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An equivalence relation defined by letting x ~ y if and only if the difference y - x is 
rational, which was used by Vitali to construct a set which is not Lebesgue measurable (see 
[I]), partitions the real axis R into pairwise-nonintersecting countable classes Ix] = {y: 
y ~ x} = {x + q: q is rational}. What is the cardinality m of the set M of all classes [x]? 

If we accept the axiom of choice (AC) then the answer is simple; in this case we have 
m ~ r where c is the cardinality of the continuum. Indeed, c ~ m~0 by construction, and AC 
implies that x~0 =• for every infinite cardinality x. However, the character of this argu- 
ment, which does not in any way suggest an explicit one-to-one correspondence between M and 
some continual set (say, R), let Luzin to make the following remark in [2, Sec. 64]: "It 
seems natural .... that the set M would have the cardinality of the continuum .... In reality, 
the cardinality of the set M (if discussed properly) is completely unknown; we do not know 
how to construct a mapping of M onto the continuum." 

However, an inequality c ~m holds regardless of AC. Namely, to every number x, 
i, with a decimal notation x = 0.xlx2x3x4... we can associate a number x* with a decimal 
notation 

x* = O.x,Oxlx.:OOx~x~x~OOOxlx.2x~x40000... ( 1 )  

It is easy to see that the class [x*] contains only one number, namely, x* itself, of form (1) 
for some sequence of decimal digits x i. Therefore, [x*] ~ [y*] if x ~ y, i.e., we have ob- 
tained a one-to-one mapping of a half-interval [0, i] onto a portion of the set M. This im- 
plies that c<<m. 

The inverse inequality m~ c appears even more natural than the one proven above, but 
the possibility of it being true is limited by the following theorem, which we refer to below 

[2, Sec. 64]. 

Sierpinski's Theorem [3~ p. 147]. If a set M is linearly ordered than there exists X~R. 

which is not Lebesgue measurable. 

COROLLARY. A strict inequality c<m is compatible with the axioms of a system ZF + DC. 

Recall that ZF is the Zermelo- Frenkel theory without the axiom of choice, and DC is 
the principle of dependent choice that allows a countable sequence of selections in a rather 
general situation, which is usually used to prove certain fundamental assumptions of analysis 
based on AC in cases where an application of the "full" axiom of choice is undesirable (see 

[1 ;  4, Sec. 20]). 

Indeed, Solovei in [5] established the companibility of ZF + DC with a hypothesis LM 
that states that every set X~R is Lebesgue measurable, and Sierpinski's theorem shows that 
LM implies that c<~m, since otherwise an equality r == m would define on M the natural order 

of R. 

To measure the "width" of the apparently possible gap between the cardinalities c and 

m, we use the Hartogs function 

H (O) = rain {~r ~ < O does not hold ) 

[4, Sec. 4] that projects the class of all cardinalities 0 onto a sequence of alephs (i.e., 
cardinalities of fully ordered sets; such cardinalities are called cardinals). Under the AC 
all cardinalities are cardinals and H(8) = 8 + is the cardinal next in magnitude after 8. 

THEOREM. Let ~H be a countable transitive model of the theory ZFC together with the 
constructivity axiom and x~% a pair of cardinals that are noncountably co-final in ~[, 
cannot be written as 8 + for some cardinal @ of countable cofinality in Ji, and ~ •  Then 
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there exists a generic cardinal-preserving extension,1' of the model .//. that satisfies all 
axioms of ZF, principle DC, and equations H (c) = • H (m) = X 

COROLLARY. An inequality H (c)<H (m) is compatible with ZF + DC. 

We note that cardinals H (c) and H (m) have noncountable cofinality and so cannot follow 
immediately after the countably co-final cardinals in ZF + DC, so therefore the corresponding 
conditions on x and i in the statement of the theorem are necessary. 

We also note that ~0<c. so therefore, in general, ~i ~H (c). The case H(c) ~ ~i is not 
covered by our theorem and in principle cannot be realized on cardinal-preserving extensions 
of a constructive model, since, as it can be easily shown, the latter equation implies in 
ZF + DC a strict unattainability of the "real" ~i in the constructive universe. 

However, the consistency of a relation ~1 = H (c) <H (m) can be proved using models that 
combine an identification of cardinals of the type carried out in the construction of Solo- 
vei's model mentioned above and a corresponding symmetrization. Incidentally, Solovei's modeJ 
itself satisfies H(c) = H(m) = ~a. 

Proof of the Theorem. As a set of restricting conditions on the construction of the de- 
sired model we take a A-cohen m.v.u. 

]) = {p: p is a function such that dom p El • 0) is finite and rall p~.{(),~}} 

[i, p. 119]. We fix a set G~P which is P-generic on .�9 and note two known properties of 
generic extensions of Jg[GI: 

cardinals of the model .H are also cardinals in .H [G] and their cofinalities 

are also preserved; (2) 

every set t~ ~ .~ [GI, I~ ~ % can be covered by a set t~' ~.~, u' ~ ). that l~s 

the same cardinality in.~ [Glas u. (3) 

The proof is based on the chain countability condition (c.c.c.) of the set P (see [i, 
Chap. 4, Sec. 3] and [4, Sec. 18]). 

Let a~(k) = i,-.Bl,~G(p (~,k)== i) for ~ < i; then ag is a function from w to {0, i}. We 
identify every such function a with a proper fraction whose binary expansion has digits a(0), 
a(1), a(2) ..... and use this identification to denote the Vitali class [a~] of a~. We also 
note that 

a~ =~= anand [a~] ::~ [Qn] for ~ =/= ~. (4)  

A model .�9 needed for the proof of the theorem is obtained by a symmetrization i n ~ I [ G ]  
using two automorphism groups. 

The first group is B == {b~H: b is a bijection from i onto %}. 

The automorphisms of the second group are constructed using sets belonging to Z = {z~ 
% • m: z is finite}. 

Let b~ B and z~Z. If $ < i then let 

a~(k) for <~,k>~Sz. 
za~ (k) = ] - -  a~ (k)  for <~, k> ~ z. 

The finiteness of z implies the finiteness of the set of all indices ~ such that za~ ~ a~, 
and if g is such an index then the set of k such that za~(k) ~ a~(k) is also finite. In par- 
ticular, this implies that [za~] = [a~] for all ~. 

Suppose also that u c%. Define in .,~ [GI sequences zb l u : <zab(~): ~U> and [zb [u] == 
<[zab(~)]: ~---u>: actually, the above arguments imply that [zblu] does not depend on z, and 
this notation method is used for consistency. 

Finally, let 

Co : {u ~ ~: u E .'~ has cardinality <0in~}; 

~ = {zb  [ u: z ~_. Z ,  b ~ B ,  It ~ Cz}; 

IW~I = {[zb I ul :  z ~ Z,  b ~ B,  u ~_ C~.}. 

The desired properties are possessed by a model 

~.v" = H O D  (Wz U [W~.I U {ll':z, [W~I}) in J,: IG], 
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containing all sets that are hereditarily defined (i.e., together with every element of their 

transitive closures) in dt [G] with formulas whose variables are ordinals, sets PP~ and [W%], 
and the elements of these sets. 

The model ~ satisfies all axioms of ZF [6]. Furthermore, J[ ~ ~" ~ .AI [G] (the first in- 
clusion holds because the constructivity axiom holds in d{, which also implies that .~' C HOD 
in d[ [G]). Consequently, assertion (2) also holds for the extension w~ of the model Jr. 

LEMMA i. The principle DC holds in the model JV'. 

Proof. Using the known method of calculation of DC in models constructed using ordinal 
definability [4, Sec. 20; 5, Sec. III.2], we see that to check DC in J~ it suffices to prove 
the following two statements: 

if g ~ .J)"f [G], g: o ) ~  J[, then g H , A # ;  ( 5 )  

i f  g H .,If [G]; g: ~o ~ W,~ LI [W~d, then g H .V'. ( 6 )  

We first prove statement (5). Carrying out our argumen'ts in ..t./, we define 

Qn --- {P H P :  3x  (p ~- g (n) - -  a')} (n H o)), 

where ~- is the restriction corresponding to the m.v.u. P and a generic extension of type 
�9 J{ [G] (to avoid excessive formalism, in our notation we do not differentiate between sets in 
the generic extension and the corresponding terms of the special language used to write the 
restriction formulas). In every Qn we choose a maximal antichain An~__Qu: then c.c.c, im- 
plies that A n is countable and a set u = - t ~  Uv~a l lPl I ,  where Ilpll = {~: Bk(<~, k> H domp)}, 

' U n e e )  " n 

is also countable (in ..7/). The maximality of A n implies that 

g (n) -:  x - ,  Bp H G (ll p II ~-- u / ' , ,  p H- g (n) =- x). ( 7 ) 

However, if Ilpll ~ u then we have an equivalence 

p H G - - V < ~ ,  k > H d o m p ( p ( ~ ,  k) = a t (k ) ) ,  

U s i n g  t h i s  t o g e t h e r  w i t h  ( 7 )  and  t h e  f a c t  t h a t  a r e s t r i c t i o n  on .,r c a n  be  w r i t t e n  i n  ,r a n d  
i s  o r d i n a l l y  d e f i n a b l e  i n  t h e  e x t e n s i o n  .,q; [G], we s e e  t h a t  g H H O D  ( ~ e  ]u )  i n  d /  [G], w h e r e  
e H B  i s  t h e  i d e n t i t y  b i j e c t Y o n  d e f i n e d  by  e ( ~ )  = 5 f o r  a l l  ~.  

Now we p r o v e  s t a t e m e n t  ( 6 ) .  F o r  s i m p l i c i t y ,  l e t  g: m - +  Wx and  

g (n) = z~b~ lug, u~ H C~., b n H B ,  z n H z 

for all n. A set v = U,,E,~ (b]'un) ~-- ~has cardinality <• in Jr [G}, since the noncountable co- 

finality of x is preserved in Jg [G] by (2). Therefore, using (3) we obtain a set u H C• such 
that v C u. It is now easy to see that g H HOD in d{ [G] with respect to ~elu (H Wx) and se- 
quences <u~: n ~ 0)>, <bn: n ~ 0)>, <zn: n H m>, which belong to ~ by (5). 

LEMMA 2. H (c) --= • in ,.A z'. 

Proof. Inequality 75 ~ is easily obtained from the construction of the set W~.~. Namely, 
choose an arbitrary cardinal O <x and a set u H C• of cardinality O (in J[ , so therefore. 
also in .r , and define a function ] --~ ~_ "elu H .J". This mapping maps u into jo (m), and is one- 
to-one by (4). 

To derive the opposite inequality, we let h ~ W, h: x-~ ~ (m) be an arbitrary function. 
We have to prove that the domain of its values ran h = h"~ has cardinality <x in ~P; this 
would then imply the desired inequality. We note that 

n H h (~) - -  r (~, n) holds in .~t [GI 

f o r  some f o r m u l a  % w h o s e  v a r i a b l e s  a r e  o n l y  o r d i n a l s ,  s e t s  I ~  and  [Wx] ,  a n d  t h e i r  e l e m e n t s .  
L e t  

V --= U {b"u: ~z (.variable zb l u is contained in (p)} 

then v HC• We prove the following equivalence: 

n H h ( ~ )  ~ g p H G ( I l P l l  ~ _ v A p H - ~ ( n ,  n)). 

If we assume that this relation is already proven, then every set h (N), N <x, for a 
known G is determined by a countable sequence <Ann: n H~>HJg of maximal antichains Ann 
contained in sets 

Q ~ . = { p H P : I I p l I ~ _ v E p H - m ( ~ ,  n)} .  

(8) 
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On the other hand, the cardinality of a set {pEP:[lplI~_v} is equal to the cardinaiity of v, 
i.e., is less than x in J', Therefore, using a condition x~= 0 + for cardinals 0 of countable 
cofinality in .~J (see the statement of the theorem), we conclude that the family of all se- 
quences of antichains of this form has cardinality <x in ./'. Therefore, the set ranh also 
has cardinality <x in ~. 

Thus, equivalence (8) implies Lemma 2. The implication from left to right in the equiv- 
alence itself is nontrivial, so let n~h(N). There exists a condition Pl ~ G, restricting 
%0 (~], n), that does not necessarily satisfy [I Pill ~---u. However, assume that 

p0 = p ,  l ," = {<~ ,  k,  i> = -  p , :  ~ _ v } ;  

Then P o ~ G  ( s i n c e  P 0 ~ P ,  ~ G )  and IJP0]l~__v, i . e . ,  i t  r e m a i n s  t o  show t h a t p 0 H -  ~ (B, n). 

To do t h i s ,  we a s sume  t h e  o p p o s i t e ,  i . e . ,  t h a t  t h i s  r e s t r i c t i o n  d o e s  n o t  h o l d .  Then 
t h e r e  e x i s t s  a c o n d i t i o n  P2 ~ P,  P0 ~ P2, r e s t r i c t i n g  ]~p (~, n). The c o n t r a d i c t i o n  b e t w e e n  P l  
and P2 l o c a l i z e s  on a s e t  

= {<~, k> ~ dora p, ~ dom p~: p,  (~, k) r p.. (~, k)), 

I t  d e f i n e s  an o r d e r  a u t o m o r p h i s m  o f  t h e  s e t  P s u c h  t h a t  dom~p = domp and 

p (~, k) for <~, k> ~ ~, 
.~p (~, k) = t - -  p (~, k) for  <~, k> ~ ~, 

and a l s o  a c h a n g e  o f  v a r i a b l e s  i n  W~. and [WI] a s  f o l l o w s :  

(zb I u) := z'b [ u; ~ [zb [u]  = [z'b ] ul; 

whe re  z' --= (z - -  ~) ~ ( . [ -  z), and t h e  s e t s  Wx and  [W~] a r e  mapped t o  t h e m s e l v e s .  L e t  ~ be a 
f o r m u l a  o b t a i n e d  f r o m  %o u n d e r  t h i s  c h a n g e  o f  v a r i a b l e s .  

We u s e  t h e  s t a n d a r d  t e c h n i q u e  o f  s y m m e t r i c  m o d e l s  t o  C o n c l u d e  t h a t  ~P2 H - - - i ~  (B, n) a s -  
suming  that P2 restricts -]%0 (~I, n). Meanwhile, by construction there are no pairs <~, k> ~ 
such that ~ v. Therefore, the definition of v implies that every variable of form zblu 
contained in u, satisfies ~(zblu)= zblu. On the other hand, variables [xblu] do not depend 
on z at all and therefore also remain the same. Thus, formulas zband u, are identical, and 
we have ~P2 h L- -~r (~, n). 

Finally, by definition of r conditions Pl and ~P2 are compatible in P, which is the 
desired contradiction with the choice of Pl- This concludes the proof of relation (8) and 
Lemma 2. 

LEMMA 3. H (m) ~ ~ in ~I n. 

Proof. As before, it suffices to prove the direction ~.. Let h~r h: l-~M; be an 
arbitrary function, i.e., the values of h are Vitali classes. Furthermore, 

X ~ h (~]) *-* %0 (~], X) ~holds in .][, [G] 

for some formula%o, whose variables are only ordinals, sets W~ and [Wl], and their elements. 
Let v = ~ {b"u: Bz (either zblu or [zblu] is contained in zb I u Thus, [zb l u]. We give the fol- 
lowing auxiliary definition. 

Suppose that v~ C~, A w-term is an indexed set t ---- <An~: n~ m such that i~ {0, i}} ~.z~ 

i) every set An0 ~ A~, is a maximal antichain in P, 

2) A,,o N A,,~ = ~,;  and 

3) a set II tl]- ~,e0~ U~p~t,~HPII is contained in ,w. 

Every term of this form induces in the generic extension .~I [G] a function a = G ($), a: m-~ {0, I} 
as follows: a(n) = i if G Q A,~i~= ~,. 

Now we fix a set u, ~__ I- v. a, ~ .~'. that is countable in .Y~. The key result in the proof 
of Lemma 3 is as follows. 

If q < )~ then there exists a (y ~ Ul)-term t such that G (t) ~ h (~]) [taking into 
account the identification of a function a = G(t) with the corresponding proper 
fraction defined above]. (9) 

We note that the set of all (v ~ u,)-terms has cardinality <l in .~', since in the state- 
ment of theorem we require that ~ ~ 8 + for cardinals 8 that have countable cofinality in .2,~ 
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Thus, assuming that statement (9) is already proven, the domain of values ranh of the func- 
tion h has cardinality <X in JV', and the arbitrariness of h implies that H (m)~%. 

To prove (9), we assume that q < X and x~h (0). Assuming that x is a proper fraction, 
we study the corresponding (under the defined identification) function a: ~-+{0, I} and de- 

! 
fine a term t'~.F using maximal antichains Ani chosen in .~ in sets 

Q=i = { p ~ P :  p H -  a ( n )  = i}. 

The c.c.c, for P implies the countableness in .H of a set llt'll; thus, a set u 2 = llt'll - v 
is also countable in J! (or finite), and by construction t' is a (v ~I u2) -term. 

Furthermore, G(t') = a, so the choice of x shows that there exists a condition p2~G, 
that implies that G(t')~k(N), i.e., it restricts a formula ~ (q, G(t')). 

Furthermore, since u I is countable, u 2 is no more than countable, and G is generic, 
there exists a bijection ~ B  such that ~"u2~_ua, ~(~) = ~ for all ~v, and ~P2 = Pa ~G, 
where 

tip -= {<~ (~), k, i>: <~, k, i> E p }  fo r  a l l  p ~ P .  

The bijection $ not only defines an order automorphism of the set P with the above equation, 
but also a transformation of formulas for which zblu and [zblu] become 

(zb l u) =: (~z) (~b) l u and ~ Izb l u ]  =' l (~z )  (gb) l u ] ,  

respectively, where ~z : {(~ (~), k>: <~, k> ~ z} and (~b) (~) = ~ (b (~)) for all ~ < k. The formula 
~(P, obtained from q~ under this transformation is equal to r by the construction of v, and a 
term 

I --. <A hi: n ~ .  m, i ~ {0, l}}, where A n i  ~-- {~p: p ~ A,~;}, 

is a (u ~i ul)-term by the choice of 6. Thus, applying the transformation $ to a relation 
P~-~ (0, G(t')), we obtain p1~-q~(1], G (1)). Therefore, G(t)~h0]), since p~_G. This proves 
relation (9), Lemma 3, and the theorem. 

Application. A proof of Sierpinski's theorem (we cite it because of the beauty and the 
unexpectedness Of this theorem and the fact that it has received very little attention in 
recent papers). Suppose that a set M is linearly ordered by a relation -<. Decompose the 
plane R 2 into three sets as follows: 

P = {<x,u>: [ x l - < l y l } ,  Q = {<x, y>: ly] < [ x ] }  

and f -= {<z ,  y>: Ix ]  := [ y ] } .  If we assume that every set X C:~-R is Lebesgue measurable then all 
plane sets are also measurable. In particular, the set E is measurable and has measure zero 
by Fubini's theorem, since every vertical section of E is countable. 

Furthermore, the set P by its construction is invariant with respect to vertical and 
horizontal rational translations, so therefore (since P is measurable) either P has measure 
zero or its complement has measure zero. Both cases immediately lead to a contradiction, 
for P and Q have the same measure, which can be seen from the fact that P = {<x,y>: <y, x>~Q}. 
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