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I n t r o d u c t i o n  

The internal set theory I S T  was introduced by Nelson [1] as a unified axiomatic foundation of "non- 
standard" mathematics.  The IST theory describes the universe V of all sets in such a way that,  in 
addition to "standard" sets (which are identified with regular objects of "standard" mathematics and 
obey the axioms of Zermelo-Fraenkel theory ZFC) ,  there are objects such as infinitely large and infinitely 
small numbers,  etc., incompatible with the present-day "standard" system of foundations of mathematics. 
In spite of the fact that other nonstandard set theories, more perfect and, in particular, eliminating certain 
shortcomings of the I S T  system, were proposed later (see, for instance, [2-7]), I S T  remains the most 
frequently used nonstandard axiomatic theory. 

The axioms of IST  are given below. 
One of the most important  features of Nelson's theory is its conservativeness: I S T  proves those and 

only those propositions about the class S of standard sets that the "standard" Z F C  theory proves about 
all sets. However, the interconnection between these two theories is much more complex than it may 
appear by this result [i]. For instance, as shown in [2], not every E-model is ZFC extendable (i.e., 
embeds as the class S of all standard sets) to the IST modch in particular, the minimal ZFC model 
does not permit such an extension. 

This leads to the problem of describing the transitive E -models of ZFC that can be extended to a model 
of IST. The present note is devoted to this problem. We shall derive convenient suflicicnt conditions for 
the existence of such an extension, which at the same time are necessary for the IST + theory, obtained 
by adding a certain natural form of the axiom of choice to IST. 

w Internal set theory 

The IST theory is formulated in the s language, i.e., the language with two atomic predicates, 
membership E (a dyadic one) and standardncss st (a monadic one; st z means "z is a standard set"). 
The class of all standard sets is denoted by S = {z : st z}. The list of the axioms of IST includes all the 
axioms of ZFC {in the E-language) and three additional "principles": 

(a) (carry-over) qz ~(z) :=~ ~stz q~(z) for all E-formulas ~(z) with standard parameters; 
(b) (idealization) VSta"A qz Va E A if(a, z) r 3z VSta ~(a,  z) for all E-formulas ~(z)  with 

arbi trary parameters; 
(c) (standardization) VstX 3stY V~tz (z E Y .'. ~- z E X A ~(z)) for all s t-E-formulas ~(z)  with 

arbi trary parameters. 

The quantifiers 3"tz and VStz are understood in the natural way, as "there exists a standard z" and "for 
any standard z ' ;  the quantifier V'ta"A means "for all standard finite sets A ." 
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w T h e  a x i o m  o f  s t a n d a r d  wel l -o rder ing  

Consider the extension I S T  + of the IST  theory obtained by 

(i) adding the dyadic predicate symbol < to the language of IST and the axiom that  < is a well- 
ordering on the class S of all standard sets, in particular, that each standard X ~ ~ has the <-  
smallest s tandard element, to the axioms of IST;  

(ii) permission to use < in the formula ~ of the standardization scheme (but not in the carry-over, 
idealization, separation, and substitution schemes). 

The interconnection between IST + and I S T  is not quite clear. On the one hand, IST  + is ensured by 
adjoining any "standard" set-theoretic axiom providing a well-ordering of the universe (for instance, the 
GSdel constructibility axiom) to IST and holds in ordinary models of I S T  such as ultraproducts; also, 
it is guaranteed by certain "nonstandard" axioms in the language of I S T  (see w below). On the other 
hand,  whether I S T  + is deducible in I S T  [2, Problem 6] remains an open question. 

To formulate the main result of this note, we introduce some additional terminology. Suppose tha t  M is 
a transitive E-mode] of the Zerme]o system Z.  We say that a family of sets P1 , - . . ,  P,~ (where Pi C M p~ , 
i = 1, . . . ,  n) preserves separation in M if the separation scheme in the language /~-~,pt ..... p,, is true in 
(M ; E, P1, . . - ,  P,,). The phrase "preserves substitution in M" has a similar meaning. 

Note that  E-formulas with parameters from M can be considered to be elements of M .  Let Truth M 
be the set of all closed E-formulas with the parameters from M valid in (M ; E}. 

T h e o r e m  1. Let M be a transitive E-model of ZFC.  Then the ezistence of a well-ordering < on the 
set M such that the pair of sets Tru th~  and < preserves separation in M is necessary and su~c ien t  
for M to be embeddable as the class of all standard sets in a model of I S T  + . 

C o r o l l a r y .  Under the assumptions of Theorem 1, the ezistence of the well-orderin# in question suffices 
for M to be embeddable as the class of all standard sets in a model of I S T .  

It appears that  this result substantially improves the one obtained by Nelson [1] (which establishes that  
it suffices that M be a model of ZFC of the form M = V,,, where >r is an uncountable cardinal). 

Below we prove the necessity (w and sufficiency (w167 in Theorem 1. Along with the proof of 
sufficiency, we shall establish some metamathematical traits of the theory IST  + , in particular, the fact that  
it shares with I S T  the property of conservativeness with respect to Z F C  mentioned in the introduction. 

w Necess i ty  

Consider a model I -- ( I ;  e, st, <~) of the theory IST + . Suppose that M = S (the set of all s tandard 
elements of I) is a transitive set and that E rM = s [ M.  Then (M; E) ~ Z F C ,  and so it remains to 
find a well-ordering -~ of the set M such that  the sets Truth M and -< preserve separation in M .  

Recall that the set-theoretic rank, rk z ,  of a set z is the smallest ordinal a such that  z belongs to 
the c~th level Va of the yon Neumann hierarchy. By carry-over, for any set z E M = S,  the rank rk z 
defined in (I ; e) coincides with the rank rk z defined in M,  and thus, with the rank rk z in the sense of 
the basic universe of Z F C .  

Now we set z -< V for z , 9  E M if either rkz  < rky or rkz  = rk9 and z <lV. It follows from the 
remarks above that  the relation -< is definable in the structure (I; s, st, <3). 

On the other hand, by the following result, the set Truth M is also definable in the structure (I ; e, st). 

L e m m a  1 [2]. There ezists a formula 7"(z) of the langua#e E.~,st such that the followin 9 sentence is 
a theorem in I S T  for any E-formula ~ ( z l , . . . ,  z,~): 

W Zl . . .  

Here r-~7 denotes the formula ,# regarded as a finite sequence of symbols of the E-language and the 
sets that  appear in ~k as parameters. 

Since the formula ~I, in the standardization scheme in IST + can involve < (together with E and st), 
it follows that the pair of sets Truth M and < preserves separation in M .  
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It remains to check that -< is a well-ordering of M (from the standpoint of the universe of all sets). Note 
that since any initial segment of M in the sense of -<, by the construction, is covered by a set from M, it 
will suffice to ascertain that -< well orders any X E M in the universe; and since "to be a well-ordering" 
is an absolute property for transitive models of ZFC, it remains to verify that any nonempty set Y ~ M 
has the -d-minimal element. But this is ensured by the choice of <l and the definition of -< from <I. 

w Suf f i c i ency :  t r a n s f o r m i n g  t h e  o r d e r  

Let  us fix a transit ive set M ~ Z F C  well-ordered by the relation <1 in such a way tha t  the pair of 
sets T ---- T r u t h f  and <3 preserves separat ion in M .  The argument  from w shows tha t  wi thout  loss of 
general i ty  we can assume tha t  any proper initial segment of M in the sense of <1 belongs to M .  

The  goal  of this section is to somewhat improve the ordering <l. Namely, under  our assumpt iohs ,  we 
shall-prove the following fact.  

T h e o r e m  2. There ezists a well-ordering -< of the set M such that any initial segment of M in the 
sense of  --< belongs to M and, in addition, ~ preserves substitution in M ,  and the pair consisting of -< 
and the set T '  = Truth~,,.~ of all the formulas in the language s162  with parameters from M valid in 
(M ; E, -<) preserves separation in M .  

We begin the proof wi th  a number of definitions. 
The  set  of  all s t ructures  of  the form 0, = ( X ;  < ) ,  where X E M is a transitive set of  the  form 

X = M.~ = V~ N M for a certain ordinal a E M and <E M is a well-ordering of X ,  will be denoted 
by E .  

A s t r u c t u r e  ~,' = ( X ' ;  < ' )  eztends cr = iX ; <)  if X C_ X '  and < '  is a final extension of < (i.e., < 
coincides with < '  rX and  X is an initial segment of X '  in the sense of <t).  

We define a relation o, f o r c q ~ l z l , . . . ,  z , , ) ,  where ~ E ~ ,  �9 is a s  and  zz ,  . . .  , z n  E X ,  
by induc t ion  on the complexi ty of ~b: 

(1) i f  ~ is an e lementary  formula of the language /~e,<, i.e., the formula z < y ,  z = y ,  or z E y ,  
t h e n  trforecb whenever  ~ is t rue in tr iherc and subsequently the notat ion ~ = ( X ;  <)  E ~ is 
under s tood  as ( X ;  E, <)); 

(2) crforc(q~ A q~) if c, forc~ and ~forcq2;  
(3) tr forc(--~) if none of  the structures ~,~ E ~ extending ~, satisfies the relation ~rt fore ~ ;  
(4) tr fore 3z ~(z)  if there  exists an z E X such tha t  cr fore ~ (z ) .  

Let  �9 be a formula of  the language Ef t ,< .  We say that  a structure ~ = iX ; <)  E ~ is #~-complete 
if for a n y  subformula ~ ( z l , . . . ,  zn) of the formula ~ and any parameters  zx, . . . ,  zn E X we have 
~forc r =~) or ~forc -~(z~,..., =,). 

P r o p o s i t i o n  1. If  ~b is a closed formula of the language s with parameters from X and the 
structure cr = i X ;  <) E ~, is ~-complete, then ~rforc~ and ~ ~ �9 are equivalent. 

P r o o f .  The  proof is caxried out by induct ion on the complexity of ~ .  [] 

Our  neares t  goal is to construct an increasing sequence of structures ~,.r = (X-f ; <'r) E ~ ,  7 < A, such 
tha t  M = U-r<x X-r, tha t  is, the relation < = U-r<x <~ is a well-ordering of  M .  The  s t ructures  o'- r will 
be suflleieutly "complete" (in the sense indicated above) to ensure the desired properties of < .  

We say tha t  a s t ruc ture  ~ E ~ is totally complete if it is ~-comple te  for any formula ~ of  the 
language f ~ , < .  The  construction depends on the frequency of totally complete s t ructures in E: 

(1) a n y  ~, E ~ is extendable  to a totally complete ~r ~ E E; 
(2) this is not the case. 

In case (I), we construct a sequence of structures ,~ = IX-r; <-~) E Z, where 7 < A, so that X, = 
U-~<6 x-z, <, = U.r<~ <-r for all limiting ordinals ~ < A, and ~-r+x is the <l-minimal totally complete 

structure in ~ that properly extends ~r. t . Here A is the greatest ordinal such that a-~ is defined (and 
belongs to ~, hence, to M) for all 7 < A; dearly, A is not greater than the smallest of ordinals not in M. 

In case (2), we fix a recursive enumeration {~,, : n E w} of all formulas of the language s Let 
us say that a structure ~ q ~ is n-complete if it is <bl-complete for any k < n. We set A = ~o, choose 
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an arbitrary s tructure ~'o E E not extendable to a totally complete structure, and define a sequence of 
structures an = (Xn  ; <n) E ~ so that for any n E w, O'n+ 1 is the <3-minimal n-complete s tructure in E 
properly extending ~rn. 

In either of the cases considered above, (~7 : 7 < A) is a sequence of elements of M definable in 
( M ;  E, <3, T)  by construction (recall that T = TruthM). 

L e m m a  2. A is a limiting ordinal and UT<x x 7  = M .  

P r o o f .  Recall that  3~ = w in case (2). If we had A = 7 +  1 in case (1), then we could define ~x.  Thus, 
A is a limiting ordinal and the relation -~ = [-JT<x <7 is a well-ordering of X .  

Suppose that  X = LJT<x x 7  ~ M .  Then X E M ,  because all the sets X 7 axe of the form Ma = VaMM. 
It follows that -~ belongs to M ,  because <3 and T preserve separation in M .  Therefore, ~ = (X ; -~.) E E.  
Furthermore, cr is totally complete (as the limit of an increasing sequence of totally complete structures in 
case(l)  and for a similar reason in case (2)). In case (2), this immediately comes in contradiction with the 
choice of ~0 ; in case (1), this adds one more term to the sequence, which contradicts the choice" of  A. [] 

P r o o f  of  T h e o r e m  2. Thus, -~ = U;<x  <7 is a well-ordering of M .  Let us verify that the pair of 

sets -~ and T '  = Truth~,,.~ preserves separation in M .  It will suffice to ascertain that -~ and T '  are 

definable in the structure ( M  ; E, <3, T ) ,  where T = Truth M . 
The fact that  the ordering -~ is definable in (M;  E, <3, T)  is obvious from the construction. Let us 

examine the set T ' .  
Consider a closed formula ~(pl , . . . ,  pk) of the language s  with parameters pz , . . . ,  pl= E M .  Let n 

be the number of the formula ~ ( z x , . . . ,  zk) (see the case (2) above). Consider the smallest ordinal "7 < A 
such that  p t ,  . . . ,  p~= E X 7 and, in the case (2), "7 > n. By using Proposition 1, it is readily verified that  ~7 
is an elementary subs t ructure  of (M ; E, -<) with respect to the formula ~ ; in particular, ~(pz,  . . . ,  p~=) is 
true (or false) in a7 and ( M ;  e ,  -<) simultaneously. However, the sequence of structures a- v is definable 
in ( M ;  E, <3,T). 

The same argument (i.e., the fact" that the model (M;  E,-~) has elementary substructures of the 
form aT) shows that  the relation -~ preserves substitution in M .  This completes the proof of  Theo- 
rem 2. [] 

We 
on the 

O) 

but in 
w for 

w T h e  u l t ra f i l te r  

proceed with the proof  of sufficiency in Theorem 1. In what follows, let us fix the well-ordering -~ 
set M provided by Theorem 2. In particular, we assume that 

all proper initial segments of M in the sense of -~ belong to M ; 
the pair of sets -~ and T '  = Truth~.~ preserves separation in M ;  

order to make the argument applicable to the metamathematical analysis of the theory I S T  + in 
the time being, we shall not assume that (M ; E) satisfies the substitution scheme. 

We must construct a model I ~ IST  + with M as the class of all standard sets. This model  will be 
obtained as the Nelson adequate ultraproduct of M [1] (in the modification of [2]). Let us choose a suitable 
ultrafilter. 

Denote by Def~,,.~ the family of all sets X _C M definable in (M ; E, -~) by a formula of  the lan- 
guage F-e, < with parameters  from M .  Set I = 7~aa(M) = {i C M : i is finite) (this is a proper  class 
in M) ,  and consider the algebra A of all sets X C_ I ,  X E Def~,<.  

L e m m a  3. There ezists an ultrafilter U C_. A such that 

(a) if  a E M ,  then the set { i  E I : a E i} belongs to U; 
(b) if P C_ M • I ,  P E Def~,.~, then the set 

{= e M :  section P= = ( i :  (=, i )  e P }  belongs to 

belongs to D e f ~ ;  
(c) there ezists a set LI C m definable in ( M ; E , - < , T ) '  such that U = {Llx : z E M } ,  where 

hi= = {i e I :  ( z ,  i) E U} for all z .  
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P r o o f .  The family U0 of all the sets of the form 

L,~. . .~ , ,  = { i  e I : a ~ , . . . ,  a ~  ~ i } ,  

where a l , . . .  ,am E M ,  obviously satisfies FIP (the Finite Intersection Property), i.e., any intersection of 
finitely many  sets from U0 is nonempty. 

Suppose that the FIP-f~mily Un C A has already been defined. Assuming that a recursive enumeration 
of all the  formulas of s  with two free variables has been fixed in advance, denote by Xn(Z, i) the n th  
formula in this enumeration. 

Set U n + l  = Un  U ( B  z : z E M},  where B= is the set 

A. = {i E I :  (M; 4) i)} 
if the family U,, U {By : y -< z} t3 A~ still satisfies FIP, and B~ = I \ A~ otherwise. 

It is readily seen that  U = U,, U,~ is the desired ultrafilter; condition (c) is ensured by carrying out the 
entire construction in ( M  ; E, -<, T ' ) .  [] 

In what  follows, we fix the ultrafilter U C_ A from the last lemma. 
The  phrase "the set {i  E I : ~(i)} belongs to U" will be written as Ui ~(i) (the quantifier IJ means 

"there exist U-many") .  Then by the choice of U we see that 

(a) Vi (a ~ 4) for all a E M;  
(b) whatever is the relation P( i ,  . . .  ) in Def~,,.<, the relation IJi P ( i ,  . . .  ) belongs to Def~,,.< as well. 

w T h e  m o d e l  

For r _> 1, define I ~ = I • --- x I ( r  factors I )  and 

Fr = { f  G DefeM,,.<: f maps I r to M } ;  

for r = 0, set I ~ = {0} and F0 = {{(0, z)} : z E M} .  Finally, let foo = Ure,~F- and for f E foo,  
denote by r ( f )  the unique r such that f E F t .  

Suppose that  f E Foo, q > r "= r ( f ) ,  and i = ( i t , . . . , i r , . . . ,  iq) E I q. In this notation, set 
f i l l  = f ( ( i l , . . . ,  i,.)). In part ic~ar ,  f[i] = f(1) for r = q. Also, f[i] = z for all i if f = (C0, z)} E F0. 

Let f ,  g E Foo, and let r = max{r ( / ) ,  r(g)}. We write f *= g if 

Uir Uir-1 . . .  Uil (f[i] = g[i]) (1) 

where i = <Q, . . . ,  i t)  ; the order of quantifiers in formula (1) is essential. The relations f *E g and f *-< g 
are defined similarly. The next statement is readily verified. 

P r o p o s i t i o n  2. The relation *= is an equivalence on Foo. The relations *E and *-< on F~o are *=- 
invariant in each argument.  

Let [f] = {g E Foo: f *-- g}. Consider the quotient set I = {[f] :  f E Foo}. For [f], [g] E I ,  we write 
[f] *E [g] if f *E g; the relation [fl *'< [g] is defined similarly. For z E M ,  let *z = [{(0, z}}] be the image 
o f z  in I .  Let S = { * z : z E M } .  

Finally, we set st[fl if [f] = *z for a certain z E M.  

T h e o r e m  3. The map z ~ *z is a one-to-one function from M onto S that takes E and -< to *E 
and *-<, respectively, and the elementary embedding of (M  ; E, -<) to (I;  *E, *-<). In addition, (I ;  *E, *'< 
, st) satisfies the idealization and standardization schemes, and the formula �9 in each of these schemes 
can include the predicate *-< together with *E. 

This theorem yields the sufficiency in Theorem 1. Indeed, suppose that in addition to the assumptions 
made at the beginning of w M is a model of Z F C .  Then, by Theorem 3, (I ; *E, st) is a model of I S T ,  
and with the restriction *-< I S of the ordering *-<, even a model of I S T  + whose class S of s tandard sets 
is isomorphic to M .  

We begin the proof of Theorem 3 with several definitions. 
Let ~ ( f l , . . . ,  fro) be a formula of the language s  with functions f t , . . . ,  f,~ E F as param- 

eters. Set r (~)  = m a x { r ( f ~ ) , . . . , r ( f , , ) } .  I f  r <_ q and i G Iq ,  then we denote by @[i] the for- 
mula @(fl[i], . . . ,  fm[i]) (of the language s  with parameters from M), and by [~] the formula 
r  [f~]) (with parameters from I). 
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Proposition 3 (Los' Theorem). For any formula ~ = ~ ( A , - . - , f , ~ )  of the language s with 
parameters f l , . . . ,  f,,~ E F and for r = r ( ~ ) ,  we have 

(I;  *E, *--<) p [q~] -'. :- Ui,. Ui , ._ l  . . .  Ui i  ((M ; E, -<) p ,I,[i]) 

(where i denotes ( i l , . . . , i ~ ) ) .  

P r o o f .  The trick is that  since the index set I is a proper class in M ,  we need a well-ordering of M 
for the usual inductive argument in the Los ~ Theorem to be correct. That is why we need /:~,< rather 
than just  the E-language as the base language, and accordingly, the model (M ; E, -<) rather than just 
(M;  E) as the initial structure. [] 

Proof o f  T h e o r e m  3. In essence, it remains to verify the idealization and standardization schemes 
(I *-<, st).  
Idealization. Consider a s  ~(a ,  z) with two free variables a, z and functions from F as 

parameters. We must prove that 

v" na w A [el(a, :. (2) 

in I (it is known [1] that the implication "~" in (2) follows from other axioms of IST). By Propo- 
sition 3, the left-hand side of (2) implies VtlnlteA ~ M Ui~ Uirl . . .  Uil 3z Va E A q ' [ ( i l , . . . , i r ) ] ( a ,  z) 
in M ,  where r = r (~ ) .  To simplify this formula, we note that the domain of the leftmost quantifier 
is I .  Consequently, for the function c~ E Fr+l defined by the equation a(ix,  . . .  , i~ , i )  = i ,  we obtain 
Vi E I Uir Uirx . . .  Uit (3z Va E c~ ~ ) [ ( i t , . . . , i r , i ) ] ( a ,  z) ,  whence by Proposition 3 it follows that 
3z Va E [ct] [ff](a, z) in I .  Now by the definition of the predicate s t ,  it suffices to check that *z *E [a] 
in I for any z E M ;  in other words, that  Ui Uir . . .  Oil (z E i). But the latter is true by the choice 
of U.  

Standardization. Recall that U is definable in (M ; E, -<, T ')  in the sense of condition (c) of Lemma 3. 
Therefore, the model (I;  *E, st) is also definable in ( M ;  E,-<, T ' ) .  Thus, it remains to check that for 
z E M ,  any set V C_C_ z definable in (M ; E, -<, T ' )  (with parameters from M permitted) belongs to M .  
But this follows from the fact that the pair of sets -< and T '  preserves separation in M .  [] 

w M e t a m a t h e m a t i c a l  p r o p e r t i e s  o f  the  I S T  + t h e o r y  

Let us show that the I S T  + and I S T  theories are in much the same relation to Z F C ,  in particular, 
I S T  + and Z F C  are equally consistent. 

T h e o r e m  4. The I S T  + theory is a conservative eztension of the Z F C  theory in the sense that any 
closed E-formula is deducible in I S T  + i f  and only if it is deducible in Z F C .  

P r o o f .  Suppose that a sentence ~o in the E-language is a theorem in I S T  + . Let us prove that ~o is 
deducible in Z F C  as well. Let ~ be the finite fragment of IST  + involved in the deriwtion of ~ .  The 
following argument deduces q0 in Z F C .  

We fax a limiting ordinal A such that  M = Vx satisfies all the instances of substitution in ~ ,  and 
additionally is an elementary submodel of the universe with respect to our formula ~o. Let -< be any well- 
ordering of M such that any initial segment of M in the sense of -< belongs to M .  Since M contains all 
subsets of sets from M ,  in this case we are in the situation described at the beginning of w This means 
that there exists a structure (I ; *E, *-<, st) and an embedding z ~ *z from M to I satisfying Theorem 3. 

Then the structure (I ;  *E, *-< [ ,s t)  is a model of q~, i.e., the formula ~ is true in (I; *E). It follows 
that ~ is true in M as well, and hence, by the choice of M ,  in the universe. [] 

w On some other extensions of IST 

The method of extension of IST we used for the construction of the theory IST + provides tools 
minimally sufficient for the argument in w However, the sufficiency part of Theorem 1 applies to some 
stronger and, perhaps, more natural extensions of IST as well. We shall consider two of them. 
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Let us define I S T '  as the extension of I S T  in the s language by means of a single axiom: 

there exist a set D and a well-ordering < on D such that S C D and the <-smallest element of 
any standard set is standard. 

It is clear that  I S T  ' implies I S T  + , i.e., the  necessity in Theorem 1 is valid for I S T  t as well. To study 
the question of sufficiency, consider one more theory. 

Recall that  Z F  GC (or Z F  plus the Global Choice) is an extension of Z F C  in the language s  by 
the following axiom: 

the relation < is a well-ordering of the class of all sets and any initial segment in the sense that < 
is a set. 

In addition, < can be involved in the separation and substitution schemes. Denote by I S T  GC the 
theory that  can be called an IST-eztension of Z F G C ,  i.e., the theory in the language s that 
includes Z F  GC (in the language s  and idealization, standardization, and carry-over schemes, in 
each of which q~ can be a formula of s  (cf. the definition of IST  in w 

On the one hand, I S T  GC implies I S T  ~ , and hence, I S T  + . On the other hand, an obvious modification 
of the reasoning in w shows that if in the situation considered there it is additionally known that (M ; E, -~) 
is a model of Z F  GC,  i.e., that  -~ preserves substitution in M ,  then (I ; *E, *-~, st) is a model of I S T  GC. 
Hence it follows that the sufficiency in Theorem 1 extends to the IST  GC theory, and thus, to IST '  as 
well. 
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