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It is known that every Borel hypersmooth but non-smooth equivalence relation is Borel bi-reducible to ��. We
prove a ROD version of this result in the Solovay model.

1 Introduction

It is known since [5] that classical theorems on Borel and analytic sets tend to generalize to all projective, gener-
ally, all real-ordinal definable (ROD) sets in the Solovay model. In particular, as one of the authors demonstrated
in [2], the fundamental theorem of Glimm-Effros classification for Borel equivalence relations admits such a
generalization (although not straightforward). In this note we prove the following theorem:

Theorem 1 (Main Theorem) In the Solovay model, if � is a ROD-hypersmooth equivalence relation, then
either � ���� �� or � ���� ��. The two cases are incompatible.

This is a partial generalization of a fundamental result on the Borel reducibility, saying that any Borel hyper-
smooth equivalence relation � satisfies either � �� �� or � �� �� (Theorem 2.1 in [4], also known as “the third
dichotomy theorem”). The generalization is not complete: due to a simple counterexample, we cannot claim that
� is ROD-hyperfinite in the “or” case.

2 Notation

ROD means: real-ordinal-definable. ����� means: ordinal-definable in a real �, i. e, definable with � and any
ordinals as parameters.

We consider ROD equivalence relations on (also ROD) sets. If �� � are ROD equivalence relations on sets
�� � , respectively, then, by analogy with the Borel reducibility, � ���� � means that there exists a ROD map
� � � �� � such that ���� iff ����������. (In principle, it is not assumed here that �� � carry any topological
or other structure.) As usual, � ���� � iff � ���� � and � ���� � (ROD bi-reducibility), while � ���� �

iff � ���� � but � ����� � (strict ROD-reducibility).
An equivalence relation � on � is ROD-finite iff it is ROD and every E-class ���� � �� � ����, � � � , is

finite. A ROD-hyperfinite equivalence relation is any one of the form
�
� ��� where ������� is an increasing

chain of ROD-finite equivalence relations.
An equivalence relation � on a set � is ROD-smooth iff � ���� �����, i. e., there is a ROD map

� � � �� �� such that ��� iff ���� � ����. A ROD-hypersmooth equivalence relation is an increasing union
of ROD-smooth equivalence relations. Obviously all ROD-hyperfinite and all ROD-hypersmooth equivalence
relations are ROD.
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Recall that �� is an equivalence relation on �� defined as follows: ���� iff �� � �� for almost all �: here
we assume that � � ������� and � � ������� belong to ��. This is a ROD-hyperfinite, moreover, Borel-
hyperfinite equivalence relation. Further, �� is an equivalence relation on ��� �� defined similarly, i. e, ����
iff �� � �� for almost all �. �� is a typical example of a ROD-hypersmooth equivalence relation, indeed, even
Borel-hypersmooth equivalence relation.

Lemma 2 An equivalence relation � is ROD-hypersmooth iff � ���� ��.

P r o o f. Similar to the Borel case, see [4, 1.3] for the nontrivial direction.

By the Solovay model we mean a �
�-generic extension of 	, the constructible universe1), where 
 is

an inaccessible cardinal in 	. �� �
�

��� �� (the product with finite support), and �� � 	�� �
�
� 	

� for
every 	 � 
.

Assume that 	 � 
. Let �� ��� be the set of all terms 
 � 		� �
�����
 � 	���, where 
� � �� for all �. If
� � 	� (an infinite sequence), then let 
�� � � �� � �� �� � � � 
���.

Let �� ��� be the set of all over 	��� ��-generic functions � � 	�. Put 
�
� � �
�� � � 
 
 � � �� ���� for any

 � �� and 
 � �� . The following result is established, e. g, in [2, Proposition 5].

Proposition 3 (In the Solovay model) Let � be a real. Then

(i) If � �� � � ��� � is �����, then there exist 	 � 
, 
 � ��, and 
 � �� ��� such that 
�
� � � .

(ii) If 	 � 
, 
 � ��, and � �� � � 
�
� is �����, then there exists 
� � �� such that 
 
 
�

and 
�
�� � � . �

3 Incompatibility in the main theorem

It suffices to show that �� ����� �� in the Solovay model. The proof that �� ��� ��, moreover, �� ��� � for
any countable Borel equivalence relation � in [4, 1.4 and 1.5] actually gives non-reducibility even via Baire
measurable functions, i. e, those continuous on a dense GÆ set. However it is known (see [5]) that in the Solovay
model any ROD function is Baire measurable.

4 The partition into cases

This section begins the essential part of the proof of Theorem 1.

We argue in the Solovay model.

Let � be a ROD equivalence relation on a set � . Suppose that � is ROD-hypersmooth. We have � ���� ��

by Lemma 2. Let this be witnessed by a ROD map � � � �� ��� �� . We put � � ��
�, the full image of �.
This is still a ROD set, hence, there is a real � such that � is �����.

The real � is fixed until the end of the proof.

To define the partition into two cases, we need the following notation. If � � ��� �� , then ���� is the
restriction of � (a function defined on �) to the domain �����. If � � ��� �� , then let ���� � ����� � � �
��. Define ���� and ���� similarly. In particular, ��� ����� � ��� ��� � ��� ������ . For a sequence
� � ��� ��� let ���� (the depth of �) be the number (finite or �) of elements of the set

���� � �� � � � ���� �� ����� �������

Recall that, in the Solovay model, � � ����� iff � � 	��� for any two reals �� �.
C a s e 1. All � � � � ��
 � satisfy ���� ��.
C a s e 2. There exist � � � with ���� ��.
The content of the remainder will be to prove � ���� �� in Case 1 and �� ���� � in Case 2.

1) Theorem 1 is true, with some rather clear adjustments of the proof, for the Solovay extensions not necessarily of the constructible
universe.
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4.1 Case 1

As obviously � ���� �� � � , it suffices to show that �� � � ���� ��.
Suppose that � � � . If ���� � �, then let ���� � �. If ���� �� �, then (as ���� is finite) let �� be the

largest � � ����. Define ���� � � � ��� �� so that ����� � ����� while ���� � � for all � � ��. Easily �
is a ROD reduction of �� � � to �� � �, where � � ��
� , thus, it suffices to show that �� � � ���� ��. The
set � belongs to ����� together with � .

Note that by definition any point � � � satisfies ���� � �, so that ���� � ����� ����� for any � � �

and � � �. It follows that ���� � 	��� ����� for any � � � and � � �, by known properties of the Solovay
model. In other words, � � � � �� � ��� �� � �� ����� � 	��� �������, hence, it suffices to prove that
�� � � ���� ��. Note that � is �����.

Fix � � � . For any � � � let ����� be the order of ���� in the sense of the canonical well-ordering of

��� � � 	��� �����; then ����� � �
	�������

� . Note that still ���� � ���� ����� � �

	����

� , because the map

� ��� ����� is����� ��. Now define ���� � �
������ � � � � � �����. This is ��-invariant, i. e, ���� � ����

whenever �� � � � and ����, moreover, ���� � �
	����

� .

Let � � �� � � � ���� � �����. This is an ����� subset of � , and there is a ROD reduction of �� � �
to �� � � . (Indeed: Let � � � . By definition there is � such that ����� � ���� for all � � �; let �� be the
least of such numbers �. Define � � ���� � ��� �� so that ���	� � ���	� while ���� � � for all � � ��.
Then � �� , under the natural assumption that � has order � in any relevant well-ordering, and ����. Thus, � is
a ROD reduction of �� � � to �� �� .) It suffices to prove that �� �� ���� ��.

By definition, ����� � ���� � �
	����

� for all � � � and � � �, hence, if � � � ���, then the set

�
 ��� � ����� � � �� � � � ����� � 	��� �� is countable in 	��� �� � 	��� ��. Thus there exists an �����
map � with �
 ��� � �� ��� �� � � � �� whenever � � � �

�
���� ���. Assuming w. l. o. g. that ���� � �

for any �. All sets �
 ���, � � �, are strictly countable, hence, we can assume that for any � � � the partial map
����� � � ��� �� is a bijection of � onto �
 ���. Then for any � � � and � there is a unique � �  ���� such
that ���� � � ������ ��. Let  ��� � � ��������. Note that if � �� � � � and ����, then  ��� ��  ���.

The next step is to uniformly define an ordering of any set of the form ����� �� , � �� , similar to�. Define
!���� � ������������  ����� for all � �� and �. Define the infinite sequence

!��� � 	 ����� !�����  ����� !����� � � � �  ����� !����� � � � 


of natural numbers. Easily if �� � � ��� �� satisfy ����, i. e., ���� � ���� for some �, then still !�����!���,
i. e., !������ � !������ for some � � �. Define, for �� � � � , � �� � iff !��� ���
� !��� (the anti-
lexicographical ordering), meaning that !���� � !����, where � is the least number such that !������ �
!������. Easily ���
� orders any ��-class of an element of � � � similarly to �, with the only exception of the
��-class of the constant � which is ordered similarly to � . It follows that any ��-class ����� � � of � � � is
ordered by �� similarly to either � or � . As a matter of fact, any class ordered similarly to � can be rearranged,
in some trivial manner, to that its order is now � instead of � . This way we obtain an ����� binary relation
�� which orders every set of the form ����� � � , � � � , similarly to � . In other words, we have defined an
����� action of � on � whose orbits are exactly ��-classes ����� � � , � �� .

The rest of the argument involves a construction given in [1]. For any � � � define "��� � �� so that
"������ � � and, for any # � �, "����# � �� is the ��-next element of ����� � � after "����#�. Thus, " is
an ����� map � �� $ � ���� ����. For "� % � $ define "�% iff there is an integer & � � such that
"�#� � %�#� &� for all # � � . Thus, � is the equivalence relation ������� ��� on $ � ���� ����, in the sense
of [1].

The map " is obviously a reduction of �� � � to �, hence, it suffices to show that � ���� ��. But [1, 7.1]
yields a stronger result: � �� ��. � Case 1

Unlike the Borel case (see the implication ���� ��� in [1, Theorem 5.1]) we cannot claim here that � is ROD-
hyperfinite. Indeed, arguing in the Solovay model, consider the set � of all � � ��� �� such that ���� � 	������
for every �. (See above.) Then �� � � is a countable and ROD-hypersmooth equivalence relation. But �� � �
is not ROD-hyperfinite! Indeed: Otherwise, for some � � ��� �, �� � � is the union of an increasing countable
sequence of finite equivalence relations, which (i. e., the sequence) is �����. Then, for any � and � � � ��� the
set �
 ��� evidently is ����� ��-countable. Taking � to be the constant �, we get a contradiction, because then
�
 ��� � 	��� � ��� �, and this cannot be �����-countable.
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4.2 Case 2

Thus, assume that the ����� set ' � �� � � � ���� � �� is non-empty. Our goal is to define an �����
subset � � ' with �� �� �� � � .

We continue to argue in the Solovay model .

We begin with a reduction to the case when ���� � �� � ���� �� 	��� ������ is equal to � for any � � '.

Fix, for any �, a recursive bijection (� � ��� ���� � �
� ����
�� ��� �. Now let � � '. Then ���� � � is infinite;

let ���� � ���� ��� ��� � � �� in the increasing order. For any �, put

���� � (����������� � ��	��� �	�� �	� �	 � �	���

(with ��� � �� for � � �). The map � ��� � is �����, ����� iff �����, and also ���� � � . This observation
justifies to assume w. l. o. g. ���� � � for any � � ', that is, ���� �� ����� ����� for any � � ' and �.

The following construction uses the basic idea of [4, Theorem 2.1], in the form of a splitting construction

developed in [3] for the study of “ill”-founded Sacks iterations. Fix a recursive map ) � �
����
�� � , which

assumes each value � � � infinitely many times so that �)��� � � � �� is an initial segment of � for any �.
For any � and finite sequences *� + � ��, let ,��*� +� � ����)��� � � � � � *��� �� +����. Separately,
)�*� *� � �� for any * � ���. We are going to define for each * � ��� a non-empty ����� subset �� � ',
so that

(i) if *� + � ��, then (a) ����������
 � ����������
 and (b) ����������
 � ����������
 � �;

(ii) �
�- � � �� for all * � ��� and . � �� �;

(iii) ������� ������ � � as ��� (a reasonable Polish metric on ��� �� is assumed to be fixed);

(iv)
�
����� �� � for any � � �� .

Let us demonstrate how such a system of sets accomplish Case 2. According to (iii) and (iv), for any � � ��

the intersection
�
����� contains a single point, let it be � ���, so that � � �� �� ��� �� is continuous and

one-to-one.
Define a parallel system of sets ��, * � ���, as follows. Put �� � ��� �� . Suppose that �� has been

defined, * � ��, and )��� � �. Let / be the number of all indices � � � satisfying )��� � �, perhaps / � �.
Put �

�- � � �� � �� � �����/� � .� for . � �� �. Each of �� is clearly a basic clopen set in ��� �� , and one
easily verifies that conditions (i) – (iv) are satisfied for the sets �� (instead of ��, in particular, for any � � �� ,
the intersection

�
� ���� � �0���� is a singleton, and the map 0 is continuous and one-to-one. (We can define

0 explicitly: 0�������/� � ����, where � � � is chosen so that )��� � � and there is exactly / numbers � � �

with )��� � �.) Note finally that �0��� � � � ��� � ��� �� since by definition �
�- � � �

�- � � ��.
We conclude that the map ���� � � �0������ is a continuous bijection, hence, a homeomorphism by the

compactness of the spaces considered, of ��� �� onto the set � � �� ��� � � � ���� �
�
�

�
���� ��. We

further assert that � satisfying the following: for each �� �� � ��� �� and �,

��� ���	 � ����	 iff ������	 � �������	.

Indeed: Let � � 0��� and � � � ��� � ����, and similarly �� � 0���� and �� � � ���� � �����, where
�� �� � �� . Suppose that ���	 � ����	. According to (i)(b) for 1 and the sets �� we then have � � ,��� �
�� �� � �� for any �, hence, ������	 � ������	 for any � by (i)(a). Assuming now that Polish metrics on
all spaces ��� ��� are chosen so that ����$ � �����$���� for all $ � ��� � and �, we easily obtain that
���	 � ����	, i. e, the right-hand side of ���. The inverse implication in ��� is proved similarly.

Thus we have ���, but this means that � is a continuous reduction of �� to �� � � , thus, �� �� �� � �� as
required. � Theorem 1 modulo the construction (i) – (iv)

5 The construction

We continue to argue in the Solovay model.

Recall that ' � ��� �� is a fixed non-empty ����� set such that ���� � � for each � � '. According to
Proposition 3(i), there is 	 � 
, 
� � �� , and 
 � �� ��� such that �� � 
�
�� � '. Let us fix an enumeration
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(not �����) �2����� of all dense subsets of �� which belong to 	���. We define, along with sets ��, a system
�
������� of finite sequences 
� � ��� satisfying

(v) 
� � 2����� and, for any ., 
� 
 

�- � and 
�


�- �� � �� � 
�
��.

Prove that this implies (iv). Let � � �� . Then there is � � 	� such that 
��� 
 � for any �. This map � is
generic over	���, because for all �, 
��� � 2�, that is, � � �� ���. It follows that 
�� � �

�
� 
�
���� �

�
�����,

as required.
To begin with, let 
� be any extension of 
� which belongs to 2�. Put �� � 
�
��. Now suppose that the

sets �� � ' and sequences
� with * � �� have been defined and satisfy the applicable part of (i) – (iii) and (v).

Lemma 4 If *� � �� and � � � ��� is a non-empty ����� set, then there is a system of ����� sets
� �� � �

� � �� with � �
��

� � �, still satisfying (i).

P r o o f . For any * � ��� let � �
� � �� � �� � ������� � � ��������, where ��*� � ,��*� *��. In particular,

this gives� �
��

� � � because, ,��*�� *�� � ��. The sets � �
� are as required, via a routine verification. � Lemma

S t e p 1 . Put � � )��� and �� � ����� . Take any *� � ��. Under our assumptions, any element
� � ��� satisfies � � ����, so that ���� �� ����� �����. Since ��� is an ����� set, it follows that the set
���� ������ � ������ � �� � ��� � ����� � ����� is not a singleton, in fact is uncountable. Then there is a
number 3�� having the property that the set

� ��� � �� � ��� � ���� �
� � ���� ��

���� � ���� � � � 3�� � ���� � 3�� �� �������

is non-empty. We now put � � � �� � ��� � ���� � � ���� and define ����� sets � �� � �
� � �� as in the

lemma, in particular, � �
��

� � �, � �
��
��� � � ��� , still (i) is satisfied, and in addition

��� � � �
��
�������� �

� � � �
��
� ������ � ���� � � � 3�� � ���� � 3�� �� ������(1)

Now take some other *� � ��. Let , � ,��*�� *��. If � � ,, then ������ � ������ , so that we already
have, for 3�� � 3�� ,

��� � � �
��
�������� �

� � � �
��
� ������ � ���� � � � 3�� � ���� � 3�� �� �������(2)

and can pass to some *� � ��. Suppose that , � �. Now things are somewhat nastier. As above there is a number
3�� such that

� ��� � �� � ��� � ���� �
� � ���� ��

���� � ���� � � � 3�� � ���� � 3�� �� �������

is a non-empty ����� set, thus, we can define � �� � �� � ��� � ���� � � ���� and maintain the construction of
Lemma 4, getting non-empty ����� sets � ��

� � � �
� still satisfying (i) and � ��

��
� � ��, therefore, we still have

��� for the set � ��
��

.
Yet it is most important in this case that ��� is preserved, i. e., it still holds for the set � ��

��
instead of � �

��
!

Indeed: According to the construction in the proof of Lemma 4, we have � ��
��

� �� � � �
��

� ���� � � ������.
Thus, although, in principle, � ��

��
is smaller than � �

��
, for any � � � ��

��
��� we have

�� � � ��
��

� ���� � �� � �� � � �
��

� ���� � ���

simply because now we assume , � �. This implies that ��� still holds.
Iterating this construction so that each * � �� is eventually encountered, we obtain, in the end, a system of

non-empty ����� sets, let us call them “new” ��, but they are subsets of the “original” ��, still satisfying (i),
and, for any * � �� a number 3� such that � � ,��*� +� implies 3� � 3� and

��� ��� � ���������� �� � ��� ��
���� � ���� � � � 3� � ���� � 3� �� �������

S t e p 2 . We define the �����th-level by �
�- � � �� � �� � 3� � ����� and �

�- � � �� � �� � 3� �� �����
for all * � ��� where still � � )���. It follows from ��� that all these ����� sets are non-empty.

Lemma 5 The system of sets ���������� just defined satisfies (i).

P r o o f . Let 4 � *- . and 
 � +- .� belong to ����, so that *� + � �� and .� .� � ��� ��. Let , � ,��*� +� and
,� � ,��4� 
�.



304 V. Kanovei and M. Reeken: A theorem on ROD-hypersmooth equivalence relations in the Solovay model

C a s e 1 . , � � � )���. Then easily , � ,�, so that (i)(b) immediately follows from (i)(b) at level � for
�� and �� . As for (i)(a), we have ����� � ����� (because by definition ����� � �����), and similarly
����� � ����� , therefore, ������ � ������ since ����� � ����� by (i)(a) at level �.

C a s e 2 . � � , and . � .�. Then still , � ,�, thus we have (i)(b). Further, ����� � ����� by (i)(a) at level
�, hence, ����� � ����� and 3� � 3� as above. Assuming that, say, . � .� � � and 3� � 3� � 3, we conclude
that ������ � �� � ����� � 3 � ����� � �� � ����� � 3 � ����� � ������ .

C a s e 3 . � � , and . �� .�, say, . � � and .� � �, Now ,� � �. Yet by definition ����� � ����� and
����� � ����� , so it remains to apply (i)(a) for level �. As for (i)(b), note that by definition 3 �� ���� for any
� � �� � �

�- � while 3 � ���� for any � � �� � �
�- �, where 3 � 3� � 3�. � Lemma

S t e p 3 . In addition to (i), we already have (ii) at level ���. To achieve the remaining properties (iii) and (v),
consider, one by one, all elements 4 � ����, finding, at each such a substep 4 � *- . (* � �� and . � �� �), a
non-empty ����� subset of ��, and also an extension
� � ��� of 
�, consistent with (iii) and (v). As for (iii),
just take a subset whose diameter is � ���. As for (iv), choose, using Proposition 3(ii), 
� � �� such that the
following holds: 
� � 2���, 
� 
 
�, and the set 
�
�� is a subset of the “current value” of ��. Finally,
define the “new” value of �� to be 
�
��. Then reduce all other sets ��, 
 � ����, as in Lemma 4 at level �� �.
Thus ends the substep 4. We have to pass to another 4� � ���� and carry out substep 4�. And so on, with the
consideration of all 4 � ���� one by one.

� Construction and Theorem 1
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