A theorem on ROD-hypersmooth equivalence relations in the Solovay model

Vladimir Kanovei^{*1} and Michael Reeken ^{**2}

¹ Moscow Center for Continuous Mathematical Education, Bol. Vlasevski 11, Moscow, 121002, Russia^{***}
² Department of Mathematics, University of Wuppertal, Wuppertal, 42097, Germany

Received 20 April 2002, revised 19 August 2002, accepted 23 August 2002 Published online 10 March 2003

Key words Solovay model, ROD sets, equivalence relation, hypersmooth. **MSC (2000)** 03E15, 03A15

It is known that every Borel hypersmooth but non-smooth equivalence relation is Borel bi-reducible to E_1 . We prove a ROD version of this result in the Solovay model.

1 Introduction

It is known since [5] that classical theorems on Borel and analytic sets tend to generalize to all projective, generally, all real-ordinal definable (ROD) sets in the Solovay model. In particular, as one of the authors demonstrated in [2], the fundamental theorem of Glimm-Effros classification for Borel equivalence relations admits such a generalization (although not straightforward). In this note we prove the following theorem:

Theorem 1 (Main Theorem) In the Solovay model, if E is a ROD-hypersmooth equivalence relation, then either $E \leq_{ROD} E_0$ or $E \sim_{ROD} E_1$. The two cases are incompatible.

This is a partial generalization of a fundamental result on the Borel reducibility, saying that any Borel hypersmooth equivalence relation E satisfies either $E \leq_B E_0$ or $E \sim_B E_1$ (Theorem 2.1 in [4], also known as "the third dichotomy theorem"). The generalization is not complete: due to a simple counterexample, we cannot claim that E is ROD-hyperfinite in the "or" case.

2 Notation

ROD means: *real-ordinal-definable*. OD(p) means: *ordinal-definable in a real p*, i. e, definable with *p* and any ordinals as parameters.

We consider ROD equivalence relations on (also ROD) sets. If E, F are ROD equivalence relations on sets X, Y, respectively, then, by analogy with the Borel reducibility, $E \leq_{ROD} F$ means that there exists a ROD map $\vartheta : X \longrightarrow Y$ such that xEx' iff $\vartheta(x)F\vartheta(x')$. (In principle, it is not assumed here that X, Y carry any topological or other structure.) As usual, $E \sim_{ROD} F$ iff $E \leq_{ROD} F$ and $F \leq_{ROD} E$ (ROD bi-reducibility), while $E <_{ROD} F$ iff $E \leq_{ROD} F$ but $F \not\leq_{ROD} F$ (strict ROD-reducibility).

An equivalence relation E on X is *ROD-finite* iff it is ROD and every E-class $[x]_{E} = \{y : xEy\}, x \in X$, is finite. A *ROD-hyperfinite* equivalence relation is any one of the form $\bigcup_{n} E_{n}$, where $\{E_{n}\}_{n\in\mathbb{N}}$ is an increasing chain of ROD-finite equivalence relations.

An equivalence relation E on a set X is *ROD-smooth* iff $E \leq_{ROD} D(2^N)$, i.e., there is a ROD map $\vartheta : X \longrightarrow 2^N$ such that xEy iff $\vartheta(x) = \vartheta(y)$. A *ROD-hypersmooth* equivalence relation is an increasing union of ROD-smooth equivalence relations. Obviously all ROD-hyperfinite and all ROD-hypersmooth equivalence relations are ROD.

^{*} Corresponding author: e-mail: kanovei@math.uni-wuppertal.de

^{**} reeken@math.uni-wuppertal.de

^{***} Current address: Institute for Information Transmission Problems, Sector 1.1, GSP-4 Bol. Karetnyj Per. 19, Moscow 101447, Russia.

Recall that E_0 is an equivalence relation on $2^{\mathbb{N}}$ defined as follows: xE_0y iff $x_n = y_n$ for almost all n: here we assume that $x = \{x_n\}_{n \in \mathbb{N}}$ and $y = \{y_n\}_{n \in \mathbb{N}}$ belong to $2^{\mathbb{N}}$. This is a ROD-hyperfinite, moreover, Borel-hyperfinite equivalence relation. Further, E_1 is an equivalence relation on $\mathcal{P}(\mathbb{N})^{\mathbb{N}}$ defined similarly, i. e, xE_1y iff $x_n = y_n$ for almost all n. E_1 is a typical example of a ROD-hypersmooth equivalence relation, indeed, even Borel-hypersmooth equivalence relation.

Lemma 2 An equivalence relation E is ROD-hypersmooth iff $\mathsf{E} \leq_{\mathrm{ROD}} \mathsf{E}_1$.

Proof. Similar to the Borel case, see [4, 1.3] for the nontrivial direction.

By the Solovay model we mean a \mathbb{P}^{Ω} -generic extension of L, the constructible universe¹, where Ω is an inaccessible cardinal in L. $\mathbb{P}^{\Omega} = \prod_{\gamma < \Omega} \mathbb{P}_{\gamma}$ (the product with finite support), and $\mathbb{P}_{\gamma} = \gamma^{<\omega} = \bigcup_{n} \gamma^{n}$ for every $\gamma < \Omega$.

Assume that $\gamma < \Omega$. Let $\mathbb{T}_{\gamma}[p]$ be the set of all *terms* $t = \langle \gamma, \{t_n\}_{n \in \mathbb{N}} \rangle \in L[p]$, where $t_n \subseteq \mathbb{P}_{\gamma}$ for all n. If $f \in \gamma^{\mathbb{N}}$ (an infinite sequence), then let $t[f] = \{n : \exists m (f \upharpoonright m \in t_n)\}$.

Let $\mathbb{F}_{\gamma}[p]$ be the set of all over $\mathbb{L}[p] \mathbb{P}_{\gamma}$ -generic functions $f \in \gamma^{\mathbb{N}}$. Put $t[w] = \{t[f] : w \subset f \in \mathbb{F}_{\gamma}[p]\}$ for any $w \in \mathbb{P}_{\gamma}$ and $t \in \mathbb{T}_{\gamma}$. The following result is established, e.g., in [2, Proposition 5].

Proposition 3 (In the Solovay model) Let p be a real. Then

(i) If $\emptyset \neq X \subseteq \mathcal{P}(\mathbb{N})$ is OD(p), then there exist $\gamma < \Omega$, $w \in \mathbb{P}_{\gamma}$, and $t \in \mathbb{T}_{\gamma}[p]$ such that $t[w] \subseteq X$.

(ii) If $\gamma < \Omega$, $w \in \mathbb{P}_{\gamma}$, and $\emptyset \neq X \subseteq t[w]$ is OD(p), then there exists $w' \in \mathbb{P}_{\gamma}$ such that $w \subset w'$ and $t[w'] \subseteq X$.

3 Incompatibility in the main theorem

It suffices to show that $E_1 \not\leq_{ROD} E_0$ in the Solovay model. The proof that $E_1 \not\leq_B E_0$, moreover, $E_1 \not\leq_B F$ for any countable Borel equivalence relation F in [4, 1.4 and 1.5] actually gives non-reducibility even via *Baire measurable* functions, i. e, those continuous on a dense G_{δ} set. However it is known (see [5]) that in the Solovay model any ROD function is Baire measurable.

4 The partition into cases

This section begins the essential part of the proof of Theorem 1.

We argue in the Solovay model.

Let E be a ROD equivalence relation on a set X. Suppose that E is ROD-hypersmooth. We have $E \leq_{ROD} E_1$ by Lemma 2. Let this be witnessed by a ROD map $\vartheta : X \longrightarrow \mathcal{P}(\mathbb{N})^{\mathbb{N}}$. We put $P = \operatorname{ran} \vartheta$, the full image of ϑ . This is still a ROD set, hence, there is a real p such that P is OD(p).

The real p is fixed until the end of the proof.

To define the partition into two cases, we need the following notation. If $x \in \mathcal{P}(\mathbb{N})^{\mathbb{N}}$, then $x \upharpoonright_{\geq n}$ is the restriction of x (a function defined on \mathbb{N}) to the domain $[n, \infty)$. If $X \subseteq \mathcal{P}(\mathbb{N})^{\mathbb{N}}$, then let $X \upharpoonright_{\geq n} = \{x \upharpoonright_{\geq n} : x \in X\}$. Define $x \upharpoonright_{>n}$ and $X \upharpoonright_{>n}$ similarly. In particular, $\mathcal{P}(\mathbb{N})^{\mathbb{N}} \upharpoonright_{\geq n} = \mathcal{P}(\mathbb{N})^{\geq n} = \mathcal{P}(\mathbb{N})^{[n,\infty)}$. For a sequence $x \in \mathcal{P}(\mathbb{N})^{\geq n}$ let dep x (the *depth of* x) be the number (finite or ∞) of elements of the set

$$J(x) = \{ j \ge n : x(j) \notin \mathrm{OD}(p, x \upharpoonright_{j}) \}$$

Recall that, in the Solovay model, $x \in OD(y)$ iff $x \in L[y]$ for any two reals x, y.

Case 1. All $x \in P = \operatorname{ran} \rho$ satisfy dep $x < \infty$.

Case 2. There exist $x \in P$ with dep $x = \infty$.

The content of the remainder will be to prove $E \leq_{ROD} E_0$ in Case 1 and $E_1 \leq_{ROD} E$ in Case 2.

¹⁾ Theorem 1 is true, with some rather clear adjustments of the proof, for the Solovay extensions not necessarily of the constructible universe.

4.1 Case 1

As obviously $\mathsf{E} \leq_{\mathrm{ROD}} \mathsf{E}_1 \upharpoonright P$, it suffices to show that $\mathsf{E}_1 \upharpoonright P \leq_{\mathrm{ROD}} \mathsf{E}_0$.

Suppose that $x \in P$. If dep $x = \emptyset$, then let f(x) = x. If dep $x \neq \emptyset$, then (as dep x is finite) let n_x be the largest $n \in \text{dep } x$. Define $f(x) = y \in \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ so that $x \upharpoonright_{>n_x} = y \upharpoonright_{>n_x}$ while $y(j) = \emptyset$ for all $j \leq n_x$. Easily f is a ROD reduction of $\mathsf{E}_1 \upharpoonright P$ to $\mathsf{E}_1 \upharpoonright Q$, where Q = ran f, thus, it suffices to show that $\mathsf{E}_1 \upharpoonright Q \leq_{\text{ROD}} \mathsf{E}_0$. The set Q belongs to OD(p) together with P.

Note that by definition any point $x \in Q$ satisfies dep $x = \emptyset$, so that $x(n) \in OD(p, x \upharpoonright_{>n})$ for any $n \in \mathbb{N}$ and $x \in Q$. It follows that $x(n) \in L[p, x \upharpoonright_{>n}]$ for any $n \in \mathbb{N}$ and $x \in Q$, by known properties of the Solovay model. In other words, $Q \subseteq T = \{x \in \mathcal{P}(\mathbb{N})^{\mathbb{N}} : \forall n (x(n) \in L[p, x \upharpoonright_{>n}])\}$, hence, it suffices to prove that $\mathsf{E}_1 \upharpoonright T \leq_{\mathrm{ROD}} \mathsf{E}_0$. Note that T is OD(p).

Fix $x \in T$. For any $n \in \mathbb{N}$ let $\xi_n(x)$ be the order of x(n) in the sense of the canonical well-ordering of $\mathcal{P}(\mathbb{N}) \cap L[p, x \upharpoonright_{>n}]$; then $\xi_n(x) < \omega_1^{L[p,x \upharpoonright_{>n}]}$. Note that still $\xi(x) = \sup_n \xi_n(x) < \omega_1^{L[p,x]}$, because the map $n \mapsto \xi_n(x)$ is OD(p, x). Now define $\mu(x) = \inf\{\xi(y) : y \in T \land y \in L_1 \}$. This is \mathbb{E}_1 -invariant, i. e, $\mu(x) = \mu(y)$ whenever $x, y \in T$ and $x \in L_1 y$, moreover, $\mu(x) < \omega_1^{L[p,x]}$.

Let $W = \{x \in T : \xi(x) = \mu(x)\}$. This is an OD(*p*) subset of *T*, and there is a ROD reduction of $\mathsf{E}_1 \upharpoonright T$ to $\mathsf{E}_1 \upharpoonright W$. (Indeed: Let $x \in T$. By definition there is *m* such that $\xi_j(x) \le \mu(x)$ for all $j \ge m$; let m_x be the least of such numbers *m*. Define $y = g(x) \in \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ so that $x \upharpoonright_{>m_x} = y \upharpoonright_{>m_x}$ while $y(j) = \emptyset$ for all $j > m_x$. Then $y \in W$, under the natural assumption that \emptyset has order 0 in any relevant well-ordering, and $y \mathsf{E}_1 x$. Thus, *g* is a ROD reduction of $\mathsf{E}_1 \upharpoonright T$ to $\mathsf{E}_1 \upharpoonright W$.) It suffices to prove that $\mathsf{E}_1 \upharpoonright W \le_{\text{ROD}} \mathsf{E}_0$.

By definition, $\xi_n(x) \leq \mu(x) < \omega_1^{L[p,x]}$ for all $x \in W$ and $n \in \mathbb{N}$, hence, if $a \in W \upharpoonright_{>n}$, then the set $S_W(a) = \{x(n) : x \in W \land a = x \upharpoonright_{>n}\} \subseteq L[p, x]$ is countable in L[p, x] = L[p, a]. Thus there exists an OD(p) map F with $S_W(a) = \{F(a, k) : k \in \mathbb{N}\}$ whenever $a \in A = \bigcup_{n \in \mathbb{N}} W \upharpoonright_{>n}$. Assuming w.l.o.g. that $\mu(x) \geq \omega$ for any x. All sets $S_W(a)$, $a \in A$, are strictly countable, hence, we can assume that for any $a \in A$ the partial map $F_a(k) = F(a, k)$ is a bijection of \mathbb{N} onto $S_W(a)$. Then for any $x \in W$ and n there is a unique $k = \kappa_n(x)$ such that $x(n) = F(x \upharpoonright_{>n}, k)$. Let $\kappa(x) = \{\kappa_n(x)\}_{n \in \mathbb{N}}$. Note that if $x \neq y \in W$ and $x \in L_1 y$, then $\kappa(x) \neq \kappa(y)$.

The next step is to uniformly define an ordering of any set of the form $[x]_{E_1} \cap W$, $x \in W$, similar to \mathbb{Z} . Define $\sigma_n(x) = \max\{n, \max_{j \le n} \kappa_j(x)\}$ for all $x \in W$ and n. Define the infinite sequence

$$\sigma(x) = \langle \kappa_0(x), \sigma_0(x), \kappa_1(x), \sigma_1(x), \dots, \kappa_n(x), \sigma_n(x), \dots \rangle$$

of natural numbers. Easily if $x, y \in \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ satisfy $x \mathbb{E}_1 y$, i. e., $x \upharpoonright_{>n} = y \upharpoonright_{>n}$ for some n, then still $\sigma(x) \mathbb{E}_0 \sigma(y)$, i. e., $\sigma(x) \upharpoonright_{>k} = \sigma(y) \upharpoonright_{>k}$ for some $k \ge n$. Define, for $x, y \in W$, $x <_0 y$ iff $\sigma(x) <_{\text{alex}} \sigma(y)$ (the *anti-lexicographical ordering*), meaning that $\sigma_k(x) < \sigma_k(y)$, where k is the least number such that $\sigma(x) \upharpoonright_{>k} = \sigma(y) \upharpoonright_{>k}$. Easily $<_{\text{alex}}$ orders any \mathbb{E}_0 -class of an element of $\mathbb{N} \times \mathbb{N}$ similarly to \mathbb{Z} , with the only exception of the \mathbb{E}_0 -class of the constant 0 which is ordered similarly to \mathbb{N} . It follows that any \mathbb{E}_1 -class $[x]_{\mathbb{E}_1} \cap W$ of $x \in W$ is ordered by $<_0$ similarly to either \mathbb{Z} or \mathbb{N} . As a matter of fact, any class ordered similarly to \mathbb{N} can be rearranged, in some trivial manner, to that its order is now \mathbb{Z} instead of \mathbb{N} . This way we obtain an OD(p) binary relation $<_0$ which orders every set of the form $[x]_{\mathbb{E}_1} \cap W, x \in W$, similarly to \mathbb{Z} . In other words, we have defined an OD(p) action of \mathbb{Z} on W whose orbits are exactly \mathbb{E}_1 -classes $[x]_{\mathbb{E}_1} \cap W, x \in W$.

The rest of the argument involves a construction given in [1]. For any $x \in W$ define $\zeta(x) \in W^{\mathbb{Z}}$ so that $\zeta(x)(0) = x$ and, for any $c \in \mathbb{Z}$, $\zeta(x)(c+1)$ is the $<_0$ -next element of $[x]_{\mathsf{E}_1} \cap W$ after $\zeta(x)(c)$. Thus, ζ is an OD(p) map $W \longrightarrow Z = (\mathcal{P}(\mathbb{N})^{\mathbb{N}})^{\mathbb{Z}}$. For ζ , $\eta \in Z$ define $\zeta \mathsf{F}\eta$ iff there is an integer $z \in \mathbb{Z}$ such that $\zeta(c) = \eta(c+z)$ for all $c \in \mathbb{Z}$. Thus, F is the equivalence relation $\mathsf{E}(\mathbb{Z}, \mathcal{P}(\mathbb{N})^{\mathbb{N}})$ on $Z = (\mathcal{P}(\mathbb{N})^{\mathbb{N}})^{\mathbb{Z}}$, in the sense of [1].

The map ζ is obviously a reduction of $\mathsf{E}_1 \upharpoonright W$ to F , hence, it suffices to show that $\mathsf{F} \leq_{\mathrm{ROD}} \mathsf{E}_0$. But [1, 7.1] yields a stronger result: $\mathsf{F} \leq_{\mathrm{B}} \mathsf{E}_0$. \Box Case 1

Unlike the Borel case (see the implication $(3) \Rightarrow (1)$ in [1, Theorem 5.1]) we cannot claim here that E is ROD-hyperfinite. Indeed, arguing in the Solovay model, consider the set T of all $x \in \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ such that $x(n) \in \mathsf{L}[x|_{>n}]$ for every n. (See above.) Then $\mathsf{E}_1 \upharpoonright T$ is a countable and ROD-hypersmooth equivalence relation. But $\mathsf{E}_1 \upharpoonright T$ is not ROD-hyperfinite! Indeed: Otherwise, for some $p \in \mathcal{P}(\mathbb{N})$, $\mathsf{E}_1 \upharpoonright T$ is the union of an increasing countable sequence of finite equivalence relations, which (i. e., the sequence) is $\mathsf{OD}(p)$. Then, for any n and $a \in T \upharpoonright_{>n}$ the set $S_T(a)$ evidently is $\mathsf{OD}(p, a)$ -countable. Taking a to be the constant p, we get a contradiction, because then $S_T(a) = \mathsf{L}[p] \cap \mathcal{P}(\mathbb{N})$, and this cannot be $\mathsf{OD}(p)$ -countable.

4.2 Case 2

Thus, assume that the OD(p) set $R = \{x \in P : dep x = \infty\}$ is non-empty. Our goal is to define an OD(p) subset $X \subseteq R$ with $\mathsf{E}_1 \leq_\mathsf{B} \mathsf{E}_1 \upharpoonright X$.

We continue to argue in the Solovay model.

We begin with a reduction to the case when $J(x) = \{n : x(n) \notin L[p, x \upharpoonright_{>n}]\}$ is equal to \mathbb{N} for any $x \in R$. Fix, for any k, a recursive bijection $b_k : \mathcal{P}(\mathbb{N})^{k+1} \times \mathbb{N}^2 \xrightarrow{\text{onto}} \mathcal{P}(\mathbb{N})$. Now let $x \in R$. Then $J(x) \subseteq \mathbb{N}$ is infinite; let $J(x) = \{j_0, j_1, j_2, \ldots\}$ in the increasing order. For any m, put

$$y(m) = b_{j_m - j_{m-1} - 1}(x \upharpoonright (j_{m-1}, j_m], j_m, j_m - j_{m-1})$$

(with $j_{-1} = -1$ for m = 0). The map $x \mapsto y$ is OD(p), $x E_1 x'$ iff $y E_1 y'$, and also $J(y) = \mathbb{N}$. This observation justifies to assume w.l. o. g. $J(x) = \mathbb{N}$ for any $x \in R$, that is, $x(n) \notin OD(p, x \upharpoonright_{>n})$ for any $x \in R$ and n.

The following construction uses the basic idea of [4, Theorem 2.1], in the form of a splitting construction developed in [3] for the study of "ill"-founded Sacks iterations. Fix a recursive map $\varphi : \mathbb{N} \xrightarrow{\text{onto}} \mathbb{N}$, which assumes each value $m \in \mathbb{N}$ infinitely many times so that $\{\varphi(k) : k < n\}$ is an initial segment of \mathbb{N} for any n. For any n and finite sequences $u, v \in 2^n$, let $\nu_{\varphi}[u, v] = \max\{\varphi(k) : k < n \land u(k) \neq v(k)\}$. Separately, $\varphi[u, u] = -1$ for any $u \in 2^{<\omega}$. We are going to define for each $u \in 2^{<\omega}$ a non-empty OD(p) subset $X_u \subseteq R$, so that

(i) if $u, v \in 2^n$, then (a) $X_u \upharpoonright_{>\nu_{\varphi}[u,v]} = X_v \upharpoonright_{>\nu_{\varphi}[u,v]}$ and (b) $X_u \upharpoonright_{\geq \nu_{\varphi}[u,v]} \cap X_v \upharpoonright_{\geq \nu_{\varphi}[u,v]} = \emptyset$;

(ii)
$$X_{u^{\frown}i} \subseteq X_u$$
 for all $u \in 2^{<\omega}$ and $i = 0, 1$;

- (iii) $\max_{u \in 2^n} \operatorname{diam} X_u \to 0$ as $n \to \infty$ (a reasonable Polish metric on $\mathcal{P}(\mathbb{N})^{\mathbb{N}}$ is assumed to be fixed);
- (iv) $\bigcap_n X_{a \upharpoonright n} \neq \emptyset$ for any $a \in 2^{\mathbb{N}}$.

Let us demonstrate how such a system of sets accomplish Case 2. According to (iii) and (iv), for any $a \in 2^{\mathbb{N}}$ the intersection $\bigcap_n X_{a \upharpoonright n}$ contains a single point, let it be F(a), so that $F : 2^{\mathbb{N}} \to \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ is continuous and one-to-one.

Define a parallel system of sets Y_u , $u \in 2^{<\omega}$, as follows. Put $Y_{\Lambda} = \mathcal{P}(\mathbb{N})^{\mathbb{N}}$. Suppose that Y_u has been defined, $u \in 2^n$, and $\varphi(n) = j$. Let ℓ be the number of all indices k < n satisfying $\varphi(k) = j$, perhaps $\ell = 0$. Put $Y_{u \uparrow i} = \{x \in Y_u : x(j)(\ell) = i\}$ for i = 0, 1. Each of Y_u is clearly a basic clopen set in $\mathcal{P}(\mathbb{N})^{\mathbb{N}}$, and one easily verifies that conditions (i) – (iv) are satisfied for the sets Y_u (instead of X_u , in particular, for any $a \in 2^{\mathbb{N}}$, the intersection $\bigcap_n Y_{a \mid n} = \{G(a)\}$ is a singleton, and the map G is continuous and one-to-one. (We can define G explicitly: $G(a)(j)(\ell) = a(n)$, where $n \in \mathbb{N}$ is chosen so that $\varphi(n) = j$ and there is exactly ℓ numbers k < n with $\varphi(k) = j$.) Note finally that $\{G(a) : a \in 2^{\mathbb{N}}\} = \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ since by definition $Y_{u \uparrow 1} \cup Y_{u \uparrow 0} = Y_u$.

We conclude that the map $\vartheta(x) = F(G^{-1}(x))$ is a continuous bijection, hence, a homeomorphism by the compactness of the spaces considered, of $\mathcal{P}(\mathbb{N})^{\mathbb{N}}$ onto the set $X = \{F(a) : a \in 2^{<\omega}\} = \bigcap_n \bigcup_{u \in 2^n} X_u$. We further assert that ϑ satisfying the following: for each $y, y' \in \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ and m,

$$(*) \hspace{1cm} y\!\restriction_{\geq m} = y'\!\restriction_{\geq m} \hspace{1cm} \mathrm{iff} \hspace{1cm} \vartheta(y)\!\restriction_{\geq m} = \vartheta(y')\!\restriction_{\geq m}.$$

Indeed: Let y = G(a) and $x = F(a) = \vartheta(y)$, and similarly y' = G(a') and $x' = F(a') = \vartheta(y')$, where $a, a' \in 2^{\mathbb{N}}$. Suppose that $y \upharpoonright_{\geq m} = y' \upharpoonright_{\geq m}$. According to (i)(b) for ψ and the sets Y_u we then have $m > \nu_{\varphi}[a \upharpoonright n, a' \upharpoonright n]$ for any n, hence, $X_{a \upharpoonright n} \upharpoonright_{\geq m} = X_{a \upharpoonright n} \upharpoonright_{\geq m}$ for any n by (i)(a). Assuming now that Polish metrics on all spaces $\mathcal{P}(\mathbb{N})^{\geq j}$ are chosen so that diam $Z \geq \text{diam}(Z \upharpoonright_{\geq j})$ for all $Z \subseteq \mathcal{P}(\mathbb{N})$ and j, we easily obtain that $x \upharpoonright_{\geq m} = x' \upharpoonright_{>m}$, i. e, the right-hand side of (*). The inverse implication in (*) is proved similarly.

Thus we have (*), but this means that ϑ is a continuous reduction of E_1 to $\mathsf{E}_1 \upharpoonright X$, thus, $\mathsf{E}_1 \leq_{\mathrm{B}} \mathsf{E}_1 \upharpoonright X$, as required. \Box Theorem 1 modulo the construction (i) – (iv)

5 The construction

We continue to argue in the Solovay model.

Recall that $R \subseteq \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ is a fixed non-empty OD(p) set such that $J(x) = \mathbb{N}$ for each $x \in R$. According to Proposition 3(i), there is $\gamma < \Omega$, $w_0 \in \mathbb{P}_{\gamma}$, and $t \in \mathbb{T}_{\gamma}[p]$ such that $X_{\Lambda} = t[w_0] \subseteq R$. Let us fix an enumeration

 $(\text{not } OD(p)) \{D_n\}_{n \in \mathbb{N}}$ of all dense subsets of \mathbb{P}_{γ} which belong to L[p]. We define, along with sets X_u , a system $\{w_u\}_{u \in 2^{<\omega}}$ of finite sequences $w_u \in 2^{<\omega}$ satisfying

(v) $w_u \in D_{\operatorname{dom} u}$, and, for any $i, w_u \subset w_{u \uparrow i}$ and $t[w_{u \uparrow i}] \subseteq X_u \subseteq t[w_u]$.

Prove that this implies (iv). Let $a \in 2^{\mathbb{N}}$. Then there is $f \in \gamma^{\mathbb{N}}$ such that $w_{a \upharpoonright n} \subset f$ for any n. This map f is generic over L[p], because for all $n, w_{a \upharpoonright n} \in D_n$, that is, $f \in \mathbb{F}_{\gamma}[p]$. It follows that $t[f] \in \bigcap_n t[w_{a \upharpoonright n}] = \bigcap_n X_{a \upharpoonright n}$, as required.

To begin with, let w_{Λ} be any extension of w_0 which belongs to D_0 . Put $X_{\Lambda} = t[w_0]$. Now suppose that the sets $X_u \subseteq R$ and sequences w_u with $u \in 2^n$ have been defined and satisfy the applicable part of (i) – (iii) and (v).

Lemma 4 If $u_0 \in 2^n$ and $X' \subseteq X_{u_0}$ is a non-empty OD(p) set, then there is a system of OD(p) sets $\emptyset \neq X'_u \subseteq X_u$ with $X'_{u_0} = X'$, still satisfying (i).

Proof. For any $u \in 2^n$, let $X'_u = \{x \in X_u : x \upharpoonright_{>n(u)} \in X' \upharpoonright_{>n(u)}\}$, where $n(u) = \nu_{\varphi}[u, u_0]$. In particular, this gives $X'_{u_0} = X'$ because, $\nu_{\varphi}[u_0, u_0] = -1$. The sets X'_u are as required, via a routine verification. \Box Lemma

Step 1. Put $j = \varphi(n)$ and $Y_u = X_u \upharpoonright_{j=j}$. Take any $u_1 \in 2^n$. Under our assumptions, any element $x \in X_{u_1}$ satisfies $j \in J(x)$, so that $x(j) \notin OD(p, x \upharpoonright_{j})$. Since X_{u_1} is an OD(p) set, it follows that the set $S_{X_{u_1}}(x \upharpoonright_{j}) = \{x'(j) : x' \in X_{u_1} \land x' \upharpoonright_{j} = x \upharpoonright_{j}\}$ is not a singleton, in fact is uncountable. Then there is a number l_{u_1} having the property that the set

$$Y'_{u_1} = \{ y \in Y_{u_1} : (\exists x, x' \in X_{u_1}) \, (x' \upharpoonright_{>j} = x \upharpoonright_{>j} = y \, \land \, l_{u_1} \in x(j) \, \land \, l_{u_1} \notin x'(j)) \}$$

is non-empty. We now put $X' = \{x \in X_{u_1} : x \upharpoonright_{\prec j} \in Y'_{u_1}\}$ and define OD(p) sets $\emptyset \neq X'_u \subseteq X_u$ as in the lemma, in particular, $X'_{u_1} = X', X'_{u_1} \upharpoonright_{>j} = Y'_{u_1}$, still (i) is satisfied, and in addition

(1)
$$(\forall y \in X'_{u_1} \upharpoonright_{j}) (\exists x, x' \in X'_{u_1}) (x' \upharpoonright_{j} = x \upharpoonright_{j} = y \land l_{u_1} \in x(j) \land l_{u_1} \notin x'(j))$$

Now take some other $u_2 \in 2^n$. Let $\nu = \nu_{\varphi}[u_1, u_2]$. If $j > \nu$, then $X_{u_1} \upharpoonright_{j} = X_{u_2} \upharpoonright_{j}$, so that we already have, for $l_{u_2} = l_{u_1}$,

(2)
$$(\forall y \in X'_{u_2} \upharpoonright_{j}) (\exists x, x' \in X'_{u_2}) (x' \upharpoonright_{j} = x \upharpoonright_{j} = y \land l_{u_2} \in x(j) \land l_{u_2} \notin x'(j)),$$

and can pass to some $u_3 \in 2^n$. Suppose that $\nu \ge j$. Now things are somewhat nastier. As above there is a number l_{u_2} such that

$$Y'_{u_2} = \{ y \in Y_{u_2} : (\exists x, x' \in X_{u_2}) \, (x' \upharpoonright_{>j} = x \upharpoonright_{>j} = y \, \land \, l_{u_2} \in x(j) \, \land \, l_{u_2} \not\in x'(j)) \}$$

is a non-empty OD(p) set, thus, we can define $X'' = \{x \in X_{u_1} : x \upharpoonright_{j \in Y'_{u_1}}\}$ and maintain the construction of Lemma 4, getting non-empty OD(p) sets $X''_u \subseteq X'_u$ still satisfying (i) and $X''_{u_2} = X''$, therefore, we still have (2) for the set X''_{u_2} .

Yet it is most important in this case that (1) is preserved, i. e., it still holds for the set X''_{u_1} instead of X'_{u_1} ! Indeed: According to the construction in the proof of Lemma 4, we have $X''_{u_1} = \{x \in X'_{u_1} : x |_{>\nu} \in X''|_{>\nu}\}$. Thus, although, in principle, X''_{u_1} is smaller than X'_{u_1} , for any $y \in X''_{u_1}|_{>j}$ we have

$$\{x \in X''_{u_1} : x \upharpoonright_{>j} = y\} = \{x \in X'_{u_1} : x \upharpoonright_{>j} = y\},\$$

simply because now we assume $\nu \ge j$. This implies that (1) still holds.

Iterating this construction so that each $u \in 2^n$ is eventually encountered, we obtain, in the end, a system of non-empty OD(p) sets, let us call them "new" X_u , but they are subsets of the "original" X_u , still satisfying (i), and, for any $u \in 2^n$ a number l_u such that $j > \nu_{\varphi}[u, v]$ implies $l_u = l_v$ and

$$(*) \qquad (\forall y \in X_u \upharpoonright_{>j}) (\exists x, x' \in X_u) \ (x' \upharpoonright_{>j} = x \upharpoonright_{>j} = y \ \land \ l_u \in x(j) \ \land \ l_u \not\in x'(j)).$$

Step 2. We define the (n+1)th-level by $X_{u \cap 0} = \{x \in X_u : l_u \in x(j)\}$ and $X_{u \cap 1} = \{x \in X_u : l_u \notin x(j)\}$ for all $u \in 2^n$, where still $j = \varphi(n)$. It follows from (*) that all these OD(p) sets are non-empty.

Lemma 5 The system of sets $\{X_s\}_{s \in 2^{n+1}}$ just defined satisfies (i).

Proof. Let $s = u^{i}$ and $t = v^{i'}$ belong to 2^{n+1} , so that $u, v \in 2^{n}$ and $i, i' \in \{0, 1\}$. Let $\nu = \nu_{\varphi}[u, v]$ and $\nu' = \nu_{\varphi}[s, t]$.

Case 1. $\nu \ge j = \varphi(n)$. Then easily $\nu = \nu'$, so that (i)(b) immediately follows from (i)(b) at level *n* for X_u and X_v . As for (i)(a), we have $X_s \upharpoonright_{>\nu} = X_u \upharpoonright_{>\nu}$ (because by definition $X_s \upharpoonright_{>j} = X_u \upharpoonright_{>j}$), and similarly $X_t \upharpoonright_{>\nu} = X_v \upharpoonright_{>\nu}$, therefore, $X_t \upharpoonright_{>\nu'} = X_s \upharpoonright_{>\nu'}$ since $X_u \upharpoonright_{>\nu} = X_v \upharpoonright_{>\nu}$ by (i)(a) at level *n*.

C as e 2. $j > \nu$ and i = i'. Then still $\nu = \nu'$, thus we have (i)(b). Further, $X_u \upharpoonright_{>\nu} = X_v \upharpoonright_{>\nu}$ by (i)(a) at level n, hence, $X_u \upharpoonright_{\geq j} = X_v \upharpoonright_{\geq j}$ and $l_u = l_v$ as above. Assuming that, say, i = i' = 1 and $l_u = l_v = l$, we conclude that $X_s \upharpoonright_{>\nu'} = \{y \in X_u \upharpoonright_{>\nu} : l \in y(j)\} = \{y \in X_v \upharpoonright_{>\nu} : l \in y(j)\} = X_t \upharpoonright_{>\nu'}$.

Case 3. $j > \nu$ and $i \neq i'$, say, i = 0 and i' = 1, Now $\nu' = j$. Yet by definition $X_s \upharpoonright_{j} = X_u \upharpoonright_{j}$ and $X_t \upharpoonright_{j} = X_v \upharpoonright_{j}$, so it remains to apply (i)(a) for level n. As for (i)(b), note that by definition $l \notin x(j)$ for any $x \in X_s = X_{u \cap 0}$ while $l \in x(j)$ for any $x \in X_t = X_{v \cap 1}$, where $l = l_u = l_v$.

Step 3. In addition to (i), we already have (ii) at level n+1. To achieve the remaining properties (iii) and (v), consider, one by one, all elements $s \in 2^{n+1}$, finding, at each such a substep $s = u^{\hat{i}}$ ($u \in 2^n$ and i = 0, 1), a non-empty OD(p) subset of X_s , and also an extension $w_s \in 2^{<\omega}$ of w_u , consistent with (iii) and (v). As for (iii), just take a subset whose diameter is $\leq 2^{-n}$. As for (iv), choose, using Proposition 3(ii), $w_s \in \mathbb{P}_{\gamma}$ such that the following holds: $w_s \in D_{n+1}, w_u \subset w_s$, and the set $t[w_s]$ is a subset of the "current value" of X_s . Finally, define the "new" value of X_s to be $t[w_s]$. Then reduce all other sets $X_t, t \in 2^{n+1}$, as in Lemma 4 at level n + 1. Thus ends the substep s. We have to pass to another $s' \in 2^{n+1}$ and carry out substep s'. And so on, with the consideration of all $s \in 2^{n+1}$ one by one.

 \Box Construction and Theorem 1

Acknowledgements The first author was supported by DFG.

References

- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc., 341, 193–225 (1994).
- [2] V. Kanovei, An Ulm-type classification theorem for equivalence relations in Solovay model. J. Symbolic Logic 62, 1333–1351 (1997).
- [3] V. Kanovei, On non-wellfounded iterations of the perfect set forcing. J. Symbolic Logic 64, 551–574 (1999).
- [4] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations. J. Amer. Math. Soc. 10, 215–242 (1997).
- [5] R. M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2), 92, 1–56 (1970).