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PROBLEM OF THE EXISTENCE OF NONBOREL AFu-SETS 

V. G. Kanovei 

Absolute G~-sets are sets belonging to the class G6 in some (and then also in any) com- 
plete metric (CM) space where they lie. The concepts of absolute A-sets and absolute CA- 
sets are introduced similarly, and have the analogous property. Each absolute G6 is metriz- 
able with a complete metric. Therefore, such a set X has the property F!i, which says that 
there are no closed sets Y~X in X of the first category in Y. The following is proved 
in [i] : 

THEOREM (Gurewicz). If X lies in a separable metric (not necessarily complete) space 
P, is a CA set in P and has the propertyF!i, then X is a G6-set in P. 

Hence it follows, in particular, that any separable absolute CA-space with the proper- 
ty F u is absolutely G~, i.e., the implication G6-+F11 is invertible on separable absolute 
CA-sets. Gurewicz [i] posed the following problem: Does there exist a separable absolute 
A-set with the property FIj which is not absolute G6? We prove that this problem is undecid- 
able. 

THEOREM [2]. The following three statements are equivalent and undecidable in the 
theory ZFC of Zermelo and Frankel with the axiom of choice: 

(a) There exists a separable absolute A-set with the property Fu,which is not absolute 

G~. 

(b) There exists an uncountable CA-set lying in the Baire space J which does not con- 
tain any discontinua (i.e., sets homeomorphic to the Cantor discontinuum). 

(c) There exists a non-Borel CA-set E ~  Such that any Borel set B~_E can be em- 
bedded in the F6-set U~E. 

Therefore, Gurewicz's problem is undecidable in ZFC. In the 1960s and 70s this problem 
was studied by Michael and Stone, San-Raimon, and Ostrovskii (see [2]). 

The implication (b) -~ (a) was proved by Gurewicz himself. Let the CA-set E~J be 
uncountable andcontain no discontinua. By the Aleksandrov--Hausdorff theorem, E is non- 
Borel, i.e., the A-set X = J--E is also non-Borel. We verify F u for X. It is sufficient 
[i] to verify that X does not contain any countable sets which are perfect in X. On the con- 
trary, suppose that Q~X is such a set. Its closure K in ~ is perfect in ~ , and, there- 
fore, is uncountable. Thus, E contains an uncountable Borel set K -- Q. We have a contra- 
diction with the choice of E, by the Aleksandrov-Hausdorff theorem. 
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The implication (a) + (c) was proved by Ostrovskii (see [2]). The idea of the proof 
is as follows. We embed the set X' given by (a) in a separable CM space P'. The latter is 
the continuous one-one image of the closed P~J: P' =F(P). The continuous inverse image 
E = F-*(E') of the set E' = P' -- X' is a CA-set in P and in $ . The set E is non-Borel (for 
otherwise its continuous single-valued image E' would be Borel in P', which would contradict 
Gurewicz's theorem, stating that X' and E' are non-Borel). 

Consider an arbitrary Borel set B~E. Its image B' = F(B) is, as above, Borel in 
P'. Denote by K the closure of B' in P'. The intersection M =X' ~ K has the propertyFll, 
as it is closed in X'. Moreover, since B' is Borel, the set M= (MU B') -- B' is Borel, 
and A = M U B'. Therefore, by Gurewicz's theorem, M is G 6 in A, i.e, M = A -- Z for a 
suitable set Z~_P' in the class F~-in P'. We have B' =A --M~Z ~ K~_E', i.e., the set 
U' = Z ~ K in the class F~ in P satisfies B' ~U'~_~_E'. The inverse image U = F-~(U ') 
belongs to the class F~ in P, and in ~ it satisfies the relations B~U~_ E, which is 
what we required. 

The undecidability in ZFC of the statement (b) was established by Novikov and Soloveev 
(see [2]). Therefore, to prove the theorem it remains to prove the implication (c) --> (b). 
This is the purpose of this article. 

The Baire space $ consists of all the functions defined on the set of natural numbers 
= {0, i, 2, ...}, with values in ~. The topology in J is generated by the system of 

Baire integrals Su ~ {x: u~x}, where u belongs to the set Seq of all finite strings of ele- 
ments of ~. 

The proof of the implication (c) "-+ (b) uses the representation of CA-sets in $ by 
means of sieves. For reasons which will become clear later, we shall not work with sieves 
themselves, but with their codes. A code of a sieve is any set R~Q x Seq, where Q is the 
set of rational numbers. Each code of the sieve R defines a classical Luzin sieve 
<Ba: a~Q>, consisting of sets Ra= U<a,~>~$~. which are open in $ . Conversely, any sieve 

composed of open R a can be obtained in this manner from its code R = {<a, u>: iu~Ra). 
Let R be a code of a sieve. If X~$, then the section R x = {a~Q:xERa} may or 

may not be totally ordered in the sense of the natural ordering in Q. In the first case we 
write x~[R]. With each 9 < ~i we associate the 9-th constituent [R]v = {x~[R]: the 
order type of R x is equal to ~}. The constituents [R]~ are all Borel, pairwise noninter- 
secting, and give [R] in union. [R] itself is a CA-set. Conversely, each CA-set is of the 
form [R] for a suitable code of the sieve R. 

Suppose that (b) does not hold, i.e., any uncountable CA-set contains a discontinuum. 
It is known (see, for example, Sec. 3 of the supplement to [3]), that in this case, for any 

< ~, the y-th uncountable cardinal mL[R]y in the class L[R] of all sets which Y @re con- 
structive with respect to R, is countable in the universe of all sets, i,e., ~L[r[y <~ for 
any R~Q • Seq (we are using the "effective countability" of the set Q • Seq). 

Fix a code of the sieve R such that each constituent [R]v can be embedded in a F~-set 
~[R]. We shall prove ~ (c), and thus the theorem, if we can establish that the number of 
nonempty constituents [R]9 is no more than countable (in this case [R] is Borel). 

It is known [4] that if the Borel set U is contained an [R], then U is contained in the 
union of a countable number of substituents [R]~. Therefore, the assumption of the uncount- 
ability of the number of nonempty constituents reduces to the existence of an uncountable 
set S ~__~ I such that [R] V is nonempty for any v~S, and for any pair ~,~S, if ~ < 
then the "approximation" [R]~t~ = ~<,|R]~ is Fo-separable from [R]~ (i.e., is contained in 

some Fo-set which has no common points with [R]~). We shall obtain the required contradic- 
tion if we find a countable family W of sets ~$ such that for each pair ~ < 9 < ~, if the 
approximation [R]~ is Fo-separable from [R]9, then the separating set can be chosen in the 
family W. 

To construct W we introduce a coding of Fo-sets. With each d~ ~, X Seq we associate 
the set 

X [dl = O~<,~, x [d, ~1, wher~ X [d, gl = J - -  O <~, J u > ~ d  u .  
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If I < ~, and d ~__~ X Seq, then the set X[d] belongs to the class F o. Conversely, each F o- 
set ~__J is of the form X[d] for a suitable de: ~ X Seq. 

As W we take the family of all sets of the form X[d], where d ~_L [/~], dcC- ~ X Seq. 
It is not at first clear why W is countable. However, we note that the set X[d] is totally 
defined by the set w d of all sets {u: <~, u# ~ d}, ~ ~ ~. Each Wd belongs to L[R] and con- 
sists of subsets of_S_eq. Therefore, the set of all sets Wd has cardinality <~L[R]= in the 
class L[R]. But ~L[R]= <~, (see above). Therefore, the set of all wd, and by the same token 
also the family W, is countable in the universe of all sets. 

To prove the implication (c) --> (b) and the theorem, it remains to prove the following 
lemmas. 

LEMMA I. Let ~ < u < ~, and let [R]_<~ be Fo-separable from [R] v. Then the separating 
set can be chosen in W. 

Proof. Denote by P the set of all finite strings of ordinals <v. Order P by inverse 
inclusion; p < q if p is an extension of q. The letters p, q, and r will only be used to 
denote elements of the set P. 

Let p~P and t ~P X co X Seq. Define 

Z~ [tl = Uq<v, ~e~z~ ttl, where Zq~ ltl = J -  U,~e~r q, ~,5, 

and e (t, q, k ) =  {u: 3r, r ' ~ P ( r . ~ < r ' A r . ~ q / \ < r ' , k , u >  ~--_l.)}. The f o l l o w i n g  lemma i s  c r u c i a l :  

LEMMA 2. We can select p~P and t~L[Rl, t r x ~x Seq so that Zp[t] separates 
[R]<~ from JR] v. 

We show that Lemma i follows from Lemma 2. The set P x ~0 has cardinality less than 
the "actual" ~, in L[R], since v<o)~. Fix an enumeration {<q~, k~>: ~. < %} of this set in 
L[R] (~ < ~,). Denote by d the set 

{<~, u>: q.~ ~< p/~\ 3,', r '  ~- 
P (r ~ r' / i  r ~ q~/k <r', k~, u> ~ t)}. 

C l e a r l y ,  d C  r 1 x Seq and d ~ L i R ] ,  s i n c e  t ~ L [ R ] .  On the  o t h e r  hand ,  t h e  e q u a t i o n  
X[d] = Zp [ t ]  i s  e a s i l y  v e r i f i e d .  

Thus, to prove Lemma i (and the theorem), it is sufficient to prove Lemma 2. We shall 
first prove it in a countable transitive model M of the theory ZFC. In other words, let 
R ~M be a code of a sieve, ~ < v < toM,, let L ~ [R] ---- {y ~ l~I" y ~_ L [R] is true in M}, and 
let the approximatipn LR]~<~ be F~-separable from [R]u in M. We are required to select 
p ~ P and t ~ L M [R I, t~P • ~ x Seq such that the set Zp[t] separates [R]~<~ from 
[R~ in M. Then we shall show how to carry the proof over to the case when it does not apply 
to a model M, but to the universe of all sets. 

The construction of the required p and t uses the method of forcing (see Chap. 4 of [3]). 
As the initial (extendable) models we consider M and Mo = LM[R]. As a set of forcing condi- 
tions we take P; p < q means that formulas forced by q are also forced by the condition p. 
The sets t~P • M are called P-terms. If G~P and t~P • M, then we define the "infla- 
tion" iG(t)---- {x: 3P ~G(<p,x> ~ t)}. If the set G~P is Mo-generic and Y~M,, d~M 0 
[G], d ~__ y, then there exists a P-term d* ~ M, d*~ P X y (the name for d), such that 
d ffi iG(d*). Moreover, if d already belongs to the model Mo, then we may take d* = P x d 
(the canonical name for d~ M0). All the above also refers to the case when the initial 
model is M and not Mo. 

We continue with the proof of Lemma 2 in M. Fix an M-generic G c P. By the condition 
of Lemma I, in M we have: 

(i) the approximation [R]<~ is Fo-separable from [R]v. We intend to prove that the 
statement (i) is true both in ~[G] and in Mo[G]. To do this we show how to write (I) in 
the form of a E~-formula with parameters in M (such formulas are absolute). 

Denote by ~p (]~, v, x) the following formula: 

q/: Q --> v V a V b  (a, b ~ R ~ A a < b ~ / (a) < f (b)), 

which e x p r e s s e s  t h e  e x i s t # n c e  o f  an o r d e r e d  embedding o f  R x in  v ,  and d e n o t e  by $(R,  ~, x)  
t h e  c o n j u n c t i o n  o f  ~ (~, ~ ,x)  w i t h  t h e  fo rm u la  
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31: 4, -~ QV~Vq (~ < n < v --1 (U,I (10 ~ R x A / (~) < I (n)), 

which expresses the existence of an inverse embedding. In all themodels we are considering, 

we have the equivalences 

(2) x ~ [R]~ ,~ ~ (R, p, x) and x ~ [R]v*-~ ~ (R, ~, x). Moreover, denote by x(d, x) the 
formula Bkvu (<k, u> ~ d --> x f~ $~), which means that 

(3)~x ~ X [d] ~-, % (d, x), f o r  any x ~ I and d ~ ~ • Seq. 

By (2) and ( 3 ) ,  s t a t e m e n t  (1) can be w r i t t e n  t h u s :  

(4) 3 d ~  ~ • S e q v x [ ( r  ~, x ) - + x ( d ,  x)) / \  (4 (R, ~, x ) - +  -~ % (d, x))]. 

Moreover ,  t he  e q u i v a l e n c e  (1) ~-~ (4) h o l d s  i n  a l l  models  o f  ZFC. The f o r m u l a s  ~ and 
s t a n d  on t he  l e f t  of  the  i m p l i c a t i o n  in  ( 4 ) ,  i . e . ,  a f t e r  we have gone from + to  V ,  t h e i r  
e x t e r n a l  q u a n t i f i e r s  3f become Vf. I f  we now use  some s u i t a b l e  mapping m on the  s e t s  
tt = {~: ~ < t t } ,  v, Q, R, Seq, Q • Seq, and r e p l a c e  the  s e t s  ~ by t h e i r  c h a r a c t e r i s t i c  f u n c -  
t i o n s ,  we can r e w r i t e  fo rmula  (4) in  t he  form ~h ~ V z ~ $ @ ,  where t he  fo rmula  ~ c o n t a i n s  
the  p a r a m e t e r s  from o n l y  :Y ~ M  and q u a n t i f i e r s  o n l y  from ~. (For  example ,  i f  we f i x  a b i -  
j e c t i o n  g~_M: from ~ to u,  t hen  in  r we have the  p a r a m e t e r  y ~  ~ M, which changes  ~ in  
the sense that g (i) < g (]) *~ y (2"3 ~) = i.) 

We c a l l  f o r m u l a s  o f  t h i s  form E ~ - f o r m u l a s .  They a r e  a b s o l u t e ,  by S h e n f i e l d ' s  theorem 
(see  [3,  Supp lement ,  Sec.  2 ] ) ,  i . e . ,  i f  M ~ M ~  a r e  two models  o f  ZFC w i t h  the  same c l a s s  
o f  o r d i n a l s ,  and a E~- fo rmula  has  p a r a m e t e r s  o n l y  i n  MI~ ~, t hen  t h i s  f o r m u l a  i s  e i t h e r  
s i m u l t a n e o u s l y  t r u e  o r  s i m u l t a n e o u s l y  f a l s e  i n  b o t h  mode ls .  

The s t a t e m e n t  (1 ) ,  which  i s  e q u i v a l e n t  to  (4 ) ,  i s  a l s o  a b s o l u t e .  Thus,  once i t  i s  t r u e  
f o r  M, then  i t  r ema ins  t r u e  in  M[G]. Comple t e ly  a n a l o g o u s  a rguments  g i v e  the  t r u t h  o f  (1) 
i n  the  model Mo[G]c_M[G], i f  we o n l y  show t h a t  ~ i s  c o u n t a b l e  i n  t h i s  model .  But the  s e t  
P i s  a 9 - c o n v o l u t i n g  s e t  o f  f o r c i n g  c o n d i t i o n s ,  i n  t he  t e r m i n o l o g y  o f  Chap. 4 o f  [ 3 ] .  This  
means t h a t  g = ~ G maps ~ on to  v .  Moreover ,  g ~ M 0 [ G ] .  T h e r e f o r e ,  9 i s  c o u n t a b l e  i n  
Mo[G], which  i s  what  we r e q u i r e d .  

Thus the  s t a t e m e n t  (1) i s  t r u e  i n  Mo[G], i . e . ,  t h e r e  e x i s t s  a s e t  d ~ M 0 [ G ] , d ~  • Seq 
such t h a t ,  i n  t h i s  model ,  we h a v e :  

(5) the set X[d] separates ~]<U from [R],. 

Considering Mo[G] as a generic extension of the model Mo = LM[R], in view of the above we ob- 
tain a P-term d*~-]~/0, d*~Px(~• such that d = iG(d*). 

The statement (5) is absolute, in the sense that statement (i) is; this fact can be 
established roughly by the same arguments used to analyze (i). Therefore, (5) is true in 
M[G]. By the theorem on the connection between truth and restraint in generic extensions, 
there exists p~G such that 

(6) p ~ (X [d*] separates [R*]~ from [R*]9,), 

where ~- is the forcing corresponding to the initial model M and the set of forcing condi- 
tions P. 

The following lemma shows that the p and d* we have found (instead of t) are the re- 
quired ones in the sense of Lemma 2 (in the model M), and this completes the proof of Lemma 
2 inM. 

LEMMA 3. The following is true in M: [R]<__~ is contained in Zp[d*], but [R]v has no 
con~non points with Zp[d*]. 

Proof. Let z~.M~ ~ and let x~[~]<, be true in M. The section R x is defined from 
R and x in an obviously absolute manner. Therefore, x~[~]<~ is also true in M[G]. There- 
fore, x~X[d] in M[G], since (5) is true in M[G]. Thus there exist k~ ~ and a condition 
q ~_G, q-~p such that qI'r--x* ~X[d*, ~*]. We verify that x~Zq~[d*] in M; this completes 
the proof of the first statement of Lemma 3. Suppose not; there existu~Seq and condi- 
tions r, r'~P such that 

r <. r', r < q, <r', k, u> ~ d*an~  ~ .nO,,. 
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I f  r < r '  t h e n  [[-~<k*,u*>~d*. , M o r e o v e r ,  r l ~ - x * , ~ $ ~ , ,  T h e r e f o r e ,  r f o r c e s  x* ~ X  [d*, 
k * ] ,  Which  c o n t r a d i c t s  t h e  c h o i c e  o f  q and t h e  r e l a t i o n  r ~ q .  

To p r o v e  t h e  s e c o n d  s t a t e m e n t  o f  Lemma 3,  l e t  x ~ [ R ] v  i n  M. I t  i s  s u f f i c i e n t  t o  v e r -  
i f y ,  f o r  an  a r b i t r a r y  p a i r  q~P,q~.P and  k ~  t h a t  x~Zq~[d*] i n  M. C o n s i d e r  an  a r b i -  
t r a r y  M - g e n e r i c  s e t  H~_P, c o n t a i n i n g  q .  As a b o v e ,  i n  t h e  e x t e n s i o n  M[H] we h a v e  x ~ [ R ] v .  
M o r e o v e r ,  o n c e  q ~ p ,  t h e n  p~_H, a n d ,  t h e r e f o r e ,  c o r r e s p o n d i n g  t o  (6 )  we o b t a i n  x~X[in(a*), 
k]  i n  M[H].  T h e r e f o r e ,  t h e r e  e x i s t s  a s t r o n g  u ~ S e q  s u c h  t h a t  x ~ : 7 u  and  <k ,u>,~- - : i l / (d*  ). 
By t h e  d e f i n i t i o n  o f  i H ( d * ) ,  t h e  l a t t e r  r e l a t i o n  r e d u c e s  t o  t h e  c o n d i t i o n  r',:=ll so  t h a t  
<r', <k,u>> -= <r', k, u>~d*. Finally, for any pair r', q~H there exists r~H, such that 
r ~ r' and r ~ q. Collecting these together, 

r <~ r ' ,  r ~< q, <r ' ,  k, u> e~ d 'and ,  z ~ Ju-  

T h i s  e n a b l e s  u s  t o  c o n c l u d e  t h a t  x~Zq~[d*] i n  M, w h i c h  i s  w h a t  we r e q u i r e d .  Lemma 3 i s  
p r o v e d .  

The p r o o f  o f  Lemma 2 i n  t h e  m o d e l  M i s  c o m p l e t e .  

We now show how t o  p r o v e  Lemma 2 i n  t h e  u n i v e r s e  o f  a l l  s e t s ,  i . e . ,  i n  i t s  i n d i r e c t  
formulation. Essentially, the countability of the model M is only used in order that we may 
consider generic extensions M[G] and M[H]. If the model M is countable, then for any condi- 
tion p in the given set of forcing conditions P~M there exists an M-generic set G~__P, 
containing p (see Chap. 4 of [3]). 

Therefore, if we take, instead of M, the universe V of all sets, then we can never con- 
struct any generic extensions V[G], since V contains generally all sets, and G (excluding 
certain trivial cases) cannot belong to an extended model. However, there is a method which 
allows us to overcome this difficulty. This method consists of considering a definite 
"fictive" generic extension V (P) of the universe V. The class V(P) basically consists of 
the names for the elements of the actual extension V[G], as if the latter existed. These 
names must ensure the inflation of all the elements of the extension, and not only of those 
contained in the initial model. In connection with this, the construction of P-terms and 
inflations is slightly changed (see [5]). However, as before, there exists an embedding d 
d* of the universe V in V (P). The reader will find more detailed information about this in- 
terpretation of forcing (the Boolean-valued version) in [6]. 

Having slightly reconstructed the proof of Lemma 2 in the above direction, we obtain 
the proof of this lemma in the universe of all sets. Thus we have proved Lemmas 2 and i, 
and the theorem is proved. 

In conclusion, some remarks. A. V. Ostrovskii brought Gurewicz's problem to the atten- 
tion of the author, and told him of the results connected with it, and in particular the 
above-mentioned proofs of the applications (b) --~ (a) and (a) --> (c). He also first made 
the hypothesis of the pairwise equivalence of (a), (b), and (c), and their undecidability. 

Basically, the crucial moment in the proof of the implication (c) -> (b) is the state- 
ment that, if (b) does not hold, then for any code of the sieve R we can select a countable 
family W of subsets of a Baire space such that for any ordinals ~ < ~ < m~, if the approxi- 
mation [R]<~ is F~-separable from [R]9, then the separating set can be chosen in the family 
W. This t~eorem also remains true in the case when, instead of the class F~, we consider 
any other Borel class Fa or G~ of Hausdorff (F, is Fo, but G, is G6). In a slightly weaker 
form (for v = u + i; the general case is proved analogously), this theorem can be found in 
Sec. 3 of the supplement of [3], with an outline of the proof. Some other theorems on con- 
stituents are also proved there. These include a theorem which states that if (b) does not 
hold, then for any code of the sieve R, if all the constituents [R]~ belong to the same 
class F or Ga (for example, if they all belong to the class Fo), then the number of non- 
empty constituents is no more than countable. 

The method used in the proof of our theorem can also be applied to the study of more 
complex sets with the property Ell, which are not absolutely G6. 

The following question remains open: Is the theorem in this article true for nonsepar- 
able sets? 
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EXISTENCE OF A FINAL DISTRIBUTION FOR AN IRREDUCIBLE FELLER PROCESS 

WITH INVARIANT MEASURE 

G. P. Klimov 

Let X be a metric space, ~ the class of its Borel subsets, ~(X) the set of bounded 
(multivalued) measures on (X, ~), and B(X) the space of bounded real Borel functions on X. 
Each Markov operator P: X x ~--> [0,1], which is a Borel function in the first argument and a 
probability measure in the second, generates two operators (which we shall denote by the 
same symbol P). One operator acts in ~(X) by the formula 

(~P) (B) = I x  P (x, B) = (dx), B 

and the other acts in B(X) by the formula 

(P/) (x) = Ix  / (y) P (x, dy), x ~-- X. 

We note tha t  any of these three opera tors  de f ines  the two o the rs ,  s ince (8=P)(B)= P (x,/~), 
where 6x is the Dirac measure, concentrated at the point x, and (PiB)(z)~--P (z,B), where 1 B 
is the indicator of the Borel set B. We also note that if 

(a, 1) = ~x / (z) a (dx) for ~ ~ ~ (X), / ~ B (X), 

then (~P, ]) = (~, P/). 

Consider now the family ~ = {Pt:t~T} of these operators, satisfying the semigroup 
property p,+, = @,pt. Here T = {I, 2 .... } or T = (0, =). In the case T = {i; 2, ...}, the 
semigroup ~ is defined by one generating operator P = P*. 

We shall assume that the operators pt are Feller, i.e., Ptc(x) Ci C(X), where C(X) is the 
space of bounded real continuous functions on X. 

We also introduce a weak convergence in C(X) and in ~ (X). The sequence {~} c- C (X) 
converges weakly to ] ~C (~), if (~. f.) - > (~, f) V~c~--9~(X) �9 This is equivalent to pointwise 
convergence, if the sequence {fn} is uniformly bounded. For CriTiC (X) we say that the 
sequence {~n}C-@(X) converges C-weakly, or simply weakly, to ~c~(X), if (~n,!)-~ 

(~,f) V/ -c7:C. This will be written in the form 

We shall make the following assumptions. 

i. The semigroup ~ is irreducible, i.e., 
exists t~T, such that Pt(x, U) > 0. 
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C 
~n~OC or simply ~n--.a. 

for any x~X and any open set U cX, there 
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