
The relation (4.1) shows that the analog of the inequality (2.2) for the Hilbert trans- 
forms of a function of several variables does not hold (for y § +0). As Theorem 1 shows, the 
relation (2.2) does not hold in the multidimensional case also when y § +~. Thus, the ana- 
log of the inequality (2.2) for multidimensional Hilbert transforms does not hold; in other 
words, the multiple Hilbert operator does not have the weak type (i.i). 

It is easily verified that if ]~Lv(E~), p~(1, -~), then for each B~M we have 

' _  (u--.--t-o, 
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N. N. LUZIN'S PROBLEMS ON I~IBEDDABILITY AND DECOMPOSABILITY 

OF PROJECTIVE SETS 

V. G. Kanovei 

i. Formulation of the Problems and Basic Results 

Let ~ = {0,1,2,...} be the natural series and I ~ ~m = {x: x is a function from ~ to ~} 
be the Baire space [1, p. 154] (homeomorphic to the set of all irrational points of the real 
line). The projective subsets of the space I m, m~l are obtained from the open sets in 
these spaces by repeated application of two operations: complementation and projection. 
By the complement of the set X c:F a is meant the difference I m -- X. By the projection of 
the set P~I "~+I is meant the set 

p~ P = {<x~ . . . .  , x .~>:  ~ y  (<z~ . . . .  , x ~ ,  y 5  ~ P)}. 
Projective sets are organized into the projective hierarchy, formed by the classes E~, 

~, A~. The definition of these classes goes by induction on n~ ~ (see [2, Chap. 8, Sec. 
2]): 

~g is the collection of all open subsets of the form Im; 

Hi is the collection of all complements of sets of the class E~; 

I 
En+1 is the collection of all projections of sets of the class ~; 

= N 
A set is called projective if it belongs to one of the projective classes. In the class- 

ical system of notation of Luzin [3, p. 586] the classes ~, ~, A~ have the notation An, 
CAn, Bn, respectively. 
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A set P~I ~ is called single-valued if each of its vertical sections P~ = {y: <x, y>~P} 
contains no more than one point, and is called countable-valued if each Px is no more than 
countable. The theory of single-valued and countable-valued sets of the first level of the 
projective hierarchy assumed its completed form in Chap. IV of the!lectures on analytic sets 
and their applications of Luzin (in [3, pp. 189-224]). It is proved there, in particular, 
that each single-valued (or countable-valued) set of the class ~ can be imbedded in a sin- 

~1-set. Moreover, each countable-valued set of gle-valued (respectively, countable-valued)* 
the class A~ (or of the class ~) can be represented as a union of a countable number of 
single-valued sets of the same class A~ (respectively, of the class E~). For proofs of these 

results, see also [4, pp. 72-82] and [5, Sec. i]. 

Having given the definition of the projective classes, Luzin [3, pp. 230-242] poses a 
series of questions, whose general sense is the following: Can one carry over certain theo- 
rems about projective sets of the first level of the projective hierarchy to higher levels? 
Among these questions are the questions of the validity for various values of n of the fol- 

lowing four assertions: 

i.i. Each single-valued E~-set can be imbedded in a single-valued set of the class AS. 

1.2. Each countable-valued i ~-set can be imbedded in a countable-valued set of class 

A,\. 
1.3. Each countable-valued AS-set is the union of a countable number of single-valued 

sets of class A I 

H~_l-set is the union of a countable number of single-valued 1.4. Each countable-valued 
sets of class i 

(The last assertion is formulated by Luzin for the class CAn, i.e., ~$; the translation by 

1 in our formulation is made for uniformity of the formulations of the basic results.) 

For n = 0, assertions i.i, 1.2, 1.3 are trivially true, since a countable-valued open 
set can only be the empty set, and assertion 1.4 is meaningless. Besides, the Luzin formu- 
lation does not touch on the case n = 0: the hierarchy of classes An, CAn, B n by definition 

starts with n = I. 

As was noted above, the proof of the truth of the first three assertions for n = 1 is 
contained in [3]. About the truth or falsity of assertion 1.4 for n = 1 (i.e., about the 
possibility of representing each countable-valued closed set as the union of a countable 

number of single-valued closed sets) nothing is known to the author. Novikov and Keldysh 
[6] found that assertion i.i is false for n = 2. The other questions remained open in [6] 
even for the case n = 2. The question of the validity of assertion 1.4 for n = 2 is sin- 
gled out by Lyapunov [4, p. 72]. We shall show that for n = 2 each of assertions 1.2, 1.3, 

1.4 is false: 

TIIEOREM i. There exists a single-valued ~-set, which cannot be imbedded in any count- 

able-valued set of class ~. 

THEOREM 2. There exists a countable-valued ~-set,which is not the union of a 
countable number of single-valued sets of class ~ (and all the more for the classes A~ and 

As to values n~3, there is little hope of deciding the questions of the truth of the 
assertions considered in the classical sense, i.e., of proving or refuting them by means of 
the axioms of ZF or ZFC (Zermelo--Frankel set theory without the axiom of choice AC or with 
AC, respectively [2, 7, 8]). Only the question of the consistency of these assertions and 

of their negations lends itself to investigation. 

The simplest method of proof of consistency is the derivation of the assertion con- 
sidered from the axiom of constructivity V = L (about this axiom, see [2, Chap. 5], or [7, 
8]). This axiom is consistent with the axioms of ZFC, in view of which any of its conse- 

quences is also consistent with ZFC. 

In [6] it is noted that the axiom V = L implies the negation of assertion I.I for all 

n, "starting with some N~8." 

THEOREM 3. If n ~ 3 and V = L holds, then there exists a single-valued El~-set, which 

cannot be imbedded in any countable-valued set of class ~$. 
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THEOREM 4. If n~ 5 and V = L holds, then there exists a countable-valued ~_~-set, 
which is not the union of a countable number of single-valued sets of class E,I. 

Thus, the axiom of constructivity implies the falseness of assertions 1.1-1.4 for all 
u ~ 5 Consequently, the negations of these four assertions do not contradict ZFC for n~ 3. 
In other words, the methods of the system ZFC are insufficient to prove one of these asser- 
tions for any e ~ 3. The following theorem gives the consistency of the negations of 1.3 and 
1o4 inan even stronger form than is guaranteed by Theorems 2 and 4. 

THEOREM 5. Let us assume that the hypothesis of the existence of a strongly inacces- 
sible cardinal is consistent with the theory ZFC. Then this theory is also consistent with 
the existence of a countable-valued ~-set, which is not the union of a countable number of 
single-valued projective sets of any class. 

The definition of a strongly inaccessible cardinal can be found in [2, Chap. 3] or in 
[7, Chap. 9], where the naturality of the hypothesis of its existence is also explained. 
We prove Theorem 5 with the help of the Levy--Solovay model [9], in which all projective sets 
are Lebesgue measurable. This model is also used in the proof of the following theorem, 
giving the consistency of assertion 1.2 for any n~3. 

THEOREM 6. Under the hypotheses of Theorem 5, the theory ZFC is consistent with the 
assertion that each countable-valued projective set can be imbedded in a countable-valued 
set of class Z~. 

The consistency of assertions i.i, 1.3, 1.4 themselves (and not their negations) remains 
an open problem. 

If one rejects the full axiom of choice AC, replacing it by the principle of dependent 
choice DC, postulating the possibility of a countable sequence of choices in the case when 
the nonempty set from which one makes the n-th choice depends on the preceding choices [2, 
Chap. 2], [8], then Theorems 5 and 6 can be strengthened: 

THEOREM 7. Under the hypotheses of Theorem 5, the assertion of the existence of a 
countable-valued R~-set, which is not the union of a countable number of arbitrary single- 

.valued sets, is consistent with the theory ZF + DC. 

THEOREM 8. Under the hypotheses of Theorem 5, the assertion that each countable-valued 
set can be imbedded in a countable-valued E~-set is consistent with the theory ZF + DC. 

It is easy to see that the assertions with which we are concerned in Theorems 7 and 8 
are inconsistent with the stronger theory ZFC. 

The content of the present paper is the proof of Theorems 1-8. 

2. Basic Facts Used in the Proofs of Theorems 1-4 

We use the notation E~,  lI l~, A' ~ - ,  j~ I ~, and E~/ ,IL7 , A~; (where p~_f) for the classes of the ef- 
fective hierarchy, see [2, Chap. 8], or [7, Chap. 7]. In a certain sense E'n is the collec- 
tion of all ~-sets with recursive code, and EI~ p, is the collection of all E~-sets whose 
code is recursive with respect to p. The classes of the effective hierarchy contain subsets 
of spaces of the form I m • ~k (where m, k~ ~), and not only subsets of the spaces Im. We 
note that if X~E~, then X~ E ~'p for suitable p~f and analogously for ~ and A. 

By the uniformization principle for the class F is meant the assertion that for each 
set P~f~of the class F one can find a single-valued set ~ P  of the same class F such 
that pr Q = pr P. The following uniformization theorem of Novikov--Kondo--Addison is proved, 
e.g., in [2, Chap. 8] or in [7, Chap. 7]. 

2.1. TIIEOREM. Let p~f. Then the uniformization principle is valid for the class 
H~ '~,  and also for the class N~. 

2.2. COROLLARY. If p~f, then the uniformization principle is valid for the class 
~1, p ~2 �9 It is also valid for the class E~. 

2.3. COROLLARY. If p C~_f and the set X~_Tof class ~'P is nonempty, then one can 
find a A~'~-point x~X. 

To prove 2.3 it is necessary to apply 2.2 to the set {a} X X, where a = ~ X {0}~f. The 
proof of 2.2 is achieved by application of Theorem 2.1 to the set of class ~'P (or 
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|I~), whose projection pr Q is equal to G"P, where P ~I ~ is a given set of class Z~ 'p (or ~), 
and G is the canonical homeomorphism of 12 onto I, defined by the condition 

z = G (x, y) ~-~ ' r  (z (2i) -~ x ( i ) / \  z (2i  q- t )  =- y (i)). 

For more details, see [2, Chap. 8, Sec. 4]. 

The class L[x] of all sets, constructive with respect to a given point x ~7, is the 
smallest class containing x and all ordinals, and which is a model for ZFC (see [5, Sec. 2] 
or [8]). With each x~f one can associate a binary relation <x on I such that the follow- 
ing three conditions hold (see [5, Sec. 2]). 

2.4. <x is a total ordering of the set L Ix] ~ f of type ~ o) I . 

2.5. {(x, y, z): y <~}  ~ ~ .  

2.6. If n-~2, p~l and the relation Q(x, y, z, w, . .) belongs to the class h~; l', 
then the relation 

~y <xzQ (x,  y ,  z ,  w . . . .  ) ,  V y < ~ z Q  (x ,  y ,  z ,  w ,  . . .) 

l , p  
belongs to the same class An . 

The following theorem, usually called Addison's uniformization theorem in the litera- 
ture, is proved with the help of 2.4-2.6 by the choice of the <~• point in each 

vertical section. 

2.7. THEOREM. Let p ~ f, n~ 2 and V = L hold. Then the uniformization principle is 

valid for the classes A 1'pn and AS. 

2.8. COROLLARY. Under the hypotheses of 2.7 the uniformization principle is valid for 
the classes 1, p En and E~. 

2.9. COROLLARY. Under the hypotheses of 2.7 each nonempty Y1'~-setn X ~__I contains a 

A~' p -point x E X. 

The derivation of 2.8 and 2.9 from 2.7 is the same as the derivation of 2.2 and 2.3 

from Theorem 2.1. 

2.10. COROLLARY. If y<xz, then Y ~ AI,~ x~ 

Proof. For each u~ f we set ]u [----{(u)m: m~ ~0}--{(u)0} where (u)m~7 is given by the 
(u)m(k) = u (2 "~ (2k q- i) -- i). The following set 

u = { ~ I :  ~ = { ~ :  w < ~ } }  

is nonempty according to 2.4 and belongs to A~ '~'~ according to 2.5 and 2.6. Consequently, 
1~ X~Z 

by 2.3 one can find a point g~ U of class A2 . But y = (u) m for some m. 
I 

2.11. THEOREM. Let x~l and ~ be a closed Y2-formula with parameters from L[x]. Then 

one has the equivalence 

This theorem is a special case of Schoenfield's principle off absoluteness (see [7, p. 
457] or [5, Sec. 2]). By a E~-formula is meant any formula of the form Q~, where the quanti- 
fier prefix Q consists of the alternating quantifiers 3 andV, in number n + i, of which the 
rightmost one is over ~, and all the others are over I, and the leftmost quantifier of Q is 
the quantifier 3 (over I); finally, @ must be a recursive formula (with variables over ~ as 
well as over I). The concept of 1IS-formula is introduced analogously, only, the quantifier 

prefix must start with V. 

The class Y~P is formed of exactly those sets which can be defined with the help of a 

En-formula with only parameter p. 
I, X 

2.12. COROLLARY (from 2.11). If x~ f and the set u~ ~ belongs to the class ~ , 

then u~L [x] and in L[x] it is true that u~ Y= . 

3. Proof of Theorems I and 3 

In accordance with 2.2 and 2.8, it is sufficient to prove that if n~2 and the uniform- 
ization principle holds for the class ~, then there exists a single-valued ~-set, which 
cannot be imbedded in any countable-valued set of class R$. We begin the proof of this as- 

sertion with a ~-set U~I a, universal in the sense that 
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(*) for each ~n-set X c___I ~ one can find a point x~f such that X = {<y, z> : <x, y, z> ~ U}. 

On the existence of universal sets, see [2, Chap. 8]. 

The set Z : {ix, z> : <x,x, z> ~ U} also belongs to the class ~n. Hence, according to our 
assumption, one can find a single-valued ~n-set PCZ such that pr P = pr Z. We shall show 
that this set P is also the one sought, i.e., that it is impossible to imbed it in a count- 

able-valued lib-set. 

Let us assume the contrary: p c ~, where the set ~ c I ~ of class II~ is countable-valued. 
The difference X = I ~ -- Q belongs to ~. Hence, by (*) one can find a point x~ I such that 
Xx = Zx. But from the inclusions p c ~ and P c Z it follows that Px ~ (~x ~-] Zx, i.e., 
P~:~---Ox ~ Xxby the choice of x. Hence Px is empty, since X = I ~ --Q. Thus X x = Z x is also 
the empty set in view of the fact that pr P = pr Z. But this cannot be, since X is the com- 
plement of a countable-valued set. The contradiction obtained finishes the proof of Theorems 
i and 3. 

4. Proof of Theorems 2 and 4 

In accord with the hypotheses of these theorems, we fix a natural number n~ 2 and we 
assume that the following condition holds: 

4.1o Either n : 2 or n~ 3 ~ V = L. 

Under this assumption we shall first construct a countable-valued set of class ~i which 
cannot be decomposed into a countable number of single-valued ~-sets. In the course of Sec. 
4 the letters x, y, z, w denote points of the space I, and the letters k, ~, m denote natural 
numbers. 

Using a suitable version of the theorem on the universal set [2, Chap. 8, Sec. 4], one 
can choose a E1n-formula 8(k, x, 7), universal in the sense of this assertion: 

~ = {i: 0 (k, x,  4.2. For any x~ I and any ~-set u~ (o one can find a k~ ~0, such that u 
~)}. By f~ (~ ~2)we denote the characteristic function of the set {/: 0 (k, x, /)},and we con- 
sider the set 

u:{<x,i~>: ~IAl~} 
The set U is obviously countable-valued. The following two lemmas show that it is exactly 
the example sought. 

4.3. LEMYLA. U is not the union of a countable number of single-valued sets of class 
~ 

Proof. Suppose, on the contrary, U = ~Im~mUm, where each set U m is single-valued and 
belongs to the class Z~. One can find x ~ I such that all U m are y$,X_sets. We consider 
an arbitrary set u c~0 such that u ~ E~ 'x- A~ '~. The characteristic function f of the set 
u belongs to the section U x by definition of U and by virtue of 4.2. Consequently, f be- 
longs to one of the sets Umx = {y:<x, y> ~ Urn}. But Umx is a ~T n' X-set with no more than 

, t I'x one point. Consequently /~ n by virtue of 2.3 or 2.9 (for n = 2 and for n~ 3 /~ V : L, 
respectively). Hence the set u ------ {l :] (1) ---- i} also belongs to the class A[ ~x, which contra- 
dicts the choice of u. 

4.4. LEM~iA. U is a ~-set. 

1 Proof. Being a ~-formula, the formula 0 has the form 3y~(y, k~ x~ l), where ~ is a fin-l- 
formula. By ~* (z~ y, k, m, l) we denote the formula obtained from @ by relativization to the 
set predx(z) ---- {w : m<xZ}, i.e., by the change of all quantifiers 3m, Vw (over I) to ~w<xz, 
Vm<xZ, respectively. By f~x we denote the characteristic function of the set {/:8" (z, k, x, 
7)}, where 8" is the formula 3y<xzj~* (z, y, k, x, l). 

With each point x~f we associate the sets 

E ~  = {z ~ L [x] : V k ,  lVy<~z 
(~* (z, y, k, x, z) ~ ~ (y, k, x, ~))}, 

l Sx = {y ~ I: y can be defined by a formula which is the conjunction of a ~n-formula with pa- 
rameter x and a II1n-formula with parameter x}, 

D~= { y ~ I : y ~  A~'~} (cc_S~). 

494 



We prove the following four assertions: 

(1) I f  k ~ o,  x ~ f ,  z ~ E x  and D x  ~ predx(z), t hen  f~x ---- f~x. 
(2) If (x, f)~U, then f~S~. 

(3) If x ~I, then one can find a z~ Ex, such that Sx ~__ predx(z). 

(4) The set {(x, z):x~f/~ z~ Ex} belongs to E1n. 

Proof of (i). By definition of Ex, it suffices to prove the equivalence 

3 g < ~ z ~  (g, k, x, l) + .  3gq~ (g, k, x, I). 

The implication from left to right is obvious. We shall prove the opposite implication. 
1 Let 3g~(y, k, x, l). Then the fib'_l-set Y ---- {g : ~ (g~ k, x, /)} is nonempty. Consequently, Y con- 

A1, x talus a n -point y~ Y by virtue of 2.3 or 2.9. Then y~Dx, and hence y<xZ according to 
the formulation of (i). 

The assertion (2) is obvious from the definition of U and the fact that 0 is a E~- 
formula. 

Proof of (3). According to Proposition 4.1, two cases are possible: n~ 3/~ V-----L, 
or n= 2. 

. A n + l .  Case i: n~ 3 and V = L We consider the <x-smallest point z~I such that z~ 1,~ 
Due to 2.10 the set predx(z) is exactly the collection of all i ~ �9 A~'$1-poxnts w ~ f whence we 
quickly get Sxq predx(z). Moreover, standard model-theoretic arguments allow us to deduce 

I 
from 2.9 that if the closed Y~+l-formula ~ has parameters only from the set predx(z) and ~* 
is obtained by relativization of T to the set predx(z), then one has the equivalence ~-+ ~* 
whence it follows that z~ Ex. 

Case 2: n = 2. Arguing in L Ix] analogously to Case i, we find z~ L [x] ~ f such that 

S$ Ix] ~ predx (z)L[ x] and z ~ E L[x], where S$ Ix] is "the set Sx, defined in L Ix]," and so on. But 
from 2.11 it follows that S$ Ix]-- S x, and from 2.5 and 2.11 we get pred, (z)~ [xj ~- predx(z). The 

last equation and Theorem 2.11 (for the formula ~) lead to the relation E$[x] = Ex. Thus, 
z~ E x and S~ ~__predx(z). 

Finally, the proof of assertion (4) is obtained by direct analysis of the definitions 
with the help of 2.6. Instead of z~L[x] it is necessary to write z <xX\/X <xz~/x ---- z 
and to use assertion 2.5. Actually, if n~ 3, then the set (4) even belongs to the class A1n, 
but we do not need this. 

Continuing the proof of Lemma 4.4, we give the proof of this equation: 

(5) U = ( ( x , / ) :  3 k 3 z ( z ~ E x A /  < ~ z A f  =/~x)}" 

Let <x,])~ U,i.e., f = fkx for some k. According to (3), there exists a point z~ E x 
such that Sx ~---pred,(z). Then f----/~x by (I), and / <xz by (2). 

Conversely, let z ~ Ex and / ---- /~x <x z. If here Dx ~-- predx (z), then from (i) follows 

f = f~x, i.e., (x, ]) ~ U by definition. Now let Dx ~ predx (z). We take g ~ Dx such that 
-] y~z. We note that z~L[x], since z~ E x. Moreover, g~L Ix] (in the case V=L this is 
obvious, and in the case n = 2 it follows from 2.12, since g ~D~ means that y ~ A~'x). 
Hence z~y, whence / <xg, and finally, /~ A$'x'Y in view of 2.12. But Y~ A~n,x. Consequently, 
/~ AS 'x, i.e., f is the characteristic function of the A~'X-set {/: /(1) = i}. This also gives 
<x, />  ~ U. 

Equation (5) is proved. Now Lemma 4.4 is deduced easily from (5) and (4) with the help 
of 2.5 and 2.6. 

Thus, under the assumption 4.1 we have a countable-valued E~-set U, which is not the 
union of a countable number of single-valued E~-sets. We shall show how from this set one 
can get a ll~n_~-set with the same properties. 

4.5. Proposition. Under the hypotheses 4.1, each ~-set is the projection of a single- 

valued set of class II~--1. 

In the case n = 2 this proposition follows in an elementary way from 2.1. in the case 
n~ 3 /~ V = L it is proved in [5, Sec. 2]. 
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We apply 4.5 to the N~-set G"U (for the definition of the homeomorphism G: I z onto I, 
see Sec. 2). Let the single-valued ~_1-set Q~I 2be such that G"U = pr Q. The set 

p = {<x, G (y, z)>: <G (x, y), z> ~ Q} 
1 belongs to the class H~_~, being the continuous preimage of Q (really G is continuous in both 

directions). From the countable-valuedness of U and the single-valuedness of Q there fol- 
lows trivially the countable-valuedness of P. Finally, if P were the union Om~Pm of sin- 
gle-valued ~,-sets Pm, then defining 

U~ = {(x, y>: ~z ((x, G (y, z)> ~ P~)}, 

we would get U= ~m~ Um, and each U m is single-valued and belongs to the class E~, which 
contradicts Lemma 4.3. 

The proof of Theorems 2 and 4 is completed. 

4.6. Remark, If n~2 and the axiom of constructivity V = L holds, then each count- 
able-valued ~-set P~I ~_ is the union of a countable number of single-valued A~+~-sets. In 
fact, the set W: {<x, y): P~ = l y I} belongs to the class A ~+~(more precisely, is the inter- 

I section of a N~-set with a H~-set). According to 2.7, one can find a single-valued A~+t 
set Q~ W such that pr Q = pr w. For each m~ ~ we set 

Pm = P ~ {<x, (y)~>: <x, y> ~ Q / \  m ~ m}. 

All the sets Pm are single-valued belong to the class t , An+t, and their union coincSdes with 
the given set P. 

5. Proof of Theorems 5 and 6 

Here are some words about the Levy--Solovay model [9] used in the proof of these theo- 
rems. One fixes a countable transitive C-model M of the theory ZF + V = L with a strictly 
inaccessible in M cardinal Q~M. Each countable transitive model M' of the theory ZFC 
such that M~M' and ~ remains a strictly inaccessible cardinal in M' is called an ~-model. 
In particular, M itself is an ~-model. 

The set ~ (in [9] it is denoted by ~) consists of all finite sets p C2_~ X ~ X ~ such 
that 

V~ < ~  (the set {(k, p): <~, k, p) ~ p} is a function). 

The set ~is ordered inversely by inclusion: p~qe-+q~p. It belongs to each ~-mode!. 

A set D6-~ is called dense in ~if for each p ~  one can find a q~D, such that 
q ~.p. 

Let II v be an ~-model. The set G ~  is called ~-generic over H' if the following 
three conditions hold: 

l) p ~ A q ~ G A p b q - - > p ~ G ,  

2) Vp, q ~ G  3 r ~ G  ( r ~ p / ~ r . ~ q ) ,  

3) if the set D ~M'I D ~ is dense in ~, then the intersection G N D is nonempty. 

In this case there exists a smallest countable transitive ~-model of the theory ZFC, 
containing all sets from H' and the set G, denoted by M'[G]. This model is also the generic 
extension of Levy--Solovay of the model M'. 

5.1. Proposition [91 Corollary 3.51 p. 17]. Let G' c~ be a ~-generic set over the 
~-model M', and the point ] ~ M ' [ G  ] (] ] be M'-defined in M'[G'] (i.e., f is definable in 
M'[G'] by some E-formula with parameters only from M'). Then ]~M'. 

5.2. Proposition [9, Arguments 1.7-1.11, pp. 42-46]t If M' and G' are as in 5.1, and 
the set X~I~' [ 1, X cI is M'-defined in M'[G'] and X~7kI' then X is uncountable in 
M'[G']o 

From this point we fix a ~-generic set G ~  over M. We shall show that the model 
N = M[G] is the one sought for Theorems 5 and 6 in the sense of the following theorem. 

5.3. TIIEOREM. In N the following two statements are true: 
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(A) There exists a countable-valued H~-set which is not the union of a countable number 
of single-valued projective sets. 

(B) Each countable-valued projective set can be imbedded in a countable-valued t ~2-set. 

The proof of Theorem 5.3 in a certain sense [i0] can be transformed into the proof of 
Theorems 5 and 6. We begin the proof of Theorem 5.3 with the formulation of another propo- 
sition, collecting together several properties of the Levy--Solovay model proved in [9]. The 
proofs of Propositions 5.1, 5.2, 5.4 are also contained in [5, Sec. 4]. 

5.4. Proposition. (a) [9, Point 1.4, p. 5]. N is a countable transitive E-model of 
the theory ZFC with the same ordinal series as M. 

(b) [9, Corollary 2, p. 16]. If x EN ~ I, then ~ remains an inaccessible cardinal in 
M[x], i.e., M[x] will be an ~-model. Moreover, M[x] ~ f is countable in N. 

(e) [9, Point 4.1, p. 18]. If x~N I] [, then there exists a ~-generic over Mix] set 
G'~_~, such that N = M[x][G']. 

The meaning of assertions (b) and (c) is that the model N is constructed identically 
with respect to all of its submodels of the form M[x],xEI 

5.5. COROLLARY. If x,]EN ~ I and the point f is M[x]-defined in N, then /E#f[xl 

5.6. COROLLARY. If x~_N ~] f and the set X~N, X~fis countable and M[x]-defin- 
able in N, then X ~  M[x]. 

The proof follows from 5.1, 5.2, 5.4. 

5.7. LEMMA. Let x, yEN ~ f Then 

y~M[x].~---,-mN, y E L  [x] istrue. 

The proof is trivial: once the axiom of constructivity V = L is true in M by hypothe- 
sis, M is the collection of all sets constructive in N. 

Proof of assertion (A). We consider the set 

u = { < x , y > :  x , y ~ N N I / ~ y E M [ x ] } .  

5.8. LEMMA. U is a countable-valued E~-set in N. 

Proof. The countable-valuedness of U follows from 5.4 (b). Further, by 5.7, in N, 
U = {<x, y): y ~ L Ix]}, is true, in view of which U ~ E I~ in N holds according to 2.5 (the no- 
tation yE L [x] should be replaced by Y <xXV x <xYVX = y). 

It remains to verify that U is not in N the union of a countable number of single-valued 
projective sets. We shall prove a stronger assertion, for whose formulation it is necessary 
to introduce a concept. The set X EN is called M -- I-definable in N if X is definable in 
N by some E-formula with parameters only from M U (N ~ I). In the model N each projective 
set and any countable sequence of projective sets are M-- I-definable. 

5.9. LEMMA. Let <Pm: mE ~) EN be an M -- I-definable in N sequence of single-valued 

sets Pm~I. Then U--l= Um~Pm. 

Proof, Suppose, on the contrary, U coincides with the union of the sets Pm- All pa- 
rameters p E/,figuring in the definition of the sequence of sets Pm can be replaced by some 
one parameter x EN [] f. Let u ~ {mEw: By (<x, N>EPm)}. For each m ~  there also exists 
a unique point y such that <x,y)~Pm We denote it by Ym. By the assumption of the contrary, 
we have the equation 

U~={y~: m~} 

According to the choice of x, the sequence <Pm: m E ~>is M[x]-definable in N. Hence, 
too, the sequence <Ym: mE ~) will be M[x]-definable in N. Consequently, the characteristic 
function ]E~2 of the set 

{2"~.3~.5~: m ~ ~/~, k E o)/~ i = y~ 0)} 

is also M[x]-definable in N. Thus, /~M[x] by 5.5. Whence it is easy to deduce that (Ym: 
mE ~> ~M[x] and that the set Ux ~ {Ym: mE ~} belongs to M[x] and is countable in Mix]. 
But Ux = M[xj ~ I by definition of U. We have obtained a contradiction with Cantor's 
theorem in Mix]. 
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5.10. COROLLARY. U is not in N the union of a countable number of single-valued pro- 
jective sets. 

Now the proof of assertion (A) is obtained from 5.8 and 5.10 with the help of Theorem 
2.1, completely analogously to the way in Sec. 4 we got the proof of Theorem 2 from Lemmas 
4.3 and 4.4. 

Proof of assertion (B). As above we prove a stronger assertion. 

5.11. LEMMA. Let the set P EN, P GI 2 be countable-valued and M -- I-definable in N. 
Then P can be imbedded in N in a countable-valued i ~2-set. 

Proof. Let pEN [l I be such that the set P is M U {p} -definable in N. Repeating the 
proof of Lemma 5.8, it is easy to show that the set 

Q = {(x, y): x , y ~ N  N I / ~ y ~ M i x ,  p]} 

is countable-valued and belongs to Z~ 'p in N. It remains to verify that P~Q. We fix x El 
and we shall show that Px~Qx. According to the choice of x, the set P~ = {y: (x, g) EP} is 
countable and Mix, p]-definable in N. Hence, PxGM[x,p]by 5.6. But Qx = M[x, p] {I Iby 
definition of Q. The lemma is proved. 

This completes the proof of Theorem 5.3 and Theorems 5 and 6 of Sec. i. 

6. Proof of Theorems 7 and 8 

To prove these theorems we consider a special submodel N* of the model N from Sec. 5. 
We begin with several definitions. The set X EfV is said to be WOrd-definable in N if X is 
definable in N by some E-formula with parameters only from the collection of all functions 
/~TV from w to the ordinal series. The set X ETV is said to be hereditarily WOrd-defin- 
able in N if X itself, all elements of X, all elements of elements of X, etc., are WOrd-de- 
finable in N. 

By N* we denote the collection of all hereditarily WOrd-definable in N sets X~N (sec- 
ond Levy--Solovay model). The following assertions are proved in [9, pp. 51-52] and also in 
[5, Point 25]. 

6.1. N* is a countable transitive model of the theory ZF + DC. 

6.2.  N * ~ I = N N I .  

6.3. Each set X EN* is M -- I-definable in the model N. 

6.4. THEOREM. In N* the following two statements are true: 

(A) There exists a countable-valued ~-set which is not the union of a countable number 
of (arbitrary) single-valued sets. 

(B) Each countable-valued set can be imbedded in a countable-valued set of class ~I 2" 

Proof, (A) According to 6.2, the projective hierarchies of the models N and N* coincide. 
Hence the set U from the proof of Theorem 5.3 (A) is countable-valued and belongs to the 
class ~i in N*. Moreover, if the sequence <Pm: mE ~> of single-valued sets Pm ~---l ~ belongs 
to N*, then it is M -- I-definable in N according to 6.3, and hence U~=UmP m according to 
5.9. Thus, in N* it is true that the set U~_I ~ belongs to the class E~, is countable-valued, 
and is not the union of a countable number of single-valued sets. As in Secs. 4 and 5, (A) 
follows from this. 

The derivation of (B) from 5.11 goes analogously. 

The results 6.1 and 6.4 show that the model N* is in fact a model for Theorems 7 and 8. 

2. 

3. 
4. 
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SPACE OF ANALYTIC FUNCTIONS WITH PRESCRIBED GROWTH NEAR THE BOUNDARY 

R. S. Yulmukhametov 

Introduction, Let D be a bounded convex domain in the plane, containing the origin. 
By d(%), %~D, we denote the distance from the boundary of D, i.e., 

d(~)  = Inf I z - - ~ ,  [. 
z~OD 

Let the function f(1) be analytic inside D. The quantity 

p= Jim (Inl/(~)l)/(--~nd04) 

will be called the order of f(~). By H(p), p > 0, we denote the space of functions, analytic 
in D and of order not exceeding p: 

H (p) = {1(~,) ~ H (D)/Ve > O ]C: I / (~,) [ "~ C exp (t/d (k) )~} .  

In H(p) we introduce the topology defined by the seminorms 

II ]IIs - -  sup [I ? 0~)1 exp ( -  (l/d (%))~e)], e ~ O .  

We choose a sequence e~"~_ O, n - ~  1, 2 , . . . ,  and introduce the spaces 

B~ = { ] ( ~ . ) ~ H ( D ) [ I I / I I ~  n < o o } ,  n = 1 , 2 , . . . .  

The space H(p) may be considered as the projective limit of the Banach spaces Bn: 

H ( p ) =  f~ ~ B n- 

By H'(P) we denote the dual space of H(p), equipped with the strong topology. As is known 
[i], H'(p) is isomorphic to the inductive limit of the dual spaces B n of the spaces Bn: 

B' (1)  H'(p)  = U .=1 n. 

M o r e o v e r ,  l e t  h ( - 0 )  be  t h e  s u p p o r t  f u n c t i o n  o f  D and l e t  q ~ ( 0 ,  1). By En,  n = 1 ,  2,  ~ 
we denote the space of entire functions satisfying the condition 

sup [I ] (z) I/exp (h (arg z) 1 z 1 - -  I z T~=)] < ~ ,  
z~E 

where Cn, n = i, 2, . . ., is the sequence chosen above. The expression on the left-hand 
side of the last inequality defines a norm in E n. This norm will be denoted by [IFIIn. By 
P(q) we shall denote the inductive limit of the spaces En, n = i, 2, .... 

In this paper we describe the spaces H'(p) in terms of Laplace transforms. 

I. The Dual of H(p) 

TIIEOREM i. Let p > 0 and q = p/(p + i). Then H'(p) is isomorphic to P(q). 
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