ω ≥ ωL
2 .

Finally Claim (iv) is a routine corollary of (i)–(iii).

4. The Forcing Notion and the Model

In this Section, we prove Theorem 2 on the base of another result, Theorem 8, see Remark 4
on page 23. The proof of Theorem 8 will follow in the remainder of the paper. The structure of
the extension will be presented in Section 4.6, after the definition of the forcing notion involved in
Section 4.5. Recall that the L-cardinals:

Ω� = ωL
μ < Ω = ωL

μ+1 < Ω⊕ = ωL
μ+2

were introduced by Definition 2 on page 13. They remain to be fixed until Section 4.5, where their
value will be specified in terms of the number M ≥ 1 we are dealing with in Theorem 2.

4.1. Systems, Definability Aspects

We argue in L under the assumptions and notation of Definition 2 on page 13.
In continuation of our notation related to Ω-systems in Section 3.2, define the following.

• An Ω-system U is small, if each U(n, i) has cardinality ≤ Ω in L ;

• An Ω-system U is disjoint if U(n, i) ∩U(k, j) = ∅ whenever 〈n, i〉 �= 〈k, j〉 ;

• If U, V are Ω-systems and U(n, i) ⊆ V(n, i) for all n, i , then V extends U , in symbol U � V ;

• If {Uξ }ξ<λ is a sequence of Ω-systems then the limit Ω-system U =
∨

ξ<λ Uξ is defined by
U(n, i) =

⋃
ξ<λ Uξ(n, i) , for all n, i .

Let DSΩ (disjoint systems) be the set of all disjoint Ω-systems, and let sDSΩ (small disjoint
systems) be the set of all small disjoint Ω-systems U ∈ DSΩ .

Define sDSΩ�≥m = {U �≥m : U ∈ sDSΩ} , and similarly sDSΩ�<m etc. by Definition 5.
The sets DSΩ , sDSΩ , sDSΩ�≥m , DSΩ�<m etc., and the order relation � , belong to L , of course.

Recall that, by (5),
H = (HΩ⊕)L = {x ∈ L : card (TC (x)) ≤ Ω in L} .

Lemma 17 (in L ). The following sets belong to ΔH
1 ({Ω}) and to ΔH

3 : {Ω} , {SeqΩ} , FunΩ , ∗PΩ , sDSΩ ,
sDSΩ�≥m , sDSΩ�<m , the set {〈U, p〉 : U ∈ sDSΩ ∧ p ∈ P[U]} , the relation � .

Proof. All these sets have rather straightforward ΔH
1 ({Ω}) definitions, with Ω ∈ H as the only

parameter. To eliminate Ω , it suffices to prove that {Ω} ∈ ΔH
3 . Note first of all that “ϑ is a cardinal

(initial ordinal)” is a Π1 formula:

ϑ ∈ Ord ∧ ∀ α < ϑ ∀ f ( f : α → ϑ =⇒ ran f �= ϑ) .

On the other hand, Ω is the largest cardinal in H , hence it holds in H that:

ϑ = Ω ⇐⇒ ∀κ (κ is a cardinal =⇒ κ ≤ Ω) .

We conclude that {Ω} ∈ ΠH
2 ⊆ ΔH

3 . Finally, the conversion ΔH
1 ({Ω})→ ΔH

3 is routine.

4.2. Complete Sequences

We prove a major theorem (Theorem 6) in this Subsection. It deals with �-increasing transfinite
sequences in sDSΩ , satisfying some genericity/definability requirements. This is similar to some
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constructions in [4] and especially in [5] (Theorem 3). Yet there is a principal difference. Here the notion
of extension � is just the componentwise set theoretic extension, unlike [4,5], and originally [23],
where the extension method was designed so that increments had to be finitewise Cohen-style generic
over associated transitive models of a certain fragment of ZFC . Here the only restriction is that
extensions have to obey the disjointness condition as defined in Section 4.1. In other words, if U � V
are Ω-systems in sDSΩ , then, beside U(n, i) ⊆ V(n, i) , the increments Δ(n, i) = V(n, i)�U(n, i) have
to be pairwise disjoint and each Δ(n, i) to be disjoint with the union

⋃
〈k,j〉�=〈n,i〉 U(k, j) .

Such a simplification is made possible here largely because the definability classes of the form
D1m depend only on the highest quantifier order and do not depend on the number and type of the
quantifiers involved in the definition of the set considered—unlike e.g., [5], where we dealt with the
definability classes Δ1

n , which obviously depend on the number of the quantifiers involved.
We begin with an auxiliary lemma.
Recall that, by (5), H = (HΩ⊕)L = {x ∈ L : card (TC (x)) ≤ Ω in L} = LΩ⊕ .

Lemma 18 (in L ). Under the assumptions and notation of Definition 2, for any α < Ω⊕ there exist mα < ω ,
tα ∈ H , and Uα ∈ sDSΩ such that the sequences {mα}α<Ω⊕ , {tα}α<Ω⊕ , {Uα}α<Ω⊕ belong to ΔH

3 and,
if m < ω , t ∈ H , and {Uα}α<Ω⊕ is a �-increasing continuous sequence of Ω-systems in sDSΩ , then any
closed unbounded set C ⊆ Ω⊕ contains an ordinal α ∈ C such that m = mα , t = tα , Uα = Uα .

Proof. We argue in L , that is, under the assumption of V = L , the axiom of constructibility. It is
known that the diamond principle ♦κ holds in L for any regular cardinal κ , in particular, for κ = Ω⊕ ,
see, e.g., Theorem 13.21 and page 442 in [32]. The principle ♦κ asserts that there is a sequence
{Sα}α<Ω⊕ ∈ L of sets Sα ⊆ α , of definability class ΔH

1 , and such that:

(∗) If X ⊆ Ω⊕ and C ⊆ Ω⊕ is a closed unbounded set then there is α ∈ C such that X ∩ α = Sα .

Let h : Ω⊕ onto−→ H be any ΔH
1 bijection. Put Yα = {h(ξ) : ξ ∈ Sα} . Clearly {Yα}α<Ω⊕ is still a ΔH

1
sequence. Moreover the following is true:

(†) If {Bα}α<Ω⊕ is a sequence of sets in H and C ⊆ Ω⊕ is a closed unbounded set then there is α ∈ C
with {Bξ }ξ<α = Yα .

Using the sets Yα , we accomplish the proof of the lemma as follows. Assume that α < Ω⊕ . If Yα is
a sequence of the form {yξ }ξ<α , such that each yξ is a triple 〈m, t, Uα

ξ 〉 , where both m ∈ ω and t ∈ H
do not depend on ξ whereas Uα

ξ ∈ sDSΩ for each ξ and {Uα
ξ }ξ<α is a �-increasing and continuous

sequence, then put mα = m , tα = t , and Uα =
∨

ξ<α Uα
ξ . Otherwise put mα = tα = 0 and let Uα

be the null Ω-system, that is, Uα(n, i) = ∅ for all n, i . It follows from (†) (plus a routine analysis of
definability based on Lemma 17) that this construction leads to the result required.

Theorem 6 (in L ). Under the assumptions and notation of Definition 2, there is a �-increasing sequence
{Uα}α<Ω⊕ of Ω-systems in sDSΩ , such that:

(i) The sequence is continuous, so that Uλ =
∨

α<λ Uα for all limit ordinals λ < Ω⊕ ;

(ii) If n < ω then the “slice” {Uα � n}α<Ω⊕ is ΔH
n+4 ;

(iii) If m < ω then the “tail” {Uα �≥m}α<Ω⊕ is (m + 3)-complete, in the sense that for any Σm+3(H) set
D ⊆ sDSΩ�≥m there is ξ < Ω⊕ such that the Ω-system Uξ �≥m m-solves D , i.e.,

− either Uξ �≥m ∈ D ;

− or there is no Ω-system U ∈ D with Uξ �≥m � U ;

(iv) There is a recursive sequence of parameter free ∈-formulas χn(α, x) such that if α < Ω⊕ and x ∈ H then
H |= χn(α, x) iff x = Uα � n .
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Here the “slice” U � n of a system U is essentially equal to the “column” {U(n, i)}i<ω of the
whole “matrix” U = {U(n, i)}n,i<ω , while the “tail” U �≥m can be viewed in the union of all columns
to the right of m inclusively, see Definition 5.

Proof. We argue in L. One of the difficulties here is that we have to account for different levels of
genericity and completeness for different slices of the construction. To cope with this issue, we make
use of Lemma 18. Let us fix the sequences of terms mα , tα , Uα such as in the lemma.

Let <L be Gödel’s wellordering of L , as in Section 2.2.
For any m < ω , let Θm ⊆ H×H be a fixed universal ΣH

m+3 set, that is, Θm itself is ΣH
m+3 , and if

X ⊆ H is Σm+3(H) (parameters in H allowed), then there is t ∈ H such that X = {x : 〈t, x〉 ∈ Θm} .
If m < ω and α < Ω⊕ , then let Umα be the <L-least Ω-system in sDSΩ satisfying Um � Umα and:

(a) Umα �<m = Uα �<m , and

(b) The Ω-system Umα �≥m m-solves the set Dα = {V ∈ sDSΩ : 〈tα, V〉 ∈ Θm} .

Making use of 5◦ of Section 2.2, we conclude that the sequence {Umα}α<Ω⊕ is ΔH
m+4 .

Now we define a sequence of Ω-systems Uξ , as required by Theorem 6, by induction.
Put U0(n, i) = ∅ for all n, i .
If λ < Ω⊕ is the limit then by (i) define Uλ =

∨
α<λ Uα .

Suppose that a Ω-system Uα is defined, and the goal is to define the next one Uα+1 . Fix n, i and
define the components Uα+1(n, i) . Note that this definition will depend on the components Uα(n, i)
(with the same n, i ) only, but not on the Ω-system Uα as a whole.

If it is true that:
mα ≤ n and Uα(n, i) = Uα(n, i) (7)

(where Uα is the Ω-system given by Lemma 18), then put m = mα and Uα+1(n, i) = Umα(n, i) .
Otherwise, i.e., if (7) fails, just keep it with Uα+1(n, i) = Uα(n, i) .

We assert that this inductive construction of Ω-systems Uα leads to Theorem 6.
Requirement (i) of the theorem is satisfied by construction.
The definability requirement (ii) of the theorem is subject to routine verification on the base of

Lemma 17, which we leave to the reader.
To prove (iii), fix a number m and a Σm+3(H) set D ⊆ sDSΩ�≥m . We have to find an index

ξ < Ω⊕ such that the Ω-system Uξ �≥m m-solves D . There is an element t ∈ H satisfying:

D = {V ∈ sDSΩ�≥m : 〈t, V〉 ∈ Θm},

where Θm is the universal set as above. Pick, by Lemma 18, an ordinal α < Ω⊕ satisfying m = mα ,
t = tα , Uα = Uα . Then (7) holds for all n ≥ m , and hence by definition we have Uα+1 �≥m = Umα �≥m .
Therefore the Ω-system Uα+1 �≥m m-solves the set D by (b), as required.

(iv) Coming back to the choice of universal sets Θm in (b), it can be w. l.o.g. assumed that there
is a recursive sequence of parameter free ∈-formulas ϑn(t, x) such that each ϑn is a Σn+3 formula
and Θm = {〈t, x〉 ∈ H : H |= ϑn(t, x)} . This routinely leads to ∈-formulas χn(α, x) required. It can be
observed that in fact each χn is a Σn+4 formula (not important and will not be used).

This completes the proof of Theorem 6.

4.3. Preservation of the Completeness

The next lemma says that the completeness property (iii) of Theorem 6, of the sequence {Uξ }ξ<Ω⊕ ,
still holds, to some extent, in rather mild generic extensions of L .

Lemma 19. Under the assumptions and notation of Definition 2, suppose that {Uα}α<Ω⊕ ∈ L is a �-
increasing sequence of Ω-systems in sDSΩ satisfying (i)–(iv) of Theorem 6.
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Let Q ∈ L be a forcing notion with cardQ ≤ Ω in L , e.g., Q = C . Let F ⊆ Q be a set Q-generic
over L .

Assume that m < ω , δ < Ω⊕ , and a set D ∈ L[F] , D ⊆ sDSΩ�≥m , belongs to Σm+3(H[F]) , and is
open in sDSΩ�≥m so that any extension of a Ω-system U ∈ D in sDSΩ�≥m belongs to D itself.

Then there is an ordinal α , δ ≤ α < Ω⊕ , such that Uα �≥m m-solves D , as in Theorem 6(iii).

We recall that H = (HΩ⊕)L and H[F] = (HΩ⊕)L[F] by (5), (6).

Proof. As obviously sDSΩ�≥m ⊆ H , we conclude by Theorem 5(ii) that there is a Σm+3(H) name
t ∈ L , t ⊆ Q×H , such that D = t[F] .

We argue in L . If q ∈ Q , U ∈ sDSΩ�≥m , and there is such a condition h ∈ Q that h � q
(meaning h is stronger) and 〈h, U〉 ∈ t , then write A(q, U) . If b ∈ Q then we define:

D(b) = {U ∈ sDSΩ�≥m : ∃ q ∈ Q(q � b ∧ A(q, U))} .

Each of the sets D(b) ⊆ H belongs to Σm+3(H) by virtue of Lemma 17 and the choice of t . Therefore,
by the choice of the sequence of Ω-systems, for every b ∈ Q there is an ordinal α(b) , δ < α(b) < Ω⊕ ,
such that the Ω-system Uα(b) �≥m m-solves the set D(b) .

Note that δ = supb∈Q α(b) < Ω⊕ by the cardinality argument.
We claim that the Ω-system Uδ �≥m m-solves D . It suffices to prove that if a Ω-system U ∈ D

extends Uδ �≥m , then the Ω-system Uδ �≥m itself belongs to D . Moreover, as D is open, it suffices to
find b ∈ Q , satisfying Uα(b) �≥m ∈ D .

We argue in L . Consider the set B = {b ∈ Q : Uα(b) �≥m ∈ D(b)} . If b ∈ B then pick a particular
q = q(b) ∈ Q such that q � b and A(q, Uα(b) �≥m) holds. If b ∈ Q � B then put q(b) = b . The set
Q′ = {q(b) : b ∈ Q} is dense in Q . It follows that there is b ∈ Q′ ∩ F . On the other hand, as U ∈ D ,
there is a condition h ∈ Q with 〈h, U〉 ∈ t .

Then there exists some q ∈ F satisfying q � h and q � h(b) � b . This implies U ∈ D(b) .
It follows, by the choice of α(b) , that Uα(b) �≥m ∈ D(b) , too. However then b ∈ B , and hence
we have A(q(b), Uα(b) �≥m) . By definition there is a condition h′ ∈ Q with q(b) � h′ , such that
〈h′, Uα(b) �≥m〉 ∈ t . However h′ ∈ F (since f (b) ∈ F ). We conclude that Uδ �≥m ∈ D , as required.

4.4. Key Definability Engine

We argue under the assumptions and notation of Definition 2 on page 13. In particular, a successor
L-cardinal Ω > ω is fixed. We make the following arrangements.

Definition 6 (in L ). We fix a �-increasing sequence of Ω-systems {UΩ
ξ }ξ<Ω⊕ satisfying conditions (i)–(iv)

of Theorem 6 for the particular L-cardinal Ω introduced by Definition 2.
We define the limit Ω-system UΩ =

∨
ξ<Ω⊕ UΩ

ξ , the basic forcing notion PΩ = P[UΩ] , and the subforcings
PΩ

γ = P[UΩ
γ ] , γ < Ω⊕ .

Define restrictions PΩ� z , G� z (z ⊆ I , G ⊆ PΩ ), PΩ� �=〈n,i〉 etc. as in Section 3.2.

Thus by construction PΩ ∈ L is the L-product of sets PΩ(n, i) = P[UΩ(n, i)] , n, i ∈ ω . Lemma 14
implies some cardinal characterictics of PΩ , namely:

(I) cardPΩ = Ω⊕ in L ,

(II) PΩ satisfies Ω⊕-CC in L ,

(III) PΩ is Ω�-closed and Ω�-distributive in L .

Corollary 2. PΩ does not adjoin new reals to L .

Proof. The result follows from (III) because Ω� ≥ ω by Definition 2.
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As for definability, the set UΩ is not parameter free definable in H = (HΩ⊕)L , yet its slices are:

Lemma 20 (in L ). Let n < ω . Then the set UΩ� n = {〈i, f 〉 : f ∈ UΩ(n, i)} belongs to ΣH
n+4 . In addition

there is a recursive sequence of parameter free ∈-formulas un(i, f ) such that, for any n < ω , if i < ω and
f ∈ FunΩ then f ∈ UΩ(n, i) iff H |= un(i, f ) .

Proof. To prove the first claim, apply (ii) of Theorem 6. To prove the additional claim define:

un(i, f ) := ∃ α ∃ x
(
χn(α, x) ∧ f ∈ x(n, i)

)
,

where χn are formulas given by (iv) of Theorem 6.

We further let formulas ΓΩ
ni (n, i ∈ ω ) be defined as follows:

ΓΩ
ni(S) :=def S ⊆ SeqΩ ∧ ∀ f ∈ FunΩ

(
f ∈ UΩ(n, i) ⇐⇒ S does not cover f

)
.

The next theorem shows that any real in L and even in some generic extensions of L can be made
parameter free definable in appropriate subextensions of PΩ-generic extensions, basically by means of
the formulas ΓΩ

ni(S) . We prove this result in a rather general form, which includes the case of a forcing
notion Q = C , actually used in this paper, as just a particular case. The proof of the particular case
Q = C would not be any simpler though.

Theorem 7. Assume that Q ∈ L is a forcing notion, cardQ ≤ Ω in L , a pair 〈W, G〉 is (Q× PΩ)-generic
over L , Y ∈ L[W] , and z ∈ L[Y] , z ⊆ I = ω×ω . Then,

(i) Ω⊕ is a cardinal in L[Y, G] ;

(ii) If 〈n, i〉 ∈ z then SG(n, i) ∈ L[G� z] and ΓΩ
ni(SG(n, i)) holds, but

(iii) If 〈n, i〉 ∈ I � z then SG(n, i) /∈ L[Y, G� z] ; and moreover there is no set S ⊆ SeqΩ in L[Y, G� z]
such that ΓΩ

ni(S) .

(iv) It follows that z = {〈n, i〉 : ∃ S ⊆ SeqΩ ΓΩ
ni(S)} in L[Y, G� z] ;

(v) If n < ω then the n-th slice (z)n = {i : 〈n, i〉 ∈ z} belongs to ΣT
n+6 , where T = H[Y, G� z] =

(HΩ⊕)L[Y,G � z] ;

(vi) If 1 ≤ � < ω , Ω⊕ = ω
L[Y,G � z]
� , and GCH holds in L[Y, G� z] for all cardinals ωk , k < �− 1 , then it

holds in L[Y, G� z] that (z)n ∈ D1� for all n < ω ;

(vii) Under the assumptions of (vi), it holds in L[Y, G� z] that the set z as a whole belongs to D1,�+1 .

Proof. (i) Ω⊕ remains a cardinal in L[G] by Lemma 15(iv), hence Q still satisfies cardQ < Ω⊕ in
L[G] . As W is Q-generic over L[G] , Ω⊕ remains a cardinal in L[W, G] and in L[Y, G] ⊆ L[W, G] .

(ii) If 〈n, i〉 ∈ z then by construction:

G(n, i) := {p(n, i) : p ∈ G} = {p′(n, i) : p′ ∈ G� z} ∈ L[G� z] ,

and hence SG(n, i) ∈ L[G� z] as well. Now ΓΩ
ni(SG(n, i)) follows from Lemma 15(ii).

(iii) We w. l.o.g. assume that z = I � {〈n, i〉} and Y = W . Then PΩ� z = PΩ� �=〈n,i〉 can be
identified with {p ∈ PΩ : p(n, i) = 〈∅,∅〉} , see Remark 3. Suppose towards the contrary that S ∈
L[W, G� �=〈n,i〉] = L[W][G� �=〈n,i〉] satisfies ΓΩ

ni(S) . There is a name τ ∈ L[W] , τ ⊆ PΩ� �=〈n,i〉 × SeqΩ ,
such that:

S = τ[G� �=〈n,i〉] := {s ∈ SeqΩ : ∃ p ∈ G� �=〈n,i〉 (〈p, s〉 ∈ τ)} .

The forcing PΩ remains Ω⊕-CC in L[W] by Lemma 14. This allows us to w. l.o.g. assume that
card τ < Ω⊕ in L[W] , and then τ ∈ H[W] = (HΩ⊕)L[W] .
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There is a condition p0 ∈ G which (PΩ� �=〈n,i〉)-forces Γni(τ[G� �=〈n,i〉]) over L[W] . If s ∈ SeqΩ
then put As = {p : 〈p, s〉 ∈ τ} ; As ⊆ PΩ� �=〈n,i〉 .

We argue in L . As card τ < Ω⊕ , there is an ordinal γ < Ω⊕ such that τ ⊆ (PΩ
γ � �=〈n,i〉)× SeqΩ

and p0 ∈ PΩ
γ � �=〈n,i〉 . Consider the set D of all Ω-systems U ∈ sDSΩ extending UΩ

γ and such that there

exists a condition p′ ∈ P[U]� �=〈n,i〉 , p′ � p0 , an element f ∈ U�(n, i) =
⋃
〈k,j〉�=〈n,i〉 U(k, j) , and an

ordinal μ < Ω , such that p′ contradicts to every p ∈ ⋃
μ≤α<Ω A f � α . Then D is ΔH

3 by Lemma 17
(and Theorem 5(i), to transfer the definability properties from H to H[W] ), with τ ∈ H[W] as a
parameter. Therefore, by Lemma 19, there is an ordinal η < Ω⊕ such that the pair UΩ

η 0-solves D as in
Theorem 6(iii). We have two cases.

Case 1: UΩ
η ∈ D . Let this be witnessed by p′ , f , μ as indicated. Then f ∈ (UΩ

η )
�(n, i) , therefore

f /∈ UΩ(n, i) . By definition UΩ
γ � UΩ

η , hence γ ≤ η . Furthermore, if s = f � ξ , μ ≤ ξ < ω1 ,
then the condition p′ (PΩ� �=〈n,i〉)-forces s /∈ τ[G� �=〈n,i〉] over L[W] . We conclude that p′ forces
τ[G]/ f < μ < Ω over L[W] . Note that p0 forces τ[G� �=〈n,i〉]/ f = Ω because f /∈ U(n, i) . However
p′ � p0 . This is a contradiction.

Case 2: There is no Ω-system U ∈ D extending UΩ
η . We can assume that γ ≤ η , since if

η < γ then the Ω-system UΩ
γ has the same property. Easily there exists δ , η < δ < ω1 , such that

UΩ
δ (n, i)�UΩ

η (n, i) �= ∅ . (To prove this claim note that the set D′ of all Ω-systems U ∈ sDSΩ satisfying
U(n, i)�UΩ

η (n, i) �= ∅ is dense in sDSΩ therefore, any U that 0-solves D′ belongs to D′ .)
Take any f ∈ UΩ

δ (n, i)� UΩ
η (n, i) . Then f ∈ UΩ(n, i) , and hence p0 forces τ[G]/ f < Ω over

L[W] by the choice of p0 . It follows that there exists a condition p′ ∈ PΩ� �=〈n,i〉 , p′ � p0 , and an
ordinal μ < ω1 , such that for any α ≥ μ , p′ forces s /∈ τ[G� �=〈n,i〉] over L[W] , where s = f �α .
Thus p′ contradicts to each condition p ∈ ⋃

μ≤α<Ω A f � α . We may w. l.o.g. assume that p′ ∈ PΩ
δ � �=〈n,i〉

(otherwise increase δ appropriately). Under these assumptions, define a Ω-system U so that:

U(n, i) = UΩ
δ (n, i)� { f } , U(n, i + 1) = UΩ

δ (n, i + 1) ∪ { f } ,

and U(k, j) = UΩ
δ (k, j) for all pairs of indices 〈k, j〉 other than 〈n, i〉 and 〈n, i + 1〉 . Obviously U

extends UΩ
η , and p′ ∈ P[U] . Therefore U ∈ D . But this contradicts the Case 2 hypothesis.

Claim (iv) is an immediate corollary of (ii) and (iii).
To prove (v), note that (*) (z)n = {i : ∃S ⊆ SeqΩ ΓΩ

ni(S)} by (iv). However with n fixed the
relation f ∈ UΩ(n, i) with i, f as arguments is ΣH

n+4 by Lemma 20, hence ΣT
n+4 by Theorem 5(i). Now

(z)n ∈ ΣT
n+6 follows by (*).

To prove (vi), make use of (v) and Theorem 3.
Let us finally prove (vii). Detalizing the proof of (v) and (vi) on the base of formulas un( f , i) of

Lemma 20, we obtain a recursive sequence of parameter free ∈-formulas ϕn(i) such that if n, i < ω

then i ∈ (z)n iff T |= ϕn(i) . The proof of Theorem 3 is obviously effective enough to obtain another
recursive sequence of parameter free type-theoretic formulas ψn(i) of order ≤ � such that it holds in
L[Y, G� z] that: i ∈ (z)n iff ψn(i) , that is, z = {〈n, i〉 : ψn(i)} .

However it is known that the truth of formulas of order ≤ � can be uniformly expressed by a
suitable formula of order �+ 1, see e.g., [18]. In other words, there is a parameter free type theoretic
formula Ψ(n, i) of order ≤ � + 1 such that it holds in L[Y, G� z] that: i ∈ (z)n iff Ψ(n, i) , that is,
z = {〈n, i〉 : Ψ(n, i)} . We conclude that z is definable in L[Y, G� z] by a type-theoretic formula of
order ≤ �+ 1. In other words, z ∈ D1,�+1 in L[Y, G� z] , as required.

4.5. We Specify Ω

We come back to Theorem 2. Now it is time to specify the value of the L-cardinal Ω , so far left
rather arbitrary by Definition 2 on page 13.

Definition 7 (in L ). Recall that 1 ≤ M < ω is a number considered in Theorem 2.
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We let Ω = ωL
M , and accordingly define Ω� = ωL

M−1 , Ω⊕ = ωL
M+1 ,

H = (HΩ⊕)L = (HωL
M+1)

L = {x ∈ L : card (TC (x)) < ωL
M+1 in L}

by Definition 2. Applying Definition 6 with Ω = ωL
M , we accordingly fix:

− A �-increasing sequence of Ω-systems {UΩ
ξ }ξ<Ω⊕ satisfying (i), (ii), (iii), (iv) of Theorem 6 for the chosen

L-cardinal Ω = ωL
M ,

− The limit Ω-system UΩ =
∨

ξ<Ω⊕ UΩ
ξ ,

− The basic forcing notion PΩ = P[UΩ] , and the subforcings PΩ
γ = P[UΩ

γ ] , γ < Ω⊕ ,

and define restrictions PΩ� z (z ⊆ I ), PΩ�≥n , PΩ�<n , PΩ� �=〈n,i〉 etc. as in Section 3.2.

4.6. The Model

To prove Theorem 2 we make use of a certain submodel of a (C× PΩ)-generic extension of L .
First of all, if g : ω → P(ω) is any function then we put:

w[g] = {〈k, j〉 : k < ω ∧ j ∈ g(k)}. (8)

Now consider a pair 〈ζ, G〉 , (C× PΩ)-generic over L . Thus ζ : ω
onto−→ Ξ is a generic collapse function,

while the set G ⊆ PΩ is PΩ-generic over L[ζ] . The set:

w[ζ] = {〈k, j〉 : k < ω ∧ j ∈ ζ(k)} ⊆ I = ω×ω (9)

obviously belongs to the model L[ζ] = L[w[ζ]] , but not to L . Therefore the restrictions PΩ�w[ζ] ,
G�w[ζ] in the next theorem have to be understood in the sense of Definition 5 on page 15, ignoring
Remark 3 since, definitely w[ζ] /∈ L . Thus PΩ�w[ζ] is a forcing notion in L[ζ] , not in L .

The following theorem describes the structure of such generic models.

Theorem 8. Under the assumptions of Definition 7, let a pair 〈ζ, G〉 be (C× PΩ)-generic over L . Then:

(i) G�w[ζ] is a set (PΩ�w[ζ])-generic over L[ζ] ,

(ii) ω
L[ζ,G � w[ζ]]
γ = ωL

1+γ for all ordinals γ ≥ 1 , in particular, Ω⊕ = ω
L[ζ,G � w[ζ]]
M ;

and it is true in the model L[ζ, G�w[ζ]] that

(iii) If M ≥ 2 then Ω = ωM−1 and Ω⊕ = Ω+ = ωM , whereas if M = 1 then ω < Ω = Ω⊕ = ω1 ;

(iv) GCH holds ;

(v) Every constructible real belongs to D1M ,

(vi) If 1 ≤ m < ω and m �= M then D1m /∈ D2m , and

(vii) every real in D1M is constructible.

Remark 4. Theorem 8 implies Theorem 2 via the model L[ζ, G�w[ζ]] , of course. As for Theorem 8 itself,
its proof follows below in this paper. Claims (i)–(vi) will be established right now, and Claim (vii) is accomplished
in Section 6.6, based on the substantial work in Sections 5 and 6.

Proof (Claims (i)–(vi) of Theorem 8). To prove that G�w[ζ] is (PΩ�w[ζ])-generic over L[ζ] , note that
G ⊆ PΩ is PΩ-generic over L[ζ] by the product forcing theorem w.r. t. the product C× PΩ . However
PΩ can be naturally identified with the product (PΩ�w[ζ])× (PΩ� z) in L[ζ] , where z = I � w[ζ] .
This implies the result by another application of the product forcing theorem.

To establish (ii), (iii), and (iv), it suffices to apply Lemma 16, as L[ζ] ⊆ L[ζ, G�w[ζ]] ⊆ L[ζ, G] .
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To prove Claim (v), let x ∈ L , x ⊆ ω . By the genericity of ζ , there is a number n0 < ω such that
x = ζ(n0) . Then, for any i , we have 〈n0, i〉 ∈ w[ζ] iff i ∈ x . By Theorem 7(vi) (with Q = C , z = w[ζ] ,
Y = ζ , � = M ), it is true in L[ζ, G�w[ζ]] that x belongs to D1M , as required.

To prove Claim (vi), assume that 1 ≤ m < ω and m �= M ; we have to show that D1m /∈ D2m in
L[ζ, G�w[ζ]] . We have two cases.

Case 1: m > M . Consider the set z = w[ζ] defined by (9) in Section 4.6. By definition z ⊆ ω×ω ,
z ∈ L[ζ] . It follows from Theorem 7(vii) (with Q = C , z = w[ζ] , Y = ζ , � = M ), that z ∈ D1,M+1 ,
hence z ∈ D1,M+1 as M + 1 ≤ m . Now suppose to the contrary that D1m ∈ D2m in L[ζ, G� z] . As

ω
L[z]
1 = ω

L[ζ,G � z]
1 = ωL

2 , there exist real x ∈ L[z] , x ⊆ ω , which do not belong to D1m ; let x0 be the
least of them in the sense of the Gödel well ordering of L[z] . Then x0 itself belongs to D1m by 5◦ of
Section 2.2, since so does z by the above, which is a contradiction.

Case 2: 1 ≤ m < M . It suffices to apply Lemma 2 on page 8 because m < M and D1M = P(ω)∩ L

holds in L[ζ, G�w[ζ]] by Claims (v) and (vii). We may note that this short argument refers to Claim (vii)
that will be conclusively established only in Section 6.6.

An independent proof is as follows. If 1 ≤ m < M , then M ≥ 2, and hence Theorem 8(iii) implies:

Pm(ω) ∩ L[ζ] = Pm(ω) ∩ L[ζ, G�w] = Pm(ω) ∩ L[ζ, G].

We conclude that the sets D1m and D2m are the same in these models, and hence it suffices to prove
that D1m /∈ D2m in the C-generic extension L[ζ] . Now we apply the fact that collapse forcing notions
similar to C are homogeneous enough for any parameter free formula either be forced by every
condition, or be negated by every condition. In our case, it follows that (D1m)

L[ζ] ∈ L and (D1m)
L[ζ]

is countable in L . Therefore if, to the contrary, D1m ∈ D2m in L[ζ] , then taking the Gödel-least
x ∈ (P(ω) ∩ L) � D1m in L[ζ] , we routinely get x ∈ D1m in L[ζ] via 5◦ of Section 2.2, with a
contradiction.

This completes the proof of Claims (i)–(vi) of Theorem 8.

5. Forcing Approximation

We argue under the assumptions and notation of Definition 7 on page 22.
Beginning here a lengthy proof of Claim (vii) of Theorem 8, our plan will be to establish the

following, somewhat unexpected result. Recall that, by Theorem 8(ii), it is true in L[ζ, G�w[ζ]] that
Ω = ωM−1 and Ω⊕ = Ω+ = ωM in case M ≥ 2, whereas ω < Ω = Ω⊕ = ω1 in case M = 1.

Theorem 9. Assume that a pair 〈ζ, G〉 is (C× PΩ)-generic over L , and a ∈ L[ζ, G�w[ζ]] , a ⊆ ω , and it is
true in L[ζ, G�w[ζ]] that:

either M ≥ 2 and a is ∈-definable in 〈P(Ω) ; ∈, p〉 (see Section 2.4);
or M = 1 and a is ∈-definable in 〈P(ω) ; ∈〉 .

Then a ∈ L[G] .

Remark 5. Theorem 9 implies Claim (vii) of Theorem 8.
Indeed, arguing in L[ζ, G�w[ζ]] , suppose that a ⊆ ω , a ∈ D1M . If M = 1 then we immediately have

the “or” case of Theorem 9. Thus suppose that M ≥ 2 . Theorem 3 is applicable by Theorem 8(iv), therefore x
is ∈-definable in HωM , that is, in HΩ⊕ by Theorem 8(iii). Then Theorem 4 is applicable as well, and hence
we have the “either” case of Theorem 9. We conclude that a ∈ L[G] by Theorem 9. However, by Lemma 14,
the forcing notion P is Ω�-closed in L , and this property is sufficient for P-generic sets not to add new subsets
of ω , so a ∈ L , as required by (vii) of Theorem 8.

Thus Theorem 9 completes the proof of Theorem 8 as a whole because other claims of Theorem 8 have been
already established, see Section 4.6.
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To prove Theorem 9, we are going to define a forcing-like relation forc similar to approximate
forcing relations considered in [4,5], and earlier in [3] and some other papers on the base of forcing
notions not of an almost-disjoint type. Then we exploit certain symmetries of objects related to forc .

Definition 8. Extending Definition 7 on page 22, let us fix a pair 〈ζ, G〉 , (C× PΩ)-generic over L for the
remainder of the text. We consider generic extensions:

L[ζ] ⊆ L[ζ, G�w[ζ]] ⊆ L[ζ, G] .

We shall assume that M ≥ 2 (the “either” case of Theorem 9). The “or” case M = 1 is pretty similar: Ω is
changed to ω during the course of the proof.

5.1. Language

We argue under the assumptions and notation of Definitions 7 and 8.

• Assume that z ∈ L[ζ] , z ⊆ I = ω × ω . Then let Namz
ζ ∈ L[ζ] be the set of all sets τ ∈ L[ζ] ,

τ ⊆ (∗PΩ� z)× Ω , with card τ < Ω⊕ in L[ζ] .

Note that ∗PΩ , a bigger forcing notion, is used instead of PΩ in this definition. One of the advantages
is that ∗PΩ is ∈-definable in H by Lemma 17.

If τ ∈ Namz
ζ and G ⊆ ∗PΩ� z then put τ[G] = {α < Ω : ∃ p ∈ G (〈p, α〉 ∈ τ)} .

Lemma 21. P(Ω) ∩ L[ζ, G�w[ζ]] = {τ[G�w[ζ]] : τ ∈ Nam
w[ζ]
ζ } .

Proof. Let X ∈ L[ζ, G�w[ζ]] , X ⊆ Ω . The set G�w[ζ] is (PΩ�w[ζ])-generic over L[ζ] by the product
forcing theory. Therefore, by a well-known property of generic extensions (see, e.g., [32]), there is a
name t ∈ L[ζ] , t ⊆ (PΩ�w[ζ])× Ω , such that X = t[G�w[ζ]] . To reduce t to a name τ with the same
property, satisfying card τ < Ω⊕ , apply Lemma 14.

Now, arguing in L[ζ] , we introduce a language that will help us to study analytic definability in
the generic extensions considered. We argue under the assumptions and notation of Definition 8.

Let L be the 2nd order language, with variables α, β, . . . , assumed to vary over ordinals < Ω ,
and X, Y, . . . , varying over the subsets of Ω . Atomic formulas of the following types are allowed:

α < β , α = β , α ∈ X , p(α, β) = γ .

(See Section 2.4 on p .) Only the connectives ∧ and ¬ and quantifiers ∃ α and ∃X are allowed,
the other connectives and ∀ are treated as shortcuts, and, to reduce the number of cases, the equality
X = Y will be treated as a shortcut for ∀ α(α ∈ X ⇐⇒ α ∈ Y) .

The complexity #(ϕ) of an L-formula ϕ is defined by induction so that:

• #(ϕ) = 0 for all atomic formulas,

• #(ϕ ∧ ψ) = max{#(ϕ), #(ψ)} ,

• #(∃ α ϕ(α)) = #(ϕ(α)) and #(∃X ϕ(X)) = #(ϕ(X)) ,

• Finally, #(¬ ϕ) = #(ϕ) + 1.

Note that the complexity of quantifier-free formulas can be as high as one wants.
If z ∈ L[ζ] , z ⊆ ω×ω , then let L(z) be the extension of L by:

− Ordinals α < Ω to substitute variables over Ω ,

− Names in Namz
ζ to substitute variables X, Y, . . . over P(Ω) .
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If G ⊆ ∗PM � z , then the valuation ϕ[G] of such a formula ϕ is defined by substitution of τ[G] for any
name τ ∈ Namz

ζ that occurs in ϕ , and relativizing each quantifier ∃ α or ∃X to resp. Ω , P(Ω) . Thus
ϕ[G] is a formula of L with parameters in P(Ω) ∩ L[ζ, G] and quantifiers relativized as above, that is,
to Ω and to P(Ω) , and ϕ[G] can contain p interpreted as p� (Ω× Ω) . (See Section 2.4 on p .)

5.2. Forcing Approximation

We still argue under the assumptions and notation of Definitions 7 and 8.
Our next goal is to define, in L[ζ] , a forcing-style relation p forcz

U ϕ . In case z = w[ζ] and U =

UΩ , the relation forcz
U will be compatible with the truth in the model L[ζ, G�w[ζ]] = L[ζ][G�w[ζ]] ,

viewed as a (PΩ�w[ζ])-generic extension of L[ζ] . But, perhaps unlike the true forcing relation
associated with PΩ�w[ζ] , the relation forcz

U will be invariant under certain transformations.
The definition goes on in L[ζ] by induction on the complexity of ϕ .

(F1) When writing p forcz
U ϕ , it will always be assumed that U ∈ sDSΩ , z ∈ L[ζ] , z ⊆ ω × ω ,

p ∈ P[U]� z , ϕ is a closed formula in Lz .

(F2) If U ∈ sDSΩ , z ∈ L[ζ] , z ⊆ ω×ω , p ∈ P[U]� z , and α, β, γ < Ω , then: p forcz
U α + β = γ iff in

fact x0 + y0 = z0 , and the same for the formulas α + β = γ and p(α, β) = γ .

(F3) If U, p, z are as above, α < Ω , Y ∈ Namz
ζ , then: p forcz

U α ∈ Y iff there exists a condition
q ∈ P[U]� z such that 〈q, α〉 ∈ Y and p � q .

(F4) If U, p, z are as above, then: p forcz
U (ϕ ∧ ψ) iff p forcz

U ϕ and p forcz
U ψ .

(F5) If U, p, z are as above, then p forcz
U ∃ α ϕ(α) iff there is α < Ω such that p forcz

U ϕ(α) .

(F6) If U, p, z are as above, then p forcz
U ∃Y ϕ(Y) iff there exists a name τ ∈ Namz

ζ such that p forcz
U

ϕ(Y) .

We precede the last item with another definition. If n < ω then let sDS[n] be the set of all Ω-systems
U ∈ sDSΩ such that U �<n = UΩ

ξ �<n for some ξ < Ω⊕ . Thus sDS[0] = sDSΩ .

(F8) If U, p, z are as in (F1), ϕ is a closed Lz formula, n = #(ϕ) , then p forcz
U ¬ ϕ iff there is no Ω-

system U′ ∈ sDS[n] extending U , and no q ∈ P[U′]� z , q � p , such that q forcz
U′ ϕ .

Lemma 22 (in L[ζ] ). Let U , p , z , ϕ satisfy (F1) above. Then :

(i) If p forcz
U ϕ , U′ ∈ sDSΩ extends U , and q ∈ P[U′]� z , q � p , then q forcz

U′ ϕ ;

(ii) If U ∈ sDS[n] , #(ϕ) ≤ n, and p forcz
U ϕ , then p forcz

U ¬ ϕ fails.

Proof. The proof of (i) by straightforward induction is elementary. As for (ii), make use of (F8).

Now let us evaluate the complexity of the relation forc . Given a parameter free L -formula
ϕ(α, β, . . . , X, Y, . . . ) with any set of free variables allowed in L , we define, in L[ζ] , the set:

Forc(ϕ) = {〈z, U, p, α, β, . . . , τX , τY, . . . 〉 : U ∈ sDSΩ ∧ z ⊆ ω×ω

∧ p ∈ P[U]� z ∧ α, β, · · · < Ω ∧ τX , τY, · · · ∈ Namz
ζ

∧ p forcz
U ϕ(α, β, . . . , τX , τY, . . . ) } .

Lemma 23 (in L[ζ] ). If ϕ is a parameter free L -formula and n = #(ϕ) , then Forc(ϕ) is Σ
H[ζ]
n+3 .

Proof. The set sDSΩ is ΔH
3 by Lemma 17, and hence Δ

H[ζ]
3 as well by Theorem 5(i) in Section 2.6.

The relations p ∈ P[U]� z , α < Ω , τ ∈ Namz
ζ , with arguments resp. p, U, z; α; τ, z , are routinely

checked to be Δ
H[ζ]
3 , too. (Note that bounded quantifiers preserve Δ

H[ζ]
3 .) After this remark, prove the

lemma by induction on the structure of ϕ .
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The case of atomic formulas of type (F2) is immediately clear. (The pairing function p� (Ω× Ω)
in (F2) is ΔH

1 by Lemma 3.) The result for atomic formulas of type (F3) amounts to the formula

∃ q ∈ ∗PΩ� z (〈q, α〉 ∈ Y ∧ p � q) , which is Σ
H[ζ]
3 by the above. The step (F4) amounts to the

intersection of two sets is quite obvious. And so are steps (F5) and (F6) (a ∃-quantification on the top
of a given Σ

H[ζ]
#(ϕ)+3 ).

To carry out the step (F8), note that sDS[n] is ΣH
n+3 by Lemma 20, therefore Σ

H[ζ]
n+3 by Theorem 5(i)

in Section 2.6. This if Forc(ϕ) is Σ
H[ζ]
n+3 then Forc(¬ ϕ) is Π

H[ζ]
n+3 , hence Σ

H[ζ]
n+4 , as required.

5.3. Consequences for the Complete Forcing Notions

We continue to argue under the assumptions and notation of Definitions 7 on page 22 and 8 on
page 25. Coming back to the sequence of Ω-systems UΩ

ξ ∈ sDSΩ given by Definition 7, we note that
every Ω-system UΩ

ξ belongs to
⋂

m sDS[m] .
Let forcz

ξ be forcz
UΩ

ξ
, and let p forcz

∞ ϕ mean: ∃ ξ < Ω⊕ (p forcz
ξ ϕ) . Note that p forcz

ξ ϕ implies

p ∈ PΩ
ξ � z , whereas p forcz

∞ ϕ implies p ∈ PΩ� z . Lemma 22 takes the following form:

Lemma 24 (in L[ζ] ). Assume that z ⊆ ω×ω , ϕ is a closed Lz formula, p ∈ PΩ� z . Then :

(i) If p forcz
ξ ϕ and ξ ≤ η < Ω⊕ , q ∈ PΩ

η � z , q � p , then q forcz
η ϕ , and accordingly,

if p forcz
∞ ϕ and q ∈ PΩ� z , q � p , then q forcz

∞ ϕ ;

(ii) p forcz
∞ ϕ and p forcz

∞ ¬ ϕ contradict to each other.

The following result will be very important.

Lemma 25 (in L[ζ] ). If z ⊆ ω × ω , ϕ is a closed Lz formula, p ∈ PΩ� z , then there is a condition
q ∈ PΩ� z , q � p , such that either q forcz

∞ ϕ , or q forcz
∞ ¬ ϕ .

Proof. Let n = #(ϕ) . There is an ordinal η < Ω⊕ such that p ∈ PΩ
η � z . Consider the set D of all

Ω-systems U′ ∈ sDSΩ�≥n such that there is a Ω-system U ∈ sDS[n] that extends UΩ
η and satisfies

U �≥n = U′ , and there is also a condition q ∈ P[U]� z , q � p , satisfying q forcz
U ϕ . The set D belongs

to Σn+3(H[ζ]) (with UΩ
η , VΩ

η , p as definability parameters) by Lemma 23. Therefore by Lemma 19
there is an ordinal ξ , η ≤ ξ < Ω⊕ , such that the Ω-system UΩ

ξ �≥n n -solves D . We have two cases.
Case 1: UΩ

ζ �≥m ∈ D . Then there exist: a Ω-system U ∈ sDS[n] extending UΩ
η and satisfying

U �≥n = UΩ
ζ �≥n , and a condition q ∈ P[U]� z , q � p , with q forcz

U ϕ . By definition there is an ordinal
ϑ < Ω⊕ such that U �<n = UΩ

ϑ �<n . Now let μ = max{ξ, ϑ} . Then U � UΩ
μ , hence q forcz

μ ϕ and
q forcz

∞ ϕ .
Case 2: There is no Ω-system U ∈ D that extends UΩ

ξ �≥n . Prove that p forcz
ξ ¬ ϕ . Suppose

towards the contrary that this fails. Then, by (F8) in Section 5.2, there exists a Ω-system U ∈ sDS[n]
extending UΩ

ξ , and a condition q ∈ P[U] , q � p , such that q forcz
U ϕ . Define U′ = U �≥n . Then

by definition the Ω-system U′ belongs to sDSΩ�≥n , and moreover the Ω-system U witnesses that
U′ ∈ D . But this contradicts the Case 2 assumption.

5.4. Truth Lemma

According to the next theorem (“the truth lemma”), the truth in the generic extensions considered
is connected in the usual way with the relation forc∞ . We continue to argue under the assumptions
and notation of Definitions 7 on page 22 and 8 on page 25.

Theorem 10. Assume that z = w[ζ] and ϕ is a Lz -formula. Then ϕ[G� z] is true in L[ζ, G� z] iff there is
a condition p ∈ G� z such that p forcz

∞ ϕ .
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Proof. We proceed by induction. Suppose that ϕ is an atomic formula of type (F3) of Section 5.2.
(The case of formulas as in (F2) is pretty elementary.) To prove the implication ⇐= , assume that
p ∈ G� z and p forcz

∞ α ∈ τ , where α < Ω and τ ∈ Namz
ζ . Then by definition ((F3) in Section 5.2)

there exists a condition q ∈ PΩ� z satisfying p � q and 〈q, α〉 ∈ τ . There are conditions p′, q′ ∈ PΩ

such that p = p′ � z and q = q′ � z , but not necessarily p′ � q′ . We only know that p′(n, i) � q′(n, i)
for all 〈n, i〉 ∈ z . Therefore z ⊆ Z = {〈n, i〉 : p′(n, i) � q′(n, i)} . The set Z belongs to L since so do
p′, q′ as elements of PΩ ∈ L (whereas about z we only assert that z ∈ L[ζ] ). Therefore a condition
q′′ ∈ PΩ can be defined by:

q′′(n, i) =

{
q(n, i) , in case 〈n, i〉 ∈ Z ,

p(n, i) , in case 〈n, i〉 /∈ Z ,

and we still have q′′ � z = q′ � z and p′ � q′′ . It follows that q′′ ∈ G by genericity, hence q′′ � z =

q′ � z ∈ G� z . But then α ∈ τ[G� z] , as required.
To prove the converse, assume that α ∈ τ[G� z] . There exists a condition p ∈ G� z such that

〈q, α〉 ∈ τ , and we have p forcz
∞ α ∈ τ , as required.

Rather simple inductive steps (F4), (F5) of Section 5.2 are left for the reader.
Let us carry out step (F6). Let ϕ := ∃X ψ(X) . Suppose that p ∈ G� z and p forcz

∞ ϕ .
By definition there exists a name τ ∈ Namz

ζ such that p forcz
∞ ψ(τ) . The formula ψ(τ)[G� z] is

then true in L[ζ, G� z] by the inductive hypothesis. But ψ(τ)[G� z] coincides with ψ[G� z](Y) ,
where Y = τ[G� z] ∈ L[ζ, G� z] , Y ⊆ Ω . We conclude that ∃X ψ(X)[G� z] is true in L[ζ, G� z] ,
as required.

To prove the converse, let ϕ[G� z] , that is, ∃X ψ(X)[G� z] , be true in L[ζ, G� z] . As X is
relativized to P(Ω) , there is a set X ∈ P(Ω) in L[ζ, G� z] satisfying ϕ(X)[G� z] in L[ζ, G� z] .
By Lemma 21, there is a name τ ∈ Namz

ζ with X = τ[G� z] , so ψ(τ)[G� z] holds in L[ζ, G� z] .
The inductive hypothesis implies that some p ∈ G� z satisfies p forcz

∞ ψ(τ) , hence p forcz
∞ ϕ ,

as required.
Finally, let us carry out step (F8), which is somewhat less trivial. Prove the lemma for a Lz

formula ¬ ϕ , assuming that the result holds for ϕ . If ¬ ϕ[G� z] is false in L[ζ, G] then ϕ[G� z] is true.
Thus by the inductive hypothesis, there is a condition p ∈ G� z such that p forcz

∞ ϕ . Then q forcz
∞ ¬ ϕ

for any q ∈ G� z is impossible by Lemma 24 above.
Conversely suppose that p forcz

∞ ¬ ϕ holds for no p ∈ G� z . Then by Lemma 25 there exists q ∈
G� z such that q forcz

∞ ϕ . It follows that ϕ[G� z] is true by the inductive hypothesis, therefore ϕ[G� z]
is false.

6. Invariance

The goal of this section is to prove Theorem 9 on page 24, and thereby accomplish the proof of
Theorem 8, and the proof of Theorem 2 (the main theorem) itself. The proof makes use of the relation
forc introduced in Section 5, and exploits certain symmetries in forc , investigated in Section 6.5.

6.1. Hidden Invariance

Theorem 9 belongs to a wide group of results on the structure of generic models which assert
that such-and-such elements of a given generic extension belong to a smaller and/or better shaped
extension. One of possible methods to prove such results is to exploit the homogeneity of the
forcing notion considered, or in different words, its invariance w.r. t. a sufficiently large system
of order-preserving transformations. In particular, for a straightforward proof of Theorem 11 below,
which is our key technical step in the proof of Theorem 9, the invariance of the forcing notion PΩ

under permutations of indices in I = ω×ω (to permute areas z and ẑ ) would be naturally required,
whereas PΩ is definitely not invariant w.r. t. permutations.
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On the other hand, the auxiliary forcing relation forc is invariant w.r. t. permutations. Theorem 10
in Section 5.4 conveniently binds the relation forc with the truth in PΩ -generic extensions by means
of a forcing-style association. This principal association was based on the M -completeness property
(Definition 7 on page 22 and Theorem 6). Basically it occurs that some transformations, that is,
permutations, are hidden in construction of PΩ , so that they do not act explicitly, but their influence is
preserved and can be recovered via the relation forc .

This method of hidden invariance, that is, invariance properties (of an auxiliary forcing-type relation
like forc ) hidden in PΩ by a suitable generic-style construction of PΩ , was introduced in Harrington’s
notes [22] in in the context of the almost disjoint forcing (in a somewhat different terminology from
what is used here). It was introduced independently by one of the authors in [37] in the context of
the Sacks forcing and its Jensen’s modification in [38]; see e.g., [3,28,39] for further research in this
direction based on product and iterated versions of the Sacks and Jensen forcing earlier studied in
detail in [40–47].

6.2. The Invariance Theorem

We still argue under the assumptions and notation of Definitions 7 on page 22 and 8 on page 25.
Let Π be the group of all finite permutations of ω , that is, all bijections π : ω

onto−→ ω since the
set |π| = {k : π(k) �= k} is finite. If m < ω then the subgroup Πm consists of all π ∈ Π satisfying
π(k) = k for all k < m . If π ∈ Π , and z ⊆ ω×ω then put πz = {〈π(n), i〉 : 〈n, i〉 ∈ z} .

If in addition g : ω → Ξ then define πg : ω → Ξ by πg(π(n)) = g(n) , all n .
Similarly if e ∈ C and |π| ⊆ lh e , then define e′ = πe ∈ C such that lh e′ = lh e and e′(π(n)) =

e(n) for all n < lh e . The following is the invariance theorem.

Theorem 11 (in L[ζ] ). Assume that z = w[ζ] , π ∈ Πm , z′ = πz , ϕ is a closed parameter free formula of
Lz , #(ϕ) ≤ m, and p0 ∈ PΩ . Then p0 � z forcz

∞ ¬ ϕ iff p0 � z′ forcz′
∞ ¬ ϕ .

A lengthy proof of Theorem 11 follows below in this Section.

6.3. Proof of Theorem 9 from the Invariance Theorem

Under the assumptions of Theorem 9, consider an arbitrary set a ∈ L[ζ, G�w[ζ]] , a ⊆ ω ,
and assume that M ≥ 2 (see Definition 8) and it is true in L[ζ, G�w[ζ]] that a is parameter free
definable in 〈P(Ω) ; ∈, p〉 , i.e., a = { j < ω : ¬ ϕ(j)} , where ϕ(·) is a parameter free Lz -formula. Let
m = #(ϕ) and w = w[ζ] . The goal is to prove that a ∈ L[G] . This is based on the next lemma.

Lemma 26. The set T = {〈p, j〉 : p ∈ PΩ ∧ p�w forcw
∞ ¬ ϕ(j)} belongs to L .

Proof. Note that, by Lemma 23, the set:

K = {〈z, p, j〉 : p ∈ PΩ ∧ z ∈ L[ζ] ∧ z ⊆ ω×ω ∧ j < ω ∧ p� z forcz
∞ ¬ ϕ(j)}

is definable in L[ζ] by a formula with sets in L as parameters, say K = {〈z, p, j〉 : ϑ(z, p, j, S)} in L[ζ] ,
where S ∈ L is a sole parameter. Recall that ζ ∈ Ξω is C-generic over L , and w = w[ζ] = {〈n, j〉 :
j ∈ ζ(n)} . Let ζ̆ be a canonical C-name for ζ , and � be the C-forcing relation over L . We claim that:

ϑ(w, p, j, S) holds in L[ζ] iff ζ �m � ϑ(w[ζ̆], p, j, S) ; (10)

ζ �m belongs to C , of course. The direction ⇐= is obvious.
To establish =⇒ , assume that the right-hand side fails. Then there is a condition e0 ∈ C such

that ζ �m ⊆ e0 and e0 � ¬ ϑ(w[ζ̆], p, j, S) . We note that the set:

D = {e ∈ C : ζ �m ⊆ e ∧ ∃π ∈ Πm (|π| ⊆ dom e ∧ e0 ⊆ πe)}

105



Mathematics 2020, 8, 2214

is dense in C over ζ �m . Therefore, by the genericity of ζ , there exists a number k > m such that
e = ζ � k ∈ D . Accordingly, there is a permutation π ∈ Πm satisfying |π| ⊆ k and e0 ⊆ πe .

We put ζ′ = πζ ; this is still a C-generic element of Ξω , with L[ζ′] = L[ζ] since π ∈ L , and we
have e0 ⊆ πe ⊂ ζ′ . It follows, by the choice of e0 , that ϑ(w[ζ′], p, j, S) fails in L[ζ′] = L[ζ] , and hence
〈w[ζ′], p, j〉 /∈ K by the choice of ϑ . However w[ζ′] = π ·w[ζ] = πw , thus we have 〈πw, p, j〉 /∈ K .

We conclude that p�πw forcπw
∞ ¬ ϕ(j) fails by the definition of K . Therefore p�w forcw

∞ ¬ ϕ(j)
fails as well by Theorem 11, so we have 〈w, p, j〉 /∈ K , and hence ϑ(w, p, j, S) fails in L[ζ′] = L[ζ] ,
as required. This completes the proof of (10). Now, coming back to the lemma, we deduce the equality
T = {〈p, j〉 ∈ L : ζ �m � ϑ(w[ζ̆], p, j, S)} from (10). This implies T ∈ L .

It remains to notice that, by Theorem 10,

j ∈ a ⇐⇒ L[ζ, G�w[ζ]] |= ¬ ϕ(j) ⇐⇒ ∃ p ∈ G�w(p forcw
∞ ¬ ϕ(j))

⇐⇒ ∃ p ∈ G (p�w forcw
∞ ¬ ϕ(j)) .

Therefore j ∈ a ⇐⇒ ∃ p ∈ G (〈p, j〉 ∈ T) . But T ∈ L by Lemma 26. We conclude that a ∈ L[G] ,
as required.

This completes the proof of Theorem 9 from Theorem 11.

6.4. The Invariance Theorem: Setup

We still argue under the assumptions and notation of Definitions 7 on page 22 and 8 on page 25.
Here we begin the proof of Theorem 11. It will be completed in Section 6.6.
We fix m , π ∈ Πm , p0 , z = w[ζ] , ẑ = πz , and ϕ with #(ϕ) ≤ m , as in Theorem 11. Suppose

towards the contrary that p0 � ẑ forcẑ
∞ ¬ ϕ , but p0 � z forcz

∞ ¬ ϕ fails. By definition there is an ordinal
μ < Ω⊕ such that p0 � ẑ forcẑ

μ ¬ ϕ , but p0 � z forcz
μ ¬ ϕ fails. Then we have:

(A) a Ω-system U1 ∈ sDS[m] with UΩ
μ � U1 , and a condition p1 ∈ P[U1] , p1 � p0 , such that

p1 � z forcz
U1 ϕ , but p1 � ẑ forcẑ

U1 ¬ ϕ still holds by Lemma 22.

We now recall that any condition p ∈ ∗PΩ is a map p ∈ L , defined on I = ω × ω , and
each value p(n, i) = 〈Sp(n, i) ; Fp(n, i)〉 is a pair of a set Sp(n, i) ⊆ SeqΩ and Fp(n, i) ⊆ FunΩ ,
with card (Sp(n, i) ∪ Fp(n, i)) < Ω strictly, in L . We define the support:

||p|| =
⋃

n,i<ω

||p||ni , where ||p||ni = {s(0) : s ∈ Sp(n, i)} ∪ { f (0) : f ∈ Fp(n, i)} ;

then ||p|| ∈ L , ||p|| ⊆ Ω , and card ||p|| < Ω strictly, so that ||p|| is a bounded subset of Ω . In particular,
||p1|| is a bounded subset of Ω in L . Therefore there is:

(B) A bijection b ∈ L , b : Ω
onto−→ Ω , such that ||p1|| ∩ (b ” ||p1||) = ∅ and b = b−1 .

Furthermore, as U1 ∈ sDS[m] , the Ω-system U1 is Ω-size, and hence the set J =
⋃

n,i<ω U1(n, i) ∈
L satisfies card J ≤ Ω in L . It follows that there exists:

(C) A sequence {Fα}α<Ω ∈ L of bijections Fα : Ω
onto−→ Ω , such that F0 = b (see above), Fα = Fα

−1 ,
and if f , g ∈ J then there is an ordinal α < Ω such that f (α) �= Fα(g(α)) .

6.5. Transformation

In continuation of the proof of Theorem 11, we now define an automorphism acting on several
different domains in L . It will be based on π and Fα of Section 6.4 and its action will be denoted by ̂ .
Along the way we will formulate properties (D)–(H) of the automorphism, a routine check of which is
left to the reader.

We argue under the assumptions and notation of Definitions 7 on page 22 and 8 on page 25.
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If α ≤ Ω and f : α → Ω then f̂ : α → Ω is defined by f̂ (γ) = Fγ( f (γ)) for all γ < α . In particular,
f̂ (0) = F0( f (0)) = b( f (0)) . This defines ŝ ∈ SeqΩ and f̂ ∈ FunΩ for all s ∈ SeqΩ and f ∈ FunΩ .

(D) f �−→ f̂ is a bijection SeqΩ
onto−→ SeqΩ and FunΩ

onto−→ FunΩ , and if f , g ∈ J =
⋃

n,i<ω U1(n, i)
then f̂ �= g by (C).

If u ⊆ FunΩ then let û = { f̂ : f ∈ u} . If S ⊆ SeqΩ then let Ŝ = { ŝ : s ∈ S} .
If U is a Ω-system then define a Ω-system Û , such that:

Û(n, i) = U(n, i) , in case n < m ;

Û(π(n), i) = Û(n, i) = { f̂ : f ∈ U(n, i)} , in case n ≥ m .

If p ∈ ∗PΩ then let p̂ ∈ ∗PΩ be defined so that:

p̂(n, i) = p(n, i) , in case n < m ;

p̂(π(n), i) = 〈Ŝp(n, i) ; F̂p(n, i)〉 , in case n ≥ m ;

where Ŝp(n, i) = { ŝ : s ∈ Sp(n, i)} and F̂p(n, i) = { ŝ : s ∈ Fp(n, i)} by the above. These are consistent
definitions because π ∈ Πm .

(E) Û �<m = U �<m for any Ω-system U . The map U �−→ Û is a bijection of sDSΩ onto itself and
sDS[k] onto itself for any k ≤ m .

(F) p̂�<m = p�<m for any p ∈ ∗PΩ . The map p �−→ p̂ is a �-preserving bijection of P[U] onto P[Û] .

If in addition z ⊆ ω × ω (not necessarily z ∈ L ), then if conditions p, q ∈ ∗PΩ satisfy p� z = q� z ,
then easily p̂ � ẑ = q̂ � ẑ , where ẑ = π ·z = {〈π(n), i〉 : 〈n, i〉 ∈ z} . This allows us to define r̂ = p̂ � ẑ
for every r ∈ ∗PΩ� z , where p ∈ ∗PΩ is any condition satisfying r = p� z .

(G) If z ⊆ ω×ω then p �−→ p̂ is a �-preserving bijection of P[U]� z onto P[Û] � ẑ .

If z ⊆ ω × ω and τ ∈ Namz
ζ (see Section 5.1) then we define τ̂ = {〈 p̂, α〉 : 〈p, α〉 ∈ τ} , and

accordingly if ϕ is a Lz -formula then ϕ̂ is obtained by substituting τ̂ for each name τ in ϕ .

(H) If z ⊆ ω × ω , z ∈ L[ζ] , then the mapping τ �−→ τ̂ is a bijection of Namz
ζ onto Namẑ

ζ and a
bijection of Lz -formulas onto Lẑ -formulas.

Remark 6. The action of ̂ is idempotent, so that e.g., ̂̂f = f for any f ∈ FunΩ etc. This is because we require
that b−1 = b and F−1

α = Fα for all α < Ω .
The action of ̂ is constructible on SeqΩ , FunΩ , Ω-systems, ∗PΩ , since both π and the sequence of maps

Fα belong to L by (B), (C).
If z ∈ L[ζ] then the action of ̂ on ∗PΩ� z and names in Namz

ζ belongs to L[ζ] , since the extra parameter
z ∈ L[ζ] does not necessarily belong to L .

It is not unusual that transformations of a forcing notion considered lead to this or another
invariance. The next lemma is exactly of this type.

Lemma 27 (in L[ζ] ). Assume that U ∈ sDSΩ , z = w[ζ] , π ∈ Πm , ẑ = πz , p ∈ P[U]� z , and ϕ is a
closed formula of Lz , #(ϕ) ≤ m + 1 . Then p forcz

U Φ iff p̂ forc ẑ
Û Φ̂ .

Proof. We argue by induction on the structure of Φ . Routine cases of atomic formulas (F2) and steps
(F4) and (F5) of Section 5.2 by means of (D)–(H) are left to the reader. Thus we concentrate on atomic
formulas of type (F3) and steps (F6) and (F8) in Section 5.2. In all cases we take care of only one
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direction of the equivalence of the lemma, as the other direction is entirely similar via Remark 6
just above.

Formulas of type (F3). Let Φ be α ∈ τ , where α < Ω and τ ∈ Namz
ζ . Assume that p forcz

U α ∈ τ .
Then by definition there is a condition q ∈ P[U]� z such that p � q and 〈q, α〉 ∈ τ . Then q̂ and p̂
belong to P[Û]� ẑ , p̂ � q̂ , and 〈q̂, α〉 ∈ τ̂ , so we have p̂ forcẑ

Û α ∈ τ̂ , as required.
Step (F6). Let Φ := ∃X Ψ(X) . Suppose that p forcz

U Φ . By definition there exists a name

τ ∈ Namz
ζ such that p forcz

∞ Ψ(τ) , Then we have p̂ forcẑ
Û Ψ̂(τ) by the inductive hypothesis. But Ψ̂(τ)

coincides with Ψ̂(τ̂) , where τ̂ ∈ Namẑ
ζ by (H) above. We conclude that p̂ forcẑ

Û ∃X Ψ̂(X) , that is,

p̂ forcẑ
Û Φ̂ , as required.

Step (F8). Prove the lemma for a Lz formula Φ := ¬ Ψ , assuming that the result holds for Ψ .
Note that #(Φ) � m + 1, hence #(Ψ) � m . Suppose that p forcz

U ¬Ψ fails. By definition there is
a Ω-system U′ ∈ sDS[m] extending U′ , and a condition q ∈ P[U′]� z , q � p , such that q forcz

U′ Ψ .
Then q̂ forcẑ

Û′
Ψ̂ by the inductive hypothesis. Yet Û′ belongs to sDSΩ , extends Û , and satisfies

Û′ �<m = U′ �<m by (E), hence belonging even to sDS[m] by the choice of U′ , and in addition
q̂ ∈ P[Û′]� ẑ and q̂ � p̂ by (F). We conclude, by definition, that p̂ forcẑ

Û ¬ Ψ̂ fails too, as required.

6.6. Finalization

We continue to argue under the assumptions and notation of Definitions 6 on page 20 and 8 on
page 25. The goal of this Section is to accomplish the proof of Theorem 11 in Section 6.2 that was
started in Section 6.4. We return to objects introduced in (A), (B), (C) of Section 6.2.

Let q1 = p1 � z , so that q1 ∈ P[U1]� z and q1 forcz
U1 ϕ by (A). We have:

Û1 ∈ sDS[m] ∧ p̂1 ∈ P[Û1] ∧ q̂1 = p̂1 � ẑ ∈ P[Û1]� ẑ ∧ q̂1 forcẑ
Û1

ϕ (11)

by Lemma 27. (Here ϕ , as a parameter free formula, coincides with ϕ̂ .) Let a Ω-system U be defined
by U(n, i) = U1(n, i) ∪ Û1(n, i) .

Lemma 28. The Ω-system U belongs to sDS[m] and extends both U1 and Û1 .
Conditions p1 and p̂1 belong to P[U] and are compatible in P[U] .

Proof (Lemma). It follows by (D) (last claim) that U is a disjoint Ω-system. It follows by (E) that
U �<m = U1 �<m = Û1 �<m . Therefore U belongs to sDS[m] because so does U1 .

To prove compatibility, it suffices to check that if n, i < ω then either p1(n, i) = p̂1(n, i) or
||p1||ni ∩ || p̂1||ni = ∅ . If n < m then we have the ‘either’ case because by definition p1 �<m = p̂1 �<m .
Suppose that n ≥ m . Let k = π−1(n) ; thus still k ≥ m (as π ∈ Πm ), n = π(k) , and p̂1(n, i) =

〈Ŝp(k, i) ; F̂p(k, i)〉 . It follows that || p̂1||ni is the F0 -image, hence the b -image of the set ||p1||ki . However
||p1||ki ∪ ||p1||ni ⊆ ||p1|| . We conclude that ||p1||ni ∩ || p̂1||ni = ∅ by Claim (B) of Section 6.4, as
required.

To finalize the proof of Theorem 11, let, by Lemma 28, r ∈ P[U]� ẑ satisfy both r � p1 � ẑ
and r � p̂1 � ẑ = q̂1 . However q̂1 forcẑ

Û1
ϕ by (11). We conclude that r forcẑ

U ϕ by Lemma 28 and

Lemma 22. On the other hand, p1 � ẑ forcẑ
U1 ¬ ϕ by (A) of Section 6.4, therefore we have r forcẑ

U ¬ ϕ .
It remains to remind that #(ϕ) ≤ m and U ∈ sDS[m] by Lemma 28—and we still get a contradiction
by Lemma 22(ii). The contradiction completes the proof of Theorem 11.

Finalization.
Theorem 11 just proved implies Theorem 9, see Section 6.3.
Theorem 9 ends the proof of Theorem 8 of Section 4.6, see Remark 5 on page 24.
This completes the proof of Theorem 2, the main result of this paper, see Remark 4 on page 23.
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7. Conclusions and Discussion

In this study, the method of almost-disjoint forcing was employed to the problem of getting a
model of ZFC in which the set D1m of all reals, definable by a parameter free type-theoretic formula
with the highest quantifier order not exceeding a given natural number M ≥ 1, belongs to D2M , that is,
it is itself definable by a formula of the same quantifier order. Moreover, we have D1M = L∩ R in the
model, that is, the set D1M is equal to the set of all Gödel-constructible reals.

The problem of getting a model for D1M ∈ D2M was posed in Alfred Tarski’s article [18].
Its particular case M = 1 (analytical definability), that is, the problem of getting models for D11 ∈ D21 ,
or stronger, D11 = L ∩ R , has been known since the early years of forcing, see e.g., problem 87 in
Harvey Friedman’s survey [21], and problems 3110, 3111, and 3112 in another early survey [20] by
A. Mathias. As mentioned in [20,21], the particular case M = 1 was solved by Leo Harrington, and
a sketch of the proof, related to a model for Δ1

3 = L ∩ R , can be found in Harrington’s handwritten
notes [22]. Our paper presents a full proof of the comprehensive result (Theorem 2) that finally solves
the Tarski problem.

From this study, it is concluded that the hidden invariance technique (as outlined in Section 6.1)
allows one to solve the problem by providing a generic extension of L in which the constructible reals
are precisely the D1M reals, for a chosen value M ≥ 1. The hidden invariance technique has also been
applied in recent papers [3–5,28] for the problem of getting a set theoretic structure of this or another
kind at a preselected projective level. We finish with a short list of related problems.

1. If x ⊆ ω then let Dpm(x) be the set of all objects of order p , definable by a formula with x as
the only parameter, whose all quantified variables are over orders ≤ m . (Compare to Definition 1 on
page 2.) One may be interested in getting a model for:

∀ x ⊆ ω (D1m(x) ∈ D2m(x), or stronger, D1m(x) = P(ω) ∩ L). (12)

This is somewhat similar to Problem 87 ′ in [21]: Find a model of:

ZFC + “ for any reals x, y , we have: x ∈ L[y] =⇒ x is Δ1
3 in y”. (13)

Problem (13) was known in the early years of forcing, see, e.g., problem 3111 in [20] or (3) in [23]
(Section 6.1). Problem (13) was positively solved by René David [48,49], where the question is
attributed to Harrington. The proof makes use of a tool known as David’s trick, see S. D. Friedman
[27] (Chapters 6, 8).

So far it is unknown whether the result of David [48] generalizes to higher projective classes Δ1
n ,

n ≥ 4, or Δ1
ω , whether it can be strengthened towards ⇐⇒ instead of =⇒ , and whether it can lead

to an even partial solution of (12). This is a very interesting and perhaps difficult question.

2. Coming back to Harvey Friedman’s Δ1
n problem of getting a model for the sentence:

the set dn = P(ω) ∩Δ1
n is equal to P(ω) ∩ L , (14)

(Section 1.2), it is clear that, unlike D1m ∈ D2m , if (14) holds for some n ≥ 3 then it definitely fails for
any n′ �= n . But we can try to weaken (14) to just:

dn ∈ Π1
n , (15)

and then ask whether there is a generic extension of L satisfying ∀n (dn ∈ Π1
n) . It holds by rather

routine estimations that d1 ∈ Π1
1 � Σ1

1 , d2 ∈ Σ1
2 � Π1

2 , and if all reals are constructible then dn ∈
Σ1

n � Π1
n for all n ≥ 3 as well, so Π1

n looks rather suitable in (15).

3. Recall that Theorem 2 implies the consistency of D1m ∈ D2m for each particular m ≥ 1.
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But what about the consistency of the sentence “D1m ∈ D2m holds for all m ≥ 1”? Perhaps a
method developed in [50] can be useful to solve this problem.

4. It would be interesting to define a generic extension of L in which, for instance, D1m ∈ D2m
holds for all even m ≥ 1 but fails for all odd m ≥ 1, or vice versa.

Lemma 2 on page 8 presents a possible difficulty: If we have D1n ∈ D2n for some n ≥ 1 by means
of the equality D1n = P(ω) ∩ L , then D1m ∈ D2m definitely fails for all m < n .

5. Another question considered by Tarski in [18] is related to the sets Dk =
⋃

m Dkm (all elements
of order k , definable by a formula of any order). Tarski proves that Dk /∈ Dk+1 for all k ≥ 2, and leaves
open the question whether D1 ∈ D2 . Similarly to the problem D1m ∈ D2m in Section 1.1, the negative
answer D1 /∈ D2 follows from the axiom of constructibility V = L , and hence is consistent with ZFC .

Prove the consistency of the sentences D1 ∈ D2 and D1 = P(ω) ∩ L .
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Abstract: We propose a novel linear time algorithm which, given any directed weighted graphs a
and b with vertex degrees 1 or 2, constructs a sequence of operations transforming a into b. The total
cost of operations in this sequence is minimal among all possible ones or differs from the minimum
by an additive constant that depends only on operation costs but not on the graphs themselves;
this difference is small as compared to the operation costs and is explicitly computed. We assume
that the double cut and join operations have identical costs, and costs of the deletion and insertion
operations are arbitrary strictly positive rational numbers.

Keywords: discrete optimization; exact algorithm; additively exact algorithm; graph transformation;
graph of degree 2; chain-cycle graph; operation cost; minimization of total cost

Dedicated to the 70-th anniversary of A. L. Semenov.

1. Introduction and Basic Definitions

We consider the problem of constructing an algorithm for efficient solution of the below problem.
We are given directed graphs a and b in which each vertex has degree either 1 or 2 and each edge is
assigned with its unique name, a natural number (in this sense, a graph is referred to as a weighted
graph with unique names). We consider a vertex in a graph as two joined (identified) endpoints of
the adjacent edges. The following operations over such graphs are well known: cut any vertex (Cut)
or join two currently free (i.e., of degree 1) ends (OM); cut a vertex and join one of the thus formed
free ends with any currently free end (SM); cut two vertices and join the four thus formed free ends
(DM). The latter two operations are compositions of the two former ones, but they are considered as
independent operations. These four operations were defined in [1] and are traditionally referred to as
DCJ (i.e., double cut and join) operations; they were depicted in [2] (Figure 1).
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Figure 1. Cutting out a conventional b-edge. Singular vertices are marked by large circles. The cases
differ by the form of edges adjacent to the edge to be cut out. From top to bottom: singular nonhanging
and conventional; hanging and conventional; both singular nonhanging; hanging and singular
nonhanging; both hanging; only one singular nonhanging; only one hanging; no adjacent edges.

There are two more operations: remove (Rem) a connected fragment of edges with names in a but
not in b or, vice versa, insert (Ins) such a fragment with names not in a but in b. When removing a
fragment, the arising free ends are joined; when inserting a fragment, first, some vertex is cut (if it is
not extreme) and, then, after the insertion, two pairs of arising free ends are joined. These operations
are analogous to standard deletion of a subword in a word and to insertion of a word as a subword.
Each operation is assigned with its cost, a strictly positive rational number.

It is required to find a sequence (composition) of these operations with the minimum total cost
which transforms the given graphs a and b, the first into the second. Such a sequence is said to be the
shortest. In [2], previously obtained results were stated in detail and references on this problem were
presented. Among these references, we point out the two latest papers [3,4], which, in turn, contain
further historical references. The previous results concerning this problem and including its applied
aspects, were overviewed in [5] (Chapter 10) and [6]. A principal distinction between our Theorem 1
and preceding results is the fact that we do not assume the condition of equal costs of deletion and
insertion operations, which essentially simplified the problem. In our paper, we assume no restrictions
on costs of these operations. As before, we still keep the condition of equal costs of DCJ operations.
Thus, in this paper we prove the following:

Theorem 1. If DCJ operations have the same cost w and the deletion and insertion operations have arbitrary
costs wd and wi, then the Algorithm described below in Section 2, Section 4, and Section 5 outputs an additively
shortest sequence of operations and has linear time complexity.

We denote the additive exactness constant by k. The proof of the exactness splits into three cases:
(I) both costs wd and wi are not less than w (then, k ≤ 2w), (II) both are not greater than w (then k = 0),
or (III) one of them is less and the other greater than w (an expression for k is given at the beginning of
Section 4). From the description of a problem equivalent to this (Section 2, Stage 0), it follows that
the two possibilities in the last case are symmetric and, therefore, do not differ from each other. In
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each of the cases, the description of the Algorithm, given in Section 2, slightly changes. The linear
time complexity of each of these versions of the Algorithm directly follows from its description.
The arXiv publication [2] is preparatory to the present paper and contains figures illustrating the
algorithm operation.

2. Description of the Algorithm for Case II

We list the stages of this algorithm, which are then explained in sequence and in detail below,
in this section (see also Table 1).

Table 1. Basic parameters predefined in or computed by the Algorithm for Case II. OM, single merging;
SM, sesquialteral intermerging; DM, double intermerging.

Notation Meaning

w Equal costs of the Cut, OM, SM, and DM operations

wd = wa Cost of the Rem operation

wi = wb Cost of the Ins operation

xs
Number of elements corresponding to the 2-interaction

s in the sought-for domain M

t Type of an argument in any 2-interaction; this t is one of
the following types:1a, 1b, 2a, 2b*, 2b’, 3a*, 3a’, 3b, 2, 3.

cts
Number of occurrences of the type t in arguments of

the 2-interaction s

lt
Number of chains of the type t in the breakpoint graph

G’

P(s) Quality of the 2-interaction s

Stage 0: Transform initial given graphs a and b into the new graph, denoted by a + b below.
Stage 1.: Cut out conventional edges in a + b.
Stage 2.0: Solve the integer linear programming problem which outputs the set of disjoint elements

(each of them consisting of pairs, triples, or quadruples of chains of the current graph) with the largest
aggregate quality.

Stage 2.1: For each element in this set, perform the interaction between its chains; the interaction
is uniquely determined by the element and combines the chains of the element into a single chain.

Stage 3: Circularize chains of sizes strictly larger than 0 into cycles, and then break all cycles into
many cycles of size 2; then, remove all singular vertices and loops.

Now, we pass to a detailed description of each stage.
Stage 0: An initial pair of graphs a and b is transformed in linear time into a new («breakpoint»)

graph a + b such that the original problem is equivalent to the problem of reducing a + b to the simplest
form, referred to as final. A final form is a graph consisting of cycles of length 2 (one edge of each cycle is
labeled by a, and the other, by b) and isolated conventional vertices; the definition of «conventional» is
given below. The proof of the equivalence of these two problems literally repeats the proof of Corollary
5 in [7]; that proof used the equality of costs of DCJ operations only, which is assumed in Theorem 1.
In [7], there was also given a linear time algorithm that transforms a solution of the second problem
into a solution of the first (and vice versa).

The definition of the graph a + b is given in [7]; in other variants, it was known from earlier
works, for instance, from [8,9]. We recall the definition from [7], which describes vertices and edges of
a + b. Vertices in a + b are all endpoints of edges that occur in both a and b (they are denoted by ni,
where n is the edge name, i = 1 for a tail of an edge, and i = 2 for its head) and also vertices uniquely
corresponding to every maximal connected segment of edges («block») in either a\b or b\a, which we
label by a or b, respectively. Vertices of the first type are referred to as conventional, and those of the
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second type are referred to as singular. Edges in a + b connect vertices whenever the latter are joined in
a or in b or if an extremity of a block is joined with a vertex in a or in b; edges are labeled by a or b,
respectively. Edges of the first type are said to be conventional, and those of the second type are said to
be singular. If a singular endpoint in a + b is of degree 1, then both the edge and the endpoint itself are
said to be hanging.

An operation o’ over a + b is defined through an operation o over a by commutativity: o’(a + b)
= o(a) + b. Thus, over a breakpoint graph, the five operations listed below are allowed, which are
shown in Figure 5 in [2]. In fact, the number of operations is six, since the fifth one, removal of a
singular vertex, divides into removal of an a-singular vertex, which corresponds to deleting a block in a,
and removal of a b-singular vertex, which is inverse to inserting a block in b.

Double intermerging (DM): deletion of two edges with the same label and joining the four thus
formed endpoints by two new edges with this label. If the operation involves a loop, then its vertex
is regarded as having two endpoints. If two adjacent singular vertices are formed, then the edge
connecting them is deleted and they are merged into a single vertex.

Sesquialteral intermerging (SM): deletion of an edge and adding an edge with the same label
connecting one of the thus formed free ends with a free end of an edge with an alternative label, or with
a hanging or singular isolated vertex with the same label (with possible merging of adjacent singular
vertices).

Single merging (OM): adding an a-edge between free vertices such that each of them is either a
conventional vertex incident to a b-edge or an isolated vertex, a-hanging or a-isolated, with possible
merging of adjacent singular vertices. A similar definition is given with b instead of a.

Cut (Cut): deletion of any edge.
The above-listed operations are referred to as DCJ (or sometimes standard) operations.

A supplementary operation is removal (Rem) of a singular vertex. Namely, if it is of degree 2,
it is removed and the edges incident to it are joined into an edge with the same label; if it is hanging,
it is removed together with the edge incident to it; if it isolated or has a loop, the vertex and the loop
are removed.

Each standard operation is assigned with its original cost w; removal of an a-singular vertex has
original cost wa = wd, and removal of a b-singular vertex has original cost wb = wi.

An inclusion-maximal connected fragment of conventional edges is called a segment; depending
on its length, it can be either even or odd.

The size of a component in a + b is the number of conventional edges plus half the number of
singular nonhanging edges in it. For conventional isolated vertices and loops, the size is defined to be
0, and, for singular isolated vertices, the size is defined to be −1.

Our algorithm successively generates graphs G starting from a + b; all these G are of the form c +
d for their initial graphs c and d; all these G together form a sequence that begins with a + b and ends
with a graph of a final form. Now, we pass to the description of the Algorithm, which consists of three
consecutive stages.

Stage 1: From all components other than cycles of size 2, cut out conventional edges, i.e., apply a
DM to a pair of edges adjacent to the edge to be cut out, or similarly apply an SM or OM if one or two
of the adjacent edges do not exist. Such a derived operation is called cutting out (conventional edges)
(Figure 1).

A chain of an odd (even) size is called odd (even); 0 is an even number, and −1 is odd. The definition
of a type of a chain plays a crucial role. First, assume that a chain does not contain conventional edges.
Then, 1a is an odd chain with one hanging b-edge; 2a* is an odd chain with two hanging b-edges; 2a’ is
a b-singular isolated vertex; 2a denotes type 2a* or 2a’. Type 3a* is an odd chain without hanging edges,
with two extremal a-edges, and having a b-singular vertex; 3a’ is a chain aa; 3a denotes type 3a* or 3a’.
Type 1a* is an even chain with one hanging a-edge that has a b-singular vertex; 1a’ is a hanging a-edge;
1a denotes type 1a* or 1a’. Similar definitions are given with b instead of a. Type 2* is an even chain
with two hanging edges nonincident to each other; 2’ is two hanging edges incident to a common
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conventional vertex; 2 denotes type 2* or 2’. Type 3 is an even chain without hanging edges but having
singular vertices; 0 is a chain without singular vertices. The chain types were presented in Figure 6
in [2]. The type of a chain with conventional edges is defined as the type of a chain obtained by cutting
them out; it does not depend on the order of cuttings (see Lemma 6 in [7]).

A hanging extremity of a chain not of type 0 is an extremity with an adjacent hanging edge or odd
segment. After cutting out this segment, a hanging edge appears. A chain 2a (or 2b, 3a, 3b) is a chain of
type 2a’ (respectively, 2b’, 3a’, 3b’) if and only if it contains b-singular vertices only (a-singular only,
a-singular only, b-singular only). A chain of type 2 is a chain of type 2’ if and only if it contains a
conventional vertex with only a-singular vertices on one side and only b-singular vertices on the other.

An interaction in G is a chain of operations successively applied to G. In Section 3, we introduce
a key notion of P(s), the quality of an interaction s. We also give there a convenient formula for
computing it; see Equation (1b), which is consistent with Equation (1a). A term equality 1a + 1b = 1*

b
means that an interaction is applied to two chains of types 1a and 1b and outputs a chain of type 1*

b.
The same applies for other term equalities that are defined with the help of type designations, the +
sign, and parentheses. Each interaction below corresponds to its term equality, which can be regarded
as a designation (name) of this interaction. In square brackets, we give the interaction quality.

Stage 2: 2-interactions are SM applied to two different chains with the following term equalities
(a cut chain is always given the first; on the right-hand side, we do not present conventional isolated
vertices): 1a + 1b = 1*

b [wa + wb], 3a* + 2b* = 1a [wb], 3a* + 2b’ = 1a [wa], 3a’ + 2b* = 1a [wa], 3a’ + 2b’ =
1’a [wa], 3b + 2a = 1b [wb], 3 + 2 = 1*

b [wa + wb − 1], (1a + 2b*) + 3=1*
b [wa + 2wb − 1], (1a + 2b’) + 3 = 1*

b
[2wa + wb − 1], (1b + 2a) + 3=1*

b [wa + 2wb − 1], (3a* + 1b) + 2 = 1*
b [wa + 2wb − 1], (3a’ + 1b) + 2=1*

b
[2wa + wb − 1], (3b + 1a) + 2=1*

b [wa + 2wb − 1], 1a + 2=2a* [wa + wb − 1], 1b + 2 = 2b* [wa + wb − 1], 3 +
1a = 3a* [wa + wb − 1], 3 + 1b = 3b* [wa + wb − 1], (3b + 1a) + (1a + 2b*) = 1*

b [wa + 3wb − 1], (3b + 1a) +
(1a + 2b’) = 1*

b [2wa + 2wb − 1], (3a* + 1b) + (1b + 2a) = 1*
b [wa + 3wb − 1], (3a’ + 1b) + (1b + 2a) = 1*

b
[2wa + 2wb − 1], 1a + (1a + 2b*) = 2a* [wa + 2wb − 1], 1a + (1a + 2b’) = 2a* [2wa + wb − 1], 1b + (1b + 2a) =
2b* [wa + 2wb − 1], (3b + 1a) + 1a = 3a* [wa + 2wb − 1], (3a* + 1b) + 1b = 3b* [wa + 2wb − 1], (3a’ + 1b) + 1b
= 3b* [2wa + wb − 1], 1a + 2b* = 2 [wb], 1a + 2b’ = 2 [wa], 1b + 2a = 2 [wb], 3a* + 1b = 3 [wb], 3a’ + 1b = 3
[wa], 3b + 1a = 3 [wb], 3 + ((3 + 2b*) + 2a) = 1*

b [wa + 3wb − 2], 3 + ((3 + 2b’) + 2a) = 1*
b [2wa + 2wb − 2],

(3a* + (3b + 2)) + 2 = 1*
b [wa + 3wb − 2], (3a’ + (3b + 2)) + 2 = 1*

b [2wa + 2wb − 2], (3a* + 2) + 2 = 2a* [wa +

2wb − 2], (3a’ + 2) + 2 = 2a* [2wa + wb − 2], (3b + 2) + 2 = 2b* [wa + 2wb − 2], 3 + (3 + 2a) = 3a* [wa + 2wb
− 2], 3 + (3 + 2b*) = 3b* [wa + 2wb − 2], 3 + (3 + 2b’) = 3b* [2wa + wb − 2], (3 + 2b*) + 2a = 2* [2wb − 1],
(3 + 2b’) + 2a = 2* [wa + wb − 1], 3a* + (3b + 2) = 3 [2wb − 1], 3a’ + (3b + 2) = 3 [wa + wb − 1], and OM
with the equalities 1a + 1a = 3a* [wa + wb − 1], 1b + 1b = 3b* [wa + wb − 1].

Two additional 2-interactions are SM with the equalities 3a* + 3b = 3 [wb − wa] and 2a + 2b* = 2*+

1’a [wb − wa] (see Figure 2). Lemma 1 below demonstrates that the quality of a 2-interaction depends only
on types of chains on the left-hand side of a term equality.

 

Figure 2. Interactions 3a* + 3b’ = 3 and 2a’ + 2b* = 2 + 1’a. In both cases, sesquialteral intermerging (SM)
is applied.

Unlike the algorithms in [2,7], where interactions are performed in the same order as they are
listed, now, the order of interactions is described in the following nontrivial way:

Notice 1. Denote the graph obtained after Stage 1 by G’. For each of the above-listed 2-interactions
s, we call its element an unordered pair, triple, or quadruple (depending on the number of arguments in
the composition of s, which we also denote by s) of chains in G’ that have the same types as the types
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of arguments in s. The pairs, triples, and quadruples of such types themselves will be referred to as a
polytypes; a type of a chain in a polytype may occur several times. For instance, for the interaction
f = (1a + 1b = 1*

b), its element is any pair of chains of types 1a and 1b, and its polytype is the pair
{1a,1b} of these types. To each element, precisely one 2-interaction corresponds, which is specified by its
polytype. The quality of an element is defined to be the quality of this 2-interaction. By a domain, we call
any set of elements (usually, from different interactions) where the elements are disjoint. The quality
of a domain M is the aggregate quality of its elements. A domain with the maximum quality is called
maximal.

Thus, Stage 2 consists of applying, simultaneously and independently of each other, 2-interactions
corresponding to some maximal domain M for G’ to elements of M.

Let us find a maximal domain M for G’. To this end, we use integer linear programming (ILP)
with at most 51 variables and at most 10 nontrivial (i.e., not of the form x ≥ 0) constraints. Namely, to
each 2-interaction s we assign a nonnegative integer-valued variable xs whose value must be equal
to the number of elements of this 2-interaction in the sought-for domain M. This condition on the
vector {xs} is expressed by the following linear relations: for every type t of a chain occurring in G’
and corresponding to an argument of one of the 2-interactions, we impose the constraint

∑

s
cts · xs ≤ lt,

where cts is the number of occurrences t in the arguments of any 2-interaction s (cts can be 0, 1, or 2), and
lt is the number of chains of type t in G’. Maximize the target function F({xs}) = ∑

s
P(s) · xs, where P(s)

is the quality of a 2-interaction s and the summation is over all 2-interactions. A solution to this ILP
problem gives a maximal domain M.

Define autonomous reduction as the following sequence of operations: cut out all conventional
edges. Circularize chains of sizes strictly larger than 0 into cycles using an OM or SM operation
(after SM, there remains one extremal vertex or one extremal edge) (see Figure 3a). When circularizing
a chain of type 2*, choose a variant with joining two b-singular vertices; after circularizing a chain of
type 3a* or 3b*, cut out the arising conventional edge. Then, break all cycles into cycles of size 2 using a
DM operation, which cuts out a cycle of size 2 with an a-singular vertex from a cycle (see Figure 3b).
Remove all singular vertices and loops. The autonomous cost A(G) of a graph G is defined as the total
cost of the sequence of operations in the autonomous reduction of G (see Lemma 1 below).

Figure 3. (a) Circularizing a chain. Chain types, from top to bottom: 1b, 2b, 3b, 1a, 3, 2. (b) Cutting out
a cycle of size 2 from a cycle of size 4.

Stage 3: Perform autonomous reduction of the remaining components to a final form.
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End of the Algorithm description.

It follows from the proof presented in Section 3 that, for the graph G” obtained after Stage 2,
there exists no interaction with a strictly positive quality, which is by no means evident a priori.

Below, we consider the case wa ≤ wb, since the description of the Algorithm (up to interchanging a
and b) and the subsequent proof do not depend on which of the removal costs is smaller, wa for an
a-singular vertex or wb for a b-singular vertex.

3. Proof of Theorem 1 (Case II)

First, we make an obvious remark concerning the linear runtime of the Algorithm. For Stage 0,
this follows from the fact that a + b is constructed by one-time examination of all components in a
and b. Stage 1 requires one-time examination of all components in a + b. The number of interactions
executed at Stage 2 is linear, since each of them reduces the number of chains in the corresponding
graph, and each interaction is executed in constant time. Similarly, the number of operations executed
at Stage 3 is linear, since each of them reduces the number of singular vertices or the number of
chains. Linear runtime of solving the ILP problem at Stage 2 follows from [10], where it was shown
that the time required for solving an ILP problem with a fixed number of variables and constraints is
polynomial in the logarithm of the maximum absolute value of a coefficient of the problem. In our
problem, this coefficient is not greater than the problem size.

The rest of this section is devoted to the proof of additive exactness of the Algorithm.
If, when executing a standard operation, singular vertices are joined, the operation is said to be
special; otherwise, it is nonspecial; a removal operation is special by definition.

Clearly, we may assume that w = 1. For a graph G, we use the following notation: d is the total size
of all components in it (we call it the size of G), f is the number of odd chains, c is the number of cycles
(excluding loops), B is the number of singular vertices, S is the sum of integral parts of halved segment
lengths plus the number of extremal (on a chain) odd segments minus the number of cyclic segments,
D is the number of chains of types 1a, 1b, 3a, 3b, and 3, and Kb is the number of components containing
a b-singular vertex.

Lemma 1. Let wa and wb be the removal costs for singular a- and b-vertices, wa ≤ wb, and let all other operations
have cost 1. Then, the autonomous cost A(G) of a graph G is

A(G) = (1 − wa)·(0.5d + 0.5f − c) + wa·(B + S+D) + (wb − wa)·Kb. (1a)

Proof. Denote the right-hand side of this equality by A’(G). Let us check the equality for each component
of the graph separately and then sum up the obtained equalities. Denote by Ib the indicator function
which is 1 if G contains a b-singular vertex and 0 otherwise. �

(1) For a conventional isolated vertex, the equality is trivial, since A’(G) is equal to wa for an a-loop
and wb for a b-loop. For a singular isolated vertex (odd chain), we have d = −1, f = 1, and B = 1; for a
b-isolated vertex, Kb = 1 and the other quantities are zero. A’(G) is equal to wa for an a-isolated vertex
and wb for a b-isolated vertex, as well as A(G).

(2) For a cycle without singular edges (and hence without singular vertices), we have d > 0 and d
even, c = 1, S = 0.5d – 1; the other quantities are zero, and A’(G) = 0.5d − 1. Autonomous reduction
includes only cutting out conventional edges by a DM operation. Each cutting reduces a large cycle by
2 edges; the last cycle requires no operation. Therefore, 0.5d − 1 DM operations are executed.

(3) For a cycle with singular edges, we have d > 0 and d even, B > 0, S ≥ 0, c = 1, Kb = Ib, and the
other quantities are zero; A’(G) = (1 − wa)(0.5d − 1) + wa(B + S) + (wb − wa)Ib. When cutting out
conventional edges, the size d of a graph does not change. Each cutting out a conventional edge or a
cycle of size 2 reduces the size of a large cycle by 2; the last cycle requires no operation. Thus, 0.5d −
1 DM operations are executed. The number of nonspecial operations among them is S, since every
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segment of length l for an even l requires 0.5l nonspecial cuttings, and, for an odd l, l − 0.5(l − 1)
nonspecial cuttings and one special cutting. Therefore, the number of Rem operations is B − (0.5d − 1
− S) (the number of b-removals among them is Ib), and A(G) = 0.5d − 1 + wa(B − (0.5d − 1 − S) − Ib) +
wbIb = A’(G).

(4) For an odd chain without singular edges, we have d > 0 and d odd, f = 1, S = 0.5(d + 1) (such
a chain is an extremal odd segment), and the other quantities are zero. Its autonomous reduction
requires only DM operations, i.e., cutting out conventional edges, and, at the end, when a conventional
edge without adjacent conventional edges remains, one OM. Each DM separates a final ab cycle from a
current chain, and the chain length (equal to its size) reduces by 2. Therefore, 0.5(d + 1) operations are
required in total, which equals A(G), since the cost of a standard operation is 1. For A’(G), we obtain the
same quantity.

(5) For an odd chain with singular edges, we have d > 0 and d odd, f = 1, B > 0, D is either 0 or 1, S
≥ 0, Kb = Ib, and the other quantities are zero. Cutting out conventional edges requires S nonspecial
DM or SM operations. After the cuttings, a chain either has an odd size strictly greater than 0 or
turns into a singular isolated vertex. In the first case, the chain is circularized into a cycle by a special
OM (if D = 0) or by a nonspecial OM (if D = 1), after which the obtained cycle is finalized by special
operations (this cycle may contain only one conventional edge, namely, the one by which the chain was
circularized into a cycle). Every standard operation in autonomous reduction increases the number of
cycles in the graph by 1, an OM increases the graph size by 1, and a DM or SM does not change it.
Thus, finally, the graph size becomes d + 1, and it contains 0.5(d + 1) cycles of size 2. In the second case,
the graph size remains to be d, and it also contains 0.5(d + 1) cycles of size 2 formed when making
cuttings (a singular isolated vertex is of size −1 and D = 0). Since the initial graph had no cycles, 0.5(d +
1) standard operations are made in total, S + D among them being nonspecial. Therefore, the number
of Rem operations is B − (0.5d + 0.5 − S − D) (the number of b-removals among them is Ib), and A(G) =
0.5(d + 1) + wa(B − (0.5d + 0.5 − S − D) − Ib) + wbIb = A’(G).

(6) For an even chain without singular edges, we have d > 0 and d even, S = 0.5d, and the other
quantities are zero. Its autonomous reduction requires only DM operations, cuttings of conventional
edges. Each of them separates an ab cycle from the current chain; therefore, the length of the chain,
equal to its size, reduces by 2. Therefore, in total, A(G) = 0.5d operations are executed. For A’(G),
we obtain the same quantity.

(7) For an even chain with singular edges, we have d > 0 and d even, B > 0, D is either 0 or 1, S ≥ 0,
Kb = Ib, and the other quantities are zero. Cutting out conventional edges requires S nonspecial DM or
SM operations. After a cutting, the chain has an even size either strictly greater than 0 or equal to 0. In
the first case, the chain is circularized by a special SM (if D = 0) or a nonspecial SM (if D = 1), after which
the obtained cycle is finalized by special operations. Every standard operation in the autonomous
reduction increases the number of cycles in the graph by 1, and a DM or SM does not change the size
of the graph. Therefore, finally, the graph size remains to be d, and it contains 0.5d cycles of size 2.
The same happens in the second case. Since the initial graph had no cycles, in total, 0.5d standard
operations are applied, S + D among them being nonspecial. Thus, the number of Rem operations is B
− (0.5d − S − D) (the number of b-removals among them is Ib), and A(G) = 0.5d + wa(B − (0.5d − S − D)
− Ib) + wbIb = A’(G).

Recall that an interaction in G is a sequence s of operations successively applied to G. The quality
P(s) of an interaction s is defined as

P(G,s) = A(G) − A(s(G)) − c(s), (1b)

where s(G) is the graph obtained after applying the composition s to G, and c(s) is the total cost of
operations in s. The quality shows what total cost can be saved by using the interaction s as against the
autonomous reduction of G, i.e., without using s. By examining all 2-interactions (see the example
below), we check that P(G,s) is determined by the polytype of the 2-interaction, consisting of the types
of its arguments or, equivalently, by the corresponding term equality. Accordingly, the quality of an
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element α (for the substitution in s) is determined by its polytype, which coincides with the polytype
of s itself.

In this way, we computed the qualities of 2-interactions that were presented above, after each
of them, in square brackets. For instance, let us find the quality of the interaction 1a + 1b = 1b

*

(Figure 4), c(s) = 1, and the operation is special (generally, all operations of Stage 2 are special). This
2-interaction does not change the values of d, c, and S, reduces B and Kb by 1, and reduces D and f by 2.
Hence, P(s) = wa + wb.

 

Figure 4. Interaction 1a + 1b = 1b*, an SM operation.

Let E be any reducing sequence for a graph G, which is arbitrarily divided into connected
fragments of operations; we call them interactions here and denote by s. Denote by T(R,E) the total
cost of operations in a reducing subsequence which starts in E with some intermediate graph R and
continues to a final form. Denote by P(R,E) the aggregate quality of all interactions in E starting from
R, where P(s) is formally defined in Equation (1b).

Lemma 2. For any graph G, we have T(G,E) = A(G) − P(G,E).

Proof. It suffices to check A(R) − T(R,E) = P(R,E). This is proven by induction on the number of
interactions from the end of the sequence E. If R is of a final form, all the three quantities are zero.
Let A(R’) − T(R’,E) = P(R’,E) for a subsequence starting with a graph R’ next to R. Let s be an interaction
taking R into R’, c(s) be the total cost of its operations, and P(s) be its quality, defined formally by (1’).
Then P(R,E) = P(R’,E) + P(s), T(R,E) = T(R’,E) + c(s), and P(s) = A(R) − A(R’) − c(s). Hence, A(R) −
T(R,E) = A(R’) + c(s) + P(s) − T(R’,E) − c(s) = A(R’) − T(R’,E) + P(s) = P(R’,E) + P(s) = P(R,E). �

If E is a sequence of operations constructed by the Algorithm, then it contains 2-interactions,
and all other operations (i.e., those from Stages 1 and 3) by Equation (1b) have formal
quality 0 (for uniformity, these operations can be viewed as formal interactions).

Notice 2. Thus, P(G) is the aggregate quality of 2-interactions (equivalently, interactions in all
stages of the algorithm), equal (!) to the quality of the maximal domain on chains in the initial a + b
(equivalently, on chains after all cuttings of Stage 1).

By Lemmas 1 and 2,

T = T(G) = (1 − wa)·(0.5d + 0.5f − c) + wa·(B + S+D) − P(G) + (wb − wa)·Kb (2)

is the total cost of operations of the algorithm on a graph G. Denote the first and second term in this
expression by T’ and T” respectively.

Now, we use the following important equivalence:
Exactness of the algorithm is equivalent to the triangle inequality: for any operation o and any

graph G, we have
c(o) ≥ T(G) − T(o(G)),

where o(G) is the result of applying o to G.
The proof is performed by induction on C(G), the minimum total cost over all reducing sequences.

If G is of a final form, then T(G) ≤ C(G) (let a reducing sequence be empty). Consider some nonempty
shortest reducing sequence for G, and denote the first operation in it by o. By the induction hypothesis,
T(o(G)) ≤ C(o(G)). Then, by this inequality, T(G) = c(o) + T(o(G)) ≤ c(o) + C(o(G)) = C(G), i.e., T(G) =
C(G). The converse is even simpler, but we use only this implication. Note that this argument works
for any algorithm, not only for the one described above.

121



Mathematics 2020, 8, 2001

Thus, to complete the proof of Theorem 1, it remains to check the triangle inequality for each of
the above-mentioned operations o.

1. o is the Rem operation. When passing from G to o(G), B reduces by 1. Consider several cases.
1.1. An isolated singular vertex is removed (chain of type 2a’ or 2b’). Then S, D, and c do not

change; d increases by 1; f reduces by 1. P does not increase when removing any chain. Therefore, T’ +
T” − P reduces by at most wa. If a b-vertex is removed, then Kb reduces by 1 and T reduces by at most
wb.

1.2. A singular vertex is removed from a cycle, or a loop is removed. Then, S does not reduce.
1.3. An interior singular vertex (i.e., on both sides of it there are other singular vertices) is removed

from a chain. The type of the chain does not change, changes from 3b* to 3b’, or changes from 2a* to 2a’.
Then, P does not increase, since no element increases its quality when making this change.

1.4. A hanging vertex which is the only singular vertex in a chain is removed from the chain.
Then, S and D do not reduce, and Kb reduces by 1 if a b-vertex is removed.

1.5. A hanging vertex that is not unique in a chain is removed from the chain. If, when passing
from G to o(G), S does not change (the segment adjacent to the hanging edge is even), then the
hanging extremity becomes nonhanging, and the following changes in the type of the chain are
possible: 1a changes into 3a, 1b changes into 3b, 2 changes into 1, 2a changes into 1a, 2b changes into
1b, or 1 changes into 3. In the first three cases, D does not change and P does not increase. Indeed,
all elements containing type 1a do not increase their quality when making the change from 1a to 3a;
the same applies to the two other changes. In the last three cases, D increases by 1, P either does not
change or increases by at most wa (consider the inverse change), and all other quantities do not change.
Then, T’ + T” − P reduces by at most wa. If S increases by one (the segment adjacent to the hanging
edge is odd), then the hanging extremity remains to be hanging, and the type of the chain does not
change. Therefore, D and P do not change.

1.6. A nonhanging exterior singular vertex (on the right or on the left of it there are no other
singular vertices) is removed from a chain, and it is the only singular vertex in the chain. Then, the
chain has one of the types 3a, 3b, 2a, 2b, or 1, since, after cutting out conventional edges, we obtain a
chain with one singular vertex, and P does not increase. If the chain is of type 3a or 3b, then S increases
by 1, since both segments adjacent to the removed vertex are even and the resulting segment is odd,
and D reduces by 1. If the chain is of type 2a, 2b, or 1, then D and S do not change (in the cases of 2a or
2b, two odd segments are replaced with one odd; in the case of 1, one even and one odd segments are
replaced with one even). Therefore, T’ + T” − P reduces by at most wa.

1.7. A nonhanging exterior singular vertex is removed from a chain, and it is not a unique singular
vertex in the chain. If, when passing from G to o(G), S does not change (the extremal segment is
odd, and the next one is even), then the hanging extremity becomes nonhanging, and we repeat
the arguments from case 1.5. If S increases by 1, then either the type of the chain does not change
(then, T’ + T” − P does not change) or (if both segments adjacent to the removed vertex are even) the
nonhanging extremity becomes hanging. Then, one of the following changes in the type of the chain is
possible: 1a changes into 2a, 1b changes into 2b, 3 changes into 1, 3a changes into 1a, 3b changes into 1b,
or 1 changes into 2. In the first three cases, D reduces by 1 and P does not increase. In the last three
cases, D does not change and P either does not change or increases by at most wa. Thus, in all cases,
T’ + T” − P reduces by at most wa.

2. o is an OM.
2.1. Extremities of one chain are joined. This is possible for odd chains only. Then, d increases by

1, f reduces by 1, and c either increases by 1 or does not change, such that T’ either reduces by 1 − wa or
does not change. Consider possible chain types. For a chain of type 0, S reduces by 1, since an odd
segment turns into a cyclic one of length greater by 1. Then, T reduces by 1 (now, c(o) = 1). For a
chain of type 1a or 1b, B and S do not change, D reduces by 1, and P either does not change or reduces
by at most wa + wb. Therefore, T changes by at most 1. For types 2a or 2b, D does not change and P
either does not change or reduces by at most wb. If at both ends of the chain there are hanging edges,
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then after joining their endpoints, B reduces by 1 and S does not change. If at least on one side there is
an odd extremal segment, then B does not change and S reduces by 1. For types 3a or 3b, B and S do not
change, D reduces by 1, and P either does not change or reduces by at most wb. Therefore, T changes
by at most 1.

2.2. Extremities of different chains are joined. In Table 2, we present results of joining the endpoints
of nonhanging edges labeled with a or of hanging edges labeled with b (the added edge is labeled by b).
Such a join is referred to as a b-join (similarly for an a-join). The result of an a-join coincides with the
result of a b-join obtained by interchanging the labels a and b in chains.

Table 2. Results of joining extremities of chains with types specified in a row and column; the type of
resulting chain is given at the bottom of a cell.

0a 0 1a 1a’ 2a*,2a’ 3a*,3a’ 1,1\b 1’,1’\b 2 3

0a
(0)
[0]
0a

(0)
[0]
0

(0)
[0]
1a

(0)
[0]
1a’

(0)
[0]

2a*,2a’

(0)
[0]

3a*,3a’

(0)
[0]
1

(0)
[0]
1

(0)
[0]
2

(0)
[0]
3

0
(0)
[0]
0

(+1)
[0]
0b

(0 . . . +1)
[0 . . . –1]

3

(0 . . . +1)
[0 . . . –1]

2

(0 . . .
+wba)
[0 . . .
–wba]

1

(0 . . .
+wba)
[0 . . .
–wba]

1

(+1 . . .
1–wba)
[0 . . .
+wba]
3b*,3b’

(+1 . . .
1–wba)
[0 . . .
+wba]
2b*,2b’

(+1 . . . 0)
[0 . . .
+1]
1b

(+1 . . . 0)
[0 . . .
+1]
1b

1a
(0)
[0]
1a

(0 . . . +1)
[0 . . . –1]

3

(–1 . . .
+wa)

[1–wa–wb
. . .

–wa–1]
3a*

(–wb . . .
+wa)
[0 . . .

–wa–wb]
1a

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
+wab)
[0 . . .

–wa–wb]
3a*

(–wba . . .
1–wba)

[0 . . . –1]
3

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

(–wb . . .
+wa)
[0 . . .

–wa–wb]
3

1a’
(0)
[0]
1a’

(0 . . . +1)
[0 . . . –1]

2

(–wb . . .
+wa)
[0 . . .

–wa–wb]
1a

(–1 . . .
+wa)

[1–wa–wb
. . .

–wa–1]
2a*

(–wba . . .
+wab)
[0 . . .

–wa–wb]
2a*

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–wba . . .
1–wba)

[0 . . . –1]
2

(–wb . . .
+wa)
[0 . . .

–wa–wb]
2

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

2a*,2a’
(0)
[0]

2a*2a’

(0 . . .
+wba)
[0 . . .
–wba]

1

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
+wab)
[0 . . .

–wa–wb]
2a*

(–wba . . .
0)

[0 . . .
–wba]
2a*,2a’

(–wba . . .
wa)

[wa . . .
–wba]

1a

(–wba . . .
0)

[0 . . .
–wba]

1

(wab . . .
–wba)

[–wba . . .
wab]

2

(–wba . . .
0)

[0 . . .
–wba]

2

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

3a*,3a’
(0)
[0]

3a*3a’

(0 . . .
+wba)
[0 . . .
–wba]

1

(–wba . . .
+wab)
[0 . . .

–wa–wb]
3a*

(–wba . . .
0)

[0 . . .
–wba]

1a

(–wba . . .
wa)

[wa . . .
–wba]

1a

(–wba . . .
0)

[0 . . .
–wba]
3a*,3a’

(wab . . .
–wba)

[–wba . . .
wab]

3

(–wba . . .
0)

[0 . . .
–wba]

1

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

(–wba . . .
0)

[0 . . .
–wba]

3

1,1\b
(0)
[0]
1

(+1 . . .
1–wba)
[0 . . .
+wba]
3b*,3b’

(–wba . . .
1–wba)

[0 . . . –1]
3

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–wba . . .
0)

[0 . . .
–wba]

1

(wab . . .
–wba)

[–wba . . .
wab]

3

(1–wba
. . .

1–2wba)
[0 . . .
+wba]
3b*,3b’

(1–wba+wa
. . .

1–wba–wb)
[0 . . .

wa+wb]
1b

(1–wba
. . . –wba)

[0 . . .
+1]
1b

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

3b

1’,1’\b
(0)
[0]
1

(+1 . . .
1–wba)
[0 . . .
+wba]
2b*,2b’

(–wba . . .
+wab)
[0 . . .

–wa–wb]
1

(–wba . . .
1–wba)

[0 . . . –1]
2

(wab . . .
–wba)

[–wba . . .
wab]

2

(–wba . . .
0)

[0 . . .
–wba]

1

(1–wba+wa
. . .

1–wba–wb)
[0 . . .

wa+wb]
1b

(1–wba
. . .

1–2wba)
[0 . . .
+wba]
2b*,2b’

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

2b*

(1–wba
. . . –wba)

[0 . . .
+1]
1b

2
(0)
[0]
2

(+1 . . . 0)
[0 . . .
+1]
1b

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

(–wb . . .
+wa)
[0 . . .

–wa–wb]
2

(–wba . . .
0)

[0 . . .
–wba]

2

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

(1–wba
. . . –wba)

[0 . . .
+1]
1b

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

2b*

(1–wb . . .
–1)

[–wa . . .
2–wa–wb]

2b*

(–wb . . .
wa)

[1 . . .
1–wa–wb]

1b

3
(0)
[0]
3

(+1 . . . 0)
[0 . . .
+1]
1b

(–wb . . .
+wa)
[0 . . .

–wa–wb]
3

(–1 . . . 0)
[1–wa–wb
. . .

–wa–wb]
1

(–wba . . .
wab)
[0 . . .

–wa–wb]
1

(–wba . . .
0)

[0 . . .
–wba]

3

(1–wba
. . .

1–wba–wb)
[0 . . . wb]

3b

(1–wba
. . . –wba)

[0 . . .
+1]
1b

(–wb . . .
wa)

[1 . . .
1–wa–wb]

1b

(1–wb . . .
–1)

[–wa . . .
2–wa–wb]

3b
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Define types of extremities: 0a is an extremity of an odd chain of type 0, 0 is an extremity of an even
chain of type 0, 1a is a hanging extremity of a chain of type 1a, 1a’ is a nonhanging extremity of a chain
of type 1a, 2a* is an extremity of a chain of type 2a* (respectively, 2a’), 3a* is an extremity of a chain
of type 3a* (respectively, 3a’), 1 is a hanging extremity of a chain of type 1 with singular b-vertices,
1’ is a nonhanging extremity of a chain of type 1 with singular b-vertices (respectively, 1\b and 1’\b
are extremities of chains of type 1 without singular b-vertices), 2 is an extremity of a chain of type
2, and 3 is an extremity of a chain of type 3.

Denote by ΔX the increment of X, i.e., the difference of values of X when passing from G to o(G),
ΔX= X(o(G)) − X(G). In Table 2, we present number segments which contain all possible increments of
T (in parentheses) and P (in square brackets) from Equations (1a)–(2) when joining an extremity of
a chain with the row name and an extremity of a chain with the column name, i.e., when passing
from G to o(G). These segments are merely lower and upper estimates for T and P, which is sufficient
for the following step. The increments are given as functions of the costs wa and wb. At the bottom
of the same cell, we give the type of the chain obtained as a result of this passing, i.e., joining the
initial chains. For instance, joining the extremity 2a* or 2a’ with any extremity has the same increment
of all arguments in Equation (1a) except for ΔKb, and the corresponding ΔP is given in the cells of
row {2a*, 2a’} in Table 2. Here, wb,a is equal to wb for 2a* and wa for 2a’. Similarly, this applies to the
pairs 3a* and 3a’, 1 and 1\b, and 1’ and 1’\b. Next, (0) means that the corresponding quantity “does
not change”, (−wa) means “reduces by at most wa”, (+wa) means “increases by at most wa”, (1 − wa)
means “increases by at most 1 − wa”, etc.; an ellipsis denotes numbers between the ends of the given
number segments. Bounds for ΔT are easily computed through bounds for ΔP and increments of other
arguments in Equation (2), with the latter being easy to find.

Thus, the problem consists precisely of estimating ΔP. For that, we use a functional P−(M,M1),
where M is a set consisting of two chains in G whose types are the one from the row name and the
one from the column name, while M1 consists of a single chain in G with the name given in the
corresponding cell. The functional itself is the minimum increment of P when replacing M with M1 over
all graphs G containing M. Given the functional P−(M,M1), one can compute a functional P+(M,M1)
as a function of wa and wb which is the maximum increment of P when replacing M with M1 over all
graphs G containing M. Specifically, we have the equality P+(M,M1) = −P−(M1,M). Note that Table 2 is
symmetric around the main diagonal.

Thus, to compute P−(M,M1), we need Lemma 3 below, where M consists of different chains,
denoted by 1 and 2, and M1 consists of one corresponding chain, denoted by 3. If D is a maximal
domain in a graph G containing M, we denote by G’ the graph that contains all chains from M and all
chains from elements in D which intersect with M. These elements themselves form a maximal domain
D’ in G’. Indeed, if D’ is not maximal, strictly extend it to a maximal domain in G’, which together with
elements in D\G’ forms a domain in G with quality strictly greater than that of D, a contradiction.

Lemma 3. We have P(o(G)) − P(G) ≥ P(o(G′)) − P(G′).

Proof. Recall that such a difference was called the increment of the corresponding quantity. Denote the
left-hand side of the inequality by d, and the right-hand side, by d’. Consider D\D’ (elements of D that
do not contain chains 1 and 2), D1, a maximal domain in o(G’), and D2, the result of replacing D’ with
D1 in D. Then, d ≥ P(D2) − P(D) = P(D1) − P(D’), since P(D2) = P(D1) + P(D2\D1) and P(D) = P(D’) +
P(D2\D1). �

Thus, we want to find minG′P(o(G′)) − P(G′). Let X be a set containing at most two polytypes
α* and β* (one for each element of D’), and let Y be a set containing at most four of the types of
which these polytypes are composed (types of the chains contained in the corresponding elements
of D’) and also containing the types of the initial chains 1 and 2. There exists a G” for which these
polytypes correspond to disjoint elements, and for such a G” the pair D” = {α*, β*} is a polytype of a
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domain in G”, not necessarily maximal. In the last case,
∑

α∗∈X
P(α∗) is smaller than the quality P(G”),

and such an X is inessential when searching for the minimum. Given G”, we form the corresponding
o(G”) and find in it an actual maximal domain and the quality P(o(G”)), i.e., the minuend is definitely
correct, and the subtrahend may be smaller than required. Note that P(D’) = P(D”), as well as for other
domains, since the quality of any domain does not change when changing chains but preserving their
types. Through an exhaustive search over all such X, we find the desired lower bound; in this way,
Table 2 is filled. Take note that the number of possible sets X is not greater than the squared number of
interactions, and X contains at most eight types. Therefore, due to an exhaustive search over all X and
finding a maximal domain in o(G”), computing P-(M,M1), takes constant time.

Note that if the initial chains are even, then T’ increases by 1 − wa; otherwise, it does not change;
simple observations of this kind are omitted in what follows. Let us show how seven cells in Table 2
are filled, with the other being filled similarly.

(1) Cell 1a,1a. After the join, we obtain a chain of type 3a*. If the initial chains have hanging edges,
then B reduces by 1 and S does not change. If at least one of the initial chains has an odd extremal
segment, then, vice versa, B does not change and S reduces by 1, D reduces by 1, and Kb reduces by
1. Therefore, T + P reduces by wa + wb. Our functionals are as follows: P−(1a,1a; 3a*) = −wa − 1 and
P+(1a,1a; 3a*) = min(1 − wa − wb,0). In other words, either P reduces by at least wa + wb − 1 but at
most wa + 1 (if wa + wb − 1 > 0), or P does not increase and reduces by at most wa + 1 (otherwise).
Therefore, we have |ΔT| ≤ 1.

(2) Cell 1a,2. After the join, we obtain a chain of type 1 (it is not involved in interactions).
Similarly to case (1), we obtain that T + P reduces by wa + wb. We have P−(1a,2; 1) = −wa − wb, P+(1a,2;
1) =min(1 − wa − wb,0). In other words, either P reduces by at least wa + wb − 1 (if wa + wb − 1 > 0) but
at most wa + wb, or P does not increase and reduces by at most wa + wb (otherwise). Therefore, |ΔT| ≤ 1.

(3) Cell 2a,3a. After the join, we obtain a chain of type 1a. Then, T + P reduces by wb − wa if the
type of the 3a-chain is 3a* and does not change if it is 3a’. We have P−(2a,3a*; 1a) = −wb, P−(2a,3a’; 1a) =
−wa, P+(2a,3a*; 1a) = wa, and P+(2a,3a’; 1a) = wa. In other words, P reduces by at most wb in the first
case and by at most wa in the second and increases by at most wa in both cases.

(4) Cell 2a,1’. After the join, we obtain a chain of type 2. Then, B, S, and D do not change. We have
P–(2a,1; 2) = −wb, P+(2a,1; 2) =max(wa + wb − 1,0).

(5) Cell 1,3. After the join, we obtain a chain of type 3b. The increment of T + P is 1 − wb if the
chain of type 1 contains a b-vertex, and 1 − wa otherwise. We have P−(1,3; 3b) =min(1 − wa − wb,0) and
P+(1,3; 3b) = wb. Subtracting from the increment of T + P three possible increments of P, equal to 1 −
wa − wb, 0, or wb, we obtain a number of absolute value no greater than 1.

(6) Cell 2,2. After the join, we obtain a chain of type 2b*. The increment of T + P is 1 − wa − wb.
We have P−(2,2; 2b*) = −wa and P+(2,2; 2b*) = 2 − wa − wb. Subtracting from the increment of T + P all
possible increments of P, equal to −wa or 2 − wa − wb, we obtain a number of absolute value no greater
than 1.

(7) Cell 2,3. After the join, we obtain a chain of type 1b. The increment of T + P is 1 − wb. We have
P−(2,3; 1b) =min(1 − wa − wb,0) and P+(2,3; 1b) = 1. Subtracting from the increment of T + P all possible
increments of P, equal to 1 − wa − wb, 0 or 1, we obtain a number of absolute value no greater than 1.

Thus, the result for OM follows from the fact that, according to Table 2, T changes by at most 1.
The next simple lemma is used in what follows.

Lemma 4. Let X(G) be a function of a graph G, and let ΔX(G,G1) be its increment when passing from G to G1.
Then,

1. ΔX(G,G1) = −ΔX(G1,G). In particular, if o is an operation, then ΔX(G,o(G)) =

−ΔX(o(G),G). If o is a composition of operations o1 and o2 (first o1 and then o2), then
ΔX(G,o(G)) = ΔX(G,o1(G)) + ΔX(o1(G),o(G)).

2. For any graphs G and G1 and any operations o and o1, if ΔX(G,G1) = ΔX(o(G),o1(G1)), then ΔX(G,o(G))
= ΔX(G1,o1(G1)).
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Proof. The first claim is obvious. The second follows from the equalities ΔX(G,o(G)) = ΔX(G,G1) +
ΔX(G1,o1(G1)) − ΔX(o(G),o1(G1)) = ΔX(G1,o1(G1)). �

3. o is a Cut. This operation is the inverse to OM; thus, the result follows from case 2 and Lemma
4.1.

4. o is an SM. Represent o as a composition of a cut and a join. By Lemma 4.1, the increment
obtained in a composition of operations is the sum of increments obtained in each of them.

4.1. Reversal (i.e., rearrangement of a connected fragment of edges in reverse order at the same
place) of an extremal fragment of the chain. Denote by 1 and 2 the extremities of the reversed fragment
and, by 2’, the arising free endpoint of the remaining chain. Consider two joins: the first is the inverse
to the cut (the first operation of the reversal), and the second is the join from the reversal. They are
either both a- or both b-joins. We go over all rows of Table 2 in the role of the endpoint 2’ and over
pairs of columns as the extremities 1 and 2; the latter are either of types 1a or 1a’ or they are a pair of
identical extremities of types 0a, 2a*, 2a’, 3a*, or 3a’. The increment of T when making a cut is opposite
to the increment of T when joining 2 and 2’, as for any mutually inverse operations. By Lemma 4.1 it
suffices to check the following: when joining the extremities 2 and 2’ and extremities 1 and 2’, we obtain
increments with the absolute value of their difference no greater than 1.

Let us give examples; other pairs of joins are considered similarly. Cases of a-joins are considered
analogously to b-joins.

(1) The pair of cells 1a,1a and 1a,1a’ defines two joins: 2’ = 1a, 2 = 1a, 1 = 1a’. For the first of
them, ΔT and ΔP are, respectively, −1 + x and 1 − wa − wb − x with 0 ≤ x ≤ wa + 1; for the second,
these increments are −wb + y and 0 − y with 0 ≤ y ≤ wa + wb. The difference of increments of T is
strictly greater than 1 in absolute value if x − y > 2 − wb or x − y < −wb (this region in the x,y plane is
called forbidden). This difference is equal to the increment of T upon the reversal, and we want to show
that the forbidden region is empty. The difference R of increments of P (the second minus the first) is
x − y + wa + wb − 1. In the forbidden region, R > wa + 1 or R < wa − 1. However, R is equal to the
increment of P resulting when making the reversal. The reversal result is obtained by replacing a chain
of type 3a* (the result of joining the extremities 2 and 2’) with a chain of type 1a (the result of joining
the extremities 1 and 2’). This increment of P lies in the segment [0,wa], since P−(3a*; 1a) = 0 and P+(3a*;
1a) = wa. Hence, the forbidden region is empty. Computation of P−(M;M1) in the cases where |M| = 1
or |M1| = 2 is performed as in Lemma 3.

(2) The pair of identical cells 1a,3a defines two joins: 2’ = 1a, 2 = 3a, 1 = 3a. For these joins,
ΔT is either −wb + x and −wb + y (if the 3a chain is of type 3a*) or −wa + x and −wa + y (if this chain
is of type 3a’). Although both joins are made according to the same cell, ΔT takes different values
within the same segment because of other parameters of the graph. Respectively, ΔP is 0 − x and 0 − y.
The forbidden region, which is shown to be empty, is as follows: x − y > 1 or x − y < −1. We have R = x
− y. However, R is equal to the increment of P upon the reversal (replacing a chain 3a* (the result of
joining the extremities 2 and 2’) with a chain 3a* (the result of joining the extremities 1 and 2’)), i.e.,
it is zero.

4.2. Circularization of an extremal fragment of a chain, i.e., the composition of a cut of the chain
with closing one of the parts into a cycle or loop by a join. Denote by 1 and 2 the extremities of
the circularized fragment and, by 2’, the arising free endpoint of the remaining part of the chain.
Consider two joins: the first is the inverse to the cut (the first operation of the circularization), and the
second is the join from the circularization. They are either both a- or both b-joins.

Let us make Table 3 for closing a chain into a cycle, analogous to Table 2, following the description
given in case 2.1. In Table 3, for each odd type of a chain, we give an interval of possible increments of
T and the corresponding interval of increments of P when closing this chain into a cycle by a join.
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Table 3. Increments of T and P when circularizing a chain by joining extremities.

0 1a, 1b 2a, 2b 3a, 3b

(wa − 1) (−1 . . . wa + wb − 1) (−1 . . . wb − 1) (−1 . . . wb − 1)
[0] [0 . . . −wa − wb] [0 . . . −wb] [0 . . . −wb,]

In Table 2 we go over all rows in the role of extremity 2’ and all columns in the role of extremity
2, the latter for all types of extremities of odd chains. By Lemma 4.1, it suffices to check the
following condition:

The absolute value of the difference of ΔT for joins of 2 and 2’ and joins of 1 and 2 is at most 1. (3)
Let us give examples; other pairs of joins are considered similarly. Cases of a-joins are considered

analogously to b-joins.
(1) Cell 0,1a (i.e., 2’ = 0, 2 = 1a, 1 = 1a’). Here, ΔT and ΔP are, respectively, 0 + x and 0 − x, and, in

Table 3, for chain 1a, these increments are −1 + y and 0 − y. The forbidden region for condition (3) is as
follows: x − y > 0 or x − y < −2. The difference R of increments of P is x − y. In the forbidden region,
we have, respectively, R > 0 or R < −2. However, R is equal to the increment of P when replacing a
chain of type 3 (the result of joining the extremities 2 and 2’) with a chain of type 0 (the result of joining
the extremities 1 and 2) and cannot take these values. Therefore, the forbidden region is empty.

(2) Cell 1a,1a (i.e., 2’ = 1a, 2 = 1a, 1 = 1a’). Here, ΔT and ΔP are, respectively, −1 + x and 1 − wa

− wb − x. The forbidden region for condition (3) is as follows: x − y > 1 or x − y < −1; R = x − y +
wa + wb − 1. In the forbidden region, R > wa + wb or R < wa + wb − 2. However, R is equal to the
increment of P when replacing a chain of type 3a with a chain of type 1a and cannot take these values.
Therefore, the forbidden region is empty.

(3) Cell 2,3a (i.e., 2’ = 2, 2 = 3a, 1 = 3a). Here, ΔT and ΔP are, respectively, −wb + x (or −wa + x)
and 0 − x, and, in Table 3, for chain 3a, these increments are −1 + y and 0 − y. The forbidden region
for condition (3) is as follows: x − y > wb or x − y < wb − 2 (or: x − y > wa or x − y < wa − 2); R = x
− y. In the forbidden region, R > wa or R < wb − 2. However, R is equal to the increment of P when
replacing a chain of type 1 with a chain of type 2 and (since P+(1;2) =max(wa + wb − 1,0)) cannot take
these values. Therefore, the forbidden region is empty.

4.3. SM is applied to a cycle (or a loop) and a chain, i.e., a cycle or a loop is cut and the obtained
chain is lengthened. This operation is the inverse to the preceding one (case 4.2); therefore, by Lemma
4.1, we have |ΔT| ≤ 1.

4.4. SM is applied to two chains: the first is cut, and the second is joined. Denote by 1 the arising
free extremity in the cut chain, which is joined with an extremity of the second chain, denoted by 2’.
The other arising free extremity of the cut chain is denoted by 2. Consider two joins: the first of them is
the inverse to the cut (the first operation in our SM), and the second is the final OM. They are either
both a- or both b-joins. We go over all rows of Table 2 in the role of extremity 1 and over all pairs of
columns in the role of extremities 2 and 2’. By Lemma 4.1, it suffices to check the following: for joins
of extremities 1 and 2 and extremities 1 and 2’ we obtain increments with the absolute value of their
difference no greater than 1.

Let us give examples; other pairs of joins are considered similarly. Cases of a-joins are considered
analogously to b-joins.

(1) The pair of cells 1a,0 and 1a,1a (i.e., 1 = 1a, 2 = 0, 2’ = 1a). When making the join according to
the first cell, we have ΔT = 0 + x, 0 ≤ x ≤ 1. When making the join according to the second cell, ΔT = −1
+ y, 0 ≤ y ≤ wa. The difference of these expressions (the second minus the first) is y − x − 1. Its absolute
value is greater than 1 if y − x > 2 or y − x < 0 (the forbidden region). The corresponding difference
R of increments of P is x − y + 1 − wa − wb, which, for y − x > 2, yields R < −1 − wa − wb, and for y
− x < 0, R > 1 − wa − wb. However, R is equal to the increment of P when making the original SM
operation. The result is obtained by replacing chains of types 3 (joining the extremities 1 and 2) and 1a
(the chain with extremity 2’) with chains of types 3a* (joining the extremities 1 and 2’) and 0 (the chain
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with extremity 2). The equalities P−(1a,3; 3a*,0) = −wa and P+(1a,3; 3a*,0) =min{0,1 − wa − wb} imply
that such values of R are impossible and that the forbidden region is empty.

(2) The pair 2a*,1 and 2a*,1’ (i.e., 1 = 2a*, 2 = 1, 2’ = 1’). When making the join according to the
first cell, we have ΔT = −wb + x. When making the join according to the second cell, ΔT = −wb + y.
The difference of these expressions (the second minus the first) is y − x. The forbidden region is x − y
< −1 or x − y > 1. The corresponding difference R of increments of P is x − y + wa. In the forbidden
region, R < −1 + wa or R > 1+wa. However, R is equal to the increment of P when replacing chains
of types 1 (joining the extremities 1 and 2) and 1 (the chain with extremity 2’) with chains of types 2
(joining the extremities 1 and 2’) and 1 (the chain with extremity 2). The equalities P−(1,1; 2,1) = 0 and
P+(1,1; 2,1) =max{0,wa + wb − 1} imply that the forbidden region is empty.

(3) The pair 1,1a and 1,1 (i.e., 1 = 1, 2 = 1a, 2’ = 1). When making the join according to the first
cell, we have ΔT = −wb + x. When making the join according to the second cell, ΔT = 1 − 2wb + y.
The difference of these expressions is y − x + 1 − wb. The forbidden region is x − y < −wb or x − y > 2 −
wb. The corresponding difference R of increments of P is x − y + wb. In the forbidden region, R < 0 or R
> 2. Under the SM, chains of types 3 and 1 are replaced with chains of types 1a and 3b. The equalities
P−(3,1; 1a,3b) = wb and P+(3,1; 1a,3b) = 1 imply that the forbidden region is empty.

(4) The pair (1,1\b),1a and (1,1\b),3 (i.e., 1 = 1 or 1 = 1\b, 2 = 1a, 2’ = 3). When making the join
according to the first cell, we have ΔT = −wb,a + x, where the index b occurs in the case 1 = 1, and index
a, in the case 1 = 1\b. When making the join according to the second cell, ΔT = −wb,a + y. The forbidden
region is x − y < −1 or x − y > 1. The corresponding difference R of increments of P is x − y + 1. In the
forbidden region, R < 0 or R > 2. Under the SM, chains of types 1 and 3 are replaced with chains of
types 1a and 1b. The equalities P−(1,3; 1a,1b) =min(1,wa + wb) and P+(1,3; 1a,1b) = wa + wb imply that
the forbidden region is empty.

(5) The pair 1,3a* and 1,1’ (i.e., 1 = 1, 2 = 3a*, 2’ = 1’). When making the join according to the first
cell, we have ΔT= −wb + x. When making the join according to the second cell, ΔT = 1 − wb + wa − y.
The forbidden region is x + y<wa or x + y>2 + wa. The corresponding difference R of increments of P is
x + y − wa. In the forbidden region, R < 0 or R > 2. Under the SM, chains of types 1 and 3 are replaced
with chains of types 3a* and 1b. The equalities P−(1,3; 3a*,1b) = wb and P+(1,3; 3a*,1b) =min(1,wa + wb)
imply that the forbidden region is empty.

(6) The pair 2,1a and 2,1 (i.e., 1 = 2, 2 = 1a, 2’ = 1). When making the join according to the first
cell, we have ΔT = −1 + x. When making the join according to the second cell, ΔT = 1 − wb − y.
The forbidden region is x + y < 1 − wb or x + y > 3 − wb. The corresponding difference R of increments
of P is x + y − 1 + wa + wb. In the forbidden region, R < wa or R > 2 + wa. Under the SM, chains of
types 1 and 1 are replaced with chains of types 1a and 1b. The equalities P−(1,1; 1a,1b) = wa + wb and
P+(1,1; 1a,1b) = wa + wb imply that the forbidden region is empty.

(7) The pair 2,2 and 2,3 (i.e., 1 = 2, 2 = 2, 2’ = 3). When making the join according to the first
cell, we have ΔT = 1 − wb − x. When making the join according to the second cell, ΔT = −wb + y.
The forbidden region is −x − y > 0 or −x − y < −2. The corresponding difference R of increments of P is
−x − y + wa + 1. In the forbidden region, R > wa + 1 or R < wa − 1. Under the SM, chains of types 2b*
and 3 are replaced with chains of types 1b and 2. The equalities P−(2b*,3; 1b,2) = 0 and P + (2b*,3; 1b,2)
= wa imply that the forbidden region is empty.

5. o is a DM. Represent o as a composition of two cuts and two joins. One can easily check that,
when making any operation, B + S changes by at most 1. This property of an operation is called the B +
S property.

5.1. Reversal in a cycle or in a chain. Let both cuts be interior (i.e., on both sides of each cut there
are singular vertices); then, P and D do not change, since the chain type does not change. The result
follows from the B + S property. Let a reversal be made in a chain where at least one cut is exterior. The
extremity of the chain adjacent to an exterior cut is called exterior; let it be the left-hand extremity. The
other cut is called interior, as well as the edge that it cuts. To reduce the number of cases to consider, note
that, according to the upper row of Table 2, joining any chain with an odd chain of type 0, as well as the
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inverse cut operation, does not change T. We call this the odd cutting property. Therefore, if at one end
(or at both ends) outside the chain there is a fragment (fragments) of oddly many conventional edges,
then we can cut it (them) out, make the reversal, and then again join it (them) to the resulting chain.
Thus, it remains to consider the case where exterior cuts are made at extreme edges. If the reverted
segment has no singular vertices, the chain does not change. Otherwise, consider two possibilities.

(1) Two singular vertices are joined into one, i.e., B reduces by 1. Then, one cut is interior and the
other exterior. Consider variants of changing the parity of the extremal segment. If it does not change,
the result follows from the B + S property. If an even extremal segment is replaced with an odd one,
S increases by 1, since an extremal odd segment appears. The following variants of changing the chain
type are possible: 3a changes into 1a, 1 changes into 2, 1a changes into 2a, and 3 changes into 1. In the
first two variants, D does not change, and P does not reduce and increases by at most wa. In the last
two variants, D reduces by 1 and P does not increase and reduces by at most wa. If an odd extremal
segment is replaced with an even one, S does not change. Now, the following variants of changing the
chain type are possible: 1a changes into 3a, 2 changes into 1, 2a changes into 1a, and 1 changes into 3.
In the first two variants, D does not change, and P does not increase and reduces by at most wa. In the
last two variants, D increases by 1, and P does not reduce and increases by at most wa. In all the cases,
T changes by at most 1.

(2) Assume that no merging of two singular vertices into one occurs, i.e., B does not change, and
let one cut be interior and the other exterior. Consider variants of changing the parity of the extremal
segment. If it does not change, the result follows from the B + S property. If an even extremal segment
is replaced with an odd one, S either does not change or increases by 1. The following variants of
changing the chain type are possible: 3a changes into 1a, 1 changes into 2, 1a changes into 2a, and
3 changes into 1. In the first two variants, D does not change, and P does not reduce and increases by
at most wa. In the last two variants, D reduces by 1, and P does not increase and reduces by at most wa.
If an odd extremal segment is replaced with an even one, S either does not change or reduces by 1.
Now, the following variants of changing the chain type are possible: 1a changes into 3a, 2 changes into
1, 2a changes into 1a, and 1 changes into 3. In the first two variants, D does not change, and P does not
increase and reduces by at most wa. In the last two variants, D increases by 1, and P does not reduce
and increases by at most wa. In all the cases, |ΔT| ≤ 1. If both cuts are exterior, then, taking into account
the odd cutting property, the chain does not change.

5.2. Breaking a cycle into two cycles or a cycle and a loop (cutting out a cycle or a loop from a cycle).
In this case, T’ either reduces by 1 − wa or does not change; T” either does not change, or increases by
wa, or reduces by wa; P does not change; and (wb − wa)Kb either does not change or increases by wb −
wa. Therefore, |ΔT| ≤ 1.

5.3. Cutting out a fragment from a chain and circularizing it (we consider the case where a cycle
is formed; the case of a loop reduces to removal of a vertex). Here, c increases by 1. If this fragment
contains no singular vertices, consider two cases. Let no merging of two singular vertices into one
occur. Then, one fragment splits into two, one of the new segments being cyclic and, hence, even.
Then S reduces by 1, since a cyclic segment appears, and the chain type does not change; T reduces by
1. Now, let two singular vertices merge into one. Then, one odd segment is circularized with adding an
additional conventional edge, S does not change, the chain type does not change, and T reduces by 1.

If the fragment contains singular vertices, we consider the same two possibilities as in case 5.1
and repeat all arguments with replacing the reversal operation by circularization. The only case that
must be considered separately is the case where both cuts are exterior. One can easily see that the odd
cutting property holds for the circularization operation, as well as for the reversal. Therefore, it suffices
to consider the case where both cuts are made at extremal edges. This results in a 0-chain of length 1.
If merging of vertices occurs, then no segment appears in the cycle, and S increases by 1 due to the
appearance of the above-mentioned 0-chain. In this case, the initial chain is of type 3a or 3b, such that,
when it turns into a chain of type 0, D reduces by 1, and P does not increase and reduces by at most wa.
In all the cases, |ΔT| ≤ 1.
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Let there be no merging of vertices; then, two extremal segments of the chain are transformed
into other two segments with the same total length. One of them is the above-mentioned 0-chain of
length 1, and the other is located inside a cycle. If both extremal segments are odd, then S reduces by 1,
the initial chain is of type either 2a or 2b, D does not change, and P does not increase and reduces by at
most wb. If at least one of the extremal segments is odd, then S does not change, the initial chain is of
type 1a, 1b, 3a, or 3b, D reduces by 1, and P does not increase and reduces by at most wa + wb. In all the
cases, |ΔT| ≤ 1.

5.4. Joining two cycles into one, joining a cycle and a loop, or joining two loops. In this case, T’
either increases by 1 − wa or does not change, T” does not change, increases by wa, or reduces by wa, P
does not change, and (wb − wa)Kb either does not change or reduces by wb − wa. Therefore, |ΔT| ≤ 1.

5.5. One cut is made in a chain, and the other in a cycle or loop. The case of a loop is trivial;
consider the case of a cycle. The cycle is cut and inserted into a chain. If no merging of vertices
occurs, then this operation is the inverse to that considered in case 5.3. Otherwise, B reduces by 1.
Furthermore, c reduces by 1. If the cut in the chain is interior or the parity of the extremal segment
does not change, the result follows from the B + S property. Next, we repeat the arguments from case
5.1, subcase (1).

5.6. Each cut is made in a separate chain.
5.6.1. Both cuts are interior. In what follows, we implicitly use the B + S property without referring

to it. To trace the changes of D and P, consider types of both chains. If the set of types of the two chains
does not change or the change consists in replacing the «asterisk» with the «prime» in the type of one
of the chains or vice versa, then the result follows from the fact that, when making such a replacement,
P changes by at most wb − wa, since P−(2b*; 2b’) = P−(3a*; 3a’)= wa − wb and P−(2b’; 2b*)= P−(3a’; 3a*)
= 0. In what follows, we call this case the identical transformation and omit it from consideration.
Consider other cases.

(1) Both chains are odd, and either both are a- or both are b-chains. T’ does not change. If both
chains are of type 1a, the only nonidentical change of types is transformation of this pair into a pair
of chains of types 2a and 3a or 2a and 3a’: D reduces by 1, and (wb − wa)Kb either reduces by wb −
wa or does not change. Since P−(1a,1a; 2a,3a) = −2wa, P−(1a,1a; 2a,3a’) = −1, and P+(1a,1a; 2a,3a) =
P+(1a,1a; 2a,3a’) = 1 − wa − wb, we have |ΔT| ≤ 1. Type 1b is considered similarly. Any other pair of
types of the initial chains (except for 2a and 3a, which give the inverse transformation) results in the
identical change.

(2) Both chains are odd, one of them being an a-chain and the other a b-chain. If their pair of types
is 1a,1b, then, when making a DM, it transforms into either a 1,1 or a 2,3 pair: T’ reduces by 1 − wa; (wb
− wa)Kb in the first case either reduces by wb − wa or does not change and, in the second case, does not
change. In the first case, D reduces by 2, and P reduces by wa + wb. In the second case, D reduces by
1, and P reduces by at most 1 and at least min(1,wa + wb) (since P + (1a,1b; 2,3) =max(−1,−wa − wb)).
If the pair of initial types is 1a,2b or 1a,2b’, then, when making a DM, it transforms into a pair 1,2: T’
reduces by 1 − wa; (wb − wa)Kb does not change, reduces by wb − wa (in the case of 2b), or increases by
wb − wa (in the case of 2b’); D reduces by 1; P reduces by at most 1 and at least wb (in the case of 2b) or
wa (in the case of 2b’). The pair 1a,3b is considered similarly. If the pair of initial types is 2a,2b or 2a,2b’,
then, when making a DM, it transforms into a pair 2,2: T’ reduces by 1 − wa; (wb − wa)Kb either does
not change or increases by wb − wa; D does not change; P does not increase and reduces by at most 2 −
wa − wb, since P−(2a,2b; 2,2) = P−(2a,2b’; 2,2) = wa + wb − 2 and P + (2a,2b; 2,2) = P + (2a,2b’; 2,2) = 0.
The pairs 3a,3b or 3a’,3b are considered similarly. If the initial pair is 2b,3a, 2b’,3a, 2b,3a’, or 2b’,3a’, then,
when making a DM, it transforms into a pair 1,1: (wb − wa)Kb does not change, increases by wb − wa

(for the last three pairs), or reduces by wb − wa (for the first pair); T’ reduces by 1 − wa; D reduces by 1;
P reduces by wb (in the first three cases) or wa (in the last case). Similarly, this applies to the pair 2a,3b.
In all the cases, |ΔT| ≤ 1.

(3) Both chains are even. The only nontrivial transformation relates to pairs 2,3 and 1,1;
other transformations are either identical or inverse to those considered in case (2). T’ does not
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change. When a pair 2,3 transforms into 1,1, D reduces by 1, (wb − wa)Kb either does not change or
reduces by wb − wa, and ΔP =min(0,1 − wa − wb).

(4) One chain is odd, and the other even: T’ does not change. If a pair 1b,1 transforms into 2b,3 or
2b’,3, then D does not change; (wb − wa)Kb does not change, increases by wb − wa (for the first case),
or reduces by wb − wa (for the second case); ΔP is not less than wb − 1 and wa − 1, respectively, and not
greater than 0, whence the desired follows. Transformation into a pair 3a,2 is similar. If a pair 1b,2
transforms into 2b,1 or 2b’,1, then D reduces by 1, (wb − wa)Kb either does not change or reduces by wb
− wa, and ΔP is not less than − wb and not greater than min(0,1 − wa − wb), whence the desired follows.
Transformation of a pair 1a,3 into 3a,1 is similar. Transformation of a pair 2a,1 into 1a,2 is inverse to the
one considered above. If a pair 2a,3 transforms into 3a,2 or 3a’,2, then D does not change, ΔP is not less
than wa − 1 and not greater than 1 − wb, and Kb does not change. Transformations 2a,3 into 3a’,2 and
2b’,3 into 3b,2 are considered similarly. Transformations 2a,3 into 1a,1, 3a,1 into 1a,3, and 3a,2 into 1a,1
are inverse to those considered above. For a pair 3a,3, the identical transformation is only possible.

5.6.2. One of the cuts is exterior. We reduce this case to an SM or OM operation as follows:
the extremity of the chain adjacent to an exterior cut is called exterior. The other cut is called interior,
as well as the edge that it cuts. If an exterior cut is at neither an extremal edge nor the edge next to
it, we remove two conventional edges from the exterior end. Then, T reduces by 1 both in the initial
graph and in the resulting one, which allows us to apply Lemma 4.2. Therefore, it suffices to consider
cases where the exterior cut is at an extremal edge of a chain or at the next to it.

(1) The exterior cut is at the next to extremal edge. If it is conventional, remove two extremal edges
together with the exterior cut, thus replacing the DM with an SM (see Figure 5a). Then, T reduces by 1
both in the initial graph and in the resulting one, which by Lemma 4.2 reduces the problem to the SM
case. If the edge with the exterior cut is singular, remove the extremal edge together with its endpoints,
replacing an odd extremal segment of length 1 with a hanging edge (the singular vertex becomes an
endpoint of a hanging edge). Again, the DM is changed to an SM with reducing T by 1 in both graphs
(see Figure 5b).

(2) The exterior cut is at the extremal edge, and this edge is conventional. If the interior edge is
conventional or its singular vertex is on the side that is joined with the exterior extremity, move the
exterior cut outside the end of the chain (i.e., make it “fictitious”) and move the interior cut to the
next edge in the opposite direction from the potential singular vertex (and, if this edge is missing,
then outside the end of the chain) (see Figure 5c). Thus, the DM is changed to an SM (or, respectively,
to the identity operation, which changes nothing). The result of the operation does not change.
If the singular vertex is on the other side, move the exterior cut from the end to the next edge and,
accordingly, move the interior cut to the neighboring edge (see Figure 5d). The result of the operation
does not change, and the problem reduces to that considered in the preceding case.

(3) The exterior cut is at the extremal edge, and this edge is singular. If the interior edge is
conventional or its singular vertex is on the side that is joined with the exterior extremity, we proceed as
in the preceding case (see Figure 6a). Otherwise, move the exterior cut outside the end of the chain and
move the interior cut to the neighboring edge in the opposite direction from the singular vertex (and, if
this edge is missing, then outside the end of the chain) (see Figure 6b–d). Thus, the DM is replaced
with an SM or OM. To obtain the result of the first operation (DM) from the result of the second (SM
or OM), merge the two singular vertices by deleting the conventional edge that separates them, and
add a chain from one conventional edge (in the case of OM) or add two extremal conventional edges
to the chain (if the interior cut was moved to a conventional edge), or replace a hanging edge with
an extremal segment of length 1 (if the interior cut was moved to a singular edge). In all the cases,
the transformation does not change T, which completes the analysis of the cases.

131



Mathematics 2020, 8, 2001

 

Figure 5. DM with an exterior cut at a conventional edge. (a) Reduction to an SM for an exterior
cut at the next to extremal conventional edge. Top: initial DM. Bottom: SM obtained from the initial
DM by removing two conventional edges. (b) Reduction to an SM for an exterior cut at the next to
extremal singular edge. (c) Reduction to an SM for an exterior cut at an extremal conventional edge.
The fictitious cut outside the end of the chain corresponds to replacement of the DM with an SM.
(d) Reduction of a cut at an extremal conventional edge to the case considered in Figure 5b.
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Figure 6. DM with an exterior cut at an extremal singular edge. Reduction to an SM: first case (a), second
case (b), and third case (c); reduction to an OM (d).

Theorem 1 is proven.

4. Algorithm and Proof of Theorem 2 (Case III)

Theorem 2 considers Case III; it is a particular case of Theorem 1.

Theorem 2. If DCJ operations are assigned with equal costs w and the deletion and insertion operations are
assigned with any costs wd and wi such that one of them is strictly less and the other strictly greater than
w, then the algorithm described below is of linear time complexity and outputs a sequence of operations with
total cost superior to the cost of the shortest sequence by at most an additive constant that depends only on the
operation costs.

Without loss of generality, we may assume that w = 1. Recall that wd = wa and wi = wb. In Theorem
2, we distinguish three subcases: (1) wd + wi ≤ 2, (2) wd + wi > 2 and max(wd,wi) ≤ 2, and (3) max(wd,wi)
> 2, and we enumerate them, respectively, by 1, 2, and 3. The additive exactness constant k mentioned
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in the theorem is in the first subcase not greater than wb − 1; in the second subcase, constant k is
not greater than 4wb + 2wa − 6; in the third subcase, constant k is not greater than 6wb + 2wa − 9.
In Section 4a, we describe the algorithm for the first subcase. Algorithms for the second and third
subcases, as well as proofs of their exactness, will be given elsewhere due to natural restrictions on the
size of the paper. These algorithms are akin to the algorithm for the first subcase, and the proofs of
their exactness are akin to the proof for this subcase, which is given in Section 4.2. As above, we may
confine ourselves with the case of wa ≤ wb.

4.1. Description of the Algorithm for the First Subcase

In what follows, all comparisons are made with the Algorithm from Section 2 (Case II).
Stage 0: The same, transformation of initial graphs a and b into a + b.
Stage 1: The same, cutting out all conventional edges.
Let us recall what types of chains may occur in a + b. These are odd chains: 1a, 1b, 2a (2a* and 2a’),

2b (2b* and 2b’), 3a (3a* and 3a’), 3b (3b* and 3b’), and 0, and even chains: 1a (1a* and 1a’), 1b (1b* and
1b’), 2 (2* and 2’), 3, and 0. Chains of types 2a’, 3b’, 1’b are called problem chains. Components of a + b
are divided into types (a,b)-, a-, b-, and 0- accordingly as they contain both a- and b-vertices, a- but no
b-vertices, b- but no a-vertices, or no singular vertices at all.

Stage 2: In essence, the same: Consider former 2-interactions between different chains that were
performed in Case II. Their a-quality (instead of the quality that was used in Case II) is shown in square
brackets (its definition is given right after the algorithm description, in Section 4b): 1a + 1b = 1*

b [wa +

1], 3a* + 2b* = 1a [1], 3a* + 2b’ = 1a [wa], 3a’ + 2b* = 1a [wa], 3a’ + 2b’ = 1’a [wa], 3b + 2a = 1b [1], 3 + 2 =
1*

b [wa], (1a + 2b*) + 3 = 1*
b [wa + 1], (1a + 2b’) + 3 = 1*

b [2wa], (1b + 2a) + 3 = 1*
b [wa + 1], (3a* + 1b) + 2

= 1*
b [wa + 1], (3a’ + 1b) + 2 = 1*

b [2wa], (3b + 1a) + 2 = 1*
b [wa + 1], 1a + 2 = 2a* [wa], 1b + 2 = 2b* [wa], 3

+ 1a = 3a* [wa], 3 + 1b = 3b* [wa], (3b + 1a) + (1a + 2b*) = 1*
b [wa + 2], (3b + 1a) + (1a + 2b’) = 1*

b [2wa + 1],
(3a* + 1b) + (1b + 2a) = 1*

b [wa + 2], (3a’ + 1b) + (1b + 2a) = 1*
b [2wa + 1], 1a + (1a + 2b*) = 2a* [wa + 1], 1a

+ (1a + 2b’) = 2a* [2wa], 1b + (1b + 2a) = 2b* [wa + 1], (3b + 1a) + 1a = 3a* [wa + 1], (3a* + 1b) + 1b = 3b*

[wa + 1], (3a’ + 1b) + 1b = 3b* [2wa], 1a + 1a = 3a* [wa], 1b + 1b = 3b* [wa], 1a + 2b* = 2 [1], 1a + 2b’ = 2
[wa], 1b + 2a = 2 [1], 3a* + 1b = 3 [1], 3a’ + 1b = 3 [wa], 3b + 1a = 3 [1], 3 + ((3 + 2b*) + 2a) = 1*

b [wa + 1],
3 + ((3 + 2b’) + 2a) = 1*

b [2wa], (3a* + (3b + 2)) + 2 = 1*
b [wa + 1], (3a’ + (3b + 2)) + 2 = 1*

b [2wa], (3a* + 2)
+ 2 = 2a* [wa], (3a’ + 2) + 2 = 2a* [2wa − 1], (3b + 2) + 2 = 2b* [wa], 3 + (3 + 2a) = 3a* [wa], 3 + (3 + 2b*) =
3b* [wa], 3 + (3 + 2b’) = 3b* [2wa − 1], (3 + 2b*) + 2a = 2* [1], (3 + 2b’) + 2a = 2* [wa], 3a* + (3b + 2) = 3 [1],
3a’ + (3b + 2) = 3 [wa], 3a* + 3b = 3 [1 − wa], and 2a + 2b* = 2* + 1’a [1 − wa].

Construct a maximal domain on the set of chains of a + b in the same way as in Case II but
with the a-quality instead of the quality. Having found a maximal domain M, simultaneously and
independently perform all 2-interactions that correspond to it.

Notice 3. To 2-interactions, we may add the following three interactions that are applied to two
different chains, with the term equalities: 1’b + 2a’ = 2a’, 1’b + 3b’ = 3b’, and 1’b + 1’b = 1’b. They have
zero a-qualities and reduce the number of problem chains, which produce an additive error of the
algorithm. However, they are inessential for the proof of Theorem 2. These interactions were shown in
Figure 7 in [2].

Stage 3: Execute the following 3-interactions, which reduce the number of (a,b)-components and
the number of b-components. These interactions are shown in Figure 7 below.
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Figure 7. Cont.
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Figure 7. The 3-interactions.

1. b-loop + «component with a b-singular vertex» = the same component (DM or SM operations);
2. 2 + 2 = 2 + 1’a. SM operation with cutting out two vertices of a 2-chain (an extremal a-singular

vertex and the neighboring conventional) and joining the obtained extremity with an extremal
b-singular vertex of the other 2-chain.

3. 2a + 2a = 2a, 2b* + 2b* = 2b*. Joining hanging vertices of two chains.
4. 3a* + 3a* = 3a*, 3b + 3b = 3b. OM and cutting out a conventional edge.
5. 3a* + 2 = 1a, 3b + 2 = 1b. SM.
6. 2a + 3 = 1a, 2b* + 3 = 1b. SM.
7. 1a + 3a* = 1a, 1b + 3b = 1b. OM and cutting out a conventional edge.
8. 1a + 2a = 1a, 1b + 2b* = 1b. OM.
9. 3a* + 3 = 3, 3b + 3 = 3. OM and cutting out a conventional edge.
10. 2a + 2 = 2, 2b* + 2 = 2*. OM.
11. 3 + 3 = 3. SM.
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12. 1*
a + 1*

a = 1*
a, 1b + 1b = 1b. SM.

13. 1a + 1b = 1a, 1b + 1*
a = 1b. SM.

14. 1a + 1*
a = 1a, 1b + 1b = 1b. SM.

15. 2a + 1b = 2a, 2b* + 1*
a = 2b*. SM.

16. 3a* + 1*
a = 3a*, 3b + 1b = 3b. SM.

17. 3 + 1*
a = 3, 3 + 1b = 3. SM.

18. 2 + 1*
a = 2*, 2 + 1b = 2. SM.

Repeat Stage 3 until these interactions are possible.
Stage 4: Perform autonomous reduction of remaining components to a final form.
End of the algorithm description for the first subcase.

4.2. Proof of the Algorithm Exactness for the First Subcase

Define the autonomous a-cost Aa(G) of a graph G to be the total cost of the sequence of operations
given in the autonomous reduction for G after deduction of costs of all its b-special operations, i.e.,
those reducing the number of b-singular vertices. In other words, Aa(G) accounts only for a-special
(i.e., those reducing the number of a-singular vertices) and nonspecial (i.e., not reducing the number of
singular vertices) operations. Together, they are called a-operations.

For a graph G, we use the following notation: Ba and Bb are the numbers of, respectively, a-singular
and b-singular vertices in G; S is the sum of integral parts of halved lengths of maximal connected
fragments consisting of conventional edges (referred to as segments) plus the number of extremal (on a
chain) odd segments (i.e., those consisting of an odd number of edges) minus the number of cyclic
segments; Sa is the number of segments enclosed between two singular a-edges; Ca is the number of
a-cycles; D is the number of chains of types 1a, 1b, 3a, 3b, and 3; N(t) is the number of chains of a certain
type t. Denote by A the number of a-special DCJ operations in the autonomous reduction.

Lemma 5. Let wa and wb be the removal costs for singular a- and b-vertices, and let all other operations have
cost 1. Then,

Aa(G) = (1 −wa)·(Sa − Ca + N(2b*) + N(3a*) + N(1a*)) +wa·Ba + S + D.

Proof. For every component of G, let us check the equality A = Sa − Ca + N(2b*) + N(3a*) + N(1a*), and
then sum up the obtained equalities. Each of them is implied by the following facts: when cutting
out conventional edges from any component other than an a-cycle, the number of executed a-special
operations is Sa, and, for an a-cycle, it is less by 1; the operation of circularization into a cycle is a-special
if and only if this chain is of type 2b*, 3a*, or 1a*; breaking a cycle does not contain a-special DCJ
operations. Next, the number of removals of a-singular vertices in the autonomous reduction is Ba − A,
and, similarly to the proof of Lemma 1, we obtain that the number of nonspecial operations is S + D. �

Define the a-quality Pa(s) of an interaction s to be

Pa(s) = Aa(G) − Aa(s(G)) − ca(s),

where s(G) is the graph obtained by applying s to G, and ca(s) is the total cost of a-operations in
s. The number Pa(S) shows what a-cost is saved when applying the interaction s as against the
autonomous reduction of G, i.e., without using s. Take note that, in Case II, we used the quality of
interaction, which is related to all operations instead of a-operations.

Using Lemma 4, we compute a-qualities of 2-interactions. For example, let us find the a-quality of
the interaction 1a + 1b = 1b

* (Figure 4), where ca(s) = 1. The interaction reduces Ba by 1, reduces D by 2,
and does not change all other quantities in the expression for Aa(G). Therefore, Pa(s) = wa + 1.

137



Mathematics 2020, 8, 2001

Let E be any reducing sequence for a graph G, which is arbitrarily divided into connected fragments
of operations; let us for a while call the latter interactions and denote them by s. Define Ta(G,E), the total
cost of a-operations in E, and Pa(G,E), the total a-quality of all interactions in E, where Pa(s) is formally
defined above. The following lemma is proven similarly to Lemma 2 in Section 3:

Lemma 6. For any graph G, we have Ta(G,E) = Aa(G) − Pa(G,E).

Lemma 7. After Stage 3, the algorithm outputs a graph G”’ with no polytype corresponding to any 2-interaction
of two chains.

Proof. It is important that the algorithms for Cases II (when wb = 1) and III at Stages 0, 1, and 2 completely
coincide. Maximal domains that are constructed in both cases coincide, since, through an exhaustive
search over all 2-interactions, we check the following: for wb = 1, the a-quality of any 2-interaction
is equal to the quality if the same 2-interaction (computed in Section 2). Furthermore, through an
exhaustive search, we check that all 3-interactions have zero quality. If, for G”’, there are two different
chains corresponding to some 2-interaction (its a-quality is automatically strictly greater than zero
for 0 < wa < 1), then, after Stage 2 of the algorithm for Case II applied to G with wb = 1, we use
3-interactions, followed by this 2-interaction and, then, autonomous reduction. The aggregate quality
of all interactions in such a reducing sequence is strictly greater than the aggregate quality in the
sequence output by the algorithm for Case II. By Lemma 2, this means that we have obtained a sequence
with total cost strictly less than the absolute minimum C(G), which is impossible. �

Lemma 8. After Stage 3, the algorithm outputs a graph G”’ satisfying the following condition: it contains
no more than two chains having b-singular vertices. These pairs of different chains are contained among the
following pairs of types: {2a,3a*}, {1a*,1b}, {3b,2b*}, {2a,1a*}, {3a*,1b}, {1a*,3b}, and {1b,2b*}. If the initial G has
no (a,b)-chains, then G”’ contains at most one chain with a b-singular vertex.

Proof. First claim. Through an exhaustive search, we check that, for any three types of chains
with b-singular vertices, there are two of them corresponding to a 2- or 3-interaction. The former is
impossible by Lemma 7, and the latter is possible by the definition of Stage 3. �

Second claim. Exhaustively searching over all types of chains with b-singular vertices, form all
pairs of them that do not correspond to any 2- or 3-interaction. We obtained precisely the pairs listed
in the lemma. Any two chains in this list do not correspond to these interactions.

Third claim. If an (a,b)-chain does not occur in the initial G, it does not appear while running the
algorithm, i.e., in G”’, there are only a- and b-chains. If, in G”’, there are two different chains with
b-singular vertices, then, by the second claim, their types form one of the listed pairs. However, every
chain whose type contains an asterisk is an (a,b)-chain.

Denote by T(G) the total cost of operations executed by the described algorithm on a graph G. Let
Cb and Cab be the numbers of b- and (a,b)-cycles in G, respectively; let Ipb be the indicator function of
the property «G contains a b-loop but has no components with a singular b-vertex other than loops»;
similarly, let Icb be the indicator function of having a chain with a singular b-vertex; let εb = wb − 1.

Denote by Pa(G) the total a-quality of 2-interactions when running the algorithm on a graph G.

Lemma 9. Let wa and wb be removal costs for singular a- and b-vertices, and let all other operations have cost 1.
Then,

T(G) = Aa(G) − Pa(G) + Bb + εb·(Cb + Cab + Icb + Ipb + E), where E = 0 or E = 1.

Proof. We declare each operation outside Stages 2 and 3 as an interaction. It is easily checked that
the a-quality of any such formal interaction, as well as that of any 3-interaction, is zero. By Lemma
6, the total cost of a-operations is Aa(G) − Pa(G). In a reducing sequence, the number of b-special
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operations is Bb. Let us show that the number of b-removals among them is Cb + Cab + Icb + Ipb + E.
If, in G, there are no components with a b-vertex other than b-loops, the claim is trivial. Otherwise,
the number of b-removals is equal to the number of components with a b-vertex that occur in G”’, i.e.,
before Stage 4, since a removal operation was never applied in the algorithm before; at Stage 4, only
autonomous reduction is used. This amounts to Cb + Cab original cycles, Icb chains with a b-vertex,
and E more chains from Lemma 8. �

We prove the additive exactness of the algorithm by induction on the cost C(G) of the shortest
reducing sequence for a graph G. Denote by T’(G) the value of T(G) for E = 0. Assume that, for any
operation o applied to an arbitrary breakpoint graph G, the «triangle inequality»,

c(o) ≥ T’(G) − T’(o(G)),

is valid, where c(o) is the cost of o and o(G) is the result of applying o to G. If we take for o the first
operation in the shortest sequence, by the induction hypothesis, we obtain C(o(G)) ≥ T’(o(G)) ≥ T’(G) −
c(o) and C(G) = C(o(G)) + c(o) ≥ T’(G) − c(o) + c(o) = T’(G). Therefore, the algorithm error is at most εbE
≤ wb − 1.

The proof of the triangle inequality follows the same lines as in Section 3 (Case II) by examining
all operations o. In the proof, one should use Pa, the a-quality of the maximal domain on chains in G.

5. Algorithm and Proof of Theorem 1 for Case I

It might be interesting for the reader to compare the algorithms and proofs presented above with
those related to Case I, where both costs wd and wi are not less than w, although this case was analyzed
in a preparatory work [2]. As above, it suffices to consider the case of wa ≤ wb.

Recall that, in Case I, the Algorithm consists of 8 stages.
Stage 0: The same as above: Transform initial graphs a and b into a + b.
Stage 1: The same as above: Cut out conventional edges.
Stage 2: Perform the same 2-interactions between chains as in Section 2 (except for the two

additional ones) but in the same order as they are listed, independently of their quality (i.e., we need
not choose a maximal domain M). The meaning of these interactions, as always, is that they save
maximally many operations as against the number of operations in the autonomous reduction of
a graph.

Stage 3: Perform 3’-interactions between chains, which are listed in [2]. The meaning of
3’-interactions is that they reduce the number of short chains in a + b (to be precise, chains of
types 2a’, 2b’, 3a’, 3b’, 1’a, 1’b, and 2’), thereby reducing the additive error of the algorithm, which
occurs precisely because of them.

Stage 4: Circularize chains (except for short ones) into cycles using OM or SM operations.
Stage 5: Join all cycles into one cycle and then detach final cycles from it.
Stage 6: Perform 6-interactions between a cycle and short chains, which reduce the number of

the latter. These are interactions defined by the following term equalities: (a,b)-cycle + 2a’ + 2b’ = 2’
(two DM operations) and (a,b)-cycle + 2’ = 2’ (DM and cutting out a conventional edge).

Stage 7 is applied if wb >2. Perform 7-interactions between two cycles or between a cycle and
a short chain. Their meaning is to replace the removal operation for a b-singular vertex with two
intermergings, which is advantageous if wb >2. These are the interactions defined by the following
term equalities: (a,b)-cycle + b-cycle = (a,b)-cycle + cycle of length 2 (two DM operations), b-cycle +
b-cycle = b-cycle + cycle of length 2 (two DM operations), b-cycle + 2’-chain = 2’-chain + cycle of length
2 (SM and cutting out an extremal conventional edge), (a,b)-cycle + 2a’-chain = (a,b)-cycle (SM and
OM), (a,b)-cycle + 1b’-chain = (a,b)-cycle (two SM operations), b-cycle + 2a’-chain = 2a’-chain + cycle of
length 2 (SM and cutting out an extremal conventional edge), b-cycle + 1b’-chain = 1b’-chain + cycle of
length 2 (SM and cutting out an extremal conventional edge). If wa > 2, then symmetric interactions
with a replaced by b are also performed.
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Stage 8: Remove singular vertices.
Now, we recall the proof of exactness of this algorithm, which has an additive error of at most 2w.

As all such proofs, it is based on the triangle inequality. However, for Case I, it has a distinction: T(G)
takes the form T’(G) + E(G), where T’(G) involves only easily computable characteristics of a graph G,
and E(G) ≤ 2w. The triangle inequality for T’(G) implies that C(G) ≥ T’(G), where, as always, C(G) is
the total cost of the shortest reducing sequence for G. However, for T’(G), the triangle inequality is
not always valid. To overcome this obstacle, all graphs G are divided into ranks 1, 2, and 3. Graphs of
ranks 1 and 2 have a simpler structure, although graphs of a final form fall into rank 3 (from the point
of view of the current proof, they are more complicated). For graphs G of ranks 1 and 2, we prove a
lower bound on C(G), which is stronger than C(G) ≥ T’(G); for graphs of rank 1, it is even stronger than
for those of rank 2. When passing, by operation o, from a graph of a larger rank to that of a smaller
rank, the triangle inequality is weakened by a strictly positive number Δ (depending only on these
ranks), i.e., c(o) ≥ T’(G) − T’(o(G)) − Δ. Under the inverse transformation, it is strengthened by Δ, i.e.,
c(o) ≥ T’(G) − T’(o(G)) + Δ. Then, the proof is made by induction on the shortest reducing sequence
for G; it also requires an exhaustive search over all pairs of ranks of G and o(G). For example, if G
is of rank 3 and o(G) of rank 2, then, by the induction hypothesis, we have C(o(G)) ≥ T’(o(G)) + Δ ≥
T’(G) − c(o) − Δ + Δ and C(G) = C(o(G)) + c(o) ≥ T’(G) − c(o) + c(o) = T’(G). Here, we used the fact that
the Δ by which the triangle inequality is weakened when passing from a graph of rank 3 to that of
rank 2 is equal to the number by which the lower bound on C(G) for graphs of rank 2 is strengthened.
The analogous consistency of such inequalities holds for other pairs of ranks as well. All cases of the
ranks are examined in [2].

6. Discussion

Usually, a small (slightly different from the original operation costs) explicitly specified additive
error is not considered as a violation of the algorithm exactness. In this sense, we described an exact
algorithm of linear complexity which constructs a shortest transformation of one weighted (in other
words, labeled) directed graph into another under equal costs of DCJ operations and arbitrary costs of
deletion and insertion operations. These graphs must be of degree 2 in the sense that each vertex is of
degree 1 or 2. The labeling cannot contain repetitions of names. Note that the above can be carried
over to infinite (countable) recursively enumerated sequences. The idea of the current algorithm was
based on the abstract theory developed in [11,12].

The theorem proven in the paper is rather unexpected from the mathematical point of view; a
problem that seems to require exhaustive search or at least to be computationally very difficult is
solved by an exact algorithm whose runtime is always linear in the size of input data. In this sense,
the problem is not related to any application. However, it has arisen in the context of quite various
applications. Of these, the most popular concerns the description of a biological genome by a set of
chains and cycles that correspond to linear and circular chromosomes. In this case, the considered
operations correspond to real genome transformations in the biological evolution of the genome. It is
important that different operations can be assigned with different costs, which corresponds to different
frequency of their occurrence in the evolution.

For instance, the possibility to take different costs of deletion wd and insertion wi is essential
when mitochondria of deuterostomes are considered. Their mitochondria mainly have the same
set of genes, and each gene has a unique function. However, the order of these genes can vary; it
is substantially different in the purple sea urchin Strongylocentrotus purpuratus than in vertebrates
(Jacobs et al. [13]), as well as among echinoderms themselves. Thus, gene losses and acquisitions are
much rarer here than DCJ operations, and rare events should be assigned higher costs. A similar
pattern is observed in plastids of plants, e.g., the order of plastid genes in the red alga Porphyridium
purpureum notably differs from that in other red algae. In the next case where one genome is smaller
than the other, the loss cost should exceed that of acquisition, which surely depends on the gene and
the number of its copies. For example, the nuclear genome amplifies after hybridization of two species

140



Mathematics 2020, 8, 2001

as in the case of polyploid strawberry or wheat (Bors and Sullivan [14]). Polyploidy is much more
common in plants than in animals. Among animals, it was described in nematodes including ascarids
and certain amphibians. However, other full-genome duplications have been reported in chordates
(Putnam et al. [15]). The genome reduction can also occur, e.g., many genes (paralogs) are lost after a
full-genome duplication. In this regard, the presented algorithm has been used, e.g., in [16].

Let us give an example from another area. In some robotics and image processing problems, it is
assumed that the “terrain” is bound by barriers that can be described as chains and cycles. Chains and
cycles are also used to represent parts that have long or compact forms and to describe the frame of an
area or human pose, among other examples. Among many such applications, which are not related to
genomics, let us mention, as an example, [17].

Further research will be aimed at reducing the additive error, up to zeroing it, constructing fast
algorithms in the case of unequal costs of DCJ operations, allowing name repetitions in the graph
labeling, and passing to graphs of degree 3. Moreover, it would be important to extend the list of
operations by adding, for example, the operation of edge duplication in the initial graph, which will
allow strictly considering the duplication of biological genes [18] from the mathematical point of view.
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Abstract: This paper surveys results related to well-known works of B. Plotkin and V. Remeslennikov
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of (auto)endomorphisms of free objects, and auto-equivalence of categories is pretty natural and
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problems for noncommutative and commutative algebraic geometry.The first part of it is devoted to
the Gröbner basis in non-commutative situation. Despite the existence of an algorithm for checking
equalities, the zero divisors and nilpotency problems are algorithmically unsolvable. The second part
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1. Introduction

The connections between algebraic geometry and mathematical logic are extremely important.
First of all, notice a deep connection between algebra, category theory and model theory inspired by
the results of Plotkin and his school (see References [1–5]. Note that this research is related to the one
of most striking examples of interaction between model theory and geometry given by solutions of
the famous Tarskii’s problem, see References [6,7]. Another outstanding achievement is the theory
of Zariski geometries developed by B. Zilber and E. Hrushovski [8–10]. In addition, the use of
non-standard analysis has allowed progress in the theory of polynomial 64 automorphisms. See the
work of Belov and Kontsevich [11,12]. For a detailed bibliography see Reference [13].

The foundations of algebraic geometry had an important part of the translation of topological and
arithmetical properties into a purely algebraic language ([14]). Translation of the algebraic properties
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of a variety into the language of mathematical logic can be considered somehow in the spirit of
this program.

This short survey is related to ideas contained in the works of B. Plotkin and V. Remeslennikov
and their followers. We assume that lots of questions still require further illumination.

In particular, the following question is of interest: given two algebraic sets. Is there an algorithm
for checking isomorphism? Similarly for birational equivalence. Is there a solution to the nesting
problem of two varieties? For characteristics 0, the answer is not Reference [15], but for a positive
characteristic the answer is unknown.

On should mention a number of conjectures related to the theory of models and polynomial
automorphisms expressed in the paper by Belov-Kontsevich [11]. The investigations of the Plotkin
school are far from completion, thus the relationship between the theory of medallions and the theory
of categories is relevant.

One of the goals of this paper is to narrow the gap and to draw attention to this topic. We deal
with commutative and non-commutative algebraic geometry. The latter notion can be understood in
several ways. There are many points of view on the subject. We touch universal algebraic geometry,
some of its relations with reformational quantization and Gröbner basis in non-commutative situation.

The paper is organized as follows—Section 2 is devoted to various model-theoretical aspects and
their applications. More precisely, Section 2.1 deals with universal algebraic geometry and is focused
around the interaction between algebra, logic, model theory and geometry. All these subjects are
collected under the roof of the different kinds of logical rigidity of algebras. Under logical rigidity
we mean some logical invariants of algebras whose coincidence gives rise to structural closeness of
algebras in question. If such an invariant is strong enough then there is a solid ground to look for
isomorphism of algebras whose logical invariants coincide.

We are comparing three types of logical description of algebras. Namely, we describe geometric
equivalence of algebras, elementary equivalence of algebras and isotypicity of algebras. We look at
these notions from the positions of universal algebraic geometry and logical geometry. This approach
was developed by B. Plotkin and resulted in the consistent series of papers where algebraic logic,
model theory, geometry and categories come together. In particular, an important role plays the study
of automorphisms of categories of free algebras of the varieties. This question is highly related to
description of such objects as Aut(Aut)(A) and Aut(End)(A), where A is a free algebra in a variety.

We formulate the principal problems in this area and make a survey of the known results. Some of
them are very recent while the others are quite classical. In any case we shall emphasize that we
attract attention to the widely open important problem whether the finitely generated isotypic groups
are isomorphic.

The line started in Section 2.1 is continued in Section 2.2. Problems related to universal algebraic
geometry (i.e., algebraic geometry over algebraic systems) and logical foundations of category theory
gave rise to natural questions on automorphisms of categories and their auto-equivalences. The latter
ones stimulate a new motivation to investigation of semigroups of endomorphisms and groups of
automorphisms of universal algebras (Plotkin’s problem) (see Reference [16]).

Let Θ be a variety of linear algebras over a commutative-associative ring K and W = W(X) be
a free algebra from Θ generated by a finite set X. Let H be an algebra from Θ and AGΘ(H) be the
category of algebraic sets over H. Throughout the work, we refer to References [13,17] for definitions
of the Universal Algebraic Geometry (UAG).

The category AGΘ(H) is considered as the logical invariant of an algebra H. By Definition 1,
two algebras H1 and H2 are geometrically similar if the categories AGΘ(H1) and AGΘ(H2) are
isomorphic. It has been shown in Reference [17], (cf., Proposition 3) that geometrical similarity
of algebras is determined by the structure of the group Aut(Theta0), where Θ0 is the category of
free finitely generated algebras of Θ. The latter problem is treated by means of Reduction Theorem
(see References [17–20]). This theorem reduces investigation of automorphisms of the whole category
Θ0 of free algebras in Θ to studying the group Aut(End(W(X))) associated with W(X) in Θ0.
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In Section 2.2 we provide the reader with the results, describing Aut(End(A)), where A is finitely
generated free commutative or associative algebra, over a field K.

We prove that the group Aut(End(A)) is generated by semi-inner and mirror automorphisms of
End(A) and the group Aut(A◦) is generated by semi-inner and mirror automorphisms of the category
of free algebras A◦.

Earlier, the description of Aut(A◦) for the variety A of associative algebras over algebraically
closed fields has been given in Reference [21] and, over infinite fields, in Reference [22]. Also in the
same works, the description of Aut(End(W(x1, x2))) has been obtained.

Note that a description of the groups Aut(End(W(X))) and Aut(Θ◦) for some other varieties Θ
has been given in References [18,19,21–29].

A group of automorphisms of ind-schemes was computed in Reference [30]. In investigating
the Jacobian conjecture and automorphisms of the Weyl algebra, Plotkin’s problem for
symplectomorphisms is also extremely important. Such problems are associated with mathematical
physics and the theory of D-modules.

Section 2.3 is devoted to mathematical physics and model theory. This relation deals with
nonstandard analysis. We refer the reader to the review in Reference [31].

The Belov–Kontsevich conjecture [11], sometimes Kanel-Belov–Kontsevich conjecture, dubbed
B−KKCn for positive integer n, seeks to establish a canonical isomorphism between automorphism
groups of algebras

Aut(An,C) � Aut(Pn,C).

Here An,C is the n-th Weyl algebra over the complex field,

An,C = C〈x1, . . . , xn, y1, . . . , yn〉/(xixj − xjxi, yiyj − yjyi, yixj − xjyi − δij),

and Pn,C � C[z1, . . . , z2n] is the commutative polynomial ring viewed as a C-algebra and equipped
with the standard Poisson bracket:

{zi, zj} = ωij ≡ δi,n+j − δi+n,j.

The automorphisms from Aut(Pn,C) preserve the Poisson bracket.
Let ζi, i = 1, . . . , 2n denote the standard generators of the Weyl algebra (the images of xj, yi

under the canonical projection). The filtration by total degree on An,C induces a filtration on the
automorphism group:

Aut≤N(An,C) := { f ∈ Aut(An,C) | deg f (ζi), deg f−1(ζi) ≤ N, ∀i = 1, . . . , 2n}.

The obvious maps
Aut≤N(An,C)→ Aut≤N+1(An,C)

are Zariski-closed embeddings, the entire group Aut(An,C) is a direct limit of the inductive system
formed by Aut≤N together with these maps. The same can be said for the symplectomorphism
group Aut(Pn,C).

The Belov–Kontsevich conjecture admits a stronger form, with C being replaced by the rational
numbers. The latter conjecture will not be treated here in any way.

Since Makar-Limanov [32,33], Jung [34] and van der Kulk [35], the B-KK conjecture is known to be
true for n = 1. The proof is essentially a direct description of the automorphism groups. Such a direct
approach however seems to be completely out of reach for all n > 1. Nevertheless, at least one known
candidate for isomorphism may be constructed in a rather straightforward fashion. The idea is to start
with an arbitrary Weyl algebra automorphism, lift it after a shift by a certain automorphism of C to an
automorphism of a larger algebra (of formal power series with powers taking values in the ring ∗Z of
hyperintegers) and then restrict to a subset of its center isomorphic to C[z1, . . . , z2n].
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This construction goes back to Tsuchimoto [36], who devised a morphism Aut(An,C)→ Aut(Pn,C)

in order to prove the stable equivalence between the Jacobian and the Dixmier conjectures. It was
independently considered by Kontsevich and Kanel-Belov [12], who offered a shorter proof of the
Poisson structure preservation which does not employ p-curvatures. It should be noted, however,
that Tsuchimoto’s thorough inquiry into p-curvatures has exposed a multitude of problems of
independent interest, in which certain statements from the present paper might appear.

The construction we describe in detail in the following sections differs from that of Tsuchimoto in
one aspect: an automorphism f of the Weyl algebra may in effect undergo a shift by an automorphism
of the base field γ : C→ C prior to being lifted, and this extra procedure is homomorphic. Taking γ

to be the inverse nonstandard Frobenius automorphism (see below), we manage to get rid of the
coefficients of the form a[p], with [p] an infinite prime, in the resulting symplectomorphism. The key
result here is that for a large subgroup of automorphisms, the so-called tame automorphisms, one can
completely eliminate the dependence of the whole construction on the choice of the infinite prime [p].
Also, the resulting ind-group morphism ϕ[p] is an isomorphism of the tame subgroups. In particular,
for n = 1 all automorphisms of A1,C are tame (Makar-Limanov’s theorem), and the map ϕ[p] is the
conjectured canonical isomorphism.

These observations motivate the question whether for any n the group homomorphism ϕ[p] is
independent of infinite prime.

The next Section makes emphasis on algorithmic questions. First we dwell on Non-Commutative
Gröbner basis. Questions of algorithmic decidability in algebraic structures have been studied
since the 1940s. In 1947 Markov [37] and independently Post [38] proved that the word equality
problem in finitely presented semigroups (and in algebras) cannot be algorithmically solved. In 1952
Novikov constructed the first example of the group with unsolvable problem of word equality
(see References [39,40]). In 1962 Shirshov proved solvability of the equality problem for Lie algebras
with one relation and raised a question about finitely defined Lie algebras [41]. In 1972 Bokut settled
this problem. In particular, he showed the existence of a finitely defined Lie algebra over an arbitrary
field with algorithmically unsolvable identity problem [42].

Nevertheless, some problems become decidable if a finite Gröbner basis defines a relations
ideal. In this case it is easy to determine whether two elements of the algebra are equal or not
(see Reference [43]). In his work, D. Piontkovsky extended the concept of obstruction, introduced by
V. Latyshev (see References [44–47]). V.N. Latyshev raised the question concerning the existence of an
algorithm that can find out if a given element is either a zero divisor or a nilpotent element when the
ideal of relations in the algebra is defined by a finite Gröbner basis.

Similar questions for monomial automaton algebras can be solved. In this case the existence
of an algorithm for nilpotent element or a zero divisor was proved by Kanel-Belov, Borisenko and
Latyshev [48]. Note that these algebras are not Noetherian and not weak Noetherian. Iyudu showed
that the element property of being one-sided zero divisor is recognizable in the class of algebras with
a one-sided limited processing (see References [49,50]). It also follows from a solvability of a linear
recurrence relations system on a tree (see Reference [51]).

An example of an algebra with a finite Gröbner basis and algorithmically unsolvable problem of
zero divisor is constructed in Reference [52].

A notion of Gröbner basis (better to say Gröbner-Shirshov basis) first appeared in the context of
noncommutative (and not Noetherian) algebra. Note also that Poincaré-Birkhoff-Witt theorem can
be canonically proved using Gröbner bases. More detailed discussions of these questions see in
References [42,48,53].

To solve these two problems we simulate a universal Turing machine, each step of which
corresponds to a multiplication from the left by a chosen letter.

The problem of the algorithmic decidability of the existence of an isomorphism between
two algebraic varieties is extremely interesting and fundamental. A closely related problem is the
embeddability problem. In the general form, it is formulated as follows.

147



Mathematics 2020, 8, 1694

Embeddability problem. Let A and B be two algebraic varieties. Determine whether or not there exists
an embedding of A in B. Find an algorithm or prove its nonexistence.

In this paper, a negative solution to this problem is given even for affine varieties over an arbitrary
field of characteristic zero whose coordinate rings are given by generators and defining relations.

Questions related to the Gröbner basis were investigated in [54–58]. For details of nonstandard
analysis see [59–61].

2. Model-Theoretical Aspects

Algebraic geometry over algebraic systems was investigated by B.I. Plotkin and his school.
The Section 2.1 is devoted to this approach. In connection with this approach, Plotkin’s problem
about the automorphism of semigroups of endomorphisms of free algebra and categories (and also of
groups of automorphisms) arose. The Section 2.2 is devoted to Plotkin’s problem of endomorphisms
and automorphisms. The problem of describing automorphisms for groups of polynomial
symplectomorphisms and automorphisms of the Weyl algebra is extremely important, both from the
point of view of mathematical physics and from the point of view of the Jacobian conjecture. Section 2.3
is dedicated to this problem.

2.1. Algebraic Geometry over Algebraic Systems

2.1.1. Three Versions of Logical Rigidity

Questions we are going to illuminate in this section are concentrated around the interaction
between algebra, logic, model theory and geometry.

The main question behind further considerations is as follows. Suppose we have two algebras
equipped with a sort of logical description.

Problem 1. When the coincidence of logical descriptions provides an isomorphism between algebras in question?

With this aim we consider different kinds of logical equivalences between algebras. Some of the
notions we are dealing with are not formally defined in the text. For precise definitions and references
use References [1,2,17,62–65].

2.1.2. Between Syntax and Semantics

By syntax we will mean a language intended to describe a certain subject area. In syntax we ask
questions, express hypotheses and formulate the results. In syntax we also build chains of formal
consequences. For our goals we use first-order languages or their fragments. Each language is based
on some finite set of variables that serve as the alphabet, and a number of rules that allow us to
build words based on this alphabet. In general, its signature includes Boolean operations, quantifiers,
constants, and also functional symbols and predicate symbols. The latter ones are included in atomic
formulas and, in fact, determine the face of a particular language. Atomic formulas will be called
words. Words together with logical operations between them will be called formulas.

By semantics we understand the world of models, or in other words, the subject area of our
knowledge. This world exists by itself, and develops according to its laws.

Fix a variety of algebras Θ. Let W(X), X = {x1, . . . , xn} denote the finitely generated free algebra
in Θ. By equations in Θ we mean expressions of the form w ≡ w′, where w, w′ are words in W(X) for
some X. This is our first syntactic object. Next, let Φ̃ = (Φ(X), X ∈ Γ) be the multi-sorted Halmos
algebra of first order logical formulas based on atoms w ≡ w′, w, w′ in W(X), see References [17,65,66].
There is a special procedure to construct such an algebraic object which plays the same role with
respect to First Order Logic as Boolean algebras do with respect to Propositional calculus. One can
view elements of Φ̃ = (Φ(X), X ∈ Γ) just as first order formulas over w ≡ w′.

148



Mathematics 2020, 8, 1694

Let X = {x1, . . . , xn} and let H be an algebra in the variety Θ. We have an affine space HX of
points μ : X → H. For every μ we have also the n-tuple (a1, . . . , an) = ā with ai = μ(xi). For the given
Θ we have the homomorphism

μ : W(X)→ H

and, hence, the affine space is viewed as the set of homomorphisms

Hom(W(X), H).

The classical kernel Ker(μ) corresponds to each point μ : W(X) → H. This is exactly the set
of equations for which the point μ is a solution. Every point μ has also the logical kernel LKer(μ),
see References [3,64,66]. Logical kernel LKer(μ) consists of all formulas u ∈ Φ(X) valid on the point
μ. This is always an ultrafilter in Φ(X).

So we define syntactic and semantic areas where logic and geometry operate, respectively.
Connect them by a sort of Galois correspondence.

Let T be a system of equations in W(X). The set A in the affine space Hom(W(X), H) consisting
of all solutions of the system T corresponds to T. Sets of such kind are called algebraic sets. Vice versa,
given a set A of points in the affine space consider all equations T having A as the set of solutions.
Sets T of such kind are called closed congruences over W.

We can do the same correspondence with respect to arbitrary sets of formulas. Given a set T of
formulas in algebra of formulas (set of elements) Φ(X), consider the set A in the affine space, such that
every point of A satisfies every formula of Φ. Sets of such kind are called definable sets. Points of A are
called solutions of the set of formulas T. Conversely, given a set A of points in the affine space consider
all formulas (elements) T having A as the set of solutions. Sets T of such kind are closed filters in Φ(X).

Let us formalize the Galois correspondence described above.

2.1.3. Galois Correspondence in the Logical Geometry

Let us start with a particular case when the set of formulas T in Φ(X) is a set of equations of the
form w = w′, w, w′ ∈ W(X), X ∈ Γ.

We set
A = T′H = {μ : W(X)→ H | T ⊂ Ker(μ)}.

Here A is an algebraic set in Hom(W(X), H), determined by the set T.
Let, further, A be a subset in Hom(W(X), H). We set

T = A′H =
⋂

μ∈A
Ker(μ).

Congruences T of such kind are called H-closed in W(X). We have also Galois-closures T′′H
and A′′H .

Let us pass to the general case of logical geometry. Let now T be a set of arbitrary formulas in
Φ(X). We set

A = TL
H = {μ : W(X)→ H | T ⊂ LKer(μ)}.

We have also
A =

⋂
u∈T

ValX
H(u).

Here A is called a definable set in Hom(W(X), H), determined by the set T. We use the term
“definable” for A of such kind, meaning that A is defined by some set of formulas T.

For the set of points A in Hom(W(X), H) we set

T = AL
H =

⋂
μ∈A

LKer(μ).
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We have also
T = AL

H = {u ∈ Φ(X) | A ⊂ ValX
H(u)}.

Here T is a Boolean filter in Φ(X) determined by the set of points A. Filters of such kind
are Galois-closed and we can define the Galois-closures of arbitrary sets T in Φ(X) and A in
Hom(W(X), H) as TLL and ALL.

Remark 1. The principal role in all considerations plays the value homomorphism Val : Φ̃ → HalΘ,
where HalΘ is a special Halmos algebra associated with the vector space Hom(W(X), H), see References [65,66].
Its meaning is to make the procedure of verification whether a point satisfies the formula a homomorphism.

2.1.4. Logical Similarities of Algebras

Now we are in a position to introduce several logical equivalences between algebras. Since the
Galois correspondence yields the duality between syntactic and semantic objects, every definition of
equivalence between algebras formulated in terms of formulas, that is logically, has its semantical
counterpart, that is a geometric formulation, and vice versa.

All algebraic sets constitute a category with special rational maps as morphisms [65]. The same is
true with respect to definable sets [65]. So, we can formulate logical closeness of algebras geometrically.

Definition 1. We call algebras H1 and H2 geometrically similar if the categories of algebraic sets AGΘ(H1)

and AGΘ(H2) are isomorphic.

By Galois duality between closed congruences and algebraic sets, H1 and H2 are geometrically
similar if and only if the corresponding categories CΘ(H1) and CΘ(H2) of closed congruences over
W(X) are isomorphic.

Definition 2. We call algebras H1 and H2 logically similar, if the categories of definable sets LGΘ(H1) and
LGΘ(H2) are isomorphic.

By Galois duality between closed filters in Φ(X) and definable sets, H1 and H2 are logically similar
if and only if the corresponding categories FΘ(H1) and FΘ(H2) of closed filters in F(X) are isomorphic.

We will be looking for conditions A on algebras H1 and H2 that provide geometrical or
logical similarity.

Let two algebras H1 and H2 subject to some condition A be given. Here A is any condition of
logical or, dually, geometrical character, formulated in terms of closed sets of formulas or definable sets.

Definition 3. We call the conditionA rigid (orA-rigid) if two algebras H1 and H2 subject toA are isomorphic.

2.1.5. Geometric Equivalence of Algebras

Definition 4. Algebras H1 and H2 are called AG-equivalent, if for every X and every system of equations T
holds T′′H1

= T′′H2
.

AG-equivalent algebras are called also geometrically equivalent algebras, see References [3,64,65].
The closure T′′H is called, sometimes, a radical of T with respect to H. This is a normal subgroup and
an ideal in cases of groups and associative (Lie) algebras, respectively.

The meaning of Definition 4 is as follows. Two algebras H1 and H2 are AG-equivalent if they
have the same solution sets with respect to any system of equations T. We have the following criterion,
see Reference [65].

Proposition 1. If algeras H1 and H2 are AG-equivalent, then they are AG-similar.
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So, geometric equivalence of algebras provides their geometrical similarity. The next statement
describes geometrically equivalent algebras. Assume, for simplicity, that our algebras are geometrically
noetherian (see References [3,63]), which means that every system of equations T is equivalent to
a finite subsystem T′ of T. Then, see Reference [67],

Proposition 2. Geometrically noetherian algebras H1 and H2 are AG-equivalent if and only if they generate
the same quasi-variety.

Hence, two algebras H1 and H2 are AG-equivalent if and only if they have the same
quasi-identities. If we drop the condition of geometrical noetherianity, then algebras H1 and H2

are AG-equivalent if they have the same infinitary quasi-identities.
Let Θ be the variety of all groups. Now the question of AG-rigidity for groups reduces to the

question when two groups generating one and the same quasi-variety are isomorphic. Of course the
condition on groups to have one and the same quasi-identities is very weak and the rigidity of such
kind can happen if both groups belong to a very narrow class of groups. In general, such a condition
does not seem sensible.

Geometrical equivalence of algebras gives a sufficient condition for AG-similarity. It turns out
that for some varieties Θ this condition is also sufficient.

Theorem 1. Let Var(H1) = Var(H2) = Θ. Let Θ be one of the following varieties

• Θ = Grp, the variety of groups,
• Θ = Jord, the variety of Jordan algebras,
• Θ = Semi, the variety of semigroups,
• Θ = Inv, the variety of inverse semigroups,
• Θ = Nd, the variety of nilpotent groups of class d.

Categories AGΘ(H1) and AGΘ(H2) are isomorphic if and only if the algebras H1 and H2 are geometrically
equivalent (see References [68–71]).

Let Θ0 be the category of all free algebras of the variety Θ. The following proposition is the main
tool in the proof of Theorem 1.

Proposition 3 ([5]). If for the variety Θ every automorphism of the category Θ0 is inner, then two algebras H1

and H2 are geometrically similar if and only if they are geometrically equivalent.

So, studying automorphisms of Θ0 plays a crucial role. The latter problem is treated by means of
Reduction Theorem (see References [17–20]). This theorem reduces investigation of automorphisms of
the whole category Θ0 of free in Θ algebras to studying the group Aut(End(W(X))) associated with a
single object W(X) in Θ0. Here, W(X) is a finitely generated free in Θ hopfian algebra, which generates
the whole variety Θ. In fact, if all automorphisms of the endomorphism semigroup of a free algebra
W(X) are close to being inner, then all automorphisms of Θ0 possess the same property. More precisely,
denote by Inn(End(W(X))) the group of inner automorphisms of Aut(End(W(X))). Then the group
of outer automorphisms Aut(End(W(X)))/Inn(End(W(X))) measures, in some sense, the difference
between the notions of geometric similarity and geometric equivalence.

2.1.6. Elementary Equivalence of Algebras

As we saw in the previous section AG-equivalence of algebraic sets reduces to coincidence of
quasi-identities of algebras. This is a weak invariant, a small part of elementary theory, and, of course,
coincidence of quasi-identities does not imply isomorphism of algebras. Hence AG-equivalence does
not make much sense from the point of view of rigidity. Now we recall a more powerful logical
invariant of algebras.
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Given algebra H, its elementary theory Th(H) is the set of all sentences (closed formulas) valid on H.
We modify a bit this definition and adjust it to the Galois correspondence. Fix X = {x1, . . . , xn}. Define
X-elementary theory ThX(H) to be the set of all formulas u ∈ Φ(X) valid in every point of the affine
space Hom(W(X), H). In general we have a multi-sorted representation of the elementary theory

Th(H) = (ThX(H), X ∈ Γ),

where Γ is a certain system of sets.

Definition 5. Two algebras H1 and H2 are said to be elementarily equivalent if their elementary
theories coincide.

Remark 2. From the geometric point of view this definition does not make difference between different points of
the affine space. Given algebras H1 and H2, we collect all together formulas valid in every point of the affine
spaces Hom(W(X), H1) and Hom(W(X), H2), and declare algebras H1 and H2 elementarily equivalent if
these sets coincide.

Importance of the elementary classification of algebraic structures goes back to the famous works
of A.Tarski and A.Malcev. The main problem is to figure out what are the algebras elementarily equivalent
to a given one. Very often we fix a class of algebras C and ask what are the algebras elementarily
equivalent to a given algebra inside the class C. So, the rigidity question with respect to elementary
equivalence looks as follows.

Problem 2. Let a class of algebras C and an algebra H ∈ C be given. Suppose that the elementary theories of
algebras H and A ∈ C coincide. Are they elementarily rigid, that is, are H and A isomorphic?

Remark 3. What we call elementary rigidity has different names. This notion appeared in the papers by
A. Nies [72] under the name of quasi definability of groups. The corresponding name used in Reference [73] is
first order rigidity. For some reasons which will be clear in the next section we use another term.

In other words we ask for which algebras their logical characterization by means of the elementary
theory is strong enough and define the algebra in the unique, up to an isomorphism, way?

We restrict our attention to the case of groups, and, moreover, assume quite often that our groups
are finitely generated. Elementary rigidity of groups occurs not very often. Usually various extra
conditions are needed. Here is the incomplete list of some known cases:

Theorem 2. We will consider the following cases

• Finitely generated abelian groups are elementarily rigid in the class of such groups, see References [74,75].
• Finitely generated torsion-free class 2 nilpotent groups are elementarily rigid in the class of finitely

generated groups, see References [76,77] (this is wrong for such groups of class 3 and for torsion groups of
class 2, see Reference [78]).

• If two finitely generated free nilpotent groups are elementarily equivalent, then they are isomorphic,
that is a free finitely generated nilpotent group is elementarily rigid in the class of such groups,
see References [79,80].

• If two finitely generated free solvable groups are elementarily equivalent, then they are isomorphic, that is a
free finitely generated solvable group is elementarily rigid in the class of such groups, see References [79,80].

• Baumslag-Solitar group BS(1, n) is elementarily rigid in the class of countable groups, see Reference [81].
General Baumslag-Solitar groups BS(m, n) are elementarily rigid in the class of all Baumslag-Solitar
groups, see Reference [81].

• Right-angled Coxeter group is elementarily rigid in the class of all right-angled Coxeter groups,
see Reference [82].
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• A good rigidity example is provided by profinite groups: if two finitely generated profinite groups are
elementarily equivalent (as abstract groups), then they are isomorphic [83].

Consider, separately, examples of elementary rigidity for linear groups. First of all, a group which
is elementarily equivalent to a finitely generated linear group is a residually finite linear group [84].
The rigidity cases are collected in the following theorem.

Theorem 3. We will consider the following cases.

• Historically, the first result was obtained by Malcev [85]. If two linear groups GLn(K) and GLm(F),
where K and F are fields, are elementarily equivalent, then n = m and the fields K and F are
elementarily equivalent.

• This result was generalized to the wide class of Chevalley groups. Let G1 = Gπ(Φ, R) and G2 = Gμ(Ψ, S)
be two elementarily equivalent Chevalley groups. Here Φ, Ψ denote the root systems of rank ≥ 1, R
and S are local rings, and π, μ are weight lattices. Then root systems and weight lattices of G1 and G2

coincide, while the rings are elementarily equivalent. In other words Chevalley groups over local rings are
elementarily rigid in the class of such groups modulo rigidity of the ground rings [86].

• Let Gπ(Φ, K) be a simple Chevalley group over the algebraically closed field K. Then Gπ(Φ, K) is
elementarily rigid in the class of all groups (cardinality is fixed). This result can be deduced from
Reference [87]. In fact, this is true for a much wider class of algebraic groups over algebraically closed
fields and, modulo elementary equivalence of fields, over arbitrary fields [87].

• Any irreducible non-uniform higher-rank characteristic zero arithmetic lattice is elementarily rigid in the
class of all groups, see Reference [73]. In particular, SLn(Z), n > 2 is elementarily rigid.

• Recently, the results of Reference [73] have been extended to a much more wide class of lattices,
see Reference [88].

• Let O be the ring of integers of a number field, and let n 
 3. Then every group G which is elementarily
equivalent to SLn(O) is isomorphic to SLn(R), where the rings O and R are elementarily equivalent.
In other words SLn(O) is elementarily rigid in the class of all groups modulo elementary equivalence
of rings. The similar results are valid with respect to GLn(O) and to the triangular group Tn(O) [89].
These results intersect in part with the previous items, since the ring R = Z is elementarily rigid in the
class of all finitely generated rings [72], and thus SLn(Z) is elementarily rigid in the class of all finitely
generated groups.

• For the case of arbitrary Chevalley groups the results similar to above cited are obtained in Reference [90]
by different machinery for a wide class of ground rings. Suppose the Chevalley group G = G(Φ, R) of
rank 
 2 over the ring R is given. Suppose that the ring R is elementarily rigid in the class C of rings.
Then G = G(Φ, R) is elementarily rigid in the corresponding class C1 of groups if R is a field, R is a local
ring and G is simply connected, R is a Dedekind ring of arithmetic type, that is the ring of S-integers of
a number field, R is Dedekind ring with at least 4 units and G is adjoint. In particular, if a ring of such
kind is finitely generated then it gives rise to elementary rigidity of G = G(Φ, R) in the class of all finitely
generated groups. If R of such kind is not elementarily rigid then G = G(Φ, R) is elementarily rigid in
the class of all groups modulo elementary equivalence of rings.

Absolutely free groups lie on the other side of the scale of groups. It was Tarski who asked
whether one can distinguish between finitely generated free groups by means of their elementary
theories. This formidable problem has been solved in affirmative, that is all free groups have one and
the same elementary theory [6,7]. In fact, the variety of all groups is the only known variety of groups,
such that a free in this variety finitely generated group is not rigid in the class of all such groups.

Problem 3. Construct a variety of groups different from the variety of all groups such that all free finitely
generated groups in this variety have one and the same elementary theory.
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2.1.7. Logical Equivalence of Algebras

In this Section we introduce the notion of logical equivalence of algebras which can be viewed
as first order equivalence. We proceed following exactly the same scheme which was applied in
Section 2.1.5 with respect to the definition of geometric equivalence of algebras.

Let H1 and H2 be two algebras. We will be looking for semantic logical invariant of these algebras,
that is compare the definable sets over H1 and H2. Recall that according to Definition 2 two algebras H1

and H2 are logically similar, if the categories of definable sets LGΘ(H1) and LGΘ(H2) are isomorphic.
Using the duality provided by Galois correspondence from Section 2.1.3 we will raise logical

similarity to the level of syntax. The principal Definition 6 is the first order counterpart of Definition 4.

Definition 6. Algebras H1 and H2 are called LG-equivalent (aka logically equivalent), if for every X and every
set of formulas T in Φ(X) the equality TLL

H1
= TLL

H2
holds .

It is easy to see that

Proposition 4. If algebras H1 and H2 are LG-equivalent then they are elementarily equivalent.

Now we want to understand what is the meaning of logical equivalence.

Definition 7. Two algebras H1 and H2 are called LG-isotypic if for every point μ : W(X)→ H1 there exists
a point ν : W(X) → H2 such that LKer(μ) = LKer(ν) and, conversely, for every point ν : W(X) → H2

there exists a point μ : W(X)→ H1 such that LKer(ν) = LKer(μ).

The meaning of Definition 7 is the following. Two algebras are isotypic if the sets of realizable types
over H1 and H2 coincide. So, by some abuse of language these algebras have the same logic of types.
Some references for the notion of isotypic algebras are contained in References [64,65,67,91–93]. Note
that the notion was introduced in Reference [91,92] while Reference [65] gives the most updated survey.

The main theorem is as follows, see Reference [93].

Theorem 4. Algebras H1 and H2 are LG-equivalent if and only if they are LG-isotypic.

Now we are in a position to study rigidity of algebras with respect to isotypicity property. It is
clear, that since isotypicity is stronger than elementary equivalence, this phenomenon can occur quite
often. Let us state this problem explicitly.

Problem 4. Let a class of algebras C and an algebra H ∈ C be given. Suppose that algebras H ∈ C and A ∈ C
are isotypic. Are they isotypically rigid, that is are H and A isomorphic?

Remark 4. In many papers from the list above isotypically rigid algebras are called logically separable [65,67],
or type definable [94].

Theorem 5. We will consider the following cases of rigidity:

• Finitely generated free abelian groups are isotypically rigid in the class of all groups, see Reference [93].
• Finitely generated free nilpotent groups of class at most n are isotypically rigid in the class of all groups [93].
• Finitely generated metabelian groups are isotypically rigid in the class of all groups [94].
• Finitely generated virtually polycyclic groups are isotypically rigid in the class of all groups [94].
• Finitely generated free solvable groups of derived length d > 1 are isotypically rigid in the class of all

groups [94].
• All surface groups, which are not non-orientable surface groups of genus 1,2 or 3 are isotypically rigid in

the class of all groups [94].
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• Finitely generated absolutely free groups are isotypically rigid in the class of all groups, see Reference [95]
based on Reference [96] (also follows from References [97,98]).

• Finitely generated free semigroups are isotypically rigid in the class of semigroups, see Reference [93].
• Finitely generated free inverse semigroups are isotypically rigid in the class of inverse semigroups,

see Reference [93].
• Finitely generated free associative algebras are isotypically rigid in the class of such algebras.

The number of examples can be continued to co-Hopf groups, some Burnside groups, and so forth.
In fact, using either logical equivalence of algebras, or what is the same, the isotypicity of algebras,

we compare the possibilities of individual points in the affine space to define the sets of formulas
(in fact ultrafilters in Φ(X)) which are valid in these points. Given a point μ in the affine space,
the collection of formulas valid on the point μ is a type of μ. If these individual types are, roughly
speaking, the same for both algebras, then these algebras are declared isotypic. Thus, for isotypic
algebras we compare types of formulas realizable on these algebras. Of course, this is significantly
stronger than elementary equivalence, where the individuality of points disappeared and we compare
only formulas valid in all points of the affine space.

The following principal problem was stated in Reference [65] and is widely open.

Problem 5 (Rigidity problem). Is it true that every two isotypic finitely generated groups are isomorphic?

We will finish with the one more tempting problem of the same spirit.

Problem 6. What are the isotypicity classes of fields? When two isotypic fields are isomorphic?

The elementary equivalence of fields was one of motivating engines for Tarski to develop the
whole model-theoretic staff related to elementary equivalence. Problem 6, in a sense, takes us back to
the origins of the theory.

2.2. Plotkin’s Problem: Automorphisms of Endomorphism Semigroups and Groups of
Polynomial Automorphisms

In the light of B.I. Plotkin’s activity on creation of algebraic geometry over algebraic systems,
he drew a special attention to studying the groups of their automorphisms, see Reference [16]. Later
on he emphasized that automorphisms of categories of free algebras of the varieties play here a role
of exceptional importance. This role was underlined in Proposition 3 of Section 2.1. The meaning
of Reduction Theorem (see References [17–20]) was explained just after this proposition. Reduction
Theorem reduces investigation of automorphisms of the whole category Θ0 of free in the variety Θ
algebras to studying the group Aut(End(W(X))) associated with a single object W(X) in Θ0. Here,
W(X) is a finitely generated free in Θ algebra. In fact, if all automorphisms of the endomorphism
semigroup of a free algebra W(X) are close to being inner, then all automorphisms of Θ0 possess the
same property.

This philosophy forms a clear basis for investigation of automorphisms of the semigroup of
polynomial endomorphisms and the group of polynomial automorphisms. The automorphisms of the
endomorphism semigroup of a free associative algebra A were given by Belov, Berzins and Lipyanski,
(see Reference [99] for details and definitions of semi-inner and mirror automorphisms):

Theorem 6. The group Aut(End(A)) is generated by semi-inner and mirror automorphisms of End(A).
Correspondingly, the group of automorphisms of the category of free associative algebras is generated by
semi-inner and mirror automorphisms of this category.

In the same spirit, the description of an endomorphism semigroup of the ring of commutative
polynomials A is given by Belov and Lipyanski in Reference [100]:
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Theorem 7. Every automorphism of the group Aut(End(A)) is semi-inner.

The automorphisms of the group of polynomial automorphisms on free associative algebras
and commutative algebras at the level of Ind-schemes were obtained by Belov, Elishev and J.-T.Yu
in Reference [30]. Let K[x1, . . . , xn] and K〈x1, . . . , xn〉 be the free commutative polynomial algebra
and the free associative algebra with n generators, respectively. Denote by NAut the group of nice
automorphisms, that is, the group of automorphisms which can be approximated by tame ones.
One can prove that in characteristic zero case every automorphism is nice.

Theorem 8. Any Ind-scheme automorphism ϕ of NAut(K[x1, . . . , xn]) for n 
 3 is inner, that is,
it is a conjugation via some automorphism of K[x1, . . . , xn]. Any Ind-scheme automorphism ϕ of
NAut(K〈x1, . . . , xn〉) for n 
 3 is semi-inner (see Reference [30] for the precise definition).

Here, the Ind-scheme is defined as follows:

Definition 8. An Ind-variety M is the direct limit of algebraic varieties M = lim−→{M1 ⊆ M2 · · · }.
An Ind-scheme is an Ind-variety which is a group such that the group inversion is a morphism Mi → Mj(i) of
algebraic varieties, and the group multiplication induces a morphism from Mi × Mj to Mk(i,j). A map ϕ is a
morphism of an Ind-variety M to an Ind-variety N, if ϕ(Mi) ⊆ Nj(i) and the restriction ϕ to Mi is a morphism
for all i. Monomorphisms, epimorphisms and isomorphisms are defined similarly in a natural way.

2.3. On the Independence of the B-KK Isomorphism of Infinite Prime and Plotkin Conjecture
for Symplectomorphisms

2.3.1. Plotkin’s Problem for Symplectomorphism and the Kontsevich Conjecture

Observe that the study of automorphisms of the group of polynomial symplectomorphisms,
as well as automorphisms of the Weyl algebra (Plotkin’s problem) is extremely important in course of
the Kontsevich conjecture, as well as the Jacobian conjecture.

2.3.2. Ultrafilters and Infinite Primes

Let U ⊂ 2N be an arbitrary non-principal ultrafilter on the set of all positive numbers (in this note
N will almost always be regarded as the index set). Let P be the set of all prime numbers, and let PN

denote the set of all sequences p = (pm)m∈N of prime numbers. We refer to a generic set A ∈ U as an
index subset in situations involving the restriction p|A : A → P. We will call a sequence p of prime
numbers U -stationary if there is an index subset A ∈ U such that its image p(A) consists of one point.

A sequence p : N→ P is bounded if the image p(N) is a finite set. Thanks to the ultrafilter finite
intersection property, bounded sequences are necessarily U -stationary.

Any non-principal ultrafilter U generates a congruence

∼U⊆ PN × PN

in the following way. Two sequences p1 and p2 are U -congruent iff there is an index subset A ∈ U
such that for all m ∈ A the following equality holds:

p1
m = p2

m.

The corresponding quotient
∗P ≡ PN/ ∼U

contains as a proper subset the set of all primes P (naturally identified with classes of U -stationary
sequences), as well as classes of unbounded sequences. The latter are referred to as nonstandard,
or infinitely large, primes. We will use both names and normally denote such elements by [p], mirroring
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the convention for equivalence classes. The terminology is justified, as the set of nonstandard primes
is in one-to-one correspondence with the set of prime elements in the ring ∗Z of nonstandard integers
in the sense of Robinson [101].

Indeed, one may utilize the following construction, which was thoroughly studied
(also cf. Reference [102]) in Reference [103]. Consider the ring Zω = ∏m∈N Z—the product of countably
many copies of Z indexed by N. The minimal prime ideals of Zω are in bijection with the set of
all ultrafilters on N (perhaps it is opportune to remind that the latter is precisely the Stone-Cech
compactification βN of N as a discrete space). Explicitly, if for every a = (am) ∈ Zω one defines the
support complement as

θ(a) = {m ∈ N | am = 0}

and for an arbitrary ultrafilter U ∈ 2N sets

(U ) = {a ∈ Zω | θ(a) ∈ U},

then one obtains a minimal prime ideal of Zω. It is easily shown that every minimal prime ideal is of
such a form. Of course, the index set N may be replaced by any set I, after which one easily gets the
description of minimal primes of ZI (since those correspond to ultrafilters, there are exactly 22|I| of
them if I is infinite and |I| when I is a finite set). Note that in the case of finite index set all ultrafilters
are principal, and the corresponding (U ) are of the form Z× · · · × (0)× · · · ×Z—a textbook example.

Similarly, one may replace each copy of Z by an arbitrary integral domain and repeat the
construction above. If for instance all the rings in the product happen to be fields, then, since the
product of any number of fields is von Neumann regular, the ideal (U ) will also be maximal.

The ring of nonstandard integers may be viewed as a quotient (an ultrapower)

Zω/(U ) = ∗Z.

The class of U -congruent sequences [p] corresponds to an element (also an equivalence class) in
∗Z, which may as well as [p] be represented by a prime number sequence p = (pm), only in the latter
case some but not too many of the primes pm may be replaced by arbitrary integers. For all intents and
purposes, this difference is insignificant.

Also, observe that [p] indeed generates a maximal prime ideal in ∗Z: if one for (any) p ∈ [p]
defines an ideal in Zω as

(p, U ) = {a ∈ Zω | {m | am ∈ pmZ} ∈ U},

then, taking the quotient Zω/(p, U ) in two different ways, one arrives at an isomorphism

∗Z/([p]) �
(

∏
m

Zpm

)
/(U ),

and the right-hand side is a field by the preceding remark. For a fixed non-principal U and an infinite

prime [p], we will call the quotient
Z[p] ≡ ∗Z/([p])

the nonstandard residue field of [p]. Under our assumptions this field has characteristic zero.

2.3.3. Algebraic Closure of Nonstandard Residue Field

We have seen that the objects [p]—the infinite prime—behaves similarly to the usual prime
number in the sense that a version of a residue field corresponding to this object may be constructed.
Note that the standard residue fields are contained as a degenerate case in this construction, namely
if we drop the condition of unboundedness and instead consider U -stationary sequences, we will
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arrive at a residue field isomorphic to Zp, with p being the image of the stationary sequence in the
chosen class. The fields of the form Z[p] are a realization of what is known as pseudofinite field,
cf. Reference [104].

The nonstandard case is surely more interesting. While the algebraic closure of a standard residue
field is countable, the nonstandard one itself has the cardinality of the continuum. Its algebraic closure
is also of that cardinality and has characteristic zero, which implies that it is isomorphic to the field of
complex numbers. We proceed by demonstrating these facts.

Proposition 5. For any infinite prime [p] the residue field Z[p] has the cardinality of the continuum (There is a
general statement on cardinality of ultraproduct due to Frayne, Morel, and Scott [105]. We believe the proof of
this particular instance may serve as a neat example of what we are dealing with in the present paper.).

Proof. It suffices to show there is a surjection

h∗ : Z[p] → P,

where P = {0, 1}ω is the Cantor set given as the set of all countable strings of bits with the 2-adic metric

d2(x, y) = 1/k, k = min{m | xm �= ym}.

The map h∗ is constructed as follows. If Z ⊂ P is the subset of all strings with finite number of
ones in them, and

e : Z+ → Z, e

(
∑

k<m
fk2k

)
= ( f1, . . . , fm−1, 0, . . .)

is the bijection that sends a nonnegative integer to its binary decomposition, then for a class
representative a = (am) ∈ [a] ∈ Z[p] set h∗(a) to be the (unique) ultralimit of the sequence of points
{xm = e(am)}. The correctness of this map rests on the property of the Cantor set being Hausdorff
quasi-compact. Surjectivity is then established directly: consider an arbitrary x ∈ P. For each m ∈ N
the set

Pm = {e(0), e(1), . . . , e(pm − 1)}

consists of pm distinct points. Let xm be the nearest to x point from this set with respect to the 2-adic
metric. The sequence (pm) is unbounded, so that for every m ∈ N the index subset

Am = {k ∈ N | pk > 2m}

belongs to the ultrafilter U . It is easily seen that for every k ∈ Am one has:

d2(x, xk) < 1/m

But that effectively means that the sequence (xm) has the ultralimit x, after which am = e−1(xm)

yields the desired preimage.

As an immediate corollary of this proposition and the well-known Steinitz theorem, one has

Theorem 9. The algebraic closure Z[p] of Z[p] is isomorphic to the field of complex numbers.

We now fix the notation for the aforementioned isomorphisms in order to employ it in the
next section.

For any nonstandard prime [p] ∈ ∗P fix an isomorphism α[p] : C → Z[p] coming from the
preceding theorem. Denote by Θ[p] : Z[p] → Z[p] the nonstandard Frobenius automorphism—that
is, a well-defined field automorphism that sends a sequence of elements to a sequence of their
pm-th powers:
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(xm) �→ (xpm
m ).

The automorphism Θ[p] is identical on Z[p]; conjugated by α[p], it yields a wild automorphism
of complex numbers, as by assumption no finite power of it (as always, in the sense of index subsets
A ∈ U ) is the identity homomorphism.

2.3.4. Extension of the Weyl Algebra

The n-th Weyl algebra An,C � An,Z[p]
can be realized as a proper subalgebra of the following

ultraproduct of algebras

An(U , [p]) =

(
∏

m∈N
An,Fpm

)
/U .

Here for any m the field Fpm = Zpm is the algebraic closure of the residue field Zpm . This larger
algebra contains elements of the form (ζ Im)m∈N with unbounded |Im|—something which is not present
in An,Z[p]

, hence the proper embedding. Note that for the exact same reason (with degrees |Im| of

differential operators having been replaced by degrees of minimal polynomials of algebraic elements)
the inclusion

Z[p] ⊆
(

∏
m∈N

Fpm

)
/U

is also proper.

It turns out that, unlike its standard counterpart An,C, the algebra An(U , [p]) has a huge center
described in this proposition:

Proposition 6. The center of the ultraproduct of Weyl algebras over the sequence of algebraically closed fields
{Fpm} coincides with the ultraproduct of centers of An,Fpm

:

C(An(U , [p])) =

(
∏
m

C(An,Fpm
)

)
/U .

The proof is elementary and is left to the reader. As in positive characteristic the center C(An,Fp)

is given by the polynomial algebra

Fp[x
p
1 , . . . , xp

n, yp
1 , . . . , yp

n] � Fp[ξ1, . . . , ξ2n],

There is an injective C-algebra homomorphism

C[ξ1, . . . ξ2n]→
(

∏
m

Fpm [ξ
(m)
1 , . . . ξ

(m)
2n ]

)
/U

From the algebra of regular functions on A2n
C to the center of An(U , [p]), evaluated on the

generators in a straightforward way:

ξi �→ [(ξ
(m)
i )m∈N].

Just as before, this injection is proper.
Furthermore, the image of this monomorphism (the set which we will simply refer to as the

polynomial algebra) may be endowed with the canonical Poisson bracket. Recall that in positive
characteristic case for any a, b ∈ Zp[ξ1, . . . , ξ2n] one can define
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{a, b} = −π

(
[a0, b0]

p

)
.

Here π : An,Z → An,Zp is the modulo p reduction of the Weyl algebra, and a0, b0 are arbitrary
lifts of a, b with respect to π. The operation is well defined, takes values in the center and satisfies the
Leibnitz rule and the Jacobi identity. On the generators one has

{ξi, ξ j} = ωij.

The Poisson bracket is trivially extended to the entire center Fp[ξ1, . . . , ξ2n] and then to the
ultraproduct of centers. Observe that the Poisson bracket of two elements of bounded degree is again
of bounded degree, hence one has the bracket on the polynomial algebra.

2.3.5. Endomorphisms and Symplectomorphisms

The point of this construction lies in the fact that thus defined Poisson structure on the (injective
image of) polynomial algebra is preserved under all endomorphisms of An(U , [p]) of bounded degree.
Every endomorphism of the standard Weyl algebra is specified by an array of coefficients (ai,I)

(which form the images of the generators in the standard basis); these coefficients are algebraically
dependent, but with only a finite number of bounded-order constraints. Hence the endomorphism
of the standard Weyl algebra can be extended to the larger algebra An(U , [p]). The restriction of any
such obtained endomorphism on the polynomial algebra C[ξ1, . . . , ξ2n] preserves the Poisson structure.
In this setup the automorphisms of the Weyl algebra correspond to symplectomorphisms of A2n

C .

Example 1. If xi and yi are standard generators, then one may perform a linear symplectic change of variables:

f (xi) =
n

∑
j=1

aijxj +
n

∑
j=1

ai,n+jyj, i = 1, . . . , n,

f (di) =
n

∑
j=1

ai+n,jxj +
n

∑
j=1

ai+n,n+jyj, aij ∈ C.

In this case the corresponding polynomial automorphism f c of

C[ξ1, . . . , ξ2n] � C[x[p]1 , . . . , x[p]n , y[p]1 , . . . , y[p]n ]

acts on the generators ξ as

f c(ξi) =
2n

∑
j=1

(aij)
[p]ξ j,

where the notation (aij)
[p] means taking the base field automorphism that is conjugate to the nonstandard

Frobenius via the Steinitz isomorphism.

Let γ : C → C be an arbitrary automorphism of the field of complex numbers. Then, given
an automorphism f of the Weyl algebra An,C with coordinates (ai,I), one can build another algebra
automorphism using the map γ. Namely, the coefficients γ(ai,I) define a new automorphism γ∗( f ) of
the Weyl algebra, which is of the same degree as the original one. In other words, every automorphism
of the base field induces a map γ∗ : An,C → An,C which preserves the structure of the ind-object.
It obviously is a group homomorphism.

Now, if Pn,C denotes the commutative polynomial algebra with Poisson bracket, we may define
an ind-group homomorphism ϕ : Aut(An,C)→ Aut(PnC) as follows. Previously we had a morphism
f �→ f c, however as the example has shown it explicitly depends on the choice of the infinite prime [p].
We may eliminate this dependence by pushing the whole domain Aut(An,C) forward with a specific
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base field automorphism γ, namely γ = Θ−1
[p]—the field automorphism which is Steinitz-conjugate

with the inverse nonstandard Frobenius, and only then constructing the symplectomorphism f c
Θ as

the restriction to the (nonstandard) center. For the subgroup of tame automorphisms such as linear
changes of variables this procedure has a simple meaning: just take the [p]-th root of all coefficients
(ai,I) first. We thus obtain a group homomorphism which preserves the filtration by degree and is in
fact well-behaved with respect to the Zariski topology on Aut (indeed, the filtration AutN ⊂ AutN+1

is given by Zariski-closed embeddings). Formally, we have a proposition:

Proposition 7. There is a system of morphisms

ϕ[p],N : Aut≤N(An,C)→ Aut≤N(Pn,C).

such that the following diagram commutes for all N ≤ N′:

Aut≤N(An,C) Aut≤N(Pn,C)

Aut≤N′(An,C) Aut≤N′(Pn,C).

ϕ[p],N

μNN′ νNN′

ϕ[p],N′

The corresponding direct limit of this system is given by ϕ[p], which maps a Weyl algebra automorphism f
to a symplectomorphism f c

Θ.

The Belov–Kontsevich conjecture then states:

Conjecture 1. ϕ[p] is a group isomorphism.

Injectivity may be established right away.

Theorem 10. ϕ[p] is an injective homomorphism.

(See Reference [11] for the fairly elementary proof).

2.3.6. On the Loops Related to Infinite Primes

Let us at first assume that the Belov–Kontsevich conjecture holds, with ϕ[p] furnishing the
isomorphism between the automorphism groups. This would be the case if all automorphisms
in Aut(An,C) were tame, which is unknown at the moment for n > 1.

The main result of the paper is as follows:

Theorem 11. If one assumes that ϕ[p],N is surjective for any infinite prime [p], then ΦN is
quasifinitedimensional and its eigenvalues are roots of unity.

Let [p] and [p′] be two distinct classes of U -congruent prime number sequences—that is, two
distinct infinite primes. We then have the following diagram:

Aut(An,C) Aut(Pn,C)

Aut(An,C) Aut(Pn,C)

ϕ[p]

isom isom
ϕ[p′ ]

with all arrows being isomorphisms. Vertical isomorphisms answer to different presentations of C as
Z[p] and Z[p′ ]. The corresponding automorphism C→ Z[p] is denoted by α[p] for any [p].
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The fact that all the arrows in the diagram are isomorphisms allows one instead to consider a loop
of the form

Φ : Aut(An,C)→ Aut(An,C).

Furthermore, as it was noted in the previous section, the morphism Φ belongs to Aut(Aut(An,C)).
We need to prove that Φ is a trivial automorphism. The first observation is as follows.

Proposition 8. The map Φ is a morphism of algebraic varieties.

Proof. Basically, this is a property of ϕ[p] (or rather its unshifted version, fp �→ f c
p). More precisely,

it suffices to show that, given an automorphism fp of the Weyl algebra in positive characteristic p with
coordinates (ai,I), its restriction to the center (a symplectomorphism) f c

p has coordinates which are
polynomials in (ap

i,I).
The switch to positive characteristic and back is performed for a fixed f ∈ Aut(An,C) on an index

subset A f ∈ U .
Let f be an automorphism of An,C and let N = deg f be its degree. The automorphism f is given

by its coordinates ai,I ∈ C, i = 1, . . . , 2n, I = {i1, . . . , i2n}, obtained from the decomposition of algebra
generators ζi in the standard basis of the free module:

f (ζi) = ∑
i,I

ai,Iζ
I , ζ I = ζ i1

1 · · · ζ
i2n
2n .

Let (ai,I,p) denote the class α[p](ai,I), p = (pm), and let {Rk(ai,I | i, I) = 0}k=1,...,M be a finite set
of algebraic constraints for coefficients ai,I . Let us denote by A1, . . . , AM the index subsets from the
ultrafilter U , such that Ak is precisely the subset, on whose indices the constraint Rk is valid for (ai,I,p).
Take A f = A1 ∩ . . . ∩ AM ∈ U and for pm, m ∈ A f , define an automorphism fpm of the Weyl algebra
in positive characteristic An,Fpm

by setting

fpm(ζi) = ∑
i,I

ai,I,pm ζ I .

All of the constraints are valid on A f , so that f corresponds to a class [ fp] modulo ultrafilter U of
automorphisms in positive characteristic. The degree of every fpm (m ∈ A f ) is obviously less than or
equal to N = deg f .

Now consider f ∈ Aut≤N(An,C) with the index subset A f over which its defining constraints
are valid. The automorphisms fpm = fp : An,Fp → An,Fp defined for m ∈ A f ∈ U provide arrays of
coordinates ai,I,p. Let us fix any valid pm = p denote by Fpk a finite subfield of Fp which contains
the respective coordinates ai,I,p (one may take k to be equal to the maximum degree of all minimal
polynomials of elements ai,I,p which are algebraic over Zp).

Let a1, . . . , as be the transcendence basis of the set of coordinates ai,I,p and let t1, . . . , ts denote s
independent (commuting) variables. Consider the field of rational functions:

Fpk (t1, . . . , ts).

The vector space
DerZp(Fpk (t1, . . . , ts), Fpk (t1, . . . , ts))

of all Zp-linear derivations of the field Fpk (t1, . . . , ts) is finite-dimensional with
Zp-dimension equal to ks; a basis of this vector space is given by elements

{eaDtb | a = 1, . . . , k, b = 1, . . . , s}

where ea are basis vectors of the Zp-vector space Fpk , and Dtb is the partial derivative with respect to
the variable tb.
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Set a1, . . . , as = t1, . . . , ts (i.e., consider an s-parametric family of automorphisms), so that the
rest of the coefficients ai,I,p are algebraic functions of s variables t1, . . . , ts. We need to show that the
coordinates of the corresponding symplectomorphism f c

p are annihilated by all derivations eaDtb .
Let δ denote a derivation of the Weyl algebra induced by an arbitrary basis derivation eaDtb of the

field. For a given i, let us introduce the short-hand notation

a = fp(ζi), b = δ(a).

We need to prove that
δ( f c(ξi)) = δ( fp(ζ

p
i )) = 0.

In our notation δ( fp(ζ
p
i )) = δ(ap), so by Leibnitz rule we have:

δ( fp(ζ
p
i )) = bap−1 + abap−2 + · · ·+ ap−1b.

Let adx : An,Fp → An,Fp denote a Zp-derivation of the Weyl algebra corresponding to the adjoint
action (all Weyl algebra derivations are inner!):

adx(y) = [x, y].

We will call an element x ∈ An,Fp locally ad-nilpotent if for any y ∈ An,Fp there is an integer
D = D(y) such that

adD
x (y) = 0.

All algebra generators ζi are locally ad-nilpotent. Indeed, one could take D(y) = deg y + 1 for
every ζi.

If f is an automorphism of the Weyl algebra, then f (ζi) is also a locally ad-nilpotent element for
all i = 1, . . . , 2n. That means that for any i = 1, . . . , 2n there is an integer D ≥ N + 1 such that

adD
fp(ζi)

(δ( fp(ζi))) = adD
a (b) = 0.

Now, for p ≥ D + 1 the previous expression may be rewritten as

0 = adp−1
a (b) =

p−1

∑
l=0

(−1)l
(

p− 1
l

)
albap−1−l ≡

p−1

∑
l=0

albap−1−l (mod p),

and this is exactly what we wanted.
We have thus demonstrated that for an arbitrary automorphism fp of the Weyl algebra in

characteristic p the coordinates of the corresponding symplectomorphism f c
p are polynomial in p-th

powers of the coordinates of fp, provided that p is greater than deg fp + 1. As the sequence (deg fpm)

is bounded from above by N for all m ∈ A f , we see that there is an index subset A∗f ∈ U such that
the coordinates of the symplectomorphism f c

pm for m ∈ A∗f are polynomial in pm-th powers of ai,I,pm .

This implies that f c in characteristic zero is given by coefficients polynomial in α[p](ai,I)
[p] as desired.

It follows, after shifting by the inverse nonstandard Frobenius, that Φ is an endomorphism of the
algebraic variety Aut(An,C).

The automorphism Φ acting on elements f ∈ Aut(An,C), takes the set of coordinates (ai,I) and
returns a set (Gi,I(ak,K)) of the same size. All functions Gi,I are algebraic by the above proposition.
It is convenient to introduce a partial order on the set of coordinates. We say that ai,I′ is higher than
ai,I (for the same generator i) if |I| < |I′| and we leave pairs with i �= j or with |I| = |I′| unconnected.
We define the dominant elements ai,I (or rather, dominant places (i, I)) to be the maximal elements
with respect to this partial order, and subdominant elements to be the elements covered by maximal
ones (in other words, for fixed i, subdominant places are the ones with |I| = |Imax| − 1).
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The next observation follows from the fact that the morphisms in question are
algebra automorphisms.

Lemma 1. Functions Gi,I corresponding to dominant places (i, I) are identities:

Gi,I(ak,K) = ai,I .

Proof. Indeed, it follows from the commutation relations that for any i = 1, . . . , 2n and
fp, p = pm, m ∈ A f ∈ U , the highest-order term in f c

p(ξi) = fp(ζ
p
i ) = fp(ζi)

p has the coefficient ap
i,I,p.

The shift by the inverse Frobenius then acts as the p-th root on the dominant place, so that we deduce
that the latter is independent of the choice of [p].

Let us now fix N ≥ 1 and consider

ΦN : Aut≤N An,C → Aut≤N An,C

– the restriction of Φ to the subvariety Aut≤N An,C, which is well defined by the above lemma.
The morphism corresponds to an endomorphism of the ring of functions

Φ∗N : O(Aut≤N An,C)→ O(Aut≤N An,C)

Let us take a closer look at the behavior of ΦN (and of Φ∗N , which is essentially the same up to an
inversion), specifically at how ΦN affects one-dimensional subvarieties of automorphisms. Let XN
be the set of all algebraic curves of automorphisms in Aut≤N An,C; by virtue of Lemma 2 we may
without loss of generality consider the subset of all curves with fixed dominant places—we denote
such a subset by X ′N , and, for that same matter, the subsets X (k)

N of curves with fixed places of the form
(i, I′), which are away from a dominant place by a path of length at most (k− 1). In particular one has
X ′N = X (1)

N .
The morphism ΦN yields a map

Φ̃N : XN → XN

and its restrictions
Φ̃(k)

N : X (k)
N → XN .

Our immediate goal is to prove that for all attainable k we have

Φ̃(k)
N : X (k)

N → X (k)
N ,

that is, the map ΦN preserves the terms corresponding to non-trivial differential monomials.
In spite of minor abuse of language, we will call the highest non-constant terms of a curve in X (k)

N
dominant, although they cease to be so when that same curve is regarded as an element of XN .

Let A ∈ XN be an algebraic curve in general position. Coordinate-wise A answers to a set
(ai,I(τ)) of coefficients parameterized by an indeterminate. By Lemma 3.3, ΦN leaves the (coefficients

corresponding to) dominant places of this curve unchanged, so we may well set A ∈ X (1)
N . In fact,

it is easily seen that the subdominant terms are not affected by ΦN either, thanks to the commutation
relations that define the Weyl algebra: for every p participating in the ultraproduct decomposition,
after one raises to the p-th power one should perform a reordering within the monomials—a procedure
which degrades the cardinality |I| by an even number. Therefore, nothing contributes to the image of
any subdominant term other than that subdominant term itself, which therefore is fixed under ΦN .
We are then to consider the image

Φ̃(2)
N (A) ∈ X (2)

N .
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Again, given a positive characteristic p within the ultraproduct decomposition, suppose the curve
A (or rather its component answering to the chosen element p) has a number of poles attained on
dominant (With respect to X (2)

N , that is, the highest terms that actually change—see above where
we specify this convention.) terms. Let us pick among these poles the one of the highest order k,
and let (i0, I0) be its place. By definition of an automorphism of Weyl algebra as a set of coefficients,
the number i0 does not actually carry any meaningful data, so that we are left with a pair (k, |I0|).
As we can see, this pair is maximal from two different viewpoints; in fact, the pair represents a
vertex of a Newton polygon taken over the appropriate field, with the discrete valuation given by |I|.
The coordinate function ai0,I0 corresponding to this pole admits a decomposition

ai0,I0 =
a−k

tk + · · · ,

with t a local parameter. Acting upon this curve by the morphism ΦN amounts to two steps: first,
we raise everything to the p-th power and then assemble the components within the ultraproduct
decomposition, then we take the preimage, which is essentially the same as taking the p′-root,
with respect to a different ultraproduct decomposition. The order of the maximal pole is then multiplied
by an integer during the first step and divided by the same integer during the second one. By maximality,
there are no other terms that might contribute to the resulting place in Φ̃(2)

N (A). It therefore does not
change under ΦN .

We may process the rest of the dominant (with respect toX (2)
N ) terms similarly: indeed, it suffices to

pick a different curve in general position. We then move down toX (k)
N with higher k and argue similarly.

After we have exhausted the possibilities with non-constant terms, we arrive at the conclusion
that all that ΦN does is permute the irreducible components of Aut≤N An,C. That in turn implies the
existence of a positive integer l such that

Φl
N = Id.

In fact, the preceding argument gives us more than just the observation that ΦN is unipotent.
Let Φ∗N,M denote the linear map of finite-dimensional vector spaces obtained by restricting Φ∗N to
regular functions of total degree less than or equal to M. Then the following proposition holds.

Proposition 9. If λ is an eigenvalue of Φ∗N,M, then λk = 1 for some integer k.

Proof. Indeed, should there exist λ0 �= 1, we may find an exceptional curve whose singularity changes
under ΦN , note that coefficients are products of normalization coordinates.

2.3.7. Discussion

The investigation of decomposition of polynomial algebra-related objects into ultraproducts
over the prime numbers P leads to a problem of independence of the choice of infinite prime. In the
case of the Tsuchimoto–Belov–Kontsevich homomorphism the answer turns out to be affirmative,
although there are other constructions, which are of algebraic or even polynomial nature but for
which the independence fails. The reason for such arbitrary behavior has a lot to do with growth
functions (in which case the situation is similar to the one described in Reference [106], and in fact in
Reference [107], where one has a non-injective endomorphism fp : An,Fp → An,Fp , whose degree grows
with p, which disallows for the construction of a naive counterexample to the Dixmier Conjecture in
the ultralimit). It is, in our view, worthwhile to study such behavior in greater detail.

3. Algorithmic Aspects of Algebraic Geometry

The section contains two subsections: the first one is devoted to noncommutative Finite Gröbner
basis issues and the second one is devoted to algorithmic inclusion undecidability.
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3.1. Finite Gröbner Basis Algebras with Unsolvable Nilpotency Problem and Zero Divisors Problem

3.1.1. The Sketch of Construction

Let A be an algebra over a field K.
The set of all words in the alphabet {a1, . . . , aN} is a semigroup. The main idea of the construction

is a realization of a universal Turing machine in this semigroup. We use the universal Turing
machine constructed by Marvin Minsky in Reference [108]. This machine has 7 states and 4-color tape.
The machine can be completely defined by 28 instructions.

Note that 27 of them have a form

(i, j)→ (L, q(i, j), p(i, j)) or (i, j)→ (R, q(i, j), p(i, j)),

where 0 ≤ i ≤ 6 is the current machine state, 0 ≤ j ≤ 3 is the current cell color, L or R (left or right) is
the direction of a head moving after execution of the current instruction, q(i, j) is the state after current
instruction, p(i, j) is the new color of the current cell.

Thus, the instruction (2, 3) → (L, 3, 1) means the following: “If the color of the current cell is 3
and the state is 2, then the cell changes the color to 1, the head moves one cell to the left, the machine
changes the state to 3.

The last instruction is (4, 3)→ STOP. Hence, if the machine is in state 4 and the current cell has
color 3, then the machine halts.

Letters

By Qi, 0 ≤ i ≤ 6 denote the current state of the machine. By Pj, 0 ≤ j ≤ 3 denote the color of the
current cell.

The action of the machine depends on the current state Qi and current cell color Pj. Thus every
pair Qi and Pj corresponds to one instruction of the machine.

The instructions moving the head to the left (right) are called left (right) ones. Therefore there
are left pairs (i, j) for the left instructions, right pairs for the right ones and instruction STOP for the
pair (4, 3).

All cells with nonzero color are said to be non-empty cells. We shall use letters a1, a2, a3 for
nonzero colors and letter a0 for color zero. Also, we use R for edges of colored area. Hence, the word
Rau1 au2 . . . auk QiPjav1 av2 . . . avl R presents a full state of Turing machine.

We model head moving and cell painting using computations with powers of ai (cells) and Pi and
Qi (current cell and state of the machine’s head).

We use the universal Turing machine constructed by Minsky. This machine is defined by the
following instructions:

(0, 0)→ (L, 4, 1) (0, 1)→ (L, 1, 3) (0, 2)→ (R, 0, 0) (0, 3)→ (R, 0, 1)
(1, 0)→ (L, 1, 2) (1, 1)→ (L, 1, 3) (1, 2)→ (R, 0, 0) (1, 3)→ (L, 1, 3)
(2, 0)→ (R, 2, 2) (2, 1)→ (R, 2, 1) (2, 2)→ (R, 2, 0) (2, 3)→ (L, 4, 1)
(3, 0)→ (R, 3, 2) (3, 1)→ (R, 3, 1) (3, 2)→ (R, 3, 0) (3, 3)→ (L, 4, 0)
(4, 0)→ (L, 5, 2) (4, 1)→ (L, 4, 1) (4, 2)→ (L, 4, 0) (4, 3)→ STOP
(5, 0)→ (L, 5, 2) (5, 1)→ (L, 5, 1) (5, 2)→ (L, 6, 2) (5, 3)→ (R, 2, 1)
(6, 0)→ (R, 0, 3) (6, 1)→ (R, 6, 3) (6, 2)→ (R, 6, 2) (6, 3)→ (R, 3, 1)
We use the following alphabet:

{t, a0, . . . a3, Q0, . . . Q6, P0 . . . P3, R}

For every pair except (4, 3) the following functions are defined: q(i, j) is a new state, p(i, j) is
a new color of the current cell (the head leaves it).
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3.1.2. Defining Relations for the Nilpotency Question

Consider the following defining relations:

tRal = Rtal ; 0 ≤ l ≤ 3 (1)

tal R = al Rt; 0 ≤ l ≤ 3 (2)

takaj = aktaj; 0 ≤ k, j ≤ 3 (3)

takQiPj = Qq(i,j)Pktap(i,j); for left pairs (i, j) and 0 ≤ k ≤ 3 (4)

tRQiPj = RQq(i,j)P0tap(i,j); for left pairs (i, j) and 0 ≤ k ≤ 3 (5)

talQiPjakan = alap(i,j)Qq(i,j)Pktan; for right pairs (i, j) and 0 ≤ k ≤ 3 (6)

talQiPjakR = alap(i,j)Qq(i,j)PkRt; for right pairs (i, j) and 0 ≤ k ≤ 3 (7)

tRQiPjakan = Rap(i,j)Qq(i,j)Pktan; for right pairs (i, j) and 0 ≤ k ≤ 3 (8)

tRQiPjakR = Rap(i,j)Qq(i,j)PkRt; for right pairs (i, j) and 0 ≤ k ≤ 3 (9)

talQiPjR = alap(i,j)Qq(i,j)P0Rt; for right pairs (i, j) and 0 ≤ l ≤ 3 (10)

tRQiPjR = Rap(i,j)Qq(i,j)P0Rt; for right pairs (i, j) (11)

Q4P3 = 0. (12)

The relations (1) and (3) are used to move t from the left edge to the last letter al standing before
QiPj which represent the head of the machine. The relations (4)–(11) represent the computation process.
The relation (2) is used to move t through the finishing letter R.

Finally, the relation (12) halts the machine.
Let us call tRau1 au2 . . . auk QiPjav1 av2 . . . avl R the main word.

Theorem 12. Consider an algebra A presented by the defining relations (1)–(12). The word tRUQiPjVR is
nilpotent in A if and only if machine M(i, j, U, V) halts.

Actually we can prove that multiplication on the left by an element t leads to the transition to the
next state of the machine.

3.1.3. Defining Relations for a Zero Divisors Question

We use the following alphabet:

Ψ = {t, s, a0, . . . a3, Q0, . . . Q6, P0 . . . P3, L, R}.

For every pair except (4, 3) the following functions are defined: q(i, j) is a new state, p(i, j) is a
new color of the current cell (the head leaves it).

Consider the following defining relations:

tLak = Ltak; 0 ≤ k ≤ 3 (13)

takal = aktal ; 0 ≤ k, l ≤ 3 (14)

sR = Rs; (15)

sak = aks; 0 ≤ k ≤ 3 (16)

takQiPj = Qq(i,j)Pkap(i,j)s; for left pairs (i, j) and 0 ≤ k ≤ 3 (17)

tLQiPj = LQq(i,j)P0ap(i,j)s; for left pairs (i, j) (18)

talQiPjak = alap(i,j)Qq(i,j)Pks; for right pairs (i, j) and 0 ≤ k, l ≤ 3 (19)
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tLQiPjak = Lap(i,j)Qq(i,j)Pks; for right pairs (i, j) and 0 ≤ k ≤ 3 (20)

talQiPjR = alap(i,j)Qq(i,j)P0Rs; for right pairs (i, j) and 0 ≤ l ≤ 3 (21)

tLQiPjR = Lap(i,j)Qq(i,j)P0Rs; for right pairs (i, j) (22)

Q4P3 = 0; (23)

The relations (13)–(14) are used to move t from the left edge to the letters Qi, Pj which present the
head of the machine. The relations (15)–(16) are used to move s from the letter Qi, Pj to the right edge.
The relations (17)–(21) represent the computation process. Here we use relations of the form tU = Vs.

Finally, the relation (23) halts the machine.

3.1.4. Zero Divisors and Machine Halt

Let us call Lau1 au2 . . . auk QiPjav1 av2 . . . avl R the main word.

Theorem 13. The machine halts if and only if the main word is a zero divisor in the algebra presented by the
defining relations (13)–(23).

Remark. We can consider two semigroups corresponding to our algebras: in both algebras each relation is
written as an equality of two monomials. Therefore the same alphabets together with the same sets of relations
define semigroups. In both semigroups the equality problem is algorithmically solvable, since it is solvable in
algebras. However in the first semigroup a nilpotency problem is algorithmically unsolvable, and in the second
semigroup a zero divisor problem is algorithmically unsolvable.

The entire proofs can be found at Reference [109].

3.2. On the Algorithmic Undecidability of the Embeddability Problem for Algebraic Varieties over a Field of
Characteristic Zero

3.2.1. The Case of Real Numbers

By a Matiyasevich family of polynomials we mean a family of polynomials

Q(σ1, . . . , στ , x1, . . . , xs)

for which the existence of a solution for a given set of parameters of the polynomial is undecidable.
As was established in Reference [110], such a polynomial exists.

Consider the affine space of dimension 5d + 1. We denote coordinates in this space by
Xi, Yi, Zi, Ui, Wi, 1 ≤ i ≤ d, and T. Consider the variety B(d) given by the following system of
generators and relations: ⎧⎪⎨⎪⎩

X2
i −

(
T2 − 1

)
Y2

i = 1,
Yi − (T − 1)Zi = Vi,
ViUi = 1,

(24)

where 1 ≤ i ≤ d. For fixed i, the admissible values of the coordinates Xi, Yi, Zi, Ui, and Wi are
determined by the same value of T. Consider the “short” subsystem⎧⎪⎨⎪⎩

X2 −
(
T2 − 1

)
Y2 = 1,

Y− (T − 1)Z = V,
VU = 1,

(25)

Lemma 2. The following assertions hold for every solution of system (25):

(1) U and V are nonzero constants in F[t] (deg U = deg V = 0);

168



Mathematics 2020, 8, 1694

(2) either T = ±1 and X = ±1 or

Y =
[N/2]

∑
k=0

(
N

2k + 1

)(
T2 − 1

)k
TN−1−2k

for some integer N.

Let R denote a root of the equation R2 = T2 − 1 such that R belongs to the algebraic extension
F[t]. Then the element (T + R)n can be uniquely represented in the form Xn + RYn, where Xn and Yn

are polynomials in F[t]. All solutions of the equation

X2 − (T2 − 1)Y2 = 1 (26)

are of the form X = ±Xn, Y = ±Yn (see Reference [111]).
The structure of this set depends on T. In the case T = ±1, the first equation of the system

imposes no conditions at all on Y. In turn, the other equation implies Y = (T − 1)Z + V. For every
choice of V ∈ F \ {0} and Z ∈ F[t], the corresponding solution exists and is unique.

Lemma 3. If deg T > 0, then V = Ymod(T − 1) = N for an integer N and Z = (Y − N)/(T − 1).
If T = const �= ±1, then Y and Z are constants in F[t].

Thus, the following three cases are possible:

(1) for deg T > 0, to every set of integers Ni there correspond polynomial solutions Yi and Xi
determined up to sign, as well as the constants Vi = Ni and Ui = 1/Vi, and Zi = (Yi−Vi)/(T− 1);

(2) for deg T = 0 and T �= ±1, there are constant solutions for Yi chosen from a given sequence;
the values Xi, Zi, Vi and Ui are also constants, and they are determined by the chosen values of Yi;

(3) for T = ±1, we obtain Xi = ±1; for arbitrarily chosen constants Vi and polynomials Zi, we set
U1 = 1/Vi and Yi = (T − 1)Zi + Vi.

So far, these considerations are valid for an arbitrary ground field F of characteristic zero. In the
case F = R, we introduce a new coordinate S by completing the main system of equations by
the equation

T = S2 + 2, (27)

which ensures the impossibility of T = ±1. All common solutions of systems (24) and (27) either
are constants (if deg T = 0, T �= ±1) or correspond to some set of integer parameters (N1, . . . , Nd).
We refer to solutions of the first kind as “bad” and to those of the second kind as “good”.

Consider a Matiyasevich family of polynomials Q(σ1, . . . , στ , x1, . . . , xs). Let d ≤ s. Then,
adding the new equation Q(σ, V1, . . . , Vs) = 0 to systems (24) and (27), we obtain a system defining a
new variety. We denote this variety by B′

(d),σ.
If Q = 0 has no integer solutions, then the original system has no good solutions. In this case,

the variety B′
(d),σ is zero-dimensional, and there are no embeddings of A in B′

(d),σ.
Otherwise, for every solution N1, . . . , Ns, we can explicitly construct functions Yi(S), Xi(S),

and Zi(S) which are solutions. They define an embedding of the line in the variety B′
(d),σ.

Since the existence of integer solutions for Q is undecidable, it follows that so is the embeddability
of A in B′

(d),σ (in particular, in B′
(s),σ). Here the input data is the equations defining B′

(d),σ. We have
proved the following theorem.

Theorem 14. The problem of the embeddability of the affine line (and, therefore, the general embedding problem
for an arbitrary variety) over R in an arbitrary algebraic variety B (defined by generators and relations)
is undecidable.
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3.2.2. The Complex Case

In this case, the situation is more complicated: it is hard to eliminate the case in which T = ±1
and Xi = ±1, since no constraints on Yi arise in this case. Therefore, we consider the problem of
the embeddability of an affine space Am in a given variety B and construct a class of varieties such
that it is impossible to decide whether a desired embedding exists from the defining relations for
representatives of this class (for a certain suitable integer m). We define the coordinate ring of the
variety B(d,e) by the following system of generators and relations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X2
ij −

(
T2

j − 1
)

Y2
ij = 1,

Yij −
(
Tj − 1

)
Zij = Vij,

VijUij = 1,
Tj+1 = ∏

j
k=1

((
T2

k − 1
)

Wk
)

Wj+1,

(28)

where 1 ≤ i ≤ d and 1 ≤ j ≤ e. In fact, we compose a system of many “clones” of the main system of
the previous subsection and augment it by the “linking” relations between the parameters Tj. Let us
study the solutions of the resulting system in C[t].

The relations for Xij, Yij, Zij, Uij, and Vij for each fixed Tj are similar to those considered above.
For a fixed set of Tj, the set of solutions is the direct sum of the sets B(d), which have already been
studied above.

As above, for each j, the following cases can occur: Tj = ±1 and deg Tj = 0; Tj �= ±1,
and deg Tj > 0.

The case most important from the point of view of “elimination” is the case where Tĵ = ±1 for

some ĵ. In this case, T2
ĵ
− 1 = 0, and for all j < ĵ, we obtain

Tj =
j−1

∏
k=1

((T2
k − 1)Wk)Wj.

Lemma 4. If TN = CN �= 0 for some N, then all Wk with k ≤ N and all Tk with k ≤ N − 1 are constants.

By Lemma 4, we have Tj = Cj for j < ĵ. Here Cj �= ±1 (otherwise Cj+1 = 0). Thus, if Tĵ = ±1

for some ĵ, then the corresponding component has dimension d. However, in this case, all other
components are zero-dimensional, and the total dimension of the variety does not exceed d.

In the second case, we have Tĵ = Cĵ �= ±1 for some ĵ. The corresponding component of the variety

has dimension 0. Moreover, Lemma 4 implies Tj = Cj for j < ĵ. The corresponding ĵ− 1 components
of the variety are zero-dimensional as well.

The case deg Tj > 0 was considered in Section 3.2.1. Each component of the variety is parametrized
by a set of integers N1j, . . . , Ndj,for which the corresponding solutions for Xij, Yij, Zij, Uij, and Vij are
constructed explicitly. The corresponding component has dimension 1.

Consider a Matiyasevich family of polynomials Q(σ1, . . . , στ , x1, . . . , xs). The solvability problem
of the Diophantine equation Q(σ1, . . . , στ , V1j, . . . , Vsj) = 0 is algorithmically undecidable. Let d ≤ s.
Adding the new equations Q(σ, Vi1, . . . , Vis) = 0 to system (28), we obtain a system defining a new
variety. We denote it by B′

(d,e),σ.
If Q = 0 has no integer solutions, then the original system has no solutions for which deg T0 > 0.

In this case, the possible solutions correspond either to the case where Tj = ±1 for some j (and the
set of solutions has dimension d) or to the case Tj = Cj �= ±1. In the latter case, assuming that j is
the maximum index for which Tj = Cj �= ±1, we see that all the succeeding e− j components are
one-dimensional and the total dimension of the set equals precisely e− j ≤ e− 1. Setting e = s and
d = s− 1, we obtain

dim B′
(d,e) ≤ max(e− 1, d) = s− 1 < s.

170



Mathematics 2020, 8, 1694

Obviously, in this case, for m ≥ s, there is no embedding of A = Am in B′
(d,e),σ = B′

(s−1,s),σ.
In particular, As cannot be embedded in B′

(s−1,s),σ.
If Q has integer solutions, then, for every such solution N1, . . . , Ns, we can explicitly construct

functions Yij(T), Xij(T), and Zij(T) which are solutions. These functions define an embedding of
A = As in the variety B′

(d,e),σ.
Since the existence of integer solutions for Q is undecidable, it follows that the embeddability of

As in B′
(s−1,s),σ is undecidable as well (the input data is the equations defining B′

(s−1,s),σ). The proof is
valid for any field K of of characteristic zero. The following theorem holds.

Theorem 15. There is a positive integer s for which the embeddability of an affine space As over K in an arbitrary
algebraic variety B (defined by generators and relations) is undecidable. Thus, the general embeddability problem
for an arbitrary algebraic variety is undecidable as well.
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Abstract: Aim: To confirm algorithm of determination of risk groups with physiological imbalance in
the population exposed to unfavorable anthropogenic influences. Methods: The testing included such
functional systems as constitution, myocardial contractility, autonomic regulation of the heart rate,
regulation of peripheral circulation, psychomotor regulation, respiratory regulation and metabolism.
Monitoring is carried out using computerized measurement instrumentation and data processing
systems. Results: A risk group with pronounced shifts in the physiological balance was identified,
which made up 38% of the surveyed population. The greatest contribution to the imbalance was
made by the psychomotor system. Conclusion: We analyzed two different components of organism’s
adaptation: resistance and resilience. Physiological systems experiencing increasing load attain
a tipping points, where even a weak disturbing influence can induce transition to a qualitatively
different state. This transition can result in either recovery of the regulatory stability of the system, or
its transition to a lower level (dysregulation) with further development of a pathology. In this regard,
of paramount importance is early detection of the signals about approaching the tipping points, one
of these is the slowing down phenomenon during functional tests. In view of intricate interaction
of physiological systems, recording of as much indicators as possible is advisable. The method of
partial correlations is effective for evaluation of adaptive interaction of systems.

Keywords: adaptive resource; resilience; resistance; tipping point; theory of catastrophes

The concepts of health and disease are fundamental in medicine at all stages of its
development. The WHO definition of health works well to differentiate between health
and disease. However, the transition from one state to another is not instantaneous.
Consequently the definition proposed by G. N. Kryzhanovsky [1]—“health is the state
ensuring optimal performance of body functions to the extent necessary for productive
interaction with the environment”—seems to be the most promising to assess the state of
the body under the influence of environmental factors. To achieve this state, specialized
systems in the body analyze the changing situation inside and outside the body and adjust
the latter to the optimal level of interaction with the environment. Thus, the state of
health is primarily provided by the resource of functions spent for adaptation. There
are practically no functional states of the whole organism, the sufficiency of which solely
depends on only a single system. An important task is to determine the limits of resilience
(i.e., ability of a system to perform its functions under the influence of variable external
factors) [2]. This gave rise to the “tipping point” concept (i.e., a point corresponding to
a transition of a self-maintaining system to a different state, just as slowly cooling water
turns into ice) [3]. Here, different stages of adaptation should be distinguished: before
and after the tipping point (Figure 1). The resistance mechanisms prevent the system from
reaching the tipping point, while resilience mechanisms come into action after the system
passed this critical point [4–6].

In experimental studies, it is quite difficult to distinguish between the resistance
and resilience stages due to activation of repair mechanisms in response to damage. For
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separate analysis of these phenomena, special conditions should be created. For instance,
the resistance of mammalian genetic apparatus to cosmic radiation can be evaluated only
in dried cells [6]. The stability of DNA exposed to irradiation with fast heavy ions was also
evaluated in dry specimens to exclude the influence of free radicals formed from water
molecules [7]. The resilience stage can be studied under more natural conditions—in living
cells with preserved reparative mechanisms.

A relatively simple approach is evaluation of the radioadaptive response of human
lymphocytes. It is known that human lymphocytes irradiated in a low dose become more
resistant to higher doses of radiation or to other damaging factors. We have previously
demonstrated that individuals with or without this response that indirectly characterizes
reparative capacity of the body differ by functional parameters of the cardiorespiratory
system under conditions of mild stress [8]. This attests to either a genetically determined
degree of organism’s resilience at different levels of its organization, or the presence of
poorly studied mechanisms of interaction between the systems.

It should be noted that resilience is an interdisciplinary concept that attracts steadily
growing interest [2]. To describe abrupt changes in the dynamical systems, the theory of
catastrophes (i.e., a program for predicting system instability) was developed [9]. In this
case, the catastrophe means loss of resilience, even if it does not lead to system death or
destruction, but only causes transition to a different trajectory of its development. Dynamic
systems are characterized by a number of features: current state of the system depends on
the way how it came to it; the system maintains its state as long as possible (the principle
of maximum delay); trajectories of the system can be irreversible. Physiological systems
are complex, that is, their properties are not confined to characteristics of their components
and some new properties can emerge. Thus, fluctuations of individual elements and their
combinations under the influence of gradual changes in conditions affecting these elements
can lead to a qualitative change of the system in the point of bifurcation, where it switches
from one to another more stable mode of functioning.

Figure 1. Scheme of the response of a physiological system to stressful exposure/load.

This brings us to the task of quantifying the proximity of the tipping point, which
allows us to take measures to avoid transition or, on the contrary, to encourage it in case of
initially unfavorable state of the system.
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One of the early markers of approaching the tipping point is the critical slowing
down phenomenon [10,11]. In physiology and medicine, functional tests are widely used
for this studying of the adaptive capacities of the body. These tests are based on the use
of “perturbing influences”, such as physical activity, changes in spatial body position,
breath holding, administration of various substances, etc., while the analyzed parameters
are recorded before (at rest), during, and after the test (which is most important in this
case). Changes in the pattern of system fluctuations manifesting itself in an increase in
temporal autocorrelation, describing the status of the system in successive time points and
an increase in variance of its parameters, can be a warning signal of critical slowing down
(Figure 2).

Figure 2. Changes in peripheral blood pressure during functional test (controlled breathing, six cycles/min). Upper panel—
high resistance, fast recovery after exposure, lower panel—low resistance, slow recovery, increased variance. Abscissa—time,
s. Ordinate—blood pressure, mmHg.

Based on these indicators, so-called dynamic indicators of resilience (DIORs), an algo-
rithm for assessing the risk of catastrophe for ecological systems has been proposed [11]. In
clinical practice, an anticipatory care system for patients approaching a tipping point stage
has been successfully tested [12]. To determine the risk groups in the population exposed to
unfavorable anthropogenic influences, we have to identify groups demonstrating dramati-
cally increased frequency of fixation of certain pathological processes. Biological aftereffects
of the detected shifts can reflect either favorable (development of resistance) or unfavorable
(fixation of certain pathologies) outcomes. In most cases, epidemiological approaches
allow assessing the shifts caused by relatively high doses/concentrations of anthropogenic
factors and are unapplicable for mild influences. The most probable pathological outcomes
can be predicted by polysystemic monitoring that detects signs of dysregulation in various
systems of the body (cardiorespiratory, psychomotor, and metabolism systems). The de-
crease in health reserve impairs adaptive capacities of the organism, which indicates the
first (prenosological) stage of transition from health to disease, when functional parameters
remain within the normal range, but at the expense of the strained work of the adaptation
mechanisms aimed at the maintenance of health parameters at the required level.

The organism is a complex of interacting and mutually influencing systems and sub-
systems that form a network, the components of which depend on each other. Impaired
resilience of some components can lead to strengthening of cross-correlation relationships
with peaks in activity of other parts of the system [13]. For collecting data array on the

179



Mathematics 2021, 9, 209

functional state of the main body systems (cardiorespiratory, psychomotor, and metabolic),
a software-and-hardware complex suitable for mass surveys was developed. The correla-
tions between the parameters of different systems revealed by the methods employed by us
are not always obvious. The revealed correlation between the content of toxic metals and
shifts in the subfractional composition of biological fluids seems to be quite reasonable [14].

Due to individual variability of physiological balance processes, an anthropogenic
factor of the same strength (dose, concentration, etc.) can induce shifts in some organisms
sensitive to it, but not causes in others, while the thirds can become resistant to this factor.

At the population level, low-dose and low-concentration exposure leads to the for-
mation of three subpopulations: sensitive, neutral, and super resistant. The proportions
between these subpopulations reflect the population risk from this exposure.

The monitoring of physiological balance of the body is carried out using computerized
measurement instrumentation and data processing systems. The following three major
instruments adapted to non-invasive screening survey are used:

− A spiro-arterio-cardio-rhythmo graph with a highly sensitive ultrasonic transducer
for continuous non-invasive recording of blood pressure, expiration and inspiration
air flows, and electrocardiogram;

− A computer-aided device for express-evaluation of psychomotor activity during
motor tests;

− A laser correlation spectrometer intended for identification of the pattern of regulation
of metabolic and immune processes.

In physiological systems, around fifty parameters are recorded during screening stud-
ies and, for analysis of these systems, unified ranking methods for the recorded values
should be developed [15]. The need in this stage is dictated by the concept of dysregulation
diagnosis based on discordance between the functions of individual systems, the parame-
ters of which can be compared only if they are presented in universal units of deviation.
The sizes of age subgroups are chosen with consideration of sample representativeness for
providing proper 5th and 95th centiles and peculiarities of the age-related dynamics of the
parameter [16]. The centile table is corrected as the number of measurements increases.
The parameters are ranked using the hypo-hyperfunction scale and the centile boundaries
correspond to certain scores. The measured parameter is compared with the previously
determined (reference) values for persons of different age/gender and then, its correspon-
dence to a particular centile and, thereby, its score is determined. In the expert system, the
scores k0–k5 take on the following values: −2.5, −1.5, −0.5, 0.5, 1.5, 2.5; all parameters will
be scored in the range from −2.5 to 2.5.

Thus, the scores calculated using the above-described method immediately show
whether the recorded value of a certain parameter corresponds to the most common range
of the same parameter in the population of the same age and gender or deviate towards
the of area hypo- or hyperfunction (Figure 3a).

For example, we examined 130 workers (76% men and 24% women) of a shipyard;
77% workers were at the age of 25–54 years; 52% had continuous service length from three
to 15 years. By the degree of contact with potential hazard sources, the sample popula-
tion was divided into three groups. Group 1 (n = 24) included storekeepers, cloakroom
attendants, cleaners, engineers, and other technical workers, who had minimum contact
with hazardous factors. Group 2 (n = 53) consisted of crane operators, painters, electricians,
strapper, maintenance men, and vessel trolley-transporter men who indirectly contacted
with hazardous factors. Group 3 (n = 53) comprised welders, burners, riveters, fitters, and
other workers on the vessel hull who are directly exposed to hazardous factors.
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Figure 3. Evaluation of the physiological balance of the body using age-specific centile distributions (a) and with computa-
tion of partial correlations (b). The rings in the diagram: Green—optimal level (from −0.5 to 0.5), yellow—sufficient level
(from −0.5 to −1.5 and from 0.5 to 1.5), red—stressed level (from −1.5 to −2.5 and 1.5 to 2.5). Abbreviations: HR—mean
heart rate over the recording interval, bpm; P—P wave duration, s; PQ—duration of the interval from the beginning of
P wave to the beginning of Q wave (or to the beginning of R wave in case of the absence of P wave), s; QR—duration of
the interval from the peak of Q wave (or from the beginning of R wave in case of the absence of Q wave) to the peak of
R wave, s; QRS—duration of the interval from the beginning of Q wave (or from the beginning of R wave in case of the
absence of Q wave) to the end of S wave, s; QT—duration of the interval from the beginning of the Q wave (or from the
beginning of R wave in case of the absence of Q wave) to the end of the T wave, s; ST—depression or elevation of the ST
segment (from the end of the S wave to the beginning of the T wave) relative to the isoline, mV; TP—area under RR interval
distribution curve, range of heart rate variability; VLF—total power in very low frequency range, ms2; LF—total power
in low frequency range, ms2; HF—total power in high frequency range, ms2; SBP—mean systolic BP over the recording
interval, mmHg; DBP—mean diastolic BP over the recording interval, mmHg; BRLF, BRHF—baroreflex—change in RR
interval duration in response blood pressure changes with consideration for LF- (low frequency) and HF- (high frequency)
components; DMC—duration of movement cycle—the mean time (s) of lever movement from one marker (LED) to the other
and back; CSC—central settings changing—number of cycles required to achieve the necessary movement accuracy upon
change in marker-to-marker distance; TRL—time of response to light stimulus-latency of a simple motor response-time
from the beginning of stimulation to the beginning of lever movement from the start point; CE—correction error is the ratio
of the mean deviation from the boundaries of the preset movement range to the total amplitude of lever movement over the
entire cycle, %; SM—smoothness of movement—assessed by the percentage of the main harmonics of the Fourier spectrum
(%); the higher is the contribution of the main frequency, the higher is smoothness of movement; dEF—predominance of
extensor/flexor tone—the examinee is asked to move the lever side to side with a certain amplitude with eyes closed, and
displacement of the extreme positions of the lever over the last 10 s of visually uncontrolled movements relative to the
mean position of extreme points under visual control is estimated. Negative values indicate greater displacement towards
flexion, positive values attest to greater shift in the extensor phase of movement; VC—vital capacity; maximum exhaled
volume after the deepest inhalation, liter; Tiffeneau—Tiffeneau index = Forced expiratory volume in 1 s/VC, dimensionless
parameter, ALS, ILS, CLS—allergic-like, intoxication-like and catabolic-like shifts-initial, moderate and pronounced shifts
in homeostasis.

This necessitates creation of an expert algorithm that takes into account the interac-
tion between the parameters and their mutual influence under conditions of a weakly
structured task. If this relationship is not taken into consideration, the deviations from the
population mean in some cases can be erroneously interpreted as stress state of the studied
physiological system, and vice versa, other parameters can be viewed as balanced, though
they are not. A way of solving this problem during analysis of multivariate measurements
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in the absence of physiologically based equations of functional interrelationship is the use
of multiple regression analysis that allows computing partial correlations. Analysis of
interdependencies of these coupled processes is of particular importance when studying
regulatory processes constantly inducing dynamic restructuring of physiological systems.
To avoid errors in attribution of changed parameters of physiological systems to a particular
centile, the most probable functional relationship between the parameters in conditionally
healthy population should be deduced and mutual deviations of the parameters from
the population mean should be computed; this will serve as the basis for constructing
“dynamic individual norm”. Unfortunately, physiologically-based equations (especially
multivariate equations) of functional interrelationship for most parameters of body systems
are unknown, so they should be deduced using statistical methods. When interpreting
interdependence, apparent correlation between two variables can be just a reflection of
the fact that they are both correlated with some third variable or a set of variables not
included in the model. The situation can be clarified by computation of partial correlations
between the two variables, while other variables are removed (partial correlations). It
should be emphasized that even in case of high partial correlation coefficients, the causality
between the analyzed variables should always be based on knowledge of physiology, but
not exclusively on statistical relationships.

Considering the above, the algorithm for calculation of the balance between the
parameters of the body systems includes the following steps:

1. Calculation of the matrix of partial correlations for scores of all parameters and for
the entire population;

2. Selection of pairs of parameters with significant partial correlations;
3. Expert evaluation of significant correlations for their physiological feasibility and

construction of a subgroup with physiologically based correlations;
4. Calculation of the matrix of multiple linear regression coefficients;
5. Calculation of the scores of “dynamic individual norm” indicators based on the scores

of measured parameters.

The above calculations yield a vector that contains the scores b∗j for each measured
parameter obtained with considerations for the individual characteristics of the body; the
score k2 ≤ b∗j ≤ k3 indicates that body condition by this parameter is satisfactory and
correspond to the most common values for the conditionally healthy population, while
at k1 ≤ b∗j < k2 and k3 < b∗j ≤ k4 it corresponds to the initial stress, and at b∗j < k1 and
b∗j > k4—to pre-pathological and, possibly, pathological stress (Figure 3b). It should be
taken into account that the same value of the studied parameter can be normal for one
individual and a pathological symptom for another.

Functional sufficiency for each system was scored using a three-point scale, where
1 corresponded to balanced, 2 to sufficient, and 3 to strained state of the system. In a
population not burdened by verified pathologies and intoxications, the proportion between
these groups is 50%—40%—10% [15].

The integral functional balance was determined by the summary score for seven
regulatory systems (each evaluated using a three-point scale):

1. Balanced (score from 7 to 10);
2. Sufficient (score from 11 to 12);
3. Strained (score ≥13);

The integral value of functional strain (38%) attests to a high burden of the studied
population. The decisive contribution of the psychomotor regulation system is worthy of
note: this system worked in a strained mode in 75% workers. In groups 1, 2, and 3, the
functional state of the psychomotor regulation was interpreted as strained in 42%, 70%,
and 96% cases, respectively. Taking into account occupational specific of these groups, we
can assume that working conditions in group 3 promote aggravation of functional strain in
the psychomotor system.

182



Mathematics 2021, 9, 209

The use of the described algorithm made it possible to identify risk groups in mass
surveys of employees exposed to potentially dangerous climate, geographical and occu-
pational factors and to determine the degree of proximity to the tipping points for body
systems in participants of an Arctic expedition [17].

An example of an effective application of this approach is described previously [12].
The development of methods for predicting catastrophic changes at the cellular level is
in progress [18,19]. This trend seems to be very promising, because it allows identifying
the patterns of interaction between the systems. This, in turn, makes it possible to use
empirical data on the interaction between body systems during modeling and prediction of
physiological balance level. Monitoring of the main body systems by using functional tests
and applying the developed algorithms for detection of approaching the tipping points,
followed by correction of the detected deviations, will lead to an increase in the duration of
active life.
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