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0 Introduction

Veličković proved in [6], with reference to earlier technical innovations by Shelah,
that the Boolean algebra P(N)/fin does not have Baire measurable (BM, in brief)3)

automorphisms other than the trivial ones, i. e., those generated by bijections between
two cofinite subsets of N. (See Farah [2, 3] on more advanced results on automor-
phisms and homomorphisms of quotients P(N)/I for different ideals I ⊆ P(N), in
particular, analytic P-ideals.) This raises the problem of the nature of BM automor-
phisms and homomorphisms of quotients of other similar algebraic structures. We
consider this question with respect to quotients of R, the additive group of the reals.

T h e o r em 1. Let D, G ⊆ R be arbitrary subgroups4), G being at most countable.
Then any Baire measurable homomorphism h : R/D −→ R/G has a lifting of the
form x �−→ cx, where c ∈ R satisfies c ·D ⊆ G.

(The notion of a lifting and other notions involved will be explained in Section 1.)
Thus, if D, G ⊆ R are as in the theorem, the only Baire measurable homomor-

phisms R/D −→ R/G are those generated by maps x �−→ cx, where a real c satisfies
c ·D ⊆ G. Note that the latter requirement is obviously necessary for x �−→ cx to be
a lifting of a homomorphism R/D −→ R/G. In particular, R/Q does not have BM

1)Support of NSF grant DMS 96-19880 and DFG grant Wu 101/9–1 acknowledged. The au-
thors are thankful to A. S. Kechris and other members of the Caltech logic group, as well as
I. Farah, G. Hjorth, D. Marker, and R. Grigorchuk, for interesting discussions and important
remarks. The authors are thankful to the referee for remarks that helped to substantially improve
the exposition.

2)e-mail: {kanovei, reeken}@math.uni-wuppertal.de
3)A map is BM if the pre-image of any open set is an open set modulo a meager set.
4)When speaking of a group G ⊆ R we always mean a subgroup of the additive group of R.
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group automorphisms (and even BM homomorphisms into itself) except for those gen-
erated by maps x �−→ cx, where c ∈ Q. Another interesting case arises from countable
groups G such that R/G does not admit any BM group automorphism other than
the identity, for instance, the group G = {m + n

√
2 : m, n ∈ Z}, for which there is

no c �= 1 such that c ·G = G, so that R/G does not admit BM automorphisms other
than the identity.

Theorem 1 includes the case when one or both of D, G is the group {0}. Note
that if G = {0}, then R/G is R, and it is known classically that the additive group of
R does not admit BM homomorphisms into itself other than x �−→ cx.

It follows from Theorem 1 that if G is countable while D uncountable, then there
is no BM homomorphism R/D −→ R/G. Similarly, there is no BM homomorphism
R/D −→ R unless D = {0}. Another corollary deals with groups A ⊆ R2, their
cross-sections Ax = {y : 〈x, y〉 ∈ A} and projections prXA = {x : Ax �= ∅}.

C o r o l l a r y 2. Suppose that A ⊆ R2 is a Borel group, prXA = R, and Y = A0

is countable. Then there is a real c such that Ax = cx+ Y for any x.
P r o o f . As A is a subgroup of R2, the map h(x) = Ax is an BM homomorphism

R −→ R/Y . It remains to apply Theorem 1. ✷

Suppose that G ⊆ R. We say that a map H : R −→ R is a G-approximate homo-
morphism if H(x+ y)−H(x)−H(y) ∈ G for all x, y.5) Then h(x) = H(x)+G is an
BM homomorphism R −→ R/G, so that, by Theorem 1, we have

C o r o l l a r y 3. If G ⊆ R is a countable group and H : R −→ R an BM G-ap-
proximate homomorphism, then there is c such that for all x, H(x)− cx ∈ G. ✷

Thus G-approximate homomorphisms are approximable by “true” homomor-
phisms. It will be demonstrated in Section 6 that Theorem 1, generally speaking,
fails in the case when G is an uncountable Borel subgroup. And, of course, the
theorem fails for homomorphisms h which are not BM.

The main argument in the proof of Theorem 1 is close to that of [6], but, due to
essential differences in the algebraic structure of R and P(N), especially related to
the fact that R is not a product group, technical details are somewhat different.

1 Homomorphisms and liftings

Every group G ⊆ R defines the quotient R/G, which consists of cosets x + G =
{x+ g : g ∈ G} and inherits an abelian (additive) group structure from R, as usual.

If D, G ⊆ R are groups then a map h : R/D −→ R/G is a homomorphism iff
h(X) + h(Y ) = h(X + Y ) for all X, Y ∈ R/D. In this case, a map H : R −→ R is a
lifting of h iff H(x) ∈ h(x+D) for any x.

A map H : R −→ R is Baire measurable (BM) iff there is a comeager set U ⊆ R

such that H � U is a Borel function. A homomorphism h is BM iff it has an BM
lifting H .

5)One may be interested in another, more numerical notion of approximation. We say that a map
H : R −→ R is an ε-approximate homomorphism if |H(x+ y)− H(x)−H(y)| < ε for all x, y. Then,
for any ε-approximate BM homomorphism H : R −→ R there is c ∈ R such that |H(x)− cx| ≤ ε for
all x, see Hyers [5]. Farah [4] gives more difficult approximation theorems.
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Note that a lifting H of a homomorphism is, by definition, not necessarily a ho-
momorphism itself (i. e., it may not satisfy H(x + y) = H(x) + H(y)). Theorem 1
says that, in some cases, if a homomorphism of quotients has an BM lifting, then it
has an BM lifting which is a homomorphism, too. Note further that D, the left-hand
subgroup in Theorem 1, actually plays little role: indeed, to solve the problem for
h : R/D −→ R/G it suffices to apply the same lifting which works for the homomor-
phism h′(x) = h(x+D) : R −→ R/G. After this remark, let us consider a countable
group G ⊆ R and an BM homomorphism h : R −→ R/G; our goal will be to find a
lifting of h of the form c �−→ cx.

2 Proof of the Theorem: preliminaries

Let N+ = N \ {0} = {1, 2, 3, . . .} and let Q be the set of all rationals, as usual. We
shall identify the reals in T = {x ∈ R : 0 ≤ x < 1} with their binary expansions,
e. g., reals x ∈ T will be sometimes viewed as functions x : N+ −→ 2 = {0, 1}. Put
D(x) = {n : x(n) = 1} for x ∈ T. If D(x) is finite, then x is a binary rational number.

For any interval [k, l) in N let 2[k,l) be the set of all functions s : [k, l) −→ 2.
Numerically, each s ∈ 2[k,l) represents the binary rational

∑l−1
i=k 2

−s(i). For any such
a string s define Ts = {x ∈ T : s ⊂ x}; this is a subinterval of T.

As h is BM, there is a dense Gda set U ⊆ T and a Borel map H : T −→ R,
continuous on U and satisfying h(x) = H(x) +G for all x ∈ U . Then

H(y) −H(x)−H(y − x) ∈ G whenever x, y belong to U .(1)
By the choice of U we have U =

⋂
nUn, where each Un ⊆ T is dense open. We can

assume that U is Q-invariant, so (q + U) ∩ T ⊆ U for any rational q.
For any n let U �≥n be the set of all z ∈ 2[n,∞) such that s ∪ z ∈ U for all

s ∈ 2[1,n). By the assumption of Q-invariance of U this is equivalent to having it not
for all but only for some s ∈ 2[1,n).

Suppose that s, t belong to 2[1,n) and z ∈ 2[n,∞). Then, by (1),
Hs,t(z) = H(s ∪ z)−H(t ∪ z) ∈ H(s− t) +G,

hence Hs,t(z) can take only countably many values, because G is countable. It follows
that we can assume that, for all s, t as indicated and any r ∈ R, the set

Zt
s(r) = {z ∈ U �≥n : H(s ∪ z) −H(t ∪ z) = r}

is clopen in U �≥n: actually all but countably many of the sets Zt
s(r) are empty.

3 Generic bisection

We assert that there is a sequence of natural numbers n0 = 1 < n1 < n2 < n3 < · · ·
and, for every j, a string σj ∈ 2[nj,nj+1) satisfying the following conditions:

For any s ∈ 2[1,nj) there is t ∈ 2[1,nj) such that t ⊂ H(s ∪ σj ∪ z)
whenever z ∈ U �≥nj+1 .

(2)

If s ∈ 2[1,nj), then Ts∪σj ⊆ ⋂
k≤j Uk.(3)

If strings s1, s2 belong to 2[1,nj), then there is r = r(s1, s2) ∈ R

such thatH(s2 ∪ σj ∪ z)−H(s1 ∪ σj ∪ z) = r for all z ∈ U �≥nj+1 .
(4)

(Note that such an r = r(s1, s2) ∈ R is unique if exists.)
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To get (2) use the fact that H � U is continuous. To see that (4) can also be
provided, note the following: Suppose that some n > nj and some σ ∈ 2[nj ,n) have
been defined. Recall that, for all s1, s2 in 2[1,nj) and r ∈ R, the set Zs1∪σ

s2∪σ (r) is
clopen in U �≥n. It follows that there is some n′ > n, a string σ′ ∈ 2[n,n′), and
r = r(s1 , s2) ∈ R such that σ′ ∪ z′ ∈ Zs1∪σ

s2∪σ (r) for all z′ ∈ U �≥n′ . Take the next pair
of s′1 , s

′
2 ∈ 2[1,nj) and find suitable r(s′1, s

′
2), n

′′ > n′, and σ′′ ∈ 2[n′,n′′), and so on,
until all pairs in 2[1,nj) are considered. The final result is as required.

L emma 4. We have r(s, s′) + r(s′, s′′) = r(s, s′′), r(s, s′) = −r(s′, s), and also
r(s, s) = 0, whenever s, s′, s′′ ∈ 2[1,nj) for some j.

P r o o f . Choose any z ∈ U �≥nj+1 . Then, by definition,

r(s, s′) = H(s′ ∪ σj ∪ z)−H(s ∪ σj ∪ z),
and similarly for the other pairs, which easily yields the result. ✷

L emma 5. If s1 , s2 ∈ 2[1,nj) and t, t′ ∈ 2[nj+1,nj+2), then

r(s1 ∪ σj ∪ t, s1 ∪ σj ∪ t′) = r(s2 ∪ σj ∪ t, s2 ∪ σj ∪ t′).
P r o o f . We first note that

r(s1 ∪ σj ∪ t, s2 ∪ σj ∪ t) = r(s1 ∪ σj ∪ t′, s2 ∪ σj ∪ t′) = r(s1, s2).
(For take any z ∈ U �≥nj+3 . Then clearly t ∪ σj+2 ∪ z ∈ U �≥nj+1 .) It follows that

r(s1 ∪ σj ∪ t, s1 ∪ σj ∪ t′)= r(s1 ∪ σj ∪ t, s2 ∪ σj ∪ t′)− r(s1, s2),
r(s2 ∪ σj ∪ t, s2 ∪ σj ∪ t′)= r(s1 ∪ σj ∪ t, s2 ∪ σj ∪ t′)− r(s1, s2)

by Lemma 4, as required. ✷

De f i n i t i o n . By Lemma 5, we can define r(t, t′) ∈ R for all t, t′ ∈ 2[nj+1,nj+2)

so that r(s ∪ σj ∪ t, s ∪ σj ∪ t′) = r(t, t′) for all s ∈ 2[1,nj).
The following is an immediate consequence of Lemma 4.
C o r o l l a r y 6. If t, t′, t′′ ∈ 2[nj+1,nj+2), then r(t, t′) + r(t′, t′′) = r(t, t′′) and

r(t, t) = 0. ✷

Note that the definition of r(s, s′) for s ∈ 2[1,nj) involves σj, in other words, it
retains its intended meaning only in the case that s, s′ are assumed to be extended
by σj. Similarly, the definition of r(t, t′) for t ∈ 2[nj+1,nj+2) involves σj+2.

C o r o l l a r y 7. For all s1, s2, t, t′ as in the definition of r(t, t′),

r(s1 ∪ σj ∪ t, s2 ∪ σj ∪ t′) = r(s1, s2) + r(t, t′).
P r o o f . By Lemma 4 and the first displayed equality in the proof of Lemma 5. ✷

Co r o l l a r y 8. Let s, s′ ∈ 2[1,nj) with s � [nk, nk+1) = s′ � [nk, nk+1) = σk for all
k < j, k = j (mod 2). Then

r(s, s′) =
∑

k<j, k=j (mod 2) r(s � [nk−1, nk), s′ � [nk−1, nk)). ✷

The next step is to expand this result for reals in T (i. e., infinite sequences).
Define oj = [nj, nj+1)×{0} and 1j = [nj, nj+1)×{1} for any j. Let ε = 0, 1, We

put εN =
⋃

i [n2i+ε, n2i+ε+1). Define εσ ∈ T by

εσ � [nj, nj+1) =
{
σj if j = ε (mod 2),
oj otherwise.
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Similarly, for any x ∈ T, define εx ∈ T by

εx � [nj, nj+1) =
{
x � [nj, nj+1) if j = ε (mod 2),
oj otherwise.

(Thus D(εσ) ∪ D(εx) ⊆ εN .) Define εH(x) = H(εx + 1−εσ) − H(1−εσ). Then by (3)
every real of the form εx+1−εσ, where x ∈ T and ε = 0, 1, belongs to U . In particular
0σ = 0 + 0σ and 1σ = 0 + 1σ belong to U . Moreover, x = 0x+ 1x, so that, by (1),

h(x) = 0H(x) + 1H(x) +G for any x ∈ T.(5)
L emma 9. Suppose that ε = 0, 1 and x, y ∈ T with D(x) ∪ D(y) ⊆ εN . Then

εH(x)− εH(y) =
∑

i r(x � [n2i+ε, n2i+ε+1), y � [n2i+ε, n2i+ε+1)).
P r o o f . Let ε = 0, for brevity. For any j, define an approximation yj ∈ T of

y such that yj � [1, nj) = y � [1, nj) while yj � [nj,∞) = x � [nj,∞). All numbers
x′ = x+ 1σ, y′ = y + 1σ, y′j = yj +

1σ belong to U by (1). It follows that

H(x′) −H(y′2i+1)= r(x
′ � [1, n2i+1), y′ � [1, n2i+1))

=
∑

ν<i r(x � [n2ν, n2ν+1), y � [n2ν, n2ν+1))
by Corollary 8. We conclude that

0H(x) − 0H(y) = H(x′) −H(y′) =
∑

i r(x � [n2i, n2i+1), y � [n2i, n2i+1)),
because the reals y′2i+1 ∈ U converge to y′ ∈ U while H is continuous on U . ✷

4 Additivity

This section contains the key fact: the function r( · , · ) has some group-theoretic
properties, some kind of additivity, true in all but finite cases. The key idea of
the proof is as follows: if there were infinitely many exceptions, then there would
be infinitely many of them which follow one and the same “pattern”, leading to
contradiction with the additivity of h.

L emma 10. The following is true for almost all j. Suppose that s ≤lex t belong
to 2[nj,nj+1). Then r(s, t) = r(oj , t− s). 6)

P r o o f . Suppose that the lemma is false. Then there is an infinite set J ⊆ N and
for any j ∈ J a pair of sj ≤lex tj in 2[nj,nj+1) such that r(sj , tj) �= r(oj , dj), where
dj = tj − sj . Let us assume that
(i) J contains only even numbers, so that J = {2i : i ∈ I}, where I ⊆ N+;
(ii) r(s2i, t2i) < r(o2i, d2i) for all i ∈ I;
(The other cases are similar.) We can also assume that
(iii) w =

∑
i∈I [r(o2i, d2i) − r(s2i, t2i)] /∈ G.

(Indeed if the sum w in (iii) belongs to G, then we have a convergent series of infinitely
many strictly positive terms. Clearly the set of sums of all subseries has the cardinality
of continuum, therefore, as G is countable, we can replace I by an appropriate infinite
subset I′ ⊆ I.) Define reals x, y, z ∈ T so that

x � [n2i, n2i+1) = s2i, y � [n2i, n2i+1) = t2i, and z � [n2i, n2i+1) = d2i

for all i ∈ I, while x � [nj, nj+1) = y � [nj, nj+1) = z � [nj, nj+1) = oj for j /∈ J .
6)t − s is executed here in the sense of the real number subtraction in T, assuming that each

s ∈ 2[nj,nj+1 ) is identified with
∑nj+1

k=nj
2−s(k). Note that the lexicographical order coincides with

the real number order, so that t − s ∈ 2[nj,nj+1 ) whenever s ≤lex t belong to 2[nj,nj+1).
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Then, by Lemma 9 (with ε = 0), we have 0H(y) − 0H(x) =
∑

i∈I r(s2i, t2i), while
0H(z) =

∑
i∈I r(o2i, d2i), so that, by (iii), 0H(x) + 0H(z) − 0H(y) /∈ G. On the other

hand, h(x) = 0H(x)+G by (5), and the same for y and z, so that h(x)+h(z) �= h(y),
which contradicts the choice of h as y = x+ z. ✷

Choose j0 big enough for Lemma 10 to be true for all numbers j ≥ j0.
Define ej ∈ 2[nj,nj+1) by

ej(n) =
{
1 if n = nj+1 − 1,
0 for all other n ∈ [nj, nj+1).

Thus ej follows oj in the lexicographical order on 2[nj,nj+1). Let γj = r(oj , ej). Since
r(s, s′) + r(s′, s′′) = r(s, s′′) (Lemma 6), we obtain:

C o r o l l a r y 11. For any j ≥ j0, if strings s ≤lex t belong to 2[nj ,nj+1) then we
have r(s, t) = (t − s) · 2nj+1−1 · γj . In particular r(oj, s) = s · 2nj+1−1 · γj . ✷

(Note that ej, as a number, is equal to 2−(nj+1−1).)
Now we figure out the interrelations between neighbouring domains. Note that

ej = 2nj+2−nj+1 · ej+1.
L emma 12. For almost all j we have γj = 2nj+2−nj+1 · γj+1.
P r o o f . Otherwise we have an infinite set J ⊆ N containing, say, only even

numbers ≥ j0, i. e. J = {2i : i ∈ I} for an infinite set I ⊆ N, such that, say, for all
i ∈ I, γ2i < 2n2i+2−n2i+1 · γ2i+1. Recall that 1j = [nj, nj+1)× {1}, so that, as a real,
1j = (2nj+1−nj −1) ·ej . It follows, by Corollary 11, that r(oj , 1j) = (2nj+1−nj −1) ·γj

for j ≥ j0. Thus, for any i ∈ I,
r(o2i, e2i) < r(o2i+1, e2i+1) + r(o2i+1, 12i+1).

We can assume, as above, that

w =
∑

i∈I r(o2i+1, e2i+1) + r(o2i+1, 12i+1)− r(o2i, e2i) /∈ G.
Define x, y, z ∈ T so that x � [n2i+1, n2i+2) = e2i+1, y � [n2i+1, n2i+2) = 12i+1 and
z � [n2i, n2i+1) = e2i for all i ∈ I, and such that 0 outside of those domains. Then,
by Lemma 9, 0H(z) =

∑
i∈I r(o2i, e2i), while 1H(x) =

∑
i∈I r(o2i+1, e2i+1) and

1H(y) =
∑

i∈I r(o2i+1, 12i+1), so that 1H(x) + 1H(y) − 0H(z) /∈ G, which leads to
contradiction like in the proof of Lemma 10, because by definition z = x+ y. ✷

We may assume that Lemma 12 holds for all j ≥ j0, together with Corollary 11.
C o r o l l a r y 13. If j ≥ j0 and s ∈ 2[nj,nj+1), then r(oj, s) = s · 2nj0+1−1 · γj0 . ✷

5 Ending the proof

Let for all j ≥ j0 and s ∈ 2[nj,nj+1), r(oj , s) = c · s, where c = 2nj0+1−1 · γj0 . Now, it
follows from (5) and Lemma 9 that, for every x ∈ T which is small enough, i. e. satisfies
x < x0 = 2−nj0 (or, that is the same, D(x) ⊆ [nj0,∞)), we have

h(x)= 0H(x) + 1H(x) +G
=

∑
j≥j0

r(oj , x � [nj, nj+1)) +G
=

∑
j≥j0

c · (x � [nj, nj+1)) +G
= c · x+G.
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It easily follows that then h(x) = cx+ G for all x ∈ R. Indeed if, say, x ≥ x0, then
take m ∈ N+ big enough for x′ = 2−m · x to satisfy x′ < x0. Then h(x′) = c · x′ +G
by the above. However h(x) = mh(x′). ✷ (Theorem 1)

6 Counterexample with an uncountable group

The following example shows that Theorem 1 fails, generally speaking, for uncountable
Borel groups G ⊆ R and, say, D = Q. Let us consider R2 as the product of two copies
of the additive group of the reals. Define, for any set A ⊆ R2,

prX A = {x : ∃y (〈x, y〉 ∈ A)}, and prY A = {y : ∃x (〈x, y〉 ∈ A)},
and Ax = {y : 〈x, y〉 ∈ A} for any x (a cross-section).

P r o po s i t i o n 14.7) There is a Borel subgroup A of R2 such that
(i) prX A = R;
(ii) for any real c, the set A does not completely include the line y = cx;
(iii) if x− x′ ∈ Q, then Ax = Ax′ .
P r o o f . Let Y ⊆ R be an uncountable closed set such that q1y1 + · · ·+ qnyn �= 0

whenever q1, . . . , qn ∈ Q \ {0}, while y1, . . . , yn are pairwise different elements of Y .
(In particular 0 /∈ Y .) Let F be a Borel 1− 1 map of R onto Y . Define A to be the
set of all points of the form

〈q + q1x1 + · · ·+ qnxn, q1F (x1) + · · ·+ qnF (xn)〉 ∈ R2,

where q, q1, . . . , qn ∈ Q and x1, . . . , xn ∈ R. Clearly A is a Borel group satisfying (i)
and (iii). Let us show that (ii) also holds. First of all A does not contain any point of
the form 〈x, 0〉, except for 〈q, 0〉 for q ∈ Q. Now let c �= 0. If A entirely includes the
line y = cx, then prY A = R. Then Y is a Borel basis of R as a Q-vectorspace, which
is impossible. (Indeed, if Y contains a rational r, then the Q-closure of Y \ {r} is a
Borel selector for the Vitali equivalence relation, which is impossible. If Y does not
contain a rational then 1 = q1y1 + · · ·+ qnyn for some yi ∈ Y and rationals qi �= 0.
Replace q1 by 1 in Y , getting the first case.) ✷

Assume that A is such a group. Then G = A0 is a Borel subgroup of R.
E xamp l e 15. An BM homomorphism h : R/Q −→ R/G without a “good” lifting.
By (iii), we can define a homomorphism h : R/Q −→ R/G by h(x + Q) = Ax

for any x ∈ R. We observe that h is Baire measurable: indeed, it is clear that
F (x) ∈ Ax = h(x + Q) for any x. Let us fix c ∈ R. Then x �−→ cx does not lift h:
otherwise cx ∈ Ax for any x, which is a contradiction with (ii). ✷

7 Some questions

Qu e s t i o n 1. Generalize Corollary 2 on Borel groups A ⊆ R not necessarily
satisfying prXA = R. ✷

Let R = prXA for such a group. Then R is a Borel (since the cross-sections are
countable) subgroup of R. If R is divisible and (unlike R) has a Borel Hamel basis
(over Q) H ⊆ R, then A is easily Borel isomorphic to R×A0.

7)This example, with the exception of requirement (iii), was communicated by G. Hjorth in May
1998 and presented here with his permission.
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Q u e s t i o n 2. Find uncountable subgroups G of R which still satisfy Theorem 1.
(Farah [2, 3] found a family of uncountable Borel ideals in P(N), called nonpatho-
logical analytic P-ideals, which admit a certain analog of our Theorem 1.) G = R is
a trivial example. Are there less trivial examples ?

It would be interesting to get results, similar to Theorem 1, for Polish groups other
than R.
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