
and Vn>n.(fj(n) I~ Fi(n)), it follows that Ls-- I ~ and Ls--1 >Fj. On the basis of Theo- 
rem i, taking the relation /~0Wj into account, we can conclude that there exists a k~ 
0WiC~A such that F k = L s -- i. Since L~%n [max(n q-l,F~(n) q-l)], it follows that F~ 
Fi. Consequently, fi~ ~a and i ~ ~A (f). The theorem is proved. 

We get the following corollaries from Theorem 4 and the Remark. 

COROLLARY i. Each infinite recursive set has infimum. 

COROLLARY 2. There exists a recursively enumerable nonrecursive set that has infimum. 

It has been shown in [7] that each infinite recursively enumerable set can be decom- 
posed into two disjoint infinite nonspeedable sets. Therefore, the following corollary 
holds. 

COROLLARY 3. Each infinite recursively enumerable set can be decomposed into two dis- 
joint infinite sets, each of which has infimum. 

The following problem is still unsolved: Does there exist an infinite recursively enum- 
erable set that does not have infimum? 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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THEORY OF ZE~LO WITHOUT POWER SET AXIOM AND THE THEORY OF ZERMELO--FRENKEL 

WITHOUT POIFER SET AXIOM ARE RELATIVELY CONSISTENT 

V. G. Kanovei 

Introduction. The theory ZF of Zermelo--Frenkel without the axiom of choice is consis- 
tent with the theory Z of Zermelo without the axiom of choice because the totality of all 
sets of rank <m -~ is a model of Z in ZF [i]. In view of GDdel's second theorem, the 
theories ZF and Z are therefore not relatively consistent (assuming, of course, the consis- 
tency of the theory ZF). The content of the present paper is the proof of the following theo- 
rem, which shows that the situation is different if we remove the power set axiom from the 
theories under consideration: 

THEOREM. The theories Z- and ZF-, obtained from Z and ZF, respectively, by omitting 
the power set axiom, are relatively consistent. Moreover, ZF- has an interpretation in Z-. 

The consistency of %- and ZF- relative to each other (and for a series of other theo- 
ries) was announced without proof in [2] with reference to [3], where an equivalent result 
is stated without proof. The author does not know if proofs of these theorems have been 
published. 
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The proof of our theorem proceeds as follows. In Sec. 1 we discuss a special inter- 
mediary theory T obtained from Z- by adding special cases of the axiom of replacement and 
an axiom assuring the countability of all sets. These additional axioms enable us to prove 
the axiom of replacement when the range is transitive. There is also a sketch of how one 
obtains an interpretation of T in Z- based on the idea of representing countable sets by 
means of special binary relations on ~ (see [2]). 

Even though the full axiom of replacement is not available in T, this theory is strong 
enough to allow the definition of a constructive hierarchy (L=: ~On) and to prove its main 
properties. This is done in Sec. 2. 

Finally, in Sec. 3, we introduce a particular collection ~ of ordinals (either all of 
On, or a proper initial segment of On); we then prove that the class L*-----Us e~L~ is a 
model of ZF-. The fixed point Theorem 3.3 plays a crucial role in the verification of the 
axiom of replacement in L*. 

Our set-theoretic notation follows [4]. Lower-case letters are reserved for sets, up- 
per-case letters may denote both classes and sets. Classes can be eliminated from our dis- 
cussion (at the expense of simplicity), as indicated in [4]. Classes F which satisfy the 
definition of a function (i.e., each element of F is a pair, and (u, vl) ~f/\ (u, v~)~F--> 
v ! = v2) will be referred to as functionals, while the word function is reserved for those 
functionals which are sets. 

I. Theory T. If e is a binary relation (i.e., a set of pairs) we use the following 
notation: don e ={u: 3v (usv)} (usv stands for (u, v)~e), rng 8 = {v: 3u(uev)}, [e [ = don 
e U rng e. We call a binary relation e an EF-relation if the following two conditions are 
satisfied: 

(I) if x~ [8 I is nonempty, then there exists u~x with -~vsu for all vex; 

(2) if U,V~ 18 [, and for all w~ le ] the equivalence wsu+~wsv, holds, then u = v. 

Condition (2) is the condition of extensionality and condition (i) is the condition 
of well-foundedness of the relation e. If the set x is transitive, then the relation ~ on 
x is an EF-relation [4]. 

If e and ~ are EF-relations and f is a bijection of IEI onto I~ l  with usv* -+ f (u )  8 / ( v )  
for every pair u,u~[el, we will say that f maps E into ~. If there exists a bijection 
which maps e into ~ we shall write ~ = *~. 

If e is an Er-relation and u~ 18 [, we put 

Pc(U) = {v ~ ! e [: t h e r e e x i a  wo, wl, �9 � 9  wn 
such t h a  v = woe W 1 e . . .  8 W n = U }  

( n  = 0 i s  p o s s i b l e ,  i n  w h i c h  c a s e  u = v ) ,  a n d  Ze ( u ) =  e Q (pc(u) •  Pe (u)) ( t h e  r e s t r i c t i o n  o f  
t o  p a ( u ) ) .  I t  i s  e v i d e n t  t h a t  l a ( u )  i s  a n  E F - r e l a t i o n  w i t h  IX8 (u) t = Pe (u).  

If e is an EF-relation with s = Is(u) (or, what amounts to the same, l el = p~ (~)) for 
some u~ l e I, then it is easily seen that u is unique; we write u = t(e). In this case 
is called a bounded EF-relation (BEF-relation). If c and ~ are BEF-relations, w = t(~), 
and there exists v~ [6 [= with e = *k6(v) and v~w, then we write e~*6 

After these preliminary definitions we now introduce the theory T, which consists of 

all axioms of Z- together with the following three axioms: 

Sq: for every x there exists (the set) x x x; 

Cnt: for every nonempty x there exists a function from the natural numbers m to x; 

Repr: for every EF-relation e there exists a transitive set x such that e = *ex, where 
e x =  {(U, V) : U, V ~ X  a n d  u ~ v}. 

We note that Sq and Repr are theorems in Zf (for Repr, see [4]). 

We show that the theory T can be interpreted in Z-. First of all we note that T can 
be interpreted in Z- + (~ X ~ exists). In fact, let D be the class of all BEF-relations 
with I e [~. For every ~-formula we denote by ~* the formula obtained from ~ by replac- 
ing=and ~ throughout by =* and ~*, respectively, and by relativizing all quantifiers 

and free variables to D. 
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It is easy, although rather laborious, to check that for every axiom ~ in the theory T 
one can find a formula ~* in Z-~ (~ • ~ exists); we omit these verifications -- the reader 

can find similar material in [2]. But this means that T can be interpreted in this theory. 
We remark that the axiom "~ x ~ exists" is used only in the construction of the formula 
(axiom of infinity),*. 

To eliminate from this reasoning the assumption that ~ • ~ exists we define <m, n> = 
2m(2n + i) -- 1 for m, n~. Then we replace in the definitions dealing with EF-relations 
and in the definition of the class D every pair (m, n) by the "quasipair" <m, n>. All the 
previous reasoning remains valid after this replacement, and the condition that ~ • m ex- 
ists is therefore superfluous. 

Thus we have proved the following 

THEOREM i.i. The theory T can be interpreted in Z-. In particular, T and Z- are rel- 
atively consistent. 

From now to the end of the paper all our considerations take place in the theory T. 
We note that the axioms of T enable us to use the following operations: x x y, dom f, rng 

f, f"x (the image of x under f), f[x (the restriction of f to x), the result being a set in 
each case. The role of the additional axioms of T is visible from the proof of the follow- 
ing lemma: 

LE~A 1.2. Let ~ be a functional and assume that the set z~dom ~ is such that the 
class X = ~"z is transitive. Then X is a set, 

Proof. In view of the axiom Cnt (together with the axioms of Z-) we can assume without 
loss of generality that z _~. We may further assume that ~ is a bijection (otherwise the 
functional 

�9 ' = {(m, p) ~ O :  ~ n ~ z ( n < m - ~ ( n , p )  ~ = ~ ) }  

is a bijection from some z'~-l.z onto X). 

It is then easy to verify that the relation 

e = {(m,n) :  m , n ~  and ~(m) ~ O ( n ) }  

is an EF-relation with le[ = z (we note that ~ is a set by virtue of the axiom of separa- 
tion and Sq). In view of the axiom Repr we can therefore find a transitive x and a bijec- 
tion f which maps E x onto g. If we put 

= flu,  �9 ( / (~ ) ) ) :  ~ =_ ~}, 
we obtain: ~ is a bijection from x onto X such that for all u, v~x the equivalence u~ 
v ~ ~ ( u )  ~ (v) h o l d s .  

I n  t h i s  s i t u a t i o n  s t a n d a r d  ~ - i n d u c t i o n  a p p l i e s  (on  a c c o u n t  o f  t h e  ax iom o f  r e g u l a r i t y )  
and one  p r o v e s  w i t h o u t  d i f f i c u l t y  t h a t  ~ ( u )  = u f o r  a l l  u ~ _ x .  C o n s e q u e n t l y  X = x i s  a s e t ;  
QED. 

2.  C o n s t r u c t i b l e  S e t s .  We c o n s i d e r  t h e  f o l l o w i n g  GDdel o p e r a t i o n s :  

f 0  (x, y) = {x, y}; F ~ ( x , y ) - - x  x y; 
F ~ ( x , y )  = x - - y ;  F~ (x, y) = dora x; 

F~ (x, y) = f lu,  v) G x: u ~ .}; 
F~ (x, y) = {(~, b, ~): (b, c, a) ~ x}: 
F n ( x , y )  = { ( a , b , c ) :  (c, b, a) ~_x}; 
F~ (x, y) = {(a, b, c): (a, c, b) ~. x}; 
Fs (x, y) = x U Y; F, (x, y) - -  x"y. 

Operations F~ to F7 are taken from [4], and Fs and F9 are added for technical reasons. 
We remark that if x and y are sets and i~9 , and Fi(x , y) is also a set (apply Sq and the 
axioms Z-). 

A class or a set X is called G-closed if for all x,y~X and i~9 we have f~(x,y)~X. 
For all X we denote by S(X) the closure of X with respect to the G~del operations, i.e., the 
smallest (in the sense of inclusion) G-closed class which contains X as a subclass. More- 
over, X~S(X) (since x = F~(x, F=(x, x))), and if the class X is transitive, then so is 
S(X) (because of the operation Fo). 
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LE}~4A 2.1 
Y = S(F"x) 

Proof. 

and i~9 

(Sharpening (1.2)). Let F be a functional, x C~dom F, and assume the class 
is transitive. Then Y and F"x are sets. 

The axiom Cnt provides a function f from ~ onto x. We define for m, n~m 

h ( m , n , i )  = i0 (2  m(2n + i ) - -  i ) §  i. 

It is easy to see that h is a bijection from oXoX{0, ... 9} onto m, 

h (m,  n, i) > n. 
that h(m, n, i) ~m, and 

On the set m we now define the functional ~ as follows: ~ (2/) ---- F (] (1)) for all l ~ ~, 
and if k = h(m, n, i) then ~) (2k -~i) = fi(~)(m), ~)(n)). Due to the choice of f and h we find 
that ~ maps m onto Y. But the class Y is transitive by hypothesis. Thus Y is a set in 
view of 1.2. F"x ~ Y is therefore also a set by virtue of the axiom of separation. This 

proves the lemma. 

COROLLARY 2.2. If the set x is transitive, then S(x) is also a set. 

Proof. Take f = {(u, u): u ~ x} and apply the lemma. 

Now we can deal with the hierarchy of constructible sets. We recall that this hier- 
archy consists of sets L~ which are defined by induction on ~, for all ordinals ~, as fol- 

lows: L0 = ~, and if a > 0 and Ly is already defined for all ~ < a, then L= = S ({L v : 
< =}) 

The possibility of definition by transfinite induction is usually based on the axiom 
of replacement, which is not available in the theory T. However, we are able to establish 
within the framework of T that for all ordinals ~, L~ is defined and is a set. This is the 

content of the following lemma. 

LEI~IA 2.3. If the sequence (L v : ? < =) is already constructed in accordance with the 

above definition (but without necessarily being a set), then L= = $ ({Lv: ? < =}) is a set. 

Before we prove this lemma we note the following properties of the sets L~ (they hold, 

strictly speaking, only for those ordinals ~ for which L~ exists; but after Lemma 2.3 is 

proved they will be valid for all ordinals ~): 

2.3a. If ~ is a limit ordinal, then L~ ~Uv< L v 

2.3b. L=+, = S (L= U {L=}). 

2.3c. L~ is a t ransi t ive and G-closed set.  

a, then Lv~L~ and Lv~L=. 2.3d. If  ? .\ 

The first two statements are evident from the definition and the following two are 
proved by induction on a and y using the first two. 

Proof of Lemma 2.3. In view of 2.2 and 2.3b it suffices to consider the case of a limit 
ordinal a. Then L~--~v< Lv is a transitive class by 2.3b and 2.3d. Applying Lemma 2.1 
with x = ~ and F = (Lv: V< a), we find that L~ is a set as required. 

Thus L~ is well-defined and is a set for all = ~ On. We introduce the class L = S ({Lv: 
~ On}) of all constructible sets and state two properties of this class which follow read- 

ily from 2.3a-2.3c. 

2.3e. L-- ~on Lv. 

2.3f. The class L is transitive and G-closed. 

We now consider the question of constructive definability in the class L and in the 
sets La. If X is a class and ~ a formula, we denote by ~x the relativization of ~ to X (i.e., 
the quantifiers 3u, Vu are replaced by ~u ~ X and ~u ~ X, and the conjunction y ~ X is in- 
troduced wherever a free variable y occurs). If Y cA X, and there is a formula ~ (x) with 
parameters from X (or, perhaps, without parameters) such that Y ~ {x ~ X : ~x (x)}, then we 

shall say that Y is definable in X, or that Y is a class in X. 

Let ~ ~ On A function f which is defined on a and such that f (~) = S(f"y) for all 
y < a is called a constructing a-function (c. ~-f.). (A particular c. ~-f. is the sequence 
/~----(Lv: ~ < ~).) We denote the following formula by C(~, z): 
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~ On A 3 f ( /  i se .  (y q - i ) - f ,  and z = ] (?)) .  

THEOREM 2 . 4 .  (Lr: y ~ O n ) =  { ( ? , z ) ~  L: C L (?, z)}. I f  a i s  a l i m i t  o r d i n a l ,  t h e n  

(Lv: V < ~ )  = {(V, z) E L ~ : C  r a ( ? ,  z)}. 

T h e r e f o r e  ( L v : ? ~ O n )  i s  a c l a s s  i n  L and [= = (Lv: ? < ~ )  i s  a c l a s s  i n  La i f  a i s  a l i m i t  
o r d i n a l .  

P r o o f .  L e t  A be  t h e  f i r s t  c l a i m  and A a ( a ~ O n  a l i m i t  o r d i n a l )  t h e  s e c o n d  c l a i m  o f  
the theorem. Let B a be the auxiliary statement f~L~+z. We will show the relationship 
between A, Aa, and Ba. 

Proposition (i). If (V~On) B~, then A. If a is a limit ordinal and (V~<=) B~, 
then A a. 

We prove only the first statement; the proof of the second one is similar. It follows 
from 2.3f and the definition of S that if x,y ~L and S (x)~L, then (y---- S (x))L+-*y=-:S (x). 
The definition of operations F3 and F9 and the definition of c. a-f. yield: if ?, ]~L, 
then 

(/ isc. ? _ f . ) L ~ /  isc. ~-f. 

Now A follows immediately from the definition of formula C. 

Proposition (2). If a is a limit ordinal and A~ holds, then Ba holds as well. 

Indeed, Aa says that fa is a class in La. Therefore, Proposition (2) is a consequence 
of the following lemma: 

LEMMA 2.5. If the class X is transitive and G-closed (e.g., X = L~+x), x~X (e.g., 
x = L~) and the set y~__x is defined in x, then y~X 

The proof of this lemma runs essentially along the lines of the proof of [4], or of 
the theorem [i]. 

Proposition (3). If B~, then Ba+~. 

Indeed, we have, on the one hand, that ]a+1~/~ ~ {(~, L~)}, and therefore fa+z is ob- 
tained from fa and La by composing the operations Fo, F3, and Fs. On the other hand, f~ 
L~+2 by 2.3d and Ba, and La~La+ 2 because of 2.3d. The proof is completed by applying 2.3c. 

It is now evident how to use Propositions (1)-(3) and induction on ~ to prove Ba for 
all ~, A~ for all limit ordinals ~, and A. The theorem is now proved. 

COROLLARY 2.6. On~L. If a is a limit ordinal, then ~L=. 

Proof. By virtue of the theorem the class f~(Lv:?~On)is defined in L. In particu- 
lar, F~_L. Therefore, we have also On--domF_~L (the class L is transitive, 2.3f). 
The verification of the second statement is similar. 

Now we can prove the following theorem about the well-ordering of the class L and of 
the sets La: 

THEOREM 2.7. There exists a well-ordering of the class L which is defined in L. If 
is a limit ordinal then there exists a well-ordering of the set La which is defined in La. 

The proof is given only for L; the case of La is similar. We use induction on n~ ~ 
to defiffe a class Kn~L and a well-ordering ~n on this class as follows. Put K 0 = {Lv: 
y~On} and define L~<oL~, if L~_L~ (i.e., if ~ < 7, 2.3d). 

Assume that Kn and <n are already defined. Put 

Kn+ ~ =  {(u,v ,  i): u, v ~ K ~  and i <9}, 

and define ~n+z as the lexicographic ordering (using ~.~n in the first two components and the 
usual ordering of natural numbers in the third). 

Moreover, we define for all p~K~O~Kna set F(p) as follows. If p = L v~ K0, then 
F (p)= L v. If p = (u, v, i) and the sets F(u), F(v) are already defined, then F(p) = Fi(F(u), 
F(v)). From the definition of L we see that F is a functional from K (~L) onto L. 

Thus, for every x~L we can define n(x) as the smallest of those n~o for which x = 
F(p) for some p~Kn, and we can define p(x) as <n(x) -- the smallest of those P~Kn(x) with 
x = F(p). Now we can introduce the required ordering on L by putting x < y if 
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n (x) < n (y) V (n (x) = n (y) A p (x) <~<~ p (y)) 

One verifies without difficulty that < is indeed a well-ordering of the class L. That < 
is defined in L is seen by a tedious check of the definability in L of all intermediate con- 
structions (taking into account that L is G-closed). The initial class {Lv: y~On}-B-Ko, 
which occurs in the construction of L, is defined in L by Theorem 2.4. We leave the details 
to the reader. 

3. Interpretation of ZF- in T. We recall that our considerations take place in the 
theory T. Let ~ denote the totality of all ordinals ~ such that for every ~<~, ~0, 
there exists a function g~L~+1 from ~ to LB. It is clear that either ~ = On or ~ is an 
ordinal. The following lemma shows that in the second case ~ is a limit ordinal. 

LE}~dA 3.1. 0~. If ~ ,  then ~ 3cI ~Q. 

Proof. It is clear that 0~. Now assume that ~ .  To prove that ~ ~-I~ we 
have to construct a function g~L~+z from ~ onto La+~. 

If a > 0, we proceed as follows. By hypothesis, there exists a function ]~-L~+I from 
onto L~. Put g(0)=L~, g(2l-~2)=/(1)for all ~, and if k = h(m~ n, i) (for the definition 
of h see the proof of 2.1), then g(2k + i) = Fi(g(m) , g(n)). Thus g is a function from 
onto the set L~+ I -----S({L~}~rng/) (by 2.3b and the choice of f and h). On the other hand, g is 
definable in L~+I, and therefore I~L~+ I and L~L~+ I. Hence g~L~+2 by 2.5; QED. 

If ~ = 0 we define g somewhat differently: g (0)---~ ~, and if k = h(m, n, i), then 
g(k + i) = Fi(g(m) , g(n)). Again g is a function from 0, onto LI = S ({~)), definable in LI 
(as L~ is the totality of all sets of finite rank). This concludes the proof of the lemma. 

The class (or, maybe, the set) L*--=-~nL~ will be our model of ZF-. We note some 
properties of this class. 

~2a. Either ~ = On and L ~ = L, or else ~ is a limit ordinal and L ~ = L~. 

This follows from Lemma 3.1, and 2.3a and 2.3e. 

3.2b. In both cases L ~ is a transitive G-closed class and ~L*. 

This is a consequence of 3.2a, 2.3c, 2.3f, and 2.6. 

Now it is evident that in L ~ the axioms of pairing, of regularity, and of extensionality 
are satisfied. We shall consider the remaining axioms of ZF-. 

3.2c. The axiom of infinity holds in L ~. In particular, m~L*. 

Indeed, L,=S ({~j}) is the totality of all sets of finite rank. Hence ~L~ and 

is defined in L~. Consequently, ~L~ by 2.5. But L~ ~L* because of 3.1. 

3.2d. The axiom of unions holds in L ~. 

Let x=_L*, i.e., x~L~ for some ~ .  Since La is transitive we get ~ x~-L~. 
Hence ~xis a class in L~, ~ x ~ L~+I by Lemma 2.5, and ~ x ~ L* by 3.1. 

3.2e. If x~ L*, there exists a function g ~ L*, defined on ~ and such that x~rng g. 

Indeed, x ~ L*, and therefore x ~ L~ for some ~ ~-~ ~. Thus x ~ L~ by 2.3c. Now use 
Lermua 3.1 together with the definition of ~. 

3.2f. The class (L~: ~ )  is defined in L*. 

3.2g. There exists a well-ordering of the class L ~ which is definable in L ~. 

These two statements follow from 3.2a and Theorems 2.4, 2.7. 

In what follows <* denotes the well-ordering of the class L W which is defined in L ~ 
(its existence being guaranteed by 3.2g). 

It remains to verify the axiom of replacement in L*. We make the following definition. 
Assume that ~ ~Q, and the functional F is such that whenever z= L~ ~ domE~thenf(z)~L~; 
then 8 is called a fixed point for F. The following theorem plays a key role in the veri- 
fication of the axiom of replacement in L*. 

THEOREM 3.3 (Fixed Point Theorem). For every collection of functionals Go, G~, . ., 
G k defined in L* and every = ~  there exists an ordinal ~=, ~ ,  which is a fixed 
point for every G i. 
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The proof is based on two lemmas. 

LE~IA 3.3a. If the functional F: o-+~ is definable in L*, then there exists an ordi- 
nal = ~ ~ such that rngF~__=. 

Proof. Assume the contrary. Then L* = U nE~LF(n). If n~-_ O we denote by gn the smallest 
(in the sense of ~* ) of the functions gEL* for which dom g = ~ and LF~n)~rngg (such 
functions exist by 3.2e). If I = 2n(2m ~I)--I, then we put G(1)=gn(m ) 

The choice of gn implies that G is a functional from o onto L*. Moreover, G is defin- 
able in L*, because of 3.2f and the definability of F and ~*. 

If ~ = On, then the class L* is a set because of the transitivity of L* together with 
Lemma 1.2. Hence the class On (~L* by 3.2b) is also a set by the axiom of separation; 
but this is impossible. 

If, on the other hand, ~On, then L* = L~; and it follows from 2.5 and the definabil- 
ity of G that G~L~+I. Thus, ~ by definition of ~. But this, too, is impossible, and 
the lemma is established. 

LEMMA 3.3b. Assume that the functional F is defined in L* and x~L* �9 then there ex- 
ists an ordinal ~EQ, such that the set F"x= {F(u): u~x ~ dom F} is contained in L~. 

Proof. We may assume, without loss of generality, that dom F = L*. According to 3.2e 
there exists a function g~L* such that domg = o and x~rngg. For everynlet G(n) denote 
the smallest ordinal ? ~  such that F (g (n))~L v. Then G is a functional from~ to ~ which is defin" 
able in L* (by definition of F and 3.2f), and such that gEL* (we note that ~L*,3.2b). 
Application of the preceding lemma and 2.3d completes the proof. 

We return to the proof of Theorem 3.3. If ? ~  is an ordinal, Lemma 3.3b allows us to 
select 6~,6 ~? such that Gi"L~-~L~ for all i.~k. Let G(y) denote the smallest of 
these ordinals 6. Now we define F(0) = a and F(n + i) = G(F(n)) by induction on n. The 
functional F: o-+ f~ is definable in L* by virtue of 3.2f and the choice of G i. In view of 
Lemma 3.3a the ordinal ~ = ~ rng f is therefore contained in ~. This ordinal ~ is evidently 
also a fixed point for all Gi, and satisfies the inequality ~a. This completes the proof 
of the theorem. 

Let x~, . ., x m be all free variables in the formula ~ (x I, ..., xm), which is free of 
parameters. The ordinal ~ is said to reflect ~ if for all p~ .... ,pm~L~ the equiva- 
lence 

~L~ (p~ . . . . .  Pro) ~ ~L* (p~ . . . . .  Pro) 

h o l d s .  

COROLLARY 3 .4  ( R e f l e c t i o n  P r i n c i p l e ) ,  I f  t h e  f o r m u l a  ~ has  no p a r a m e t e r s  and a ~ ,  
then there exists an ordinal ~ ,  ~,which reflects ~. 

Proof. Without loss of generality, we may assume that ~ does not contain universal 
quantifiers ~ (otherwise ~ may be replaced by -~-~). Let ~0 ...... ~ be all the subformulas 
of ~ which begin with ~ (~is considered as a subformula of itself). With every i~k, we 
associate a functional G i as follows. 

Let ~i be the formula ~y% (y,x~ ..... xm) (X and m will of course depend on i). Assume 
that p = (p~,...,pm)~L* and that there exists a set q~L*, satisfying %L*(q,p~,...,pm); 
then we denote by Gi(p) the smallest (with respect to <*) of these q. Each functional Gi 
is definable in L* since the ordering <*is definable in L*. 

By Theorem 3.3 there exists an ordinal ~ ,  ~>=,which is a fixed point for all G i. 
Now one can easily verify by induction on the number of logical symbols in the subformula 
that ~ reflects every subformula of the formula ~, and in particular that ~ reflects ~ ; QED. 

COROLLARY 3.5. If ~ ,  and X~La is a class in L*, then X ~ *  (axiom of separa- 
tion in L*). 

Proof. Assume that the formula ~ (y,x~ ..... xm) is free of parameters and that the sets 
Pl .... , pm~L* satisfy 

X ---- {y ~ L*: ~L* (y, p~ . . . . .  Pro)}. 
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By Corollary 3.4 there exists an ordinal ~ ,  ~>~, which reflects ~ and such that all 
Pi belong to L B . Then 

X = {Y ~ L~: ~ (Y, P~, �9 � 9  Pro)}, 

i.e., X is definable in L B . Now apply Lemmas 2.5 and 3.1 to conclude the proof. 

Now we have gathered all that is necessary for the proof of the axiom of replacement 
in L*. Assume that the functional F is definable in L*, x~L*, x ~dom F. We must show 
that F"xEL*. But according to Lemma 3.3b there exists an ordinal = ~  such that F~x~L= 
The result now follows from 3.5. 

Thus, in (the class or the set) L* all axioms of the theory ZF- are satisfied (one can 
show that the axiom of choice and the axiom of constructibility hold also in L*). We can re- 
phrase this result as follows: if %*(x) is a formula and L* is the canonically defined 
class L* ~ {x: ~* (x)}, then for every axiom ~ of ZF- the relativization of ~ with respect to 
%*(x) is provable in T. This means also that the theory ZF- has an interpretation in T. 
This result together with Theorem i.i yields the theorem stated in the introduction. 

The author is deeply grateful to A. G. Dragalin for discussing this work and his val- 
uable remarks. 
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EXTENDING EMBEDDINGS AND HOMEOMORPHISMS OF SUBSETS OF THE TIKHONOV CUBE 

V. A. Kalinin 

This work concerns one of the fundamental questions of shape theory (see [i, 2]): the 
question of characterizing spaces of the same shape which is a generalization of the notion 
of homotopy type. The proof of the main theorem (Theorem 3) requires applying techniques 
of the theory of Q-manifolds, i.e., separable metric spaces in which each point has a neigh- 
borhood homeomorphic to an open subset of the Hilbert cube Q. This technique has been de- 
veloped for the last decade, mainly, by American authors (see [3]). 

It has been shown in [4] that Z-sets X and Y lying in some Q-manifolds M and N, re- 
spectively, and having comparable proper shapes have arbitrarily close homeomorphic closed 
neighborhoods in M and N, respectively, and these neighborhoods are themselves Q-manifolds. 
Our goal is to prove a similar theorem for bicompacts. To prove this theorem, we will have 
to go along the way indicated in the case of F- and Q-manifolds. Just as in the case of F- 
and Q-manifolds, we will need theorems on extending embedding and on replacing homotopies 

by isotopies (see [5-7]). 

The Tikhonov cube I~, where ~ is the set of indices and ~=I ~ I>~0 is the cardinality 

of this set, will be represented in the following form: 1~=fl~f~, f~ =[--i, I]. If ~'~ 

~, then Ig'=~,f~,f~=[--l,l]. ~ will denote the set of finite subsets of the index set 

~, ordered by inclusion. Let I denote the segment [0, i], id X the identity map of the set 
X onto itself, and CI, Bd, Int the operators of closure, boundary, and interior of a set, 

respectively. 
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