
Monatsh. Math. 140, 197–231 (2003)

DOI 10.1007/s00605-003-0004-y

Borel and Countably Determined Reducibility
in Nonstandard Domain

By

Vladimir Kanovei1;� and Michael Reeken2

1 IITP, Moscow, Russia
2 University of Wuppertal, Germany

Received April 28, 2002; in final form January 24, 2003
Published online October 24, 2003 # Springer-Verlag 2003

Abstract. We consider, in a nonstandard domain, reducibility of equivalence relations in terms of
the Borel reducibility 4B and the countably determined (CD, for brevity) reducibility 4CD. This
reveals phenomena partially analogous to those discovered in modern ‘‘standard’’ descriptive set theory.
The 4CD-structure of CD sets (partially) and the 4B-structure of Borel sets (completely) in �N are
described. We prove that all ‘‘countable’’ (i.e., those with countable equivalence classes) CD equiva-
lence relations (ERs) are CD-smooth, but not all are B-smooth: the relation xMNy iff jx� yj 2N is a
counterexample. Similarly to the Silver dichotomy theorem in Polish spaces, any CD equivalence
relation on �N either has at most continuum-many classes (and this can be witnessed, in some manner,
by a countably determined function) or there is an infinite internal set of pairwise inequivalent elements.
Our study of monadic equivalence relations, i.e., those of the form x MU y iff jx� yj 2U, where U is an
additive countably determined cut (initial segment) demonstrates that these ERs split in two linearly
4B-(pre)ordered families, associated with countably cofinal and countably coinitial cuts. The equiva-
lence u FD v iff u � v is finite, on the set of all hyperfinite subsets of �N, 4B-reduces all ‘‘countably
cofinal’’ ERs but does not 4CD-reduce any of ‘‘countably coinitial’’ ERs.
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Classical descriptive set theory (DST, for brevity) is mainly concentrated on
sets in Polish (complete separable) spaces, see Kechris [12]. It was discovered in
the 1980s that ideas of classical DST can be meaningfully developed in a very
different setting of nonstandard analysis, where Polish spaces are replaced by
internal hyperfinite sets. This alternative version of descriptive set theory is called
‘‘hyperfinite’’, or ‘‘nonstandard’’ DST. It allows to define Borel and projective
hierarchies of subsets of a fixed infinite internal (for instance, hyperfinite) domain
in quite the same manner as ‘‘Polish’’, i.e., classical DST does, but beginning with
internal sets at the initial level rather than open sets. Generally, the structures
studied by the ‘‘nonstandard’’ DST appear to be similar, in some aspects, to those
considered in the ‘‘Polish’’ descriptive set theory, but different in some other
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aspects. As for the proofs, they are mainly based on very different and rather
combinatorial ideas, and (countable) Saturation, of course, see Keisler et al.
[14]. ‘‘Nonstandard’’ DST also involves objects which hardly have any
direct analogy in the ‘‘Polish’’ setting, like countably determined sets, leading
to a remarkably interesting mixture of ‘‘Polish’’ and nonstandard concepts and
methods.

This paper is written in an attempt to find nonstandard analogs of concepts
which attract a lot of attention in ‘‘Polish’’ DST nowadays: the structure of defin-
able (usually, Borel or analytic) equivalence relations in terms of Borel (sometimes
more complicated) reducibility of associated quotient structures. Our results will
be related to countably determined (or CD), in particular, Borel sets and equiva-
lence relations on �N and hyperfinite domains, and the reducibility by countably
determined, in particular, by Borel maps.

It is an important difference comparing to ‘‘Polish’’ DST that while classically
all uncountable Polish spaces are Borel isomorphic, hence indistinguishable w. r. t.
topics in Borel reducibility, in ‘‘nonstandard’’ setting any two infinite hyperfinite
sets X, Y admit a Borel bijection iff #X

#Y
’ 1 and admit a CD bijection iff #X

#Y
is

neither infinitesimal nor infinitely large (Proposition 2.2). This makes the structure
of CD equivalence relations dependent not only on their intrinsic nature, i.e., the
method of definition, but also on the size of the domain, which can be any internal
infinite hyperfinite subset of �N. (Yet there is an idea of domain-independent
approach, see the last remark in Section 16.)

This effect shows up already at the level of B-smooth ERs (those which admit a
Borel enumeration of equivalence classes), which leads us to the study of Borel
sets in terms of the relation X 4B Y meaning the existence of a Borel injection
# : X ! Y . We prove (Theorem 3.1) that any Borel subset of �N admits a Borel
bijection onto a Borel cut (initial segment) in �N, therefore, any two Borel sets are
comparable via the existence of a Borel injection, and generally there is a com-
prehensive classification of Borel subsets of �N modulo �B (in other words, Borel
cardinalities).

A complete classification of countably determined sets modulo �CD is not
known, yet we show (Theorem 4.1) that, for any CD set X � �N, either there is a
unique additive CD cut C � �N (which can be equal to N or �N itself) with
X�CD C, or there is a hyperinteger c2�NnN such that c=N <CD X <CD cN.
(There are open questions related to or case, see Section 5.) Further, we prove
(Theorem 5.2) that any CD set X � cN with c=N4CD X satisfies X�CD M, where
M is a union of monads – sets of the form xþ ðc=ZÞ, x2 cN, but whether such a
set can satisfy c=N <CD X <CD cN is not known.

In ‘‘Polish’’ theory, some most elementary examples of non-smooth (in the
sense of Borel enumerations, of course) ERs belong to the type of countable ones,
i.e., with all equivalence classes at most countable. We prove (Theorem 6.1) that,
on the contrary, in the ‘‘nonstandard’’ DST any countable countably determined
ER E admits a CD transversal, i.e., a set which has exactly one common element
with each E-class, hence, is CD-smooth (but not necessarily has a Borel transver-
sal and is B-smooth, i.e., with a Borel enumeration of the equivalence classes).
This generalizes a recent theorem of Jin [7] that the (countable) equivalence
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relation MN defined on �N by x MN y iff jx� yj 2N admits a countably determined
transversal and is CD-smooth. On the other hand, by a typical measure-theoretic
argument, MN is not Borel-smooth and does not admit a Borel transversal; this is a
transparent demonstration of differences between Borel and countably determined
structures.

It is known from studies in ‘‘Polish’’ descriptive set theory that any coanalitic
(Silver [18]), resp., analytic (Burgess [1]) equivalence relation on a Polish space
has 4@0, resp., 4@1 equivalence classes, or admits an uncountable closed set of
pairwise inequivalent elements. Theorems of this sort are called dichotomy theo-
rems. Our Theorem 7.1 has obvious similarities to these results: it asserts that a CD
equivalence relation either admits a reduction to another equivalence relation
having a rather small number of equivalence classes or admits a rather large
internal set of pairwise inequivalent elements. Here the largeness and smallness
are formulated in terms of a given countably cofinal additive cut U � �N. As a
matter of fact, a true dichotomy, that is, the two cases are incompatible, is obtained
only for exponential cuts U, i.e., those satisfying x2U¼) 2x2U. In particular, in
the case U ¼ N (Corollary 9.1), any CD equivalence relation E either admits a
reduction to an equivalence relation on the (standard) reals or else admits an
infinite internal pairwise inequivalent set, and the two cases are incompatible.
(Note that, in the first case, E has at most c-many equivalence classes, which,
generally speaking, cannot be improved to any smaller cardinality. However, if E
is Borel then the number of E-classes is, in this case, either exactly c or 4@0,
Theorem 9.2, furthermore, if E is S0

1 then the number of E-classes is 4@0 in this
case, Lemma 7.2.)

An important class of countably determined ERs which contains mostly non-
CD-smooth relations, is the class of monadic equivalence relations. Given an
additive cut (initial segment) U � �N, we define x MU y iff jx� yj 2U, for all
x, y2�N. Thus, the MU-class of any x is the U-monad of x in the sense of [15].
Since any additive CD cut (with the trivial exceptions of ; and �N) is either countably
cofinal or countably coinitial (i.e., of the form, resp.,

S
n½0; anÞ or

T
n½0; anÞ, where

fangn 2N is strictly increasing, resp., decreasing sequence of hyperintegers), count-
ably determined monadic ERs split into two distinct families of countably cofinal
and countably coinitial monadic ERs.

Our study of the reducibility phenomena among monadic equivalence relations
in Sections 10–14 (summarized in Theorem 10.3) shows that ERs are mutually
comparable within each of these two families, in such a way that MU 4B MV iff
MU 4CD MV iff rate U � rate V , where, for any additive cut ; 6¼U $ �N, rate U,
the rate of U, is another, not necessarily additive cut, equal to the thickness of the
cut log U. In each of the two families, there is a subclass of 4B-minimal (and
4CD-minimal) ERs, namely, those generated by cuts of the form cN or c=N, c2�N
(in, resp., countably cofinal, coinitial case). Further, among all monadic ERs only
those of the form McN are CD-smooth (and all of them even admit a CD trans-
versal, essentially by Jin [7]), but none of them is Borel-smooth. In addition, there
is no relationship, in terms of 4B or 4CD, between countably cofinal and count-
ably coinitial ERs except that we have McN 4CD MV for any countably coinitial
equivalence relation MV .
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Finally, we show in Section 15 that monadic ERs induced by countably cofinal
cuts admit a natural upper 4B-bound, namely, the equivalence relation of equality
of hyperfinite subsets of �N modulo a finite set. We denote this ER by FD; it has
some analogy with the equivalence relation of equality of infinite subsets of N
modulo a finite set, extensively studied in ‘‘Polish’’ descriptive set theory. We
prove that MU <B FD holds for any countably cofinal additive cut U but fails
for any countably coinitial additive U. It is not clear whether FD is a minimal
upper bound for countably cofinal monadic ERs: this and some other open prob-
lems are considered in the final Section 16.

Note added in proof. After this paper was, essentially, accomplished in Spring
2002, the authors were informed by Pavol Zlato�ss1 that some of our results were
earlier obtained by the followers of AST, the alternative set theory of Vopenka.
More exactly, Theorem 3.1 belongs to Kalina and Zlato�ss [10], Corollary 9.1
follows from an unpublished result of Vencovská, and some results overlapping
with Theorem 4.1 were obtained by Kalina and Zlato�ss [10]. Yet in order to pre-
serve the integrity of the paper, we decided to keep the results, adding suitable
comments and references (prepared also with the help of Zlato�ss).

It is worthwhile to note that AST rather adequately describes the structure
of hyperfinite, internal, Borel, and countably determined subsets of �N in the
assumption of the continuum-hypothesis CH (called the two-cardinal hypothesis
in AST), so that any reasonable descriptive set theoretic argument in AST, not
using the two-cardinal hypothesis, can be converted, by a certain change of ter-
minology, into a proof by means of hyperfinite descriptive set theory; accordingly,
if the two-cardinal hypothesis is involved then the result is a consequence of CH
(and can also be treated in terms of consistency).

1. Notation

The set of all functions f : Y ! X is denoted by Y X, and xy will denote the
arithmetical power operation in standard and nonstandard domains. The set of all
finite binary sequences is <!2 ¼

S
n 2N

n2 . s^ a is the extension of a finite sequence
s by a new rightmost term a. The length of a finite sequence s is denoted by CH s.
f 00X ¼ ff ðxÞ : x2X \ dom fg is the f-image of a set X. f�1ðYÞ ¼ fx2dom f :
f ðxÞ2Yg is the f-preimage of a set Y. If P is a set of pairs then x P y and P(x, y)
mean that hx, yi2P.

Some acquaintance of the reader with ‘‘hyperfinite’’ descriptive set theory is
assumed; we give [14] as the basic reference. All ‘‘nonstandard’’ notions below,
for instance �N, are related to a fixed countably saturated ‘‘nonstandard universe’’
(e.g., a nonstandard superstructure, as in [16]), whose elements will be referred to
as nonstandard (internal or external) sets.

In the remainder, we typically use letters like i, j, k, m, n (with indices) for
elements of N, and letters like a, b, c, h, x, y, z for elements of �N. PintðXÞ is the

1 Whom we also thank for many important remarks and corrections to the text.
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set of all internal subsets of a nonstandard set X. If X, Y are internal sets then
ðYXÞint is the set of all internal f : Y ! X.

Numbers c2�N (standard or nonstandard) will be systematically identified
with the sets ½0; cÞ ¼ fx : x< cg of all smaller numbers. We shall often use
ðc2Þint, instead of the more pedantical ð½0;cÞ2Þint to denote the (internal) set of all
internal functions � : c ¼ ½0; cÞ ! 2.

The number of elements of a hyperfinite set X is #X2�N. Let r ’ q mean that
the difference r�q is infinitesimal. For any bounded hyperrational � (i.e., j�j< c
for some c2N) there is a unique standard real number r, denoted by st�, the
standard part2 of �, such that � ’ r. If � is unbounded then put st� ¼ þ1.

Borel classes S0
1, P0

1 consist of countable unions, resp., intersections of inter-
nal sets. Borel sets form the least �-algebra containing all internal sets; thus, all
sets in S0

1 [P0
1 are Borel. Following Henson [4], sets of the form

X ¼
[

b 2 B

\

m 2 b

Xm \
\

m 62 b

�XXm

 !

; where all sets Xm are internal;

B � PðNÞ; and �XXm ¼
[

n

XnnXm; ðyÞ

are called countably determined, in brief CD. (Any reasonable version of this
concept for Polish spaces yields the collection of all sets of the space.) There
are several slightly different ways to define this class of sets, for instance (see,
e.g. [7]),

X ¼
[

f 2 F

\

m 2N

Xf ( m; where all Xs; s2 <!2; are internal;

F � N2; and Xt � Xs whenever s � t: ðzÞ
To convert (z) to (y), let B consist of all sets b � <!2 containing a subset of the
form ff ( m : m2Ng, f 2F, and apply any bijection <!2 onto N. To convert (y) to
(z), put Xs ¼

T
k<m X0k for any s ¼ hi0; . . . ; im�1i2 <!2, where X0k ¼ Xk whenever

ik ¼ 1 and X0k ¼ �NnXk otherwise, then let F � N2 be the set of all characteristics
functions of sets in B.

All Borel sets are countably determined, but not conversely. A map is Borel,
resp., CD, if it has a Borel, resp., CD graph.

Remark 1.1. As usual, all elements of internal sets are internal sets themselves.
It follows that all elements of Borel and CD sets are internal sets, and domains and
ranges of Borel and CD maps consist of internal elements. &

In the AST vocabulary [2, 10, 11], hyperfinite sets (subsets of �N) are called
just sets, arbitrary sets classes, internal sets Sd-classes, countably determined sets
real classes (�CCuda and Vopenka [2]); there are other differences. It is worth to note
that the use of the word ‘‘class’’ in AST is in drastic contradiction with the mean-
ing of this word in descriptive set theory (both classical and ‘‘hyperfinite’’), where

2 Standard parts can be defined for all bounded hyperreals, of course, but hyperreals are not
considered in this article.
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it normally denotes various collections of pointsets (like the class of all Borel,
projective, countably determined sets).

Initial segments of �N (including ;, N, �N) are called cuts. A cut U is additive
if xþ y2U whenever x, y2U. Given a CD cut U, the sets

UN ¼
[

n2N;x 2U

½0; xn� and U=N ¼
\

n 2N;x 2U

�

0;
x

n

�

are additive CD cuts, U=N � U � UN, U=N is the largest additive cut included
in U while UN is the smallest additive cut including U. In particular, let c=N ¼
½0; cÞ=N and cN ¼ ½0; cÞN for any c2�N.

If U is a cut then 2U ¼
S

a2U ½0; 2aÞ is an additive cut (and 2U is multiplicative,
that is, closed under products, provided U is additive). On the other hand, if U is an
additive cut then log U ¼ fh : 2h2Ug3 is also a cut (not necessarily additive) and
U ¼ 2log U , log 2U ¼ U.

Internal cuts are ;, �N, and those of the form c ¼ ½0; cÞ, c2�N. Non-internal
cuts can be obtained with the following general procedure. Put

sup X ¼
[

x 2 X

½0; x� and inf X ¼
\

x 2 X

½0; xÞ;

for any set ; 6¼X � �N; these are, resp., the least cut containing all elements of X
and the largest cut disjoint from X. (Note that if X contains a least element a then
inf X ¼ ½0; aÞ, similarly, if X contains a largest element b then sup X ¼ ½0; b�.
Recall that intervals [0, a) and [0, b] of �N are identified with numbers, resp., a
and bþ 1.)

If X ¼ fan : n2Ng is countable then we use supn an and infn an instead of
sup X and inf X; cuts of these forms are, resp., countably cofinal (or internal if X ¼
fan : n2Ng contains a maximal element) and countably coinitial (or internal if X
contains a minimal element). Both types consist of Borel sets of classes resp. S0

1

and P0
1.

Cuts of the form cþN ¼ fcþ n : n2Ng and c�N ¼ fc� n : n2Ng
ðc 2=NÞ are countably cofinal, resp., coinitial, but not additive (unless c2N in
cþN). The following simple result is known at least since [2].

Lemma 1.2. Any CD cut ; 6¼U $ �N is either countably cofinal or countably
coinitial or contains a maximal element (and then is internal).

Proof. Let U ¼
S

f 2 F

T
m 2N Xf ( m, where F and the sets Xs are as in (z). By

Saturation, U ¼ sup U ¼
S

f 2 F

T
m Uf ( m, where Us ¼ sup Xs, hence, Us ¼ ½0; �s�,

where �s ¼ max Xs2�N for all s2 >!2. If there is any f 2F with U ¼
T

m Uf ( m

then the sequence f�f ( mgm 2N witnesses that U is countably coinitial, or
contains a maximal element if the sequence is eventually constant. Otherwise,
by Saturation, for any f 2F there is a number mf 2N such that �f ( mf

2U. Let
S ¼ ff ( mf : f 2Fg; this is a countable set and easily U ¼

T
s 2 S½0; �s�, so that

U is either countably cofinal or contains a maximal element. &

3 log means only log2 in this paper.
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Lemma 1.3 (cf. 2.1, 2.2, 2.3 in [9]). Let X � �N be a countably determined set
and U � �N an additive cut of countable cofinality. Then:

(i) either X 4CD U or X contains an internal subset Y with #Y 2=U;
(ii) either X is bounded (i.e., X � h for some h2�N) or X contains an

unbounded internal subset.

Proof. 4(i) Suppose that X ¼
S

f 2 F

T
n Xf ( n, where F � N2 and Xs are as in (z)

of Section 1. Let S consist of all s2 <!2 with #Xs2U. If there is f 2F such that
f ( n 2= S for all n then by Saturation

T
n Xf ( n contains an internal subset Y with

#Y 2= U. Otherwise we have the ‘‘either’’ case.
(ii) A similar argument, with S being the set of all s2 <!2 such that Xs is

unbounded in �N. &

Taking U ¼ N, we obtain the following corollary, originally due to Henson [4],
�CCuda and Vopenka [2] (see a short proof in [14], Proposition 2.5).

Corollary 1.4. Any countably determined set X � �N is either at most count-
able or contains an infinite internal subset. &

2. Equivalence Relations and Reducibility: Preliminaries

Suppose that E, F are countably determined equivalence relations5 (ERs, for
brevity) on (also countably determined) sets X, Y. We write E4CD F, in words: E
is CD-reducible to F, iff there is a CD map (called: reduction) # : X ! Y 6 such
that we have xEx0 ()#ðxÞF#ðyÞ for all x, x0 2X.7 We write E�CD F if both
E4CD F and F4CD E, and E <CD F iff E4CD F but not F4CD E. Changing
‘‘countably determined’’ and ‘‘CD’’ to ‘‘Borel’’ in these definitions, we obtain
the relations 4B, �B, <B of Borel reducibility.

Informal meaning of E4CD F and E4B F is that F has at least as many
equivalence classes as E, and this is witnessed by a CD, resp., Borel map.

For any set A, the equality relation DðAÞ (D from ‘‘diagonal’’) is defined on A
by xDðAÞy iff x ¼ y. These are the simplest of ERs; in many aspects DðAÞ can be
identified with A.

Similarly to the ‘‘Polish’’ descriptive set theory, we say that an ER E on a set X
is CD-smooth, resp., B-smooth, if E4CD Dð�NÞ, resp., E4B Dð�NÞ, i.e., there is a
countably determined, resp., Borel map#, with X � dom# and ran# � �N such
that x E x0 iff #ðxÞ ¼ #ðx0Þ: this means that E-classes admit a CD enumeration by
hyperintegers.

A transversal of an equivalence relation E is a set which has exactly one
common element with each E-equivalence class. Easily any Borel ER E on a
set X � �N, having a Borel transversal W � X, is B-smooth: let #ðxÞ be the only

4 The result follows from Theorem 4.1, but we prefer to present a short direct proof.
5 That is, equivalence relations which, as sets of pairs, are countably determined sets. The notion of

Borel equivalence relation is understood similarly.
6 To apply 4CD to non-CD relations, we should have used the existence of a CD map# with

X � dom# and #00X � Y , but we shall not consider anything more complicated than CD below, in fact,
mainly Borel ERs will be considered.

7 It would be not less reasonable, but obviously longer, to write X=E4CD Y=F.
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element of W equivalent to x. Similarly any CD equivalence relation E having a
CD transversal is CD-smooth.

For any Borel sets X, Y, let X 4B Y mean that there is a Borel injection # : X ! Y .
Accordingly, let X�B Y mean that both X 4B Y and Y 4B X, and X <B Y will mean
that X 4B Y but not Y 4B X. Changing ‘‘Borel’’ to ‘‘CD’’, we obtain 4CD, �CD,
<CD, stronger relations between countably determined sets. Note that the superposi-
tion of two Borel, or two CD maps is in the same class (basically, because the classes
of Borel and CD sets are closed under finite intersections), therefore, 4B, <B, 4CD,
<CD are order relations while �B, �CD are equivalence relations.

Obviously X 4B Y iff DðXÞ4B DðYÞ, thus, the 4B-structure of Borel sets is in
a sense equal to the 4B-structure of B-smooth equivalence relations, and the same
for the CD case.

Lemma 2.1. Let X, Y be Borel sets. Then X�B Y iff there is a Borel bijection of
X onto Y. Similarly, if X, Y are CD sets then X�CD Y iff there is a CD bijection of X
onto Y.

Proof (see [2] for the CD case and [10] for the Borel case). Apply the Cantor–
Bernstein argument. To see that it yields a bijection of necessary type, recall that
the image ran# of a CD, resp., Borel injection # is equal to domð#�1Þ, hence, is
still a CD, resp., Borel set [14, 2.10]. &

Thus, X�CD Y can be interpreted as saying that the sets X, Y have the same
CD-cardinality; the latter then can be defined as the �CD-class of X. Similarly,
X�B Y means that X, Y have the same Borel cardinality.

The following result presents an alternative description of the relations �CD,
�B restricted to �N (i.e., acting only on hyperfinite sets; recall that any x2�N is
identified with the set ½0; xÞ ¼ fy2�N : 04 y< xg).

Proposition 2.2 (See [2] and [14] for CD case; [5] and [10] for Borel
case). Suppose that x, y2�NnN. Then x�B y iff st x

y
¼ 1, and x�CD y iff

0< st x
y
< þ1. &

(Note that if at least one of x, y2�N belongs to N then x�B y iff x�CD y iff
x ¼ y by obvious reasons.) It follows that the relations x�B y and x�CD y on �N
are Borel. We show below that the first of them is not CD-smooth while the other
one is CD-smooth but not B-smooth.

3. Borel Cardinalities

Our first goal is to study the 4B-structure of Borel sets in �N. The following
theorem shows that any infinite Borel subset of �N is �B-equivalent to a unique
Borel cut of some kind.

Theorem 3.1. For any Borel set X � �N there is a Borel cut U � �N with
X�B U, actually, there is a minimal Borel cut U satisfying X�B U.

As we mentioned in the introduction, this theorem, together with Corollary 3.4
below, was proved, in the frameworks of AST, by Kalina and Zlato�ss [10]
(Theorems 4.10 and 4.12). Kalina and Zlato�ss obtained other related results in
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[8, 9, 11], in particular, in the assumptions of the theorem, there also exists a
maximal Borel cut U satisfying X�B U [9, Theorem 1.10]. Those arguments in
AST do not involve the two-cardinal hypothesis (essentially, CH), hence, can be
considered as valid proofs in hyperfinite descriptive set theory.

Our proof of the theorem has many similarities with the proof in [10]. We
precede the proof by two auxiliary lemmas. The first of them says that 4B is
sometimes preserved under unions and intersections.

Lemma 3.2 (Essentially from Zivaljevic [19]). Suppose that An, Bn are hyper-
finite sets, and bn ¼ #Bn 4 an ¼ #An for each n. Then

(i) if Anþ1 � An and Bnþ1 � Bn for each n then
T

n Bn 4B

T
n An;

(ii) if An � Anþ1 and Bn � Bnþ1 for each n then
S

n Bn 4B

S
n An.

Proof. (i) For any n there is an internal bijection f : A0 onto ½0; a0Þ such that
f 00Ak ¼ ½0; akÞ for all k 4 n. By Saturation, there is an internal bijection f : A0 onto
½0; a0Þ with f 00An ¼ ½0; anÞ for all n2N. We conclude that

T
n An�B U ¼

T
n½0; anÞ.

Also,
T

n Bn�B D ¼
T

n½0; bnÞ. However D � U.
(ii) Arguing the same way, we prove that

S
n An�B U ¼

S
n½0; anÞ andS

n Bn�B D ¼
S

n½0; bnÞ, but again D � U. &

If U � V � �N are cuts then we write U � V iff x
y
’ 1 for all x, y2VnU.

(Thus, if U ¼ ½0; aÞ and V ¼ ½0; bÞ then U � V iff a
b
’ 1.) The next lemma (cf.

4.7 in [10]) says that this is a necessary and sufficient condition for U�B V.

Lemma 3.3. (i) If U, V are Borel cuts then U�B V iff U � V .
(ii) Any �-class of Borel cuts contains a �-minimal cut, in particular, any

additive Borel cut is �-isolated, i.e., U 6� V for any cut V 6¼U.

Proof. (i) Let, say, U � V . Suppose that U�B V . Take any x< y in VnU. Then
x�B y, hence, x

y
’ 1 by Proposition 2.2. Suppose, conversely, that U � V . Take

any x2VnU. Let c be the entire part of x=2; then easily c2U. Let
A ¼ fa2�N : a

c
’ 0g. We observe that A$ U and the difference D ¼ VnU satis-

fies D � Xþ [ X�, where Xþ ¼ fxþ a : a2Ag and X� ¼ fx� a : a2Ag. Define
f ðzÞ for any z2V as follows. If z2UnA then f ðzÞ ¼ z. If z2D \ Xþ then
z ¼ xþ a, a2A, and we define f ðzÞ ¼ 3a (a number in A). If z2D \ X�, but
z 6¼ x, then z ¼ x� a, a2Anf0g, and we define f ðzÞ ¼ 3aþ 1 (still a number in
A). Finally, if x2A then let f ðxÞ ¼ 3xþ 2. Easily f is a Borel injection V ! U.

(ii) Let ~UU be the set of all x2U such that there is y2U, y> x with x
y
6’ 1. This

is a cut, moreover, a projective set, hence, countably determined, which implies
that ~UU is actually Borel by Lemma 1.2. Easily ~UU � U. Finally, note that for any
x2 ~UU there exists x0 2 ~UU, x0> x, with x0

x
6’ 1: indeed, let x0 ¼ xþy

2
, where y2U,

y> x, y
x
6’ 1. This suffices to infer that V 6� ~UU for any cut V $ ~UU. In other words,

~UU is the �-least cut �B-equivalent to U, as required. That ~UU ¼ U for any additive
cut U is a simple exercise. &

Proof of Theorem 3.1. Lemma 3.3 allows us to concentrate on the first assertion
of the theorem. Since all Borel sets are countably determined, we can present
a given Borel set X � �N in the form X ¼

S
f 2 F

T
n Xf ( n, where F and the sets
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Xs � �N are as in (z) of Section 1. If there is an f 2F such that all sets Xf ( n are
unbounded in �N then, by Saturation, there is an internal unbounded set
Y � Xf ¼

T
n Xf ( n. Then obviously Y �B

�N, hence, X�B
�N.

We assume henceforth that X is bounded in �N – then it can be assumed that
all sets Xs are also bounded, hence, hyperfinite. Let �s ¼ #Xs.

Let C be the set of all c2�N such that there is f 2F and an internal injection
’ : ½0; cÞ ! Xf ¼

T
n Xf ( n. Easily C is a cut, and a countably determined set. (By

Saturation, for any internal Y to be internally embeddable in Xf it suffices that
#Y 4 �f ( m for any m.)

We claim that C 4B X. Indeed if there is f 2F such that C � ½0; �f ( nÞ for all n
then immediately C 4B Xf by Lemma 3.2(i). Otherwise for any f 2F there is
nf 2N such that �f ( nf

2C. As Xf ( nf
is an internal set with #Xf ( nf

¼ �f ( nf
, no

internal set Y with #Y >�f ( nf
admits an internal injection in Xf, hence, the count-

able set f�f ( nf
: f 2Fg is cofinal in C, so that C ¼

T
k½0; zkÞ, where all zk belong to

C. However for any k there is an internal Rk � X with #Rk ¼ zk. Lemma 3.2(ii)
implies C 4B

S
k Rk.

In continuation of the proof of the theorem, we have the following cases.

Case 1. C is not additive. Then there is c2C such that cN ¼ U and 2c 2=C.
Prove that X 4B cN. By Lemma 3.2(ii), it suffices to cover X by a countable unionS

j Yj of internal sets Yj with #Yj 4 2c for all j. For this it suffices to prove that for
any f 2F there is m such that �f ( m ¼ #Xf ( m 4 2c. To prove this, assume, on the
contrary, that f 2F and �f ( m 5 2c for all m; we obtain, by Saturation, an internal
subset Y � Xf with #Y ¼ 2c 2=C, contradiction. We return to this case below.

In the remainder, we assume that C is additive.

Case 2. C is countably cofinal. Arguing as in Case 1, we find that for any f 2F
there is m such that �f ( m ¼ #Xf ( m2C. (Otherwise, using Saturation and the
assumption of countable cofinality, we obtain an internal subset Y � Xf with
#Y 2=C, contradiction.) Thus, X can be covered by a countable union

S
j Yj of internal

sets Yj with #Yj2C for all j. It follows, by Lemma 3.2(ii), that X 4B C. Since C 4B X
has been established, we have X�B C, so that U ¼ C proves the theorem.

Case 3. C is (additive and) countably coinitial, and there exists a decreasing
sequence fhkgk 2N, coinitial in �NnC, such that hk

hk�1
is infinitesimal for all k2N.

For any k2N, if f 2F then there is m with �f ( m 4 hkþ1 (otherwise, by Saturation,
Xf contains an internal subset Y with #Y > hkþ1, contradiction), so that X is
covered by a countable union of internal sets Yj with #Yj 4 hkþ1 for all j. It
follows, by Saturation and because hk

hk�1
is infinitesimal, that, for any k, X can

be covered by an internal set Rk with #Rk 4 hk. Now X 4B C by Lemma 3.2(i),
hence, U ¼ C proves the theorem.

Case 4. Finally, C ¼ c=N for some c 2=C. We have c=N4B X 4B cN (simi-
larly to Case 2).

To conclude, Cases 2 and 3 led us directly to the result required, while Cases 1
and 4 can be summarized as follows: there is a number c2�NnN such that
c=N4B X 4B cN. We can assume that X � cN.
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Let �ðYÞ ¼ #Y
c

be the counting measure on cN. The set X is Borel, hence,
Loeb-measurable. If its Loeb measure is 1 then there is a sequence fXng of
internal subsets of X with #Xn ¼ nc, 8n. It follows that cN4B X by Lemma
3.2, hence, X�B U ¼ cN, as required.

Suppose that the Loeb measure of X is a (standard) real r 5 0. There is an
increasing sequence fAngn 2N of internal subsets of X and a decreasing sequence
fBngn 2N of supersets of X such that �ðBnÞ � �ðAnÞ ! 0 as n!1 (i.e., the
difference is eventually less than any fixed standard "> 0). If r ¼ 0 then
#Bn

c
! 0, therefore,

T
n Bn�B c=N by Lemma 3.2, which implies X�B c=N since

c=N4B X, therefore, U ¼ c=N proves the theorem.
Finally, assume that r> 0. Prove that then X�B ½0;EðcrÞÞ, where Eð Þ denotes

the entire part in the internal universe. We have #An

c
! r from below and #Bn

n
! r

from above. Let U ¼
S

n 2N½0;#AnÞ and V ¼
T

n 2N½0;#BnÞ; then
S

n An�B U
and

T
n Bn�B V by Lemma 3.2, while EðcrÞ2VnU, hence, it remains to prove that

U�B V . It suffices, by Lemma 3.3, to show that U � V . Let x< y belong to VnU.
If y

x
6’ 1 then y

c
� x

c
is not infinitesimal, which contradicts the fact that �ðBnÞ�

�ðAnÞ ! 0 because �ðAnÞ4 x
c

and y
c
4�ðBnÞ for all n. &

Corollary 3.4. Any two Borel sets X, Y � �N are 4B-comparable. &

Corollary 3.5 (originally, perhaps, Zivaljevic [19]). If c2�NnN, � is a finite
counting measure on ½0; cÞ, and sets X, Y � cN are Borel and of non-0 Loeb
measure Lð�Þ then X�B Y iff Lð�ÞðXÞ ¼ Lð�ÞðYÞ.

Proof. See the last paragraph of the proof of the theorem. &

Complete classification of Borel cardinalities. Call a Borel cut U � �N
minimal if V 6�B U for any cut V $ U. It follows from Theorem 3.1 that
any �B-class of Borel subsets of �N contains a unique minimal Borel cut,
so that minimal Borel cuts can be viewed as Borel cardinals (of Borel subsets
of �N).

For instance, any additive Borel cut is minimal by Lemma 3.3, hence, a Borel
cardinal. But if U is a non-additive minimal Borel cut, then there is a number c2U
with 2c 2= U, so that c=N$ U $ cN, and, accordingly, c=N <B U <B cN, because
c=N and cN are minimal cuts themselves. (Easily cN is the least additive cut
bigger than c=N.)

To study the structure of minimal Borel cuts between c=N and cN for a fixed
nonstandard c2�N, put ycr ¼ EðcrÞ for any real r2R, r> 0. Let Ucr ¼ ½0; ycr�.
Easily any minimal Borel cut U satisfying c=N <B U <B cN is equal to Ucr for
some positive real r, and ~UUcr 6¼ ~UUcr0 for different r, r0. Thus, Borel cardinals of
Borel subsets of �N are either additive Borel cuts or those of the form ~UUcr, or,
finally, (finite) natural numbers.

4. CD Cardinalities

It can be expected that different Borel cardinalities are ‘‘glued’’ by countably
determined maps. Furthermore, the notion of CD cardinality is addressed to a
much bigger class of sets, the countably determined sets, which are not necessarily
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Loeb measurable and, generally, have more vague nature. In particular, the 4CD-
structure of countably determined sets is known only partially.

Theorem 4.1. If X � �N is an infinite countably determined set then either
there is a unique additive Borel cut U�CD X or there is an infinitely large number
c2�N such that c=N <CD X <CD c=n for all n2N.8

Thus, any infinite countably determined subset of �N either is �CD-equivalent
to a unique additive CD cut, or at least can be placed between two adjacent
additive cuts c=N and cN for some c2�NnN. While the ‘‘either’’ case is realized
on simple examples (for instance, additive Borel cuts themselves), the existence of
sets satisfying the ‘‘or’’ case remains, generally speaking, an open problem, see
Section 5.

The next lemma (some parts of which can be found in [2]) comprises several
facts involved in the proof.

Lemma 4.2. Let U � V � �N be infinite Borel cuts. Then

(i) U�CD N�U (the Cartesian product) and U�CD UN (a cut), in particular,
we have c�CD cN for all c2�NnN;

(ii) if U $ V and U is additive, then V 64CD U, moreover, there is no CD
map’ : U onto V .

Proof. (i) Theorem 6.1 below in Section 6 implies9 the existence of a CD
transversal H � U for the equivalence relation x MN y iff jx� yj 2N; in other
words, for any x2U there is a unique hx2H with jx� hxj 2N. Let a 7! hza; nai
be a recursive bijection of Z (the integers) onto Z�N. Now, if x2UnN then put
a ¼ x� hx and #ðxÞ ¼ hhx þ za; nai. If x ¼ m2N then let �ðxÞ ¼ him; jmi, where
m 7! him; jmi is a fixed bijection of N onto N�N. Also, if U has a maximal
element � and x ¼ �� m, m2N, then let #ðxÞ ¼ h�� jm; imi. Easily # is a CD
bijection of U onto U�N.

To prove U�CD UN, note that if U is additive then even U ¼ UN. Otherwise
there is c2U such that UN ¼

S
n½0; cnÞ. Note that UN ¼

S
n 2N Un, where

Un ¼ cnþ U, hence, there is a Borel bijection of U�N onto UN.
(ii) Let, on the contrary, ’ ¼

S
f 2 F

T
m Pf ( m be such a map (Ps � U�V are

internal sets and Ps � Pt whenever t � s.) Then any Pf ¼
T

m Pf ( m is still a func-
tion, hence, by Saturation, there is a number mf such that Pf ( mf

is a function.
Thus, there is a countable family of internal functions �i, i2N defined on U so
that V ¼

S
i �i
00U. Assuming that V ¼ ½0; cÞ, where c2�NnU, put c0 ¼ c and, by

induction, let cnþ1 be the entire part of cn=2. Then still cn 2=U for any n as U is an
additive cut, therefore, V �

S
i �i
00½0; ciþ2� (we suppose that �i is trivially

extended onto ½0; ciþ2�). Yet every Vi ¼ �i
00½0; ciþ2Þ is an internal set with

#Vi 4 c=2iþ2, hence, by Saturation,
S

i Vi can be covered by an internal set with
c=2 elements, and cannot cover V. &

8 Some related results, which do not fully cover this theorem, were obtained in AST, for instance, in
[9] (Theorems 2.5, 2.6).

9 We claim, of course, that Theorem 6.1 is not, in any way, based on the entire content of Sections 4
and 5.
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It follows from the lemma that for any infinite c2�N, all Borel cardinals (as
defined in the end of Section 3) between c=N and cN are �CD-equivalent to each
other and to cN, hence for any Borel set X � �N there is a unique additive Borel
cut U with X�CD U, so that we can define CD-cardinals of Borel sets to be just
additive Borel cuts in �N. The structure of CD-cardinalities of countably deter-
mined sets remains, generally, an open problem.

Proof of Theorem 4.1. We leave it as an easy exercise for the reader to verify
that the arguments in the proof of Theorem 3.1 are partially applicable to any
countably determined, not necessarily Borel, set X � �N. More exactly. If X is
unbounded in �N then X�CD

�N. If X is bounded in �N then either X is �CD-
equivalent to an additive Borel cut (Cases 2 and 3) or there is an infinitely large
number c with c=N <CD X <CD cN (Cases 1 and 4, minus the case of �CD to any
of cuts c=N, cN). The further study of the ‘‘or’’ case in the proof of Theorem 3.1,
based on the Loeb measurability of Borel sets, does not seem to work for CD sets
in general.

Finally, the uniqueness of U in the theorem follows from Lemma 4.2(ii), while
c=n�CD cN for any standard n follows from Lemma 4.2(i). &

5. On ‘‘Singular’’ CD Sets

Recall that the CD-cardinality of a countably determined set X is the �CD-
class of X. For the moment, let us consider only the case of bounded CD sets
X � �N. Natural (finite) numbers and CD-cardinalities of additive countably deter-
mined cuts U � �N can be called regular, other singular. For instance, any c ¼
½0; cÞ2�N has regular CD-cardinality because, by the above, if c 2=N then
½0; cÞ�CD cN.

Problem 5.1. Do there exist singular CD-cardinalities? In other words (we refer
to Theorem 4.1), given c2�NnN, does there exist a countably determined set
X satisfying c=N <CD X <CD cN? If yes then are there 4CD-incomparable sets
of this sort?

Further (a version communicated to the authors by Zlato�ss), is it consistent that
such a ‘‘singular’’ CD set X exists for some c2�NnN but does not exist for other
c2�NnN? &

It follows from a theorem of �CCuda and Vopenka [2, p. 651] (see also Theorems
1.5 and 4.14 in [10]) that both questions answer in the positive (i.e., such sets do
exist) in the assumption of CH. In other words, the positive answer is consistent
(with ZFC as the underlying ‘‘standard’’ set theory). We don’t know whether the
negative answer is also consistent. Note that if the first question in 5.1 answers in
the negative then the structure of CD cardinalities of (countably determined)
subsets of �N turns out to be rather well organized: any infinite CD set X � �N
is �CD-equivalent to an additive CD cut in �N.

The goal of this Section is to prove that CD subsets of X � cN satisfy-
ing c=N4CD X (including possible examples for the problem) are �CD-
equivalent to sets of rather simple form, which may lead to more fruitful further
studies.
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Since any c2�NnN belongs to an interval of the form [2d, 2dþ 1), d2�NnN,
and then cN ¼ 2dN and c=N ¼ 2d=N, we can assume that already c ¼ 2d. In this
case, the domain c ¼ ½0; cÞ can be identified with the set � ¼ ðd2Þint of all internal
maps � : d ! 2 : the map � 7! xð�Þ ¼

Pd�1
k¼0 2d�k�1�ðkÞ is an internal bijection of

� onto ½0; cÞ. For any s2 <!2 put Md
s ¼ f�2� : s � �g. For any g2N2, put

Md
g ¼

S
m Md

g ( m ¼ f�2� : � ( N ¼ gg. Call sets Md
g d-monads. In different terms,

the monads Md
g are equivalence classes of the equivalence relation �E � iff � ( N ¼

� ( N on ðd2Þint
10 (compare Remark 7.4).

For instance, Md
0 , where 02N2 is the constant 0, is a d-monad. Easily

fxð�Þ : �2Md
0g ¼ c=N, hence, c=N�CD Md

0 �CD Md
g for each g2N2.

Any union Md
G ¼

S
g 2G Md

g of d-monads (G � N2) is clearly a CD set.

Theorem 5.2. Suppose that c ¼ 2d 2�NnN. If X � cN is a countably deter-
mined set then either X <CD c=N or X�CD Md

G for some G � N2.

Proof. As c ¼ ½0; cÞ�CD cN by Lemma 4.2, we can assume that X � c, more-
over, X ¼

S
f 2 F

T
m Xf ( m, where F � N2 while Xs � c are internal sets. We claim

that the following can be assumed w.l.o.g.:

(1) Xt � Xs whenever s � t (otherwise put X0s ¼
T

k< 1h u Xs ( k);
(2) Xs^0 \ Xs^1 ¼ ; for any s2 <!2;
(3) for any s2 <!2, either #Xs ¼ c2�k for some k ¼ ks or #Xs2 c=N;
(4) for any s ^ i2 <!2, #Xs^i 4 1

2
#Xs (s ^ i is the extension of s by i).

Justification of (2). Sets Xs admit partitions Xs ¼
S

Xs, where Xs is a finite
collection of pairwise disjoint internal subsets of Xs such that

(a) if s � t then for any A2Xt there is (unique) B2Xs with A � B;
(b) if s, t2 <!2 have the same length then any A2Xs and B2Xt are either

equal or disjoint.

Consider the tree A which consists of all finite sequences � ¼ hA0; . . . ;An�1i,
n2N, such that, for some t2 <!2 of length n we have Ai2Xt ( i for all i4 n, and
in addition Aiþ1 � Ai for all i. Put Y� ¼ An�1 for any such an � (note that n ¼ 1h�
depends on �). Accordingly, let � be the set of all functions ’, dom’ ¼ N, such
that there is f 2F satisfying ’ðmÞ2Xf ( m and ’ðmþ 1Þ � ’ðmÞ for any m. It
follows from the construction that

X ¼
[

’ 2�

\

m

’ðmÞ ¼
[

’ 2�

\

m

Y’ ( m:

It remains to observe that A can be �-preservingly embedded in <!2 as a count-
ably branching tree of height ! (in fact, A is finite-branching, of course). Such an
embedding transforms the presentation of X in the last displayed formula into a
presentation of the form (z) (Section 1) satisfying (2).

10 In the notation of [14], � ( N is denoted by st �, the standard part, hence, we have Md
g ¼ st�1ðfggÞ

and Md
G ¼ st�1ðGÞ.
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Justification of (3). Partitions Xs ¼
S

X0s can be defined, such that X0s is an at
most countable collection of subsets of Xs, of which at most one, say Ps, is a P0

1 set
with Ps 4CD c=N while all others are (pairwise disjoint) internal sets of hyperfinite
cardinalities of the form c2�k, k2N, and still both (a) and (b) hold (for the
collections X0s). We can drop all sets Ps because this amounts to a total set of
4CD c=N elements by Lemma 4.2, which is not essential in the context of the
theorem. Then proceed as above.

Justification of (4). A similar argument.

Coming back to the proof of the theorem, let S ¼ ff ( m : f 2F ^ m2Ng (a
subset of <!2). In the assumptions (1)–(4), one can define �s2 <!2 for any s2S
so that (A) if s ^ i2S ði ¼ 0 or 1Þ then �s

^ i � �s^i, and (B) if #Xs ¼ c2�m then
1h�s ¼ m. For any f 2F, let gðf Þ ¼

S
m �f ( m2N2. Let G ¼ fgðf Þ : f 2Fg. Note

that (in our assumptions) the sets Xf ¼
T

m Xf ( m and Md
gðf Þ ¼

T
n Md

gðf Þ ( n ¼T
m Md

�f ( m are �CD by Lemma 3.2(i), moreover, by a suitable modification of

the proof of Lemma 3.2(i), we find an internal map# such that #00Xf ¼ Md
gðf Þ for

any f 2F, hence, # ( X is a bijection of X onto Md
G. &

Thus, if Problem 5.1 answers in the positive then, by the theorem, there exist
corresponding examples of the form Md

G, G � N2. The following rather elementary
consideration focuses on 4CD-properties of sets of this form.

Let a number c ¼ 2d 2�NnN be fixed. First of all note that Md
g �CD c=N

for any g2N2, see above, therefore, we have c=N4CD Md
G whenever ; 6¼G � N2.

Consider the Lebesgue measure on N2 which associates measure 2�n with any
Baire interval Bs ¼ ff 2N2 : s � fg, where s2 <!2, 1h s ¼ n. Let mes and mes be
the corresponding outer and inner measures.

For c=N <CD Md
G (strictly), it is necessary and sufficient that mes G> 0.

Indeed, if mes G¼ 0 then, by Saturation, for any m the set Md
G can be covered

by an internal set X with #X4 c=m, therefore, we have c=N <CD Md
G by Lemma

3.2(i). Conversely, if Md
G is covered by an internal set X with #X4 c=m, then, for

any g2G, there is a number mg2N such that Md
g0 � X whenever g0 2Dg ( mg

, where
Ds ¼ fg0 2N2 : s � g0g for any s2 <!2. But the union D ¼

S
g 2G Dg ( mg

easily
has measure 4m�1 in N2.

If mes G> 0 then Md
G�CD ½0; cÞ�CD cN. Indeed, we can assume, by Cantor–

Bernstein, that G is a closed subset of N2 of positive measure, say, of measure 2�m,
m2N. Then Md

G is equal to a decreasing intersection
T

n Xn, where each Xn is an inter-
nal set with #Xn 5 c2�m. It follows, by Lemma 3.2, that ½0; c2�mÞ4CD Md

G, and so on.
But mes G> 0 is not a necessary condition for Md

G�CD cN. Indeed, let G be a
transversal (obtained using the axiom of choice in the underlying ‘‘standard’’ set
universe of ZFC for the equivalence relation f E0g iff f ðnÞ ¼ gðnÞ for all but finite
n2N ð f ; g2N2Þ, an example of a set with mes G ¼ 0 and mes G ¼ 1. There is a
sequence of internal functions #n such that ½0; cÞ ¼

S
n #
00
n Md

G, so that, by an
argument similar to Lemma 4.2, we have Md

G�CD ½0; cÞ�CD cN.
Thus, to obtain an anticipated example for Problem 5.1 in the form Md

G, we
have to employ nonmeasurable sets G � N2 with mes G ¼ 0<mes G but less
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‘‘dense’’ than transversals of E0. It remains to be seen whether such an approach
may lead to a solution of the problem.

Problem 5.3. Which ‘‘standard’’ property of G, G0 � N2 is necessary and suffi-
cient for Md

G�CD Md
G0? &

6. Countable ERs Have Transversals

An equivalence relation E is ‘‘countable’’ if any of its equivalence classes, i.e.,
a set of the form ½x�E ¼ fy : x Eyg, x2dom E, is at most countable. In ‘‘Polish’’
descriptive set theory, ‘‘countable’’ Borel ERs form a rather rich class whose full
structure in terms of Borel reducibility is a topic of deep investigations (see
Kechris [13]). In nonstandard setting, the picture is different.

Theorem 6.1. Any ‘‘countable’’ countably determined equivalence relation E
on �N admits a countably determined transversal, hence, is CD-smooth.

Jin [7] proved the result for the ER x MN y iff jx� yj 2N. Our proof of the
general result employs a somewhat different idea, although some affinities with
Jin’s arguments can be traced. Note also that MN, a typical countable equivalence
relation, is not B-smooth (see Lemma 14.1 below), this is the most transparent
case when the Borel reducibility is really stronger.

Proof. The CD-smoothness easily follows from the existence of a transversal:
just let #ðxÞ be the only element of a transversal equivalent to x.

To define a transversal, suppose, as usual, that E ¼
S

f 2 F

T
m 2N Pf ( m, where all

sets Ps, s2 <!2, are internal subsets of �N��N with Pt � Ps whenever s � t, and
F � N2. An ordinary Saturation argument shows that, because all E-classes are
countable and a countable set cannot contain an infinite internal subset, for any f 2F
there is a number mf 2N such that all cross-sections Pf ( mf

ðxÞ ¼ fy : x Pf ( mf
yg are

finite. Let S ¼ ff ( mf : f 2Fg; this is a subset of <!2. Then, for any s2S, k2N, and

x2�N, we can define fskðxÞ to be the k-th element (the counting begins with 0) of
PsðxÞ, in the natural order of �N, whenever #PsðxÞ5 k, so that fsk is an internal
partial function �N! �N.

Let s2S and k2N, k 5 1. For any x2�N define an internal decreasing
sequence fxðaÞga4 aðxÞ of length aðxÞ þ 12�N as follows. Put xð0Þ ¼ x. Suppose
that xðaÞ is defined. If z ¼ fskðxðaÞÞ is defined and z< xðaÞ then put xðaþ1Þ ¼ z,
otherwise put aðxÞ ¼ a and end the construction. (Note that eventually the con-
struction stops simply because xðaþ1Þ< xðaÞ:Þ Put �skðxÞ ¼ 0 if aðxÞ is even and
�skðxÞ ¼ 1 otherwise.

Put prfl x ¼ fhs; ki2S�N : �skðxÞ ¼ 0g the ‘‘profile’’ of any x2�N.

Lemma 6.2. If x 6¼ y2�N and x E y then prfl x 6¼ prfl y.

Thus, while it is, generally speaking, possible that different nonstandard num-
bers have equal ‘‘profiles’’, this cannot happen if they are E-equivalent.

Proof. We can assume that y< x. There is an f 2F such that hx; yi2Pf ¼T
m Pf ( m. Let s ¼ f ( mf , an element of S. Then y belongs to PsðxÞ, a finite set,

say, y is k-th element of PsðxÞ, in the natural order of �N. In other words, y ¼ xð1Þ,
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in the sense of the construction above, therefore, yð1Þ ¼ xð2Þ, etc.; we conclude that
�skðxÞ 6¼ �skðyÞ. &

Coming back to the theorem, choose an element rA2A in any set ; 6¼A �
PðS�NÞ. For any x2�N, the set AðxÞ ¼ fprfly : y2 ½x�Eg is a non-empty count-
able subset of Pð<!2�NÞ. Then X ¼ fx2�N : prfl x ¼ rAðxÞg is a transversal for
E by Lemma 6.2. To prove that X is countably determined consider the family H
which consists of all sets

Dsk ¼ dom fsk; Xsk ¼ fx2�N : �skðxÞ ¼ 0g;

and Xsks0k0 ¼ fx2Dsk: �s0k0 ðfskðxÞÞ ¼ 0g, along with their complements. Let A be
the set of all at most countable sets A � PðS�NÞ. Obviously X ¼

S
A2 XðAÞ,

where

XðAÞ ¼ fx2X : AðxÞ ¼ Ag ¼ fx2�N : AðxÞ ¼ A ^ prfl x ¼ rAg;

Lemma 6.3. Any set XðAÞ, A2A, is countably determined in H, in the sense
that it can be obtained by ðyÞ of Section 1 applied to sets in H.

Proof. Direct straightforward reduction to sets in H shows that XðAÞ is even
Borel in H in a similar sense. The most essential part of the reduction is to express
the inclusion AðxÞ � A by the formula

8 s2S8 k2Nðx2Dsk¼)9 r2Aðr ¼ prfl fskðxÞÞÞ;

to avoid a universal quantifier over the equivalence class ½x�E. &

On the other hand, the class of all sets countably determined in a fixed count-
able collection H of internal sets is closed under any unions (as well as under
complements and intersections): just take the set theoretic union of the ‘‘bases’’ B
in the assumption that the assignment of sets in H to indices is fixed once and for
all. (Note that the class of all CD sets is closed only under countable unions and
intersections!) &

Corollary 6.4. The equivalence relation x�CD y on �N admits a countably
determined transversal.

Proof. Recall that (for x, y2�NnNÞ x�CD y iff 0< st x
y
< þ1, Propositon 2.2.

It follows that the set f2x : x2Xg, where X is any CD transversal for the countable
relation x EN y iff jx� yj 2N, is as required. &

On the contrary, the relation x�B y iff st x
y
¼ 1 does not have a CD transversal.

Indeed, suppose that X is a CD transversal for �B restricted to the set D ¼ ½c; 2c�,
where c is a fixed infinitely large hyperinteger. Note that, for x, y2D, x�B y is
equivalent to st x

c
¼ st y

c
, so that X yields a CD transversal for the equivalence

relation of ‘‘having the same standard part st r’’ on the set of hyperrationals
A ¼ fr ¼ x

z
: x2Dg, known to be impossible [14, 2.6]. In fact ‘‘the same standard

part’’ ER is not CD-smooth and even not 4CD-reducible to any S0
1 ER; this can be

derived from our result in Part 2 of Section 13.
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7. Silver–Burgess Dichotomy

It is known (Corollary 1.4) that any countably determined set X � �N is
countable or else contains an infinite internal subset. Quotient structures �N=E,
where E is a CD equivalence relation, normally consist of non-internal elements,
hence, do not contain internal subsets, but we can consider internal pairwise E-
inequivalent sets (i.e., sets of pairwise E-inequivalent elements) instead. This leads
us to the following theorem,11 saying that, given a countably determined ER E,
either the number of equivalence classes is somehow restricted or there is a rather
big pairwise inequivalent set.

Theorem 7.1. Let E be a CD equivalence relation on �N, and U a countably
cofinal additive cut. Then at least one of the following two statements holds:

(I) there is a number h2�NnU and an internal map# : �N! ðh2Þint such
that #ðxÞ ( U ¼ #ðyÞ ( U¼) x E y;

(II) there is an internal pairwise E-inequivalent set Y � �N with #Y 2= U.

Moreover, if (II) holds and U satisfies x2U¼) 2x2U then (I) fails even for CD
maps#.

The proof follows in Section 8; here, we proceed with corollaries, remarks and
related results. The case U ¼ N, especially interesting, will be considered in more
detail in Section 9.

The theorem yields a true dichotomy only for ‘‘exponential’’ cuts U, i.e., those
satisfying x2U¼) 2x2U. If this condition fails then (I) and (II) are compatible,
for take E to be the equality on ½0; 2xÞ but y E z for all y, z5 2x. It is an open
problem to obtain a true dichotomy in the general case.

Equivalence relations of class S0
1 admit the following special result, part (i) of

which was known in AST, according to the report of an anonymous referee.

Lemma 7.2. Assume that E is a S0
1 equivalence relation on a subset of �N,

and x � dom E. Then:

(i) if X is P0
1 then either the quotient X=E is finite or there is an infinite

internal pairwise E-inequivalent set C � X;
(ii) if X is countably determined then either X=E is at most countable or there

is an infinite pairwise E-inequivalent internal set C � X.

Proof. (i) Let X ¼
T

n Xn and E ¼
S

n En, all Xn and En being internal and
Xnþ1 � Xn, En � Enþ1 for all n. If X=E is infinite then, for any n, there is an
internal set C � Xn with #C 5 n, such that hx; yi 2= En for any two elements
x 6¼ y of C. It remains to apply Saturation.

(ii) Let X ¼
S

f 2 F

T
m Xf ( m, where F and Xs are as in ðzÞ of Section 1. If for any

f 2F there is a number mf such that Xf ( m=E is finite then X=E is at most count-

able. Otherwise there is f 2F such that Xf ( mf
=E is infinite for all m, and, arguing

11 We call it ‘‘Silver–Burgess dichotomy’’ due to obvious analogies with classical theorems of Silver
[18] and Burgess [1] for Borel and analytic equivalence relations in Polish spaces.
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as in the proof of (i), we obtain an infinite pairwise E-inequivalent internal subset
of Xf ¼

T
m Xf ( m. &

Case (I) of Theorem 7.1 can be converted to a form which may lead to new
insights. Suppose the E, U, h, # are as in (I) of Theorem 7.1. Define, for �,
�2ðh2Þint, � � � iff either there exist x, y2�N with x E y and #ðxÞ ( U ¼ � ( U,
#ðyÞ ( U ¼ � ( U, or just � ( U ¼ � ( U. Then � is an equivalence relation on ðh2Þint.
Further, � is countably determined (because it admits a rather simple definition in
terms of E and #, countably determined objects, while the class of all CD sets is
closed under logic functions including quantification, [14]), and is concentrated on
U in the sense that � ( U ¼ � ( U¼) � � �. Finally, # is a reduction of E to �, in
other words, x E y()#ðxÞ�#ðyÞ. We conclude that (I) of Theorem 7.1 can be
reformulated as follows:

(I0) there is a number h2�NnU and a countably determined equivalence
relation � on ðh2Þint, concentrated on U, such that E4B�.

Note that (I0) does not depend on the choice of h, i.e., if it holds for some h 2=U
then it also holds for any other h0 2= U.

There is a somewhat different approach to ERs concentrated on smaller domains.
Suppose that X, H are internal sets and Y � H. A function f : Y ! X is internally
extendable if there exists �2ðHXÞint (i.e., � : H ! X is an internal function) such that
f ¼ � ( Y . If Y itself is internal then this is the same as an internal function. Let ðY XÞiex

be the set of all internally extendable f : Y ! X. This definition obviously does not
depend on the choice of an internal superset H of Y. For any n-ary ðn2NÞ relation W
on ðY XÞiex we define W " H, an n-ary relation on ðHXÞint, as follows:

Definition 7.3. W " H ¼ fh�1; . . . ; �ni2 ðHXÞint
n : Wð�1 ( Y ; . . . ; �n ( YÞg. &

This applies, for instance, for W being a subset of or a binary relation on
ðYXÞiex. Obviously an equivalence relation � on ðHXÞint is concentrated on Y (in
the sense that � ( Y ¼ � ( Y ¼) � � n) iff � ¼ F"H for a equivalence relation F on
ðYXÞiex; in fact, F is unique, of course.

Remark 7.4. Transformation 7.3 deserves special comments. Suppose that Y � H
is a non-internal set. Then the original relation W is a subset of ðY XÞiex

n, a set whose
elements are non-internal (because so is Y), therefore, W is not immediately a subject
of study of ‘‘hyperfinite’’ descriptive set theory in the frameworks of Section 1. On the
contrary, W " H is an n-ary relation on ðHXÞint, an internal set, hence, it can be studied
by methods of ‘‘hyperfinite’’ descriptive set theory. However obviously any reason-
able property of W can be expressed as a property of W " H and Y.

Consider, for instance, the equality DððY 2ÞiexÞ on ðY 2Þiex as a subset of ðY2Þiex
2.

(Thus, we take X ¼ 2 ¼ f0; 1g.) For any internal H 	 Y we can define
DððY 2ÞiexÞ"H, an equivalence relation on ðHXÞint. Obviously, h�; �i2DððY 2ÞiexÞ " H
iff � ( Y ¼ � ( Y , therefore, DððY 2ÞiexÞ"H is Borel or CD if so is Y. The quotient

set ðHXÞint=Dðð
Y
2ÞiexÞ"H can be considered as an adequate ‘‘descriptive’’ answer to

the question: how many there exist internally extendable maps Y ! 2.
Note finally that all relations of the form DððY 2ÞiexÞ " H, H being an internal

superset of Y, are clearly pairwise �B-equivalent, where �B is the Borel
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bi-reducibility (Section 2). This allows us to use DextðY 2Þ (an H-free form) to
denote any of the relations of the form DððY2ÞiexÞ" (H 	 Y internal). We shall
refer to DextðY 2Þ as the equality of internally extendable maps Y ! 2. &

8. Silver–Burgess Dichotomy: The Proof

In this Section, we prove Theorem 7.1. Suppose that E ¼
S

f 2 F

T
m 2N Pf ( m,

where Ps are internal subsets of �N��N with Pt � Ps whenever s � t, as in ðzÞ of
Section 1, while F � N2. We can w.l.o.g. assume that the sets Ps are symmetric,
i.e., Ps ¼ Ps

�1: indeed, if this is not the case, then, as E itself is symmetric,

E ¼ E [ E�1 ¼
[

f 2 F

\

m 2N

ðPf ( m [ P�1
f ( mÞ;

where the sets Pf ( m [ Pf ( m
�1 are symmetric.

Since E is an equivalence relation, we have

9 f 2F 9 z8mðx Pf ( m z ^ y Pf ( m zÞ¼) x E y:

By Saturation, this can be rewritten as

8T 2AðFÞ 9 s2T 9 zðx Ps z ^ y Ps zÞ¼) x E y; ð1Þ
where AðFÞ is the collection of all sets T � ff ( m : f 2F ^ m2Ng such that
T \ ff ( m : m2Ng 6¼ ; for each f 2F.

Now suppose that (II) fails, i.e., there is no internal pairwise E-inequivalent set
Y with #Y 2=U. To show that then (I) holds, fix an increasing sequence fangn 2N

cofinal in U. In our assumptions, we have

8Y 2Pintð�NÞð8kð#Y > akÞ¼)9 x 6¼ y2Y 9 f 2F 8mðx Pf ( myÞÞ
where Pintð�NÞ ¼ fY � �N : Y is internalg. The expression to the right of ¼)
can be consecutively transformed (using Saturation and the fact that Pt � Ps

provided s � t) to 9 f 2F 8m9 x 6¼ y2Y ðx Pf ( m yÞ, and then to

8T 2AðFÞ 9 s2T 9 x 6¼ y2Yðx Ps yÞ;
which leads us to the following, for every T 2AðFÞ:

8Y 2Pintð�NÞð8kð#Y > akÞ¼)9 s2T 9 x 6¼ y2Yðx Ps yÞÞ:
Applying Saturation once again, we obtain, for any set T 2AðFÞ, a number
kðTÞ2N and a finite set ST � T such that

8Y 2Pintð�NÞð#Y > akðTÞ ¼)9 s2ST 9 x 6¼ y2Yðx Ps yÞÞ:
Since the sets Ps are assumed to be symmetric, we conclude that for any T 2AðFÞ
there exists an internal set ZT � �N satisfying #ZT 4 akðTÞ and

8x2�N9 z2ZT 9s2STðx Ps zÞ: ð2Þ

Yet (2), as a property of ZT, depends only on ST , a finite subset of T � <!2, not on
T itself, hence, we can choose sets ZT so that there are only countably many
different among them. Then the sets Z ¼

S
T 2 AðFÞ ZT � �N and Z� <!2 are
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countable unions of hyperfinite sets whose numbers of elements belong to U. There-
fore, as U is an additive cut, Z� <!2 can be covered by a hyperfinite set H �
�N��ð<!2Þ with h ¼ #H 2=U. (Note that in this case there is an internal bijection
between h and H, therefore, there is an internal injection of Z� <!2 into U.)

Recall that Ps is an internal subset of �N��N for any s2 <!2. By Saturation,
the map s 7!Ps admits an internal extension to �ð<!2Þ, so that we can assume that
Ps � �N��N is internally defined for all s2�ð<!2Þ. Let, for any x2�N, #ðxÞ be
an element of ðH2Þint defined as follows: #ðxÞðz; sÞ ¼ 1 iff x Ps z. Then # is an
internal map �N! ðH2Þint, hence, it remains to show that, for x, y2�N, #ðxÞ ¼
#ðyÞ implies x E y.

Assuming that #ðxÞ ¼ #ðyÞ, consider any T 2AðFÞ. Choose, by (2), z2Z and
s2T with x Ps z – then #ðxÞðz; sÞ ¼ #ðyÞðz; sÞ ¼ 1, hence, we also have y Ps z.
Since T 2AðFÞ was arbitrary, we have x E y by (1).

Thus, at least one of (I), (II) of Theorem 7.1 holds.
Now let us show that (I), even for CD maps #, contradicts (II) provided the cut

U satisfies x2U¼) 2x2U. Indeed, otherwise there is a hyperfinite set X � �N
with #X ¼ k 2=U, a number h 2=U, and a CD map# : X ! ðh2Þint such that
#ðxÞ ( U ¼ #ðyÞ ( U¼) x ¼ y holds for all x, y2X. In our assumptions, there is
a number ‘ 2=U, ‘< minfh; kg, such that 22‘ < k. The CD map �ðxÞ ¼ #ðxÞ ( ½0; ‘Þ
then satisfies �ðxÞ ¼ �ðyÞ¼) x ¼ y, in other words, � is a CD injection of X into
R ¼ ð‘2Þint, a hyperfinite set satisfying #R ¼ 2‘. In other words, we have k4CD

2‘. However, by the choice of ‘, ð2‘Þ2 ¼ 22‘ < k, which contradicts Proposition
2.2. &

9. Silver–Burgess Dichotomy: The Case U ¼ N

In the case when U ¼ N, Theorem 7.1 implies:12

Corollary 9.1. If E is a CD equivalence relation on �N then exactly one of the
following two statements holds:

ðINÞ there is h2�NnN and an internal map# : �N! ðh2Þint such that
#ðxÞ ( N ¼ #ðyÞ ( N¼) x E y (then E has 4c-many equivalence classes);
ðIINÞ there is an infinite internal pairwise E-inequivalent set Y � �N.

Moreover, if ðIINÞ holds then ðINÞ fails even for CD maps#.

Our observations will use Definition 7.3 and other notation of Section 7.
Note that, by Saturation, ðN2Þiex ¼ N2, moreover, if F is any equivalence

relation on N2 then, for any number h2�NnN, F " ½0; hÞ is a countably deter-
mined ER on ðh2Þint, concentrated on N, therefore, ðINÞ of Corollary 9.1 can be
rewritten as follows:

ðIN
0Þ there is a number h2�NnN and an equivalence relation F on N2 such

that E4B F " ½0; hÞ.
As in Section 7, ðIN

0Þ does not depend on the choice of h 2=N.

12 Alternatively, the corollary follows from a result which appeared in some papers related to AST in
the 90s, for instance, [17], with a reference to an unpublished work of Vencovská.
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Obviously any F in ðIN
0Þ has at most c-many equivalence classes, this is why

any E in ðINÞ has at most c-many equivalence classes. We cannot reduce this
cardinality, because the equivalence relation E on ðh2Þint (where h2�NnN)
defined by � E � iff � ( N ¼ � ( N has exactly c-many equivalence classes and
does not admit an infinite pairwise inequivalent set (by 2.6 in [14]).

Note that if CH fails, and k< c, then there is a CD equivalence relation having
exactly k classes. Indeed, let F be an ER on N2 having exactly k classes. Take any
h2�NnN. Then E ¼ F " h is a CD equivalence relation on ðh2Þint with exactly k
equivalence classes. What about Borel (nonstandard) ERs? The following question
was addressed to the authors by J. Steprans and I. Farah in the course of our
meeting during LC’02 (M€uunster, August 2002). The following theorem gives a
partial answer.

Theorem 9.2. Let E be a Borel equivalence relation on �N. Then, in the case
ðINÞ of Corollary 9.1, E has either 4@0 or exactly c equivalence classes.

Proof. Our plan is to show that E has as many classes as a certain Borel ER F
on a Polish space does; this implies the result by Silver [18].

Let us return to the arguments in Section 8. As now U ¼ N, the set Z turns out
to be countable, and so is Z� <!2 ¼ fhzn; sni : n2Ng. Choose h2�NnN. The
sequence of pairs hzn; sni can be extended to a hyperfinite (internal) sequence
fhzn; snign4 h of pairs hzn; sni2�N��ð<!2Þ. Assuming that Ps � �N��N is
internally defined for all s2�ð<!2Þ, we let, for any x2�N, #ðxÞ be an element
of ðh2Þint defined so that #ðxÞðnÞ ¼ 1 iff x Psn

zn. Then # : �N! ðh2Þint is an
internal map and, as in Section 8, #ðxÞ ( N ¼ #ðyÞ ( N implies x E y, for all x,
y2�N. We put

D ¼ ff 2N2 : 9 x2�Nð#ðxÞ ( N ¼ f Þg

and, for f, g2D, define f F g iff there exist x, y2�N with x E y such that
#ðxÞ ( N ¼ f and #ðyÞ ( N ¼ g.

Note that D is a closed subset of N2 by Saturation and because # is an internal
map. Thus, it remains to shown that F is a Borel equivalence relation on D (in the
sense of the standard Polish topology on N2). Fortunately, by a theorem in [14], it
suffices to prove that � ¼ F " ½0; hÞ, an equivalence relation on ðh2Þint concen-
trated on N, is Borel as a subset of [0, h)2. (This is because the map � 7! � ( N is
the standard part map on ðh2Þint.) By definition,

� � n iff 9 x; y2�Nðx E y ^ #ðxÞ ( N ¼ � ( N ^ #ðyÞ ( N ¼ � ( NÞ
iff � ( N2D ^ � ( N2D^
8x; y2�Nð#ðxÞ ( N ¼ � ( N ^ #ðyÞ ( N ¼ � ( N¼) x E yÞ:

As E is Borel, the first equivalence proves that � is analytic (that is, S1
1) while

the second one shows (because D is closed) that � is also coanalytic (that is,
P1

1), which together implies that � is Borel by the ‘‘hyperfinite’’ Souslin theorem
[14]. &
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10. Monadic Equivalence Relations

Any additive cut U � �N defines a monadic equivalence relation x MU y iff
jx� yj 2U on �N. (If U is not additive then MU may not be an ER.) Classes of
MU-equivalence, that is, sets of the form ½x�U ¼ fy : jx� yj 2Ug, x2�N, are
called U-monads [15], all of them are convex subsets of �N.

It follows from Lemma 1.2 that there are two types of countably determined
monadic ERs MU : countably confinal and countably coinitial, according to the
type of the cut U. (The only exceptions are M;, the equality on �N, and M�N, the
relation which makes all elements of �N equivalent.) It turns out that the relations
between monadic ERs in terms of 4CD are determined by the relative rate of
growth or decrease of cuts.

Definition 10.1. For any cut U � �N put

rate U ¼ inf
a 2 log U; a0 62 log U

a0 � a;13

the rate of U, where, we recall, log U ¼ fa : 2a2Ug, and inf (as well as sup in
Proposition 10.2) were defined in Section 1. &

Note that if U is a countably cofinal or countably coinitial additive cut then
log U is still a countably cofinal, resp., countably coinitial cut, but not necessarily
additive, and U ¼

S
a 2 log U ½0; 2aÞ.

Proposition 10.2. We have

rate U ¼
\

a 2 log U

sup
a0 2 log U

a0 > a

a0 � a; rate U ¼
\

a 62 log U

sup
a 62 log U

a< a0

a0 � a;

provided U � �N is a countably cofinal, resp., countably coinitial additive cut.

Additive cuts of lowest possible rate are obviously those of the form U ¼ cN,
c2�N and U ¼ c=N, c2�NnN, which we call slow; they satisfy rate U ¼ N.
Other additive cuts will be called fast.

Theorem 10.3. Suppose that U, V are additive countably determined cuts in �N
other than ; and �N. Then Dð�NÞ4B MU . In addition,

(i) if both U, V are countably cofinal or both countably coinitial then MU and
MV are 4B-comparable, and MU 4B MV iff MU 4CD MV iff rate U � rate V , in
particular, if U is slow then MU 4CD MV ;

(ii) if U is countably cofinal and V countably coinitial then MV 64CD MU and
MU 64B MV , while MU 4CD MV holds iff U is slow;

(iii) MU is not B-smooth, and MU is CD-smooth if and only if U is countably
cofinal and slow;

(iv) for any countably sequence of countably cofinal fast cuts Un there are
countably cofinal fast cuts U, V with MU <B MUn

<B MV , 8n, and the same for
countably coinitial cuts.

13 The right-hand side of the displayed formula, as a function of log U, is known, for instance, from
papers on AST; it can be called the thickness of log U.
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This theorem, which explains the4CD-structure of monadic equivalence rela-
tions, will be the focal point in the remainder. According to the theorem, countably
determined monadic ERs form two distinct linearly 4CD-(pre) ordered domains,
one of which contains countably cofinal and the other one countably coinitial ERs,
each has slow ERs as the 4CD-least element, and there is no 4CD-connection
between them except that any slow countably cofinal ER (it is necessarily CD-
smooth) is 4CD-reducible to any countably coinitial ER. In addition, each of the
domains is neither countably 4CD-cofinal nor countably 4CD-coinitial in its fast
part. (It can be shown that each of the domains is also dense and countably
saturated, i.e., contains no gaps of countable character.)

To check that Dð�NÞ4B MU for any additive countably determined cut U
choose a number c 2=U; then x 7! xc is an internal, hence, Borel reduction of
Dð�NÞ to MU , in other words, x ¼ x0 iff xcMUx0c. This argument works for both
countably cofinal and countably coinitial cuts U.

The proof of more complicated parts of the theorem begins with a couple of
auxiliary results.

11. Two Preliminary Facts

The first result will be a connection between monadic ERs and certain natural
equivalence relations on dyadic sequences. Let �S be the (internal) set of all
internal sequences ’2�N2 such that the set fa : ’ðaÞ ¼ 1g is hyperfinite.

Consider an additive cut ; 6¼U 6¼ �N. Then log U ¼ fa2�N : 2a2Ug is still a
cut (not necessarily additive). Define the equivalence relation R log U on �S as
follows: ’R log U iff ’ ( ð�Nn log UÞ ¼  ( ð�Nn log UÞ. The realtion R log U is a

version of Dextð
�Nn log U2Þ (see Remark 7.4) defined on �S.

Proposition 11.1. In this case, MU �B R log U .

Proof. For any x2�N there is a unique � ¼ �x2�S with x ¼
P

z 2�N 2z�ðzÞ
in �N. (The essential domain of summability here is a hyperfinite set because
�2�S.) The map x 7!�x is not yet a reduction of MU to R log U because of a little
discrepancy. Let �S log U be the set of all �2�S which are not eventually 1 in
log U, i.e., the set fa2 log U : �ðaÞ ¼ 0g is cofinal in log U. Let � log U be the set
of all x2�N such that �x2�S log U .

We assert that x MU x0 ()�xR log U�x0 for all x, x0 2� log U . (Consider any x< x0

in � log U . If d ¼ x0 � x2U then d< 2a for some a2 log U. As �x2�S log U , there
is b2 log U, b> a, with �xðbÞ ¼ 0. But easily �xðzÞ ¼ �x0 ðzÞ for any z> b, hence,
�xR log U�x0 . The converse is obvious.)

Yet for any x 2=� log U there is ~xx2� log U with jx� ~xxj 2U: put ~xx ¼ xþ 2aþ1,
where a is the largest number in log U with �xðaÞ ¼ 0. For x2� log U put ~xx ¼ x.
The map #ðxÞ ¼ �~xx is a Borel reduction of MU to R log U .

Finally, the map f ð�Þ ¼
P

z 2�N 22z�ðzÞ is a reduction of R log U to MU : (The
factor 2 in 2z helps to avoid the trouble with values only 2=� log U.) &

Remark 11.2. Choose d 2= log U. A slight modification of the same argument
proves that MU �B DextðdnU2Þ�Dð�NÞ. (As usual, d ¼ ½0; dÞ.) &
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Proposition 11.3. If U, V are additive countably cofinal cuts and rate U �
rate V then there are increasing sequences fang, fbng, cofinal, resp., in log U,
log V , with bnþ1 � bn 5 anþ1 � an for all n.

Similarly, if U, V are additive countably coinitial cuts and rate U � rate V then
there are decreasing sequences fang, fbng, coinitial, resp., in �Nn log U and
�Nn log V , with bn � bnþ1 5 an � anþ1 for all n.

Proof. We concentrate on the case of increasing sequences, the case of decreas-
ing sequences is similar. Choose any increasing sequences f�ng and f	kg, cofinal,
resp., in log U, log V . Then, by Proposition 10.2,

rate U ¼
\

n

sup
n05 n

�n0 � �n � rate V ¼
\

k

sup
k05 k

	k0 � 	k;

therefore, for k0 ¼ 0 there exists n0 such that

8n0> n0 9 k0> k0 ð�n0 � �n0
4	k0 � 	k0

Þ: ð3:0Þ
If (Case 1) we also have 8k0> k0 9 n0> n0 ð�n0 � �n0

5 	k0 � 	k0
Þ, then the

sequences faig and fbig defined by ai ¼ �n0
þ 	k0þi � 	k0

and bi ¼ 	k0þi prove
the lemma. Otherwise (Case 2) there is k1 > k0 such that �n0 � �n0

<	k1
� 	k0

for
all n0> n0. Choose, by Proposition 10.2, n1 > n0 so that

8n0> n1 9 k0> k1 ð�n0 � �n1
4	k0 � 	k1

Þ: ð3:1Þ
If we have now Case 1, i.e., 8k0> k1 9 n0> n1 ð�n0 � �n1

5	k0 � 	k1
Þ, then, as

above, the lemma holds immediately. Thus, we can assume that there is k2 > k1

with �n0 � �n1
<	k2

� 	k1
for all n0> n1. Choose n2 > n1 for k2 as above. And so on.

In the course of this construction, either the required result comes up just
at some step, or we obtain increasing sequences fnig and fkig such that
�n0 � �ni

4	kiþ1
� 	ki

for all n0> ni and i2N. Let ai ¼ �ni
, bi ¼ 	ki

. &

12. Countably Cofinal Monadic Relations

The goal of this section is to prove the part of (i) of Theorem 10.3 related to
countably cofinal cuts and associated monadic equivalence relations.

Choose increasing sequences fang, fbkg in �N with U ¼ supn 2an and V ¼
supk 2bk . (Note that log U ¼ supn an and log V ¼ supk bk.)

Part 1. Suppose that MU 4CD MV . Then R log U 4CD R log V by Proposition 11.1.
Let # : �S! �S be a CD reduction of R log U to R log V , thus, ’R log U’

0 iff
#ð’ÞR log V#ð’0Þ for all ’, ’0 2 �S. The graph of # has the form

S
f 2 F Cf , where

F � N2 and Cf ¼
T

m Cf ( m for any f 2N2, sets Cs, s2 <!2, are internal, and
Ct � Cs � �S��S for s � t, as in ðzÞ of Section 1.

Consider any f 2F. Then Cf is a subset of the graph of #, hence, by the choice
of #, for any k2N we have, for all ’, ’0,  ,  0 2 �S,

8mð’Cf ( m ^ ’0 Cf ( m  
0Þ ^  ( 5 bk

¼  0 ( 5 bk
¼)9 nð’ ( 5 an

¼ ’0 ( 5 an
Þ;

where � ( 5 c ¼ � ( ð�Nn½0; cÞÞ for �2�S and c2�N. Then, by Saturation,

8k 9 n 9m 8’; ’0;  ;  0 2 �S :

’ Cf ( m ^ ’0Cf ( m 
0 ^  ( 5 bk

¼  0 ( 5 bk
¼)’ ( 5 an

¼ ’0 ( 5 an
: ð4Þ
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A similar (symmetric) argument also yields the following:

8n 9 k 9m’; ’0;  ;  0 2 �S :

’ Cf ( m ^ ’0Cf ( m 
0 ^ ’ ( 5 an

¼ ’0 ( 5 an
¼) ( 5 bk

¼  0 ( 5 bk
: ð5Þ

Suppose, towards the contrary, that rate U 6� rate V , hence, rate V $ rate U.
Then N$ U, thus U is a fast cut, and we can suppose that anþ1 � an is infinitely
large for all n. As rate V $ rate U, there is an index k such that supk0 > k bk0�
bk $ rate U. Let n, m be numbers defined for this k by (4). By the choice of k,
there exists a number n0> n such that an0 � an > bk0 � bk for any k0> k, hence, in
fact, an0 � an >‘þ bk0 � bk for any m0>m and any ‘2N. Finally, choose k0> k
and m0>m according to (5) but w. r. t. n0. Put Cðf Þ ¼ Cf ( m0 . Then we have, for all
h’; i, h’0;  0i in Cðf Þ:

 ( 5 bk
¼  0 ( 5 bk

¼)’ ( 5 an
¼ ’0 ( 5 an

; and

 ( 5 bk0 6¼ 0 ( 5 bk0 ¼)’ ( 5 an0 6¼’0 ( 5 an0

�

: ð6Þ

We have �S ¼ dom# ¼
S

f 2 F Xðf Þ, where Xðf Þ ¼ dom Cðf Þ, hence, by
Saturation, there is a finite set F0 � F such that �S ¼

S
f 2 F0 Xðf Þ. Let us show that

all sets Xðf Þ are too small for a finite union of them to cover �S.
Call an internal set X � �S small iff

(�) there is a number h2�NnN such that, for any internal map �2�Nn½0;hÞ2 the
set X� ¼ f’2X : ’ ( 5 h ¼ �g satisfies 2�h#X� ’ 0.

Proposition 12.1. �S is not a union of finitely many small internal sets. &

It remains to show that any set Xðf Þ is small, with h ¼ an0 in the notation above.
(Note that an0 depends on f, of course.) Take any h’;  i2Cðf Þ and let � ¼ ’ ( 5 an0 ,
� ¼  ( 5 bk0 . By (6), each h’0;  0i2Cðf Þwith ’0 ( 5 an0 ¼ � satisfies  0 ( 5 bk0 ¼ � .
Let us divide the domain � ¼ f 0 2 �S :  0 ( 5 bk0 ¼ �g into subsets �w ¼
f 0 2� :  0 ( ½bk; bk0 Þ ¼ wg, where w2 ½bk ;bk0 Þ2 is any internal map, totally 2bk0�bk

of the sets �w. For any such �w, the set �w ¼ f’0 : 9 0 2�wh’0;  0i 2Cðf Þg con-
tains at most 2an elements by the first implication in (6), therefore, the whole set
Xðf Þ� ¼ f’0 2Xðf Þ : ’0 ( 5 an0 ¼ �g contains at most 2anþbk0�bk elements of the set
Xðf Þ, which is less than 2an0�‘ for any ‘2N, hence, Xðf Þ is small, as required.

Part 2. Suppose that rate U � rate V , and derive R log U 4B R log V . We can
assume, by Proposition 11.3, that anþ1 � an 4 bnþ1 � bn for all n2N. By
Robinson’s lemma, there is a number N 2�NnN and internal extensions fa�g�4N

and fb�g�4N of sequences fangn 2N and fbngn 2N, both being increasing hyper-
finite sequences satisfying a�þ1 � a� 4 b�þ1 � b� for all � <N. Now we are ready
to define a Bord reduction # of R log U to R log V .

If ’2�S then define #ð’Þ ¼  2�S as follows:

1)  ( ½0; b0Þ is constant 0 (not imporant);
2)  ðb� þ hÞ ¼ ’ða� þ hÞ whenever � <N and h< a�þ1 � a�;
3)  ( ½b� þ a�þ1 � a�; b�þ1Þ is constant 0 for any � <N;
4)  ðbN þ zÞ ¼ ’ðaN þ zÞ for all z2�N.
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Thus, to define  , we move each piece ’ ( ½a�; a�þ1Þ of ’ so that it begins with the
b�-th position in  , and fill the rest of ½b�; b�þ1Þ by 0s; in addition,  ( ½bN ;1Þ is a
shift of ’ ( ½pN ;1Þ. That # is a Borel reduction of R log U to R log V is a matter of
routine verification.

13. Countably Coinitial Monadic Relations

That the equivalence MU 4B MV()MU 4CD MV() rate U � rate V of (i)
of Theorem 10.3 holds for any pair of countably coinitial cuts U, V, can be verified
the same way as for countably cofinal cuts in Section 12 (with rather obvious
amendments which account for the fact that now decreasing rather than increasing
sequences fang, fbkg are considered). We leave this to the reader, and concentrate,
in this section, on (ii) (the incomparability between countably cofinal and count-
ably coinitial ERs), except for its Borel part.

Suppose that U ¼ supn 2an and V ¼ infk2bk , where fang and fbkg are resp.
(strictly) increasing and decreasing sequences of hyperintegers. Note that then
log U ¼ sup an and log V ¼ inf bk.

Part 1. Assuming that fang is fast, prove that MU 64CD MV . We prove a more
general result: MU 64CD E for any P0

1 equivalence relation E on �N. It suffices
(Proposition 11.1) to show that R log U 64CD E. Suppose, towards the contrary, that
# : �S! �N is a CD reduction of R log U to E, so that ’R log U’

0 ()#ð’ÞE#ð’0Þ
for all ’, ’0 2 �S. The graph of # has the form

S
f 2 F Cf , where F � N2 and

Cf ¼
T

m Cf ( m for any f, all sets Cs, s2 <!2, are internal, and Ct � Cs ��S��N whenever s � t. Let E ¼
T

k Ek, where Ek are internal sets and Ekþ1 �
Ek for all k. As fang is fast, we can assume that anþ1 � an is infinitely large for any
n2N.

By the choice of #, for any f 2F we have:

8’; ’0 2 �S 8 x; x0 2 �N : 8mð’ Cf ( mx ^ ’0 Cf ( mx0Þ ¼)
ð9 nð’ ( 5 an

¼ ’0 ( 5 an
Þ()8 kðx Ek x0ÞÞ: ð7Þ

Applying Saturation here, with the implication (¼ in the equivalence in the
second line, we obtain numbers m, n, k (which depend on f) such that

’ Cf ( m x ^ ’0 Cf ( m x0 ^ x Ek x0¼)’ ( 5 an
¼ ’0 ( 5 an

for all ’, ’0 2 �S and x, x0 2 �N. Further, applying Saturation to (7) with the
implication ¼) in the second line, with fixed numbers k and nþ 1, we find
m0ðf Þ5m such that, for all ’, ’0 2 �S and x, x0 2 �N,

’ Cf ( m0ðf Þx ^ ’0Cf ( m0ðf Þx
0 ^ ’ ( 5 anþ1

¼ ’0 ( 5 anþ1
¼) x Ek x0:

Let Xðf Þ ¼ dom Cf ( m0ðf Þ. It follows from the choice of m0ðf Þ that

8’; ’0 2Xðf Þ : ’ ( 5 anþ1
6¼’0 ( 5 anþ1

_ ’ ( 5 an
¼ ’0 ( 5 an

;

therefore, Xðf Þ is small (see the definition before Proposition 12.1) because
anðf Þþ1 � anðf Þ is infinitely large. This leads to a contradiction as in Section 12.
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Part 2. Assuming that fang is slow, prove MU 4CD MV . In this case, U ¼ cN
for some c. Recall that MN has a countably determined transversal A by Theorem
6.1. Then B ¼ fac : a2Ag is obviously a CD transversal for MU, hence MU is CD-
smooth (use the map sending any x to the only element of B equivalent to x), in
other words, MU 4CD Dð�NÞ. However Dð�NÞ4CDMV for any V, see the very end
of Section 10.

Part 3. Prove that MV 64CD MU in any case. First of all, we can assume that
V is a slow countably coinitial cut, because if V is such while V 0 is any
countably coinitial cut then MV 4CDMV 0 by (i) of Theorem 10.3. Thus, let
V ¼ infk 2d�k ¼

T
k½0; 2d�kÞ, where d2�NnN; then log V ¼ infk d � k ¼T

k½0; d � kÞ. It suffices to prove that R log V 64CD MU (Proposition 11.1). We show
that, even more, R log V 64CDE for any S0

1 equivalence relation E on �N.
Suppose, on the contrary, that R log V 4CD E.
Consider an auxiliary equivalence relation R, defined on � ¼ ðd2Þint (all internal

maps ½0; dÞ ! 2) as follows: �R � iff � ( ðdn log VÞ ¼ � ( ðdn log VÞ.14 For any
�2� let ~��2�S be its extension by 0s. The map �! ~�� is a reduction of R to
R log V , hence, in our assumptions, R4CD E. Let # : �! �N be a CD reduction
of E to R log U . Then # ¼

S
f 2 F

T
m Cf ( m, where F � N2 while Cs, s2 <!2, are

internal subsets of ���N with Cs � Ct whenever t � s. Finally, let E ¼
S

n En,
where En � �N��N are internal sets and En � Enþ1, 8n.

For any f 2F, we have, by the choice of #,

8�; �0 2� 8x; x0 2 �N :

8mð� Cf ( mx ^ �0 Cf ( mx0Þ ^ 8kð� ( 5 d�k ¼ �0 ( 5 d�kÞ¼)9 nðx En x0Þ;
where � ( 5 d�k ¼ � ( ½d � k; dÞ. Using Saturation, we obtain numbers k ¼ kðf Þ,
n ¼ nðf Þ, m ¼ mðf Þ such that

� Cf ( mx ^ �0 Cf ( mx0 ^ � ( 5 d�kðf Þ ¼ �0 ( 5 d�kðf Þ ¼) x En x0: ð8Þ
We put Cðf Þ ¼ Cf ( mðf Þ and Rðf Þ ¼ ran Cðf Þ. It follows from (8) that the set

Rðf Þ can contain at most 2kðf Þ, a finite number, of pairwise E-inequivalent elements
(because so is the number of all restrictions � ( 5 d�kðf Þ, �2�). On the other hand,
since the graph of # is covered by countably many sets of the form Cðf Þ, the full
image ran# ¼ f#ð�Þ : �2�g is covered by countably many sets of the form Rðf Þ
(even if F itself is uncountable), so that ran# contains only countably many
pairwise E-inequivalent elements. Yet R admits continuum-many pairwise R-
inequivalent elements in �, contradiction.

14. Remaining Parts of the Theorem on Monadic ERs

We continue with the following result, which proves the 4B-statement in (ii)
of Theorem 10.3 and ends the proof of (ii) of Theorem 10.3 in general.

14 Thus, R is Dextðfd�k : k 2 Ng
2Þ (see Remark 7.4), which is isomorphic to just DextðN2Þ on � via the

bijection fizgz< d 7! fid�1�zgz< d of �. In terms of this bijection, the partition of � into R-classes is
equal to the partition into d-monads Md

g as in Section 5.
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Lemma 14.1. If U is an additive countably cofinal cut and E a P0
1 equivalence

relation then MU 64B E.

It follows that MU 64B MV provided V is any countably coinitial cut.

Proof. Since obviously N ¼ rate N � rate U, it can be assumed that U ¼ N.
Let E ¼

T
n En, each En � �N��N internal and Enþ1 � En, 8n. Fix c2�NnN

and let # : ½0; cÞ ! �N be a Borel reduction of MN ( ½0; cÞ to E. As any Borel
(generally, any analytic) set, the graph of # has the form

S
f 2 NN

T
m Cf ( m, where

NN is the set of all !-sequences of natural numbers, all sets Cu � ½0; cÞ� �N,
u2 <!N, are internal, <!N ¼ all finite sequences of natural numbers, and
Cv � Cu whenever u � v (see [14]).

Applying a simple measure-theoretic argument, we can find a sequence of num-
bers fjmgm 2N in N such that the set X ¼ dom#0 has Loeb measure 51

2
, where #0 ¼S

f 2 F

T
m Cf ( m and F ¼ ff 2NN : 8mðf ðmÞ4 jmg. By Koenig’s lemma, #0 ¼T

m Cm, where Cm ¼
S

u Cu, where the union is taken over all sequences u of
length m such that uðkÞ4 jk for all k<m, so that each Cm is internal and (the graph
of) #0 is a P0

1 set. Also, #0 ¼ # ( X, where X � ½0; cÞ is a Borel set of Loeb measure
51

2
.
Since # is a reduction (and #0 � # a partial one), we have

8 x; x0 2X 8 y; y0 2 �N :

8mðx Cmy ^ x0 Cm y0Þ ¼)ð9 kðjx� x0j< kÞ()8nðy En y0ÞÞ:
Applying Saturation with(¼ instead of() in the second line, we find numbers
m, n, k such that

8 x; x0 2X 8 y; y0 2 �N : x Cm y ^ x0 Cmy0 ^ y En y0¼)jx� x0j< k:

Applying Saturation with ¼) instead of (), and fixed numbers n and 4k, we
find a number m05m such that

8 x; x0 2X 8 y; y0 2 �N : x Cm0 y ^ x0 Cm0 y
0 ^ jx� x0j< 4k¼) y En y0:

It follows that jx� x0j< k _ x� x0j5 4k holds for all x, x0 2X, which contradicts
the assumption that X has measure 51

2
. &

(iii) of Theorem 10.3. Note that every CD-smooth ER is 4CD-reducible to MN

because Dð�NÞ�B MN, see above. It follows, by (ii) of Theorem 10.3 already
proved, that MV is not CD-smooth (hence, not B-smooth), provided V is an addi-
tive countably coinitial cut.

If U ¼ cN is a slow additive countably cofinal cut then MU is CD-smooth, see
Part 2 in Section 13. If U is a fast additive countably cofinal cut then
rate U 6� rate N ¼ N, and the non-CD-smoothness of MU follows as above for
countably coinitial cuts. Finally, that MU is not B-smooth for any additive count-
ably cofinal cut U follows from Lemma 14.1.

(iv) of Theorem 10.3. It suffices, by (i), to prove the following:

Lemma 14.2. Suppose that, for any n, Un is a fast countably cofinal cut. Then
there are fast countably cofinal cuts U and V such that rate U $ rate Un $ rate V for
any n. The same for fast countably coinitial cuts.
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Proof. In the case of countably cofinal cuts, let fan
kgk 2N be an increasing

sequence cofinal in log Un. We can assume that dn
k ¼ an

kþ1 � an
k is infinitely large

for all n, k. By countable Saturation, there are numbers a, b2�NnN such that
a< dn

k < b for all n, k. Put U ¼ supk 2k
ffiffi
a
p

and V ¼ supk 2kb. &

15. An Upper Bound for Countably Cofinal Relations

In classical descriptive set theory, the equivalence relation E0, defined on N2 so
that x E0 y iff xðnÞ ¼ yðnÞ for all but finite n, plays a distinguished role in the
structure of Borel ERs, in particular, because it is the least, in the sense of Borel
reducibility, non-smooth Borel equivalence relation. It would be a rather bold
prediction to expect any analogous result in the ‘‘nonstandard’’ setting, yet a
reasonable nonstandard version of E0 attracts some interest, giving a natural upper
bound for countably cofinal monadic ERs.

For �, n2�S define: � FD � iff �ðxÞ ¼ �ðxÞ for all but finite x2�N (FD from
‘‘finite difference’’).

Lemma 15.1. If U � �N is an additive countably cofinal cut then MU 4B FD.
If V � �N is an additive countably coinitial cut then MV 64CD FD.

Proof. That MV 64CD FD follows from the argument in Part 3 of Section 13
because FD is obviously a S0

1 relation. As for the first statement, suppose that
U ¼ supn 2an , where fang is an increasing sequence in �N; accordingly,
log U ¼ sup an ¼

S
n½0; an�. It suffices to prove that R log U 4B FD.

The sequence fang admits an internal �-extension fa�g�4N , where N 2�NnN,
still an increasing hypersequence of elements of �N. Let, for any ’2�S, #ð’Þ be
the (internal, hyperfinite) set of all restricted maps ’ ( ½a�;1Þ, �4N, where
½a;1Þ ¼ �Nn½0; aÞ. By definition, ’R log U iff the symmetric difference
#ð’Þ�#ð Þ is finite. Yet # takes values in the set of all hyperfinite subsets of a
certain internal hyper-countable set (because �S itself is hyper-countable) which
can be identified with �N. &

Corollary 15.2. If U is as in the lemma then MU <B FD.

Proof. Use the lemma and (iv) of Theorem 10.3. &

We don’t know whether FD is an exact upper bound for countably cofinal
monadic ERs, but still the lower 4B-cone of FD contains many ERs not reducible
to countably cofinal monadic ones, at least, all hyperfinite restrictions of FD are
such. For any hyperfinite set D � �N let FD ( D be the restriction of FD to the
domain ðD2Þint, so that � FD ( D � iff fd2D : �ðdÞ 6¼ �ðdÞg is finite. Easily
FD ( D4B FD, moreover, FD ( D <B FD because any possible CD reduction of
FD to FD ( D must be a bijection on any set X � �S of pairwise FD-inequivalent
elements, but we can take X to be internal and hyper-infinite, which leads to a
contradiction because there is no CD injection from a hyper-infinite (internal) set
in a hyperfinite set (say, by Lemma 4.2).

Theorem 15.3. If D is an infinite hyperfinite set and U an additive countably
cofinal cut then FD ( D 64CD MU .
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Proof. In the course of the proof, it is more convenient to view FD ( D as an
equivalence on PintðDÞ defined so that u FD ( D v iff u � v is finite. Let, on the
contrary, # : PintðDÞ ! �N be a countably determined reduction of FD ( D to MU .
Assume that D ¼ ½0;KÞ for some K 2�NnN. The graph of # has the formS

f 2 F

T
m Pf ( m, where F � N2 and Ps � PintðDÞ� �N are as in ðzÞ of Section 1.

Let Xs ¼ dom Ps and Xf ¼ dom Pf , where Pf ¼
T

m Pf ( m.
Applying countable Saturation, we find a number �2�NnN which is less than

K and moreover, �
ð�Þ<K for any standard recursive function 
. Say that a set Z �
PintðDÞ is large if there is an internal set I � D such that #I ¼ 2� and ½I�� � Z,
where ½I�� is the set of all internal subsets Y � I with #Y ¼ �. Then it is a con-
sequence of the Ramsey theorem (in the nonstandard domain) that, for any k2N
and any internal partition PintðDÞ ¼ Z1 [ 
 
 
 [ Zk at least one of the sets Zi is large.

We observe that there is f 2F such that all sets Xf ( m are large. (Otherwise let
Xf ( mf

be non-large for any f 2F. Since dom# ¼ PintðDÞ, it follows from
Saturation that PintðDÞ is a finite union of non-large sets of the form Xf ( mf

,
contradiction with the above.) Then, by Saturation, Xf itself is large, so that there
is an internal set I � Xf such that #I ¼ 2� and ½I�� � Xf .

Note that Pf � #, hence, Pf is a function, actually, Pf ¼ # ( Xf . In addition, by
Saturation, there is n such that ’ ¼ Pf ( n is already a function (internal). Then
clearly Pf ¼ ’ ( Xf , therefore, # ( ½I�� ¼ ’ ( ½I�� , which implies that # ( ½I�� is an
internal map. Use this fact to derive a contradiction.

Let I ¼ fa1; . . . ; a2�g in the increasing order. For any z ¼ 1; . . . ; �, let
uz ¼ faz; . . . ; azþ��1g and u�þz ¼ fa1; . . . ; az�1; a�þz; . . . ; a2�g (in particular,
u�þ1 ¼ fa�þ1; . . . ; a2�g). Put hz ¼ #ðuzÞ. Easily the sets uz are internal and
#uz ¼ � for all z, moreover, #ðuz � uzþ1Þ ¼ 2, hence, uz FD ( D uzþ1 for each
z< 2�, so that jhz � hzþ1j 2U because # is a reduction, and, by the same reasons,
jh2� � h1j 2U. On the other hand, #ðu1 � u�þ1Þ ¼ 2� 2=N, hence, jh1 � h�þ1j 2=U.

To conclude, we have two hyperintegers h1 and h�þ1, with jh1 � h�þ1j 2=U,
connected by two internal chains, h1; h2; . . . ; h�; ��þ1 and h�þ1; . . . ; h2�; h1, in
which each link has length in U. Obviously there is an index z, 1< z4 �, such
that jhz � h�þzj 2U. However by definition #ðuz � u�þzÞ ¼ 2� 2=N, hence,
jhz � h�þzj 2=U for any z, contradiction. &

Thus, we have the following two classes of countably determined equivalence
relations strictly 4B-below FD: 1) ERs of the form MU , where U � �N is an
additive countably cofinal cut, 2) ERs of the form FD ( ½0; cÞ, where c2�NnN. It
follows from our analysis that there is no ER in the first class 4CD-compatible
with a ER in the second class. Is there anything below FD essentially different
from these two classes?

16. Final Remarks and Problems

This final Section contains few scattered remarks and questions, mainly
implied by analogies with ‘‘Polish’’ descriptive set theory.

Back to CD-cardinalities. Problem 5.1 (Section 5) is, perhaps, the most inter-
esting. Our analysis in the end of Section 5 shows that, for Md

G to satisfy
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Md
G�CD c=N it is necessary and sufficient that G � N2 is a set of Lebesgue measure

0. It is an interesting problem to find a reasonable necessary and sufficient condition
for Md

G to sastisfy Md
G�CD cN�CD½0; cÞ. Can Md

G�CD½0; cÞ hold in the case when
@0 < card G< 2@0? Do these problems depend on the basic properties of the (stan-
dard) continuum in essential way?

How many � B-classes of Borel subsets of �N do exist?15 To answer such a
question in the spirit of modern descriptive set theory, one has to define an
equivalence relation, say, E, on �N (in the ‘‘Polish’’ DST, on a Polish space),
whose equivalence classes naturally represent � B-classes of Borel subsets of
�N, and classify E in terms of best known, ‘‘canonical’’ ERs (see [6, 13]).

It follows from Theorem 3.1 that Borel subsets of �N are represented, modulo
�B, by sets of the following three classes: 1) �N and cuts of the form c ¼ ½0; cÞ,
c2�N; 2) additive countably cofinal cuts; 3) additive countably coinitial cuts.

The first class naturally leads to �B ( �N, i.e., the relation on �N defined so
that x� B y iff there is a Borel bijection of ½0; xÞ onto ½0; yÞ iff x

y
’ 1. Can it be

characterized in terms of relations DextðD2Þ, D � �N? We conjecture that the
relation � B ( �N is �B-equivalent to Dð�NÞ�DextðN2Þ.

To approach the second class, fix d2�NnN and let D be the set of all increas-
ing internal maps � : d ! �N satisfying �ðxþ 1Þ5 x�ðxÞ for all x< d � 1, so that
any additive countably cofinal cut U has the form U ¼ Uð�Þ ¼

T
n 2N �ðnÞ for some

(not unique) �2D. Define �E � iff Uð�Þ ¼ Uð�Þ. This is a P0
2 equivalence

relation; can it be described in terms of relations of the form DðXÞ and
DextðX2Þ? Third class can be studied similarly, but with decreasing sequences
and �ðxþ 1Þ4 �ðxÞ=x for all x, but does this lead to an equivalence relation
�B-equivalent to E?

Equalities of internally extendable maps. Recall that DextðX2Þ is the equiva-
lence relation of equality of internally extendable maps X ! 2, Remark 7.4. This
class of ERs contains, for instance, all monadic ERs (Proposition 11.1, it suffices to
take complements of CD cuts as sets X), hence, study of its properties in terms of
4CD appears interesting and important. When DextðX2Þ4CD DextðY 2Þ? The results
for monadic ERs show that the answer has little to do with, for instance, the
inclusion X � Y . Our study of monadic equivalence relations can be rather routi-
nely generalized on ERs DextðX2Þ for sets X � �N of classes S0

1 and P0
1 (general-

ization of resp. countably coinitial and countably cofinal monadic ERs). For
instance, it turns out that DextðX2Þ is not CD-smooth for any non-internal S0

1 set
X � �N, as well as for any non-internal P0

1 set X � �N not of the form HnC,
where H is internal and C is countable. Can DextðX2Þ be CD-smooth for a set
X � �N not in P0

1?

A hyperfinite continuum-hypothesis. Theorem 4.1 implies that, given
c2�NnN, there is no regular (see Section 5) CD-cardinality strictly between those
of c=N and cN (it is a question whether there are singular ones there). Are there
any other similar pairs in the 4CD-structure? A natural analogy with the

15 This question can be addressed to �CD-classes of CD sets as well, but perhaps it is premature to
search for an answer until Problem 5.1 is solved.
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continuum-hypothesis leads to the following question. Let U be an additive CD cut
in �N. (Or, generally, any Cd subset of �N, but then the problem is most likely
more difficult.) Does there exist any countably determined ER E with
DðUÞ <CD E <CD DextðU2Þ? Since DðUÞ is the equality on U while DextðU2Þ is
the equality of internally extendable maps U ! 2, the double inequality can be
seen to represent the fact that the CD-cardinality of the quotient space of E is
strictly between the CD-cardinality of U and its natural ‘‘power cardinality’’. This
equation deserves a brief consideration.

Let d2�NnU, so that DextðU2Þ can be seen as the relation on ðd2Þint defined so
that � DextðU2Þ� iff � ( U ¼ � ( U. Then DðUÞ4CD DextðU2Þ can be witnessed by
the map x7!�x, where �x2ðd2Þint is the characteristic function of the singleton fxg. If
U ¼ HnC, where H is internal while C countable, then we can prove, using Lemma
4.2, that, paradoxically, DðUÞ�CD DextðU2Þ. Otherwise (see a remark above)
DextðU2Þ is not CD-smooth, hence, DðUÞ< CEDextðU2Þ strictly. Further, if there is
a number c2U with 2c 2=U then easily there are plenty of numbers a< 2c, a 2=U
with DðUÞ <CD DðaÞ <CD DextðU2Þ, thus, the ‘‘continuum-hypothesis’’ fails.

Now suppose that U is exponentially closed, so that c2U¼) 2c2U. Then
(Lemma 4.2 applied) there is no CD set X � �N with DðUÞ <CD DðXÞ <CD

DextðU2Þ, but is there any other countably determined ER E strictly 4CD-between
DðUÞ and DextðU2Þ?

Another family of equivalence relations. For any cut ; 6¼U $ �N, take c 2=U
and define, for (internal) �, �2ðc2Þint, � FU � iff there are numbers a2U and
b 2=U, b4 c such that � ( ½a; bÞ ¼ � ( ½a; bÞ. If U is countably determined then it
belongs to S0

1 or P0
1, subsequently, FU can be transformed to S0

2 using Saturation.
Anything about the 4CD-structure of this family?

Smoothness and transversals. Our general method to establish smoothness
was to find a suitable transversal. Recall, in this context, that MN admits a coun-
tably determined transversal by Theorem 6.1, hence, is CD-smooth, but is not B-
smooth (Lemma 14.1), hence, does not admit a Borel transversal. However the
existence of a transversal is not a necessary condition for the smoothness. Indeed,
there exist Borel and B-smooth equivalence relations which do not admit even a
countably determined transversal! An example can be easily extracted from the
observation made in [14, 4.8] that there is a P0

2 set in �N��N which does not
admit a CD uniformization.

‘‘Fine structure’’ of equivalence relations. Is the ER FD defined in Section
15 in any sense 4CD-minimal over countably cofinal monadic ERs?

Is there any result analogous to the Glimm – Effros dichotomy (see [3] or [13])
of ‘‘Polish’’ descriptive set theory, in the same way as our Theorem 7.1 is analo-
gous to the Silver – Burgess dichotomy? we conjecture that any Borel equivalence
relation E on �N or satisfies DextðN2Þ4BE.

Theorem 6.1 says that any countable CD equivalence relation is CD-smooth.
What is the 4B-structure of countable Borel ERs?

Ergodic theory. Let c2�NnN. The relation MN ( ½0; cÞ on [0, c) has certain
similarities with the Vitali equivalence x VIT y iff x� y is rational on R, for
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instance, Borel non-smoothness, the nonexistence of Borel transversals, perhaps,
the 4B-minimality amongst all non-smooth ERs. However MN ( ½0; cÞ lacks the
following relevant property of VIT: while every VIT-invariant Borel subset of R
has Lebesgue measure 0 or its complement has measure 0, there exist plenty of
MN-invariant Borel subsets of ½0; cÞ having Loeb measure, for instance, 1=2: just
consider the cut ½0; c

2
þNÞ as a subset of ½0; cÞ. (We consider the Loeb measure

associated with the counting measure �ðXÞ ¼ #X
c

for internal subsets of ½0; cÞ.) Are
there naturally defined ‘‘nonstandard’’ ERs which, unlike MN, satisfy this prop-

erty? Henson and Ross [5, 2.3] ask whether there exists a bijection f : ½0; cÞ �!onto

½0; cÞ ergodic in the sense that for any Loeb measurable set X � ½0; cÞ such that
X � f 00X has Loeb measure 0, the set X itself has Loeb measure either 0 or 1; they
prove that Borel bijections (i.e., with a Borel graph, as usual) are not ergodic.

Domain-independent version. Define E4 0
BF if E�Dð�NÞ4BE�Dð�NÞ.

With this definition, we have, for instance, DðXÞ� 0BDðYÞ for any infinite hyperfi-
nite X, Y, and MN ( a� 0B MN ( b� 0B MN for any a, b2�NnN, leading to structures
less contaminated by the dependence on the size of the domain.

There is another possible way to the same goal. Unlike the case of Polish
spaces, it is not true in the nonstandard domain that any Borel-measurable function
(i.e., here, it means that all preimages of internal sets are Borel) is Borel in the
sense that its graph is Borel. It is known that, for rather good nonstandard ‘‘uni-
verses’’, for instance, those satisfying the Isomorphism Property, for any two
infinite hyperfinite sets X, Y there is a bijection f : X �!onto

Y such that the images
and preimages of internal sets are Borel. (Such a bijection cannot be even coun-
tably determined unless the fraction #X

#Y
is neither infinitesimal nor infinitely large.)

As mentioned in [5], such a bijection induces an isomorphism of the entire struc-
ture of Borel and countably determined sets.

This naturally leads to the reducibility via Borel-measurable maps. Is MN

Borel-measurable reducible to Dð�NÞ in a nonstandard ‘‘universe’’ satisfying the
Isomorphism Property?
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