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1. INTRODUCTION. THE PROBLEM OF CHOICE OF DEFINABLE ELEMENTS

Questions related to the definability of mathematical objects, appeared in the focus of attention of
discussions on mathematical foundations immediately after the publication of the Zermelo’s famous
paper on the axiom of choice and its application to the problem of wellorderability of an arbitrary set, in
1905, and also, to some extent, in connection with a simultaneous publication of the Richard paradox.
For instance, Hadamard, Borel, Baire, and Lebesgue, participants of the discussion published in [1],
in spite of significant differences in their positions regarding problems of mathematical foundations,
emphasized that a proof of nonemptiness, i.e., a proof of pure existence of an element in a given set, and a
direct definition (or an effective construction) of such an element are different mathematical results, and
the second one of them does not follow from the first. In particular, Lebesgue, in his part of [1], pointed
out the difficulties in the problem of effective choice, i.e., a selection of a definable element in a definable
(nonempty) set1.

For the sake of convenience of references, we represent Lebesgue’s remark as follows.

Problem 1 (Lebesgue). Is it true that every nonempty definable set has a definable element?

In the beginning of the 20th century, the level of development of mathematical foundations was
insufficient to even give an adequate mathematical formulation of the problem, let alone its solution.
After Tarski’s work [2] on the impossibility to mathematically define the notions of truth and definability
themselves, it became clear that the formulation of the problem needed to be elaborated. Such an
elaboration was obtained on the base of the notion of ordinal definability. A set x is ordinal definable [3]
if it can be defined by means of a set-theoretic formula which contains one or several ordinals in the role of
parameters of the definition. Note that the classOrd of all ordinals is an extension of the natural numbers,
unique in itself and determined enough for not to insist on the definability of the ordinals themselves.

Unlike pure (parameter-free) definability, ordinal definability admits a set-theoretic formula od(x),
which adequately expresses the property of a set x to be ordinal definable; see [4, Sec. 3.5]. This allows
to concretely define the class OD = {x : od(x)} of all ordinal definable sets, and then to re-formulate
Problem 1 as follows.

*E-mail: kanovei@iitp.ru
**E-mail: lyubetsk@iitp.ru

1“Ainsi je vois déjà une difficulté dans ceci dans un M ′ déterminé je puis choisir un m′ déterminé”, in the original. Thus,
I already see a difficulty with the assertion that “in a determinate M ′ I can choose a determinate m′”, in the English
translation.
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Problem 2. Is it true that every nonempty ordinal definable set has an element also in the class
OD?

The problem is correctly formulated in this form, but it has no definite solution in the modern set
theory ZFC. To be more exact, the answer can be both positive and negative, depending on which
set-theoretic universes (models of ZFC) are considered.

For instance, in the universe L of Goedel’s constructible sets, all sets are ordinal definable; therefore,
the answer is trivially positive.

On the other hand, in many models obtained as extensions of the universe L by forcing (generic
extensions), it is true that even not all reals2 are ordinal definable, and hence the set

X = R \OD = {x ∈ R : ¬ od(x)},
of all reals which are not ordinal definable, is nonempty, belongs to OD (is even definable by the
formula od(x)), but does not contain any real in OD, which answers the question in the negative. For
instance, this takes place in the well-know Solovay model [5], in which all projective sets are Lebesgue
measurable.

A simple argument shows that if the set X = R \OD is nonempty (as, for instance, in the Solovay’s
model mentioned above), then it is fairly large, i.e., it definitely has the cardinality of the continuum
if it is measurable, then it has full measure, and so on. Is there a similar example among small sets,
say countable ones? This leads to the following problem, considered on such well-known discussion
boards of modern international mathematics as Mathoverflow [6] and Foundations of Mathematics
(FOM) [7].

Problem 3. Prove the consistency of the statement of existence of a nonempty countable ordinal
definable set of reals, containing no element in OD.

Note that every finite OD set of reals definitely consists only of OD elements, and hence it cannot
serve as the example required.

The next theorem, our main result, contains the solution.

Theorem 4. There is a generic extension L[〈xn〉n<ω] of the constructible universe L by a sequence
of reals xn ∈ 2N, in which it is true that {xn : n < ω} is a (countable) Π1

2 set containing no OD
elements.

Thus, the hypothesis of the existence of a countable set X ⊆ R of class Π1
2 , hence OD as well, not

containing OD elements, in fact does not contradict the axioms of ZFC. The class Π1
2 is here the best

possible. Indeed, even the dual class Σ1
2 canot contain such examples, because any (not only countable)

Σ1
2 set necessarily contains an element of class Δ1

2 by the Π1
1-uniformization theorem [8, 8.4.1] or [9,

2.4.1]. Classes Σ1
n, Π1

n, Δ1
n of the effective projective hierarchy (see [8, Chap. 6] or [9, Chap. 1] on them)

are subsets of OD, of course.
Following Enayat’s conjecture [7], [10], to prove Theorem 4, we make use of the product P<ω (with

finite support) of countably many copies of a forcing P introduced by Jensen in [11] to define a model of
set theory with a nonconstructible real x ∈ 2N of class Δ1

3. This forcing is defined, in the constructible
universe L, in the form P =

⋃
α<ω1

Uα, where each Uα is a countable set consisting of perfect trees
in 2<ω . We carry out this construction in Sec. 7, on the basis of the material of the previous Secs. 2–4.
The required properties of P<ω-generic extensions are established in Sec. 8 with the help of the key
Theorem 19.

We add a few words about the results obtained by this method shortly before the publication of this
paper. Kanovei and Lyubetsky [12] defined a model in which there exists a projective set of effective
class Π1

2 in 2N × 2N with countable vertical cross-sections, which does not admit uniformization by any

2In modern works on set theory, by reals (real numbers) one usually understands not elements of the real line proper, but
the points of the Baire space NN or the Cantor discontinuum 2N ⊆ N

N. It is in this sense that one has to understand R and
reals in this section. The exact meaning depends on the context, but everything said here is equally related to 2N, NN, or
the real line proper, because of the existence of definable 1-to-1 correspondences between the three domains.
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projective set. They also defined models [13] containing counterexamples related to the principles of
separation and reduction at the third projective level. Golshani, Kanovei, and Lyubetsky [14] defined a
model in which there is a Π1

2 pair of countable disjoint sets X,Y ⊆ 2N, effectively indistinguishable in
the sense that if A ⊆ 2N is a projective set of any effective class Π1

n, then X ∩A �= ∅ is equivalent to
Y ∩ A �= ∅.

2. PERFECT TREES

By 2<ω (the full dyadic tree) we denote the set of all strings (finite sequences) of numbers 0, 1,
including the empty sequence Λ. If s, t ∈ 2<ω, then s ⊆ t means that t extends the string s (including
the possibility of t = s), while s � t means proper extension (s ⊆ t and t �= s). If t ∈ 2<ω and i = 0, 1,
then t�i denotes the extension of t by the rightmost term i. If s ∈ 2<ω, then lh(s) is the length of the
string s, and we put

2n = {s ∈ 2<ω : lh(s) = n}
(all strings of length n).

A set T ⊆ 2<ω is called a tree if, for any strings s � t in 2<ω , t ∈ T , implies s ∈ T . In this case, if
s ∈ T , then we let

T � s = {t ∈ T : s ⊆ t ∨ t ⊆ s}
(cutting at a string).

Any nonempty tree T ⊆ 2<ω contains the empty string Λ.
By PT we denote the set of all perfect trees ∅ �= T ⊆ 2<ω . Thus, a nonempty tree T ⊆ 2<ω belongs

to PT if it does not contain terminal nodes and isolated branches. In this case, there is a largest string
s = stemT ∈ T satisfying T = T � s, the stem of T , and then s�1 ∈ T and s�0 ∈ T . If T ∈ PT, then
let

[T ] = {a ∈ 2N : ∀n (a � n ∈ T )} ⊆ 2N,

the perfect set of all branches of the tree T .

Example 5. The full tree 2<ω belongs to PT and [2<ω] = 2N. If u ∈ 2<ω , then the tree

T [u] = {s ∈ 2<ω : u ⊆ s ∨ s ⊆ u}
also belongs to PT, and [T [u]] = {a ∈ 2N : u � a} is a Baire interval in 2N.

Definition 6. A perfect tree forcing (briefly, PTF) is any nonempty setP ⊆ PT, satisfying the following
condition: if u ∈ T ∈ P, then T � u ∈ P.

Such a set P can be considered as a forcing (if T ⊆ T ′, then T is a stronger condition). It adjoins a
real in 2N to the ground model. Indeed, if a set G ⊆ P is P-generic, then the intersection

⋂
T∈G[T ] = {x}

contains a unique real x = x[G] ∈ 2N, called the P-generic real.

Definition 7. Let P be a PTF. By P
<ω we denote the product of ω copies of the forcing P with finite

support.

In other words, a typical element of the set P<ω – we call it a multitree (over P) – is a sequence of
the form τ = 〈Tn〉n∈ω, each term Tn = τ (n) of which belongs to P∪ {2<ω} (usually P will contain 2<ω),
and the set |τ | = {n : Tn �= 2<ω} (the support of τ ) is finite.

The set P<ω is ordered componentwise: σ ≤ τ (i.e., σ is a stronger condition), if σ(n) ⊆ τ (n) in P

for all n. As a forcing, P<ω adjoins a sequence 〈xn〉n<ω of P-generic reals xn ∈ 2N. Indeed, if a set
G ⊆ P

<ω is P<ω-generic and n < ω, then, by the product forcing theorem, the set Gn = {τ (n) : τ ∈ G}
is P-generic, and hence the real xn = xn[G] = x[Gn] is P-generic by the above.

Remark 8. Strings 〈T0, . . . , Tn〉 of trees Ti ∈ P will be used to denote the multitrees

〈T0, . . . , Tn, 2
<ω, 2<ω, 2<ω , . . . 〉 ∈ P

<ω.
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3. SPLITTING SYSTEMS OF TREES

Let us fix a PTF P ⊆ PT.

Definition 9. The set SS(P) (splitting systems over P) consists of all systems ϕ = 〈Ts〉s∈2≤n , where
n = hgt(ϕ) < ω (the height of ϕ), and

(1) every Ts = Tϕ
s = ϕ(s) is a tree in P,

(2) if s�i ∈ 2≤n (i = 0, 1), then Ts�i ⊆ Ts and stem Ts
�i ⊆ stemTs�i, which easily implies that

[Ts�0] ∩ [Ts�1] = ∅.

We set that the empty system Λ also belongs to SS(P), and hgt(Λ) = −1. (There exist many systems
ϕ ∈ SS(P) with hgt(ϕ) = 0; each one of them contains a single tree T = Tϕ

Λ , where Λ is the empty
string.)

If ϕ, ψ are systems in SS(P), then we say by definition that

• ϕ extends ψ (in symbol, ψ � ϕ), if n = hgt(ψ) ≤ hgt(ϕ) and ψ(s) = ϕ(s) for all s ∈ 2<n (and
separately Λ � ϕ for each ϕ);

• strictly extends ψ (ψ ≺ ϕ) if, in addition, hgt(ψ) < hgt(ϕ);

and finally ϕ refines ψ, if

n = hgt(ψ) = hgt(ϕ), ϕ(s) ⊆ ψ(s), s ∈ 2hgt(ϕ), ϕ(s) = ψ(s), s ∈ 2<hgt(ϕ).

Thus, the refinement allows to shrink the trees at the highest level of the system, but does not change
those trees which belong to lower levels.

Since P is a PTF, there exist strictly ≺-increasing sequences 〈ϕn〉n<ω of systems ϕn in SS(P). The
limit system

ϕ =
⋃

n

ϕn = 〈Ts〉s∈2<ω

of such a sequence obviously catisfies conditions (1) and (2) of Definition 9 on the whole domain 2<ω .

Lemma 10. In this case, both T =
⋂

n

⋃
s∈2n Ts and all intersections of the form T ∩ Ts are trees

in PT (not necessarily in P), and we have

[T ] =
⋂

n

⋃

s∈2n
[Ts] and [T ∩ Ts] =

⋂

n≥lh(s)

⋃

v∈2n, s⊆v

[Tv].

If u ∈ T , then there is a string s ∈ 2<ω such that T � u = T ∩ Ts.

Proof. To prove the last claim, it suffices to pick the least string s ∈ 2<ω such that s ⊆ stem Ts.

We define SS<ω(P), the product of SS(P) with finite support, to be the set of all infinite sequences
Φ = 〈ϕk〉k∈ω , where each term ϕk = Φ(k) belongs to SS(P) and the set |Φ| = {k : ϕk �= Λ} (the
support of Φ) is finite. Sequences in SS<ω(P) will be called multisystems (over P).

We define Ψ � Φ, if Ψ(k) � Φ(k) (in SS(P)) for all k. Then Ψ ≺ Φ means that

Ψ � Φ, Ψ(k) ≺ Φ(k) for at least one k.

In addition, let Ψ ≺≺ Φ, if |Ψ| ⊆ |Φ| and Ψ(k) ≺ Φ(k) for all k ∈ |Φ|.
A tree T ∈ PT occurs in a system ϕ ∈ SS(P), if T = ϕ(s) for a string s ∈ 2≤hgt(ϕ), and occurs in a

multisystem Φ = 〈ϕk〉, if it occurs in one of the systems ϕk, k ∈ |Φ|.

MATHEMATICAL NOTES Vol. 102 No. 3 2017



342 KANOVEI, LYUBETSKY

4. JENSEN’S EXTENSION OF A FORCING

The goal of the following key Definition 12 is to define a forcing U, which extends a given PTF P in
a certain way. This method of extension introduces important properties of genericity of the extended
forcing. It was proposed by Jensen [11] in the context of perfect trees.

By ZFC′ we denote the subtheory of the Zermelo–Fraenkel set theory ZFC, including all axioms
except for the power set axiom, which is replaced by the axiom of the existence of the power set P(X)
for every at most countable set X. (This also implies the existence of the ordinal ω1 and such continual
sets as PT.)

Definition 11. Let P be a PTF. A set D ⊆ SS(P) is dense in SS(P) if, for any system ψ ∈ SS(P),
there is a system ϕ ∈ D extending ψ, and open dense in SS(P) if, in addition, any system ϕ′ ∈ SS(P),
extending a system ϕ ∈ D belongs to D itself.

Finally, D is pre-dense in SS<ω(P) if {ϕ′ ∈ SS(P) : ∃ϕ ∈ D, ϕ � ϕ′} (the set of all extensions of
systems in D) is dense in SS(P).

Definition 12. Let M be a countable transitive model of the theory ZFC′.
Assume that P ∈ M is a PTF containing the tree 2<ω . Then the sets P

<ω, SS(P), SS<ω(P) belong
to M as well.

Let us fix a �-increasing sequence Φ = 〈Φj〉j<ω of multisystems Φj = 〈ϕj
k〉k∈ω ∈ SS<ω(P), generic

over M, i.e., a sequence that has a nonempty intersection with any set D ∈ M, D ⊆ SS<ω(P), dense
in SS<ω(P). Then, in particular, Φ intersects every set of the form

Dk = {Φ ∈ SS<ω(P) : ∀k′ ≤ k, k ≤ hgt(Φ(k′))}.

Thus, if k < ω, then the sequence {ϕj
k〉j<ω} of systems ϕj

k ∈ SS(P) strictly increases with breaks:

ϕj
k ≺ ϕj+1

k for infinitely many indices j (and ϕj
k = ϕj+1

k for all other j). Therefore, there exists a system

of trees 〈TΦ
k (s)〉k<ω∧s∈2<ω in P such that ϕj

k = 〈TΦ
k (s)〉s∈2<h(j,k) , where h(j, k) = hgt(ϕj

k). Then

UΦ
k =

⋂

n

⋃

s∈2n
TΦ

k (s) and UΦ
k (s) =

⋂

n≥lh(s)

⋃

t∈2n, s⊆t

TΦ
k (t)

are trees in PT (not necessarily in P) by Lemma 10 for all k and s ∈ 2<ω; and we have

UΦ
k = UΦ

k (Λ), UΦ
k (s) = UΦ

k ∩TΦ
k (s).

We let U = {UΦ
k (s) : k < ω ∧ s ∈ 2<ω}.

We prove the basic properties of this set U in the following lemmas.

Lemma 13. The sets U and P ∪ U are PTFs. P ∩U = ∅.

Proof. To prove P∩U = ∅, we let T ∈ P and U = UΦ
K(s) ∈ U, where K ∈ N, s ∈ 2<ω . We must check

that T �= U .
The set D(T,K) of all multisystems

Φ = 〈ϕk〉k∈ω ∈ SS<ω(P)

such that K ∈ |Φ|, lh(s) ≤ h = hgt(ϕK), and T \
⋃

t∈2h ϕK(t) �= ∅, belongs to M and obviously is
dense in SS<ω(P). Therefore there is an index j such that the multisystem Φj belongs to D(T,K).
Thus K ∈ |Φj|, lh(s) ≤ h = hgt(ϕj

K), and T \
⋃

t∈2h ϕK(t) �= ∅. To prove T �= U , it remains to check

that U ⊆
⋃

t∈2h ϕ
j
K(t).

Indeed, by definition,

U = UΦ
K(s) ⊆

⋃

t∈2h, s⊆t

TΦ
k (t) ⊆

⋃

t∈2h
TΦ

k (t),

and hence we really have U ⊆
⋃

t∈2h ϕ
j
K(t), because, by definition, TΦ

k (t) = ϕj
K(t).
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Lemma 14. The set U is dense in U ∪ P.

Proof. Let T ∈ P. The set D(T ) of all multisystems Φ = 〈ϕk〉k∈ω ∈ SS<ω(P) such that ϕk(Λ) = T for
some k, belongs to M, and is dense in SS<ω(P). It follows that Φj ∈ D(T ) for some j, by the choice
of Φ. Then TΦ

k (Λ) = T for some k. But UΦ
k (Λ) ⊆ TΦ

k (Λ) by construction.

Lemma 15. If a setD ∈ M, D ⊆ P is pre-dense inP andU ∈ U, then there exists a finite setD′ ⊆ D

satisfying U ⊆
⋃

D′: formally, U ⊆fin
⋃

D.

Proof. We suppose that D is open dense in P. Indeed, otherwise, we replace D by the set
D1 = {T ∈ P : ∃S ∈ D, T ⊆ S}. Assume that the lemma is established for the set D1, which is
obviously open dense. Thus, let D′

1 ⊆ D1 be a finite set satisfying U ⊆ ∪D′
1. However, by definition,

there is a finite set D′ ⊆ D such that if T ∈ D′
1, then ∃S ∈ D′, T ⊆ S. Then U ⊆ ∪D′

1 ⊆ ∪D′, as
required.

Let U = UΦ
k (s) ∈ U, where s ∈ 2<ω and k ∈ N.

The set Δ ∈ M of all multisystems Φ = 〈ϕk〉k∈ω ∈ SS<ω(P) such that

K ∈ |Φ|, lh(s) ≤ h = hgt(ϕK), ϕK(t) ∈ D for all t ∈ 2h,

is dense in SS<ω(P) by the choice of D. Therefore, there is an index j such that Φj ∈ Δ. Let
h(j) = hgt(ϕj

K); lh(s) ≤ h(j). Then the tree St = ϕj
K(t) = TΦ

K(t) belongs to D for all t ∈ 2h(j). We
conclude that

U = UΦ
k (s) ⊆

⋃

t∈2h(j) , s�t

TΦ
K(t) ⊆

⋃

t∈2h(j), s�t

St = ∪D′,

where D′ = {St : t ∈ 2h(j) ∧ s � t} ⊆ D is finite.

Lemma 16. If a set D ∈ M, D ⊆ P
<ω, is pre-dense in P

<ω, then it is pre-dense in (P ∪U)<ω as
well.

Proof. For a given multitree τ ∈ (P∪U)<ω, we must prove that τ is compatible with a multitree σ ∈ D
in (P ∪U)<ω . Let |τ | = {0, 1}, for the sake of clarity, so that τ = 〈U, V 〉 (see Remark 8), where the trees
U = UΦ

k (s) and V = UΦ
� (t) belong to U.

Consider the set Δ ∈ M of all multisystems Φ = 〈ϕk〉k∈ω ∈ SS<ω(P) such that there are strings
s′, t′ ∈ 2<ω with s ⊆ s′, t ⊆ t′, lh(s′) ≤ hgt(ϕk), lh(t′) ≤ hgt(ϕ�), and trees S, T ∈ P such that

〈S, T 〉 ∈ D, ϕk(s
′) ⊆ U ∩ S, ϕ�(t

′) ⊆ V ∩ T.

The set Δ is dense in SS<ω(P) by the pre-density of D. Therefore, there is an index j such that
Φj = 〈ϕj

k〉k∈ω ∈ Δ.

Then there exist strings s′, t′ ∈ 2<ω and a multitree 〈S, T 〉 ∈ D satisfying

s ⊆ s′, t ⊆ t′, ϕj
k(s

′) ⊆ U ∩ S, ϕj
�(t

′) ⊆ V ∩ T .

However, we have

U ′ = UΦ
k (s

′) ⊆ ϕj
k(s

′), V ′ = UΦ
� (t

′) ⊆ ϕj
�(t

′)

by construction. It follows that the multitree 〈U ′, V ′〉 ∈ U
<ω is “stronger” in (P ∪ U)<ω than either of

〈U, V 〉, 〈S, T 〉, as required.
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5. NAMES AND DIRECT FORCING
It is assumed in this section that P is a PTF and 2<ω ∈ P. Recall that P adjoins a generic real

x = x[G] ∈ 2N, while P<ω adjoins an infinite sequence of P-generic reals xk = xk[G]; see Sec. 2.

Definition 17. By a P
<ω-real name we shall mean a system c = 〈Ci

n〉n<ω, i<2 of sets Ci
n ⊆ P

<ω such
that every set Cn = C0

n ∪ C1
n is pre-dense in P

<ω, and any pair of multitrees S ∈ C0
n and T ∈ C1

n is
incompatible in P

<ω. In this case, if a set G ⊆ P
<ω is P<ω-generic, at least over the family of all sets Cn,

then we define a real c[G] ∈ 2N such that c[G](n) = i iff G ∩ Ci
n �= ∅.

It is clear that c = 〈Ci
n〉 is a P

<ω-name of a real c[G] ∈ 2N.

Example 18. Let k < ω. Define a P
<ω-real name ẋk = 〈Ck

ni〉 such that every set Ck
ni contains all

multitrees ρ ∈ P
<ω satisfying

|ρ| = {k}, ρ(k) = T [s] = {u ∈ 2<ω : s � u ∨ u ⊆ s},
where s ∈ 2n+1 and s(n) = i. Thus ẋk is a P

<ω-name of the real xk = xk[G], i.e., the kth term of the
P
<ω-generic sequence 〈xk〉k<ω.

Let c = 〈Ci
n〉, d = 〈Di

n〉 are P
<ω-real names. The tree T ∈ PT:

• directly forces c(n) = i, where n < ω, i = 0, 1, if T ⊆ S for some tree S ∈ Ci
n;

• directly forces s � c, where s ∈ 2<ω if, for each n < lh(s), the tree T directly forces c(n) = i,
where i = s(n);

• directly forces d �= c if there exist strings s, t ∈ 2<ω , incomparable in 2<ω and such that T
directly forces s � c and t � d;

• directly forces c /∈ [U ], where U ∈ PT, if there is a string s ∈ 2<ω \ U such that the tree T
directly forces s � c.

6. KEY THEOREM
Arguing in the conditions of Definition 12, the goal of the following Theorem 19 will be the proof that,

whenever c is a P-real name, the extended forcing P ∪ U forces that c does not belong to the sets [U ],
where U ∈ U, except for the case when c is the name ẋk for one of generic reals xk = xk[G].

Theorem 19. Under the conditions of Definition 12, let c = 〈Ci
m〉m<ω, i<2 ∈ M be a P

<ω-real name,
and for each k the set

D(k) = {τ ∈ P
<ω : τ directly forces c �= ẋk}

dense in P
<ω. Let U ∈ U and u ∈ (P ∪ U)<ω. Then there exists a multitree v ∈ U

<ω, v ≤ u, which
directly forces c /∈ [U ].

Proof. By definition, we have U = UΦ
K(s0), where K ∈ N and s0 ∈ 2<ω , and, in the context of the

theorem, it can be assumed that s0 = Λ, thus U = UΦ
K . Let, for the sake of clarity and simplicity, K = 1,

i.e., U = UΦ
1 . By Lemma 14, it can also be assumed that u ∈ U

<ω. And, for the sake of clarity, let

|u| = {0, 1, 2, 3}, u = 〈U0, U1, U2, U3〉 ∈ U
<ω

(see Remark 8), where

U0 = UΦ
0 (t0), U1 = UΦ

0 (t1), U2 = UΦ
1 (t2), U3 = UΦ

1 (t3),

and t0, t1, t2, t3 are strings in 2<ω . Let H = max{lh(t0), lh(t1), lh(t2), lh(t3)}.
Consider the set D of all multisystems Φ = 〈ϕk〉k∈ω in SS<ω(P), such that 0, 1 ∈ |Φ|,

H ≤ h = hgt(ϕ0) = hgt(ϕ1),

and there is a multitree σ = 〈S0, . . . , SN 〉 ∈ P
<ω, N ≥ 3, such that
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(I) σ directly forces c /∈ [T ], where T =
⋃

s∈2h ϕ1(s);

(II) every tree Si occurs in Φ (see Sec. 3);

(III) in addition, S0 = ϕ0(s0), S1 = ϕ0(s1), S2 = ϕ1(s2), S3 = ϕ1(s3), where s0, s1, s2, s3 are strings
in 2h and ti ⊆ si, i = 0, 1, 2, 3.

Lemma 20. Under the conditions of the theorem, the set D is dense in SS<ω(P).

Proof. Consider any multisystem Φ′ ∈ SS<ω(P). We must define a multisystem Ψ ∈ D such that
Φ′ � Ψ. Our plan is as follows. Take any multisystem Φ = 〈ϕk〉k∈ω in SS<ω(P) such that

Φ′ ≺≺ Φ, H ≤ h = hgt(ϕ0) = hgt(ϕ1);

then every multisystem Ψ ∈ SS<ω(P) refining Φ satisfies Φ′ ≺≺ Ψ. Thus, the problem is reduced to the
construction of a multisystem Ψ ∈ D which refines Φ.

Pick strings s0, s1, s2, s3 ∈ 2h, satisfying ti ⊆ si, i = 0, 1, 2, 3. Consider a multitree

ρ = 〈R0, R1, R2, R3, R4, . . . , RN 〉 ∈ P
<ω,

where N = 1 + 2h (here 2h is the arithmetic exponent),

R0 = ϕ0(s0), R1 = ϕ0(s1), R2 = ϕ1(s2), R3 = ϕ1(s3),

Rj = ϕ1(sj), j = 4, . . . , N,

where {s4, . . . , sN} is an arbitrary enumeration of the set {s ∈ 2h : s �= s2, s3}.

By the density of the sets D(k), there exists a multitree

σ = 〈S0, S1, S2, S3, . . . , SN , . . . , SM 〉 ∈ P
<ω

such that σ ≤ ρ, thus M ≥ N and Si ⊆ Ri for all i ≤ N , which directly forces c �= ẋk for all
k = 2, . . . , N . This means that there exist strings u, v2, . . . , vN ∈ 2<ω such that σ directly forces every
formula

u � c, as well as v2 � ẋ2, v3 � ẋ3, . . . , vN � ẋN ,

and u is incomparable in 2<ω with every vk. This implies vk ⊆ stemSk, k = 2, . . . , N . Therefore σ
directly forces c /∈ [S], where S =

⋃
2≤k≤N Sk.

We now define a required multisystem Ψ = 〈ψk〉k∈ω ∈ SS<ω(P).

Step 1. Recall that R0 = ϕ0(s0), R1 = ϕ0(s1), R2 = ϕ1(s2), R3 = ϕ1(s3) in Φ. Put

ψ0(s0) = S0, ψ0(s1) = S1, ψ1(s2) = S2, ψ1(s3) = S3.

We also let ψ0(s) = ϕ0(s) for all s ∈ 2≤h, s �= s0, s1.

Step 2. Assume that 4 ≤ j ≤ N . By construction the tree Rj is equal to ϕ1(sj), where sj ∈ 2h,
sj �= s2, s3; we let ψ1(sj) = Sj .

Step 3. If 
 ∈ |Φ|, 
 ≥ 2, then let ψ� = ϕ�.

Step 4. We put μ = max |Φ|. Assume that N + 1 ≤ 
 < M . Then S� ∈ P. Define a system
ψμ+� ∈ SS(P) such that hgt(ψμ+�) = 0 and ψμ+�(Λ) = S�.

One easily verifies that Ψ ∈ D is a multisystem required.
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We return to Theorem 19. By Lemma 20, there is an index J such that the multisystem
ΦJ = 〈ϕJ

k 〉k∈ω belongs to D , thus 0, 1 ∈ |Φ|, H ≤ h = hgt(ϕJ
0 ) = hgt(ϕJ

1 ), and there exists a multitree
σ = 〈S0, . . . , SN 〉 ∈ P

<ω satisfying (I), (II), (III) for systems ϕ0 = ϕJ
0 , ϕ1 = ϕJ

1 .

Consider a multitree v = 〈V0, V1, V2, V3, . . . , Vn〉 ∈ U
<ω defined so that

V0 = UΦ
0 (s0), V1 = UΦ

0 (s1), V2 = UΦ
1 (s2), V3 = UΦ

1 (s3),

and if 4 ≤ j ≤ n, then Vj is any tree in U satisfying Vk ⊆ Sk (see Lemma 14). Since ti ⊆ si holds for
i = 0, 1, 2, 3, we have v ≤ u. And on the other hand, v ≤ σ, and hence v directly forces c /∈ [T ] by (I),
where

T =
⋃

s∈2h
ϕJ
1 (s) =

⋃

s∈2h
TΦ

1 (s).

We finally have UΦ
1 ⊆

⋃
s∈2h ϕ

J
1 (s) by construction; therefore, v directly forces c /∈ [UΦ

1 ], as required.

7. THE JENSEN TRANSFINITE FORCING CONSTRUCTION

We argue in the constructible universe L in this section. We let ≤L denote the canonical wellordering
of the class L; see [4, 8.1.6].

Definition 21 (inL). Following a construction in [11, Sec. 3] (with appropriate modifications), we define
a countable PTF Uξ ⊆ PT (see Sec. 2) by induction on ξ < ω1, as follows.

Let U0 denote the set of all trees of the form T [s], see Example 5, including the full tree 2<ω = T [Λ]
itself.

Now suppose that 0 < λ < ω1, and countable PTFs Uξ ⊆ PT are already defined for ξ < λ. Let
Mξ be the least model M of ZFC′ of the form Lκ, κ < ω1, containing the sequence 〈Uξ〉ξ<λ and such
that λ < ωM

1 and all sets Uξ, ξ < λ, are countable in M. Then the set Pλ =
⋃

ξ<λUξ is a PTF as well

and is countable in M. We define 〈Φj〉j<ω to be the ≤L-least sequence of systems Φj ∈ SS<ω(Pλ),
�-increasing and generic over Mλ. To accomplish the induction step, define Uλ = U as in Definition 12.

We finally put P =
⋃

ξ<ω1
Uξ.

The set P =
⋃

ξ<ω1
Uξ is equal to Jensen’s forcing in [11] modulo technical details. We make use of

the finite support product P<ω in the proof of Theorem 4. The following results are typical of this type of
inductive forcing constructions.

Proposition 22 (in L). The sequence 〈Uξ〉ξ<ω1 belongs to the definability class ΔHC
1

3.

Lemma 23 (in L). If a set D ∈ Mξ , D ⊆ P
<ω
ξ is pre-dense in P

<ω
ξ , then it remains pre-dense in P

<ω.
Therefore, if ξ < ω1, then U

<ω
ξ itself is pre-dense in P

<ω.

Proof. Induction on λ ≥ ξ proves that if D is pre-dense in

P
<ω
λ ,

then it remains pre-dense in P
<ω
λ+1 = (Pλ ∪Uλ)

<ω by Lemma 16. The limit step is obvious. To prove the
second claim, note that U<ω

ξ is dense in P
<ω
ξ+1 by Lemma 14, and U

<ω
ξ ∈ Mξ+1.

3See [8, 3.4] or [15, Secs. 8 and 9] on the set HC of all hereditarily countable sets; note that HC = Lω1 in L. See [15,
Chap. 5, Sec. 4] on the definability classes ΣX

n , ΠX
n , ΔX

n .
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Lemma 24 (in L). If X ⊆ HC = Lω1 , then the set WX of all ordinals ξ < ω1 such that 〈Lξ;X ∩ Lξ〉
is an elementary submodel of the structure 〈Lω1 ;X〉 and X ∩ Lξ ∈ Mξ is unbounded in ω1.

Generally, if Xn ⊆ HC holds for all n, then the set W of all ordinals ξ < ω1 such that
〈Lξ; 〈Xn ∩ Lξ〉n<ω〉 is an elementary submodel of the structure

〈Lω1 ; 〈Xn〉n<ω〉 and 〈Xn ∩ Lξ〉n<ω ∈ Mξ

is unbounded in ω1.

Proof. Let ξ0 < ω1. There exists a countable elementary submodel M of the structure Lω2 , containing

ξ0, ω1, X and such that M ∩HC is transitive. Let φ : M
onto−−→ Lλ be the Mostowski collapse, and

let ξ = φ(ω1). Then ξ0 < ξ < λ < ω1 and φ(X) = X ∩ Lξ by the choice of M . This implies that
〈Lξ;X ∩ Lξ〉 is an elementary submodel of 〈Lω1 ;X〉. Moreover, ξ is uncountable in Lλ, therefore
Lλ ⊆ Mξ. We conclude that X ∩ Lξ ∈ Mξ, because X ∩ Lξ ∈ Lλ by construction. The proof of the
general claim is similar.

Corollary 25 (compare to [11, Lemma 6]). The forcing P
<ω satisfies the condition of countability of

antichains in L.

Proof. Consider a maximal antichain A ⊆ P
<ω. By Lemma 24 there is an ordinal ξ such that

A′ = A ∩ Pξ is a maximal antichain in P
<ω
ξ and A′ ∈ Mξ. But then A′ remains a pre-dense set, hence

still a maximal antichain, in the whole set P by Lemma 23. It follows that the antichain A = A′ itself is
countable.

8. GENERIC EXTENSION

We consider the sets P, P
<ω in L (see Definition 21) as forcings for generic extensions of the

universe L. Recall that P (as any PTF in general) adjoins a generic real in 2N, while P
<ω adjoins an

infinite sequence of such reals.

Lemma 26 (Lemma 7 in [11]). A real x ∈ 2N is P-generic over L if and only if

x ∈ Z =
⋂

ξ<ωL
1

⋃

U∈Uξ

[U ].

Proof. If ξ < ωL
1 , then the set Uξ is pre-dense in P by Lemma 23. Therefore, each real x ∈ 2N P-generic

over L belongs to
⋃

U∈Uξ
[U ]. Conversely, suppose that x ∈ Z, and prove that the real x is P-generic

over L. Consider a maximal antichain A ⊆ P in L; we need to check that x ∈
⋃

T∈A[T ]. Indeed, A ⊆ Pξ

holds for some ξ < ωL
1 by Corollary 25. But then every tree U ∈ Uξ satisfies U ⊆fin

⋃
A by Lemma 15,

so that
⋃

U∈Uξ

[U ] ⊆
⋃

T∈A
[T ],

and hence x ∈
⋃

T∈A[T ], as required.

Corollary 27 (compare to Corollary 9 in [11]). In any generic extension of the class L, the set of all
reals in 2N, P-generic over L, is a set of classes ΠHC

1 and Π1
2 .

Proof. Apply Lemma 26 and Proposition 22.

Definition 28. We fix a set G ⊆ P
<ω, P<ω-generic over L. If k < ω, then the set Gk = {τ (k) : τ ∈ G}

is accordingly P-generic over L, and the intersection Xk =
⋂

T∈Gk
[T ] contains a single element xk ∈ 2N

and the real xk = x[Gk] is P-generic over L.
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The entire extension L[G] is then equal to L[〈xk〉k<ω], and our goal will be to prove that it does not
contain any other P-generic reals.

Lemma 29 (compare to Lemma 10 in [11]). If y ∈ L[G] ∩ 2N and y /∈ {xk : k < ω}, then y is not a
P-generic real over L.

Proof. Assume the converse: there exists a P
<ω-real name c = 〈Ci

n〉n<ω, i=0,1 ∈ L and a condition
τ ∈ P

<ω which P
<ω-forces that the real c is P-generic, while the whole forcing P

<ω forces that c �= ẋk

for each k. (Recall that ẋk is a P
<ω-name of the real xk.)

All sets Cn = C0
n ∪ C1

n are pre-dense in P
<ω. Therefore, by Lemma 24 there is an ordinal λ < ω1

such that the sets C ′
n = Cn ∩ Pλ are pre-dense in P

<ω
λ , and the sequence 〈C ′

ni〉n<ω, i=0,1 belongs to Mλ,
where C ′

ni = C ′
n ∩Ci

n. Then the sets C ′
n are pre-dense in P

<ω by Lemma 23. Thus, we can assume that
Cn = C ′

n, i.e., c ∈ Mλ and c is a P
<ω
λ -real name.

Further, since P<ω forces c �= ẋk, the set Dk of all multitrees σ ∈ P
<ω which directly force c �= ẋk, is

dense in P
<ω for all k. Therefore, once again by Lemma 24, we can assume that, for the same ordinal λ,

each set D′
k = Dk ∩ P

<ω
λ is dense in P

<ω
λ .

Applying Theorem 19 forP = Pλ,U = Uλ, and P∪U = Pλ+1, we infer that ifU ∈ Uλ, then the set QU

of all multitrees v ∈ P
<ω
λ+1 directly forcing c /∈ [U ] is dense in P

<ω
λ+1. And since obviously QU ∈ Mλ+1,

we conclude that QU is pre-dense in the entire forcing P
<ω by Lemma 23. It follows that the forcing P

<ω

forces c /∈
⋃

U∈Uλ
[U ], and hence forces that c is not a P-generic real, by Lemma 26. But this contradicts

the choice of T .

The next lemma expresses a usual property of product forcings.

Lemma 30 (in the assumptions of Definition 28). If k < ω, then the real xk is not OD in L[G].

Proof. Assume the converse, and let ϕ(α, x) be a formula containing a parameter α ∈ Ord, and such
that it is true in L[G] that: ∃!xϕ(α, x) ∧ ϕ(α, xk). This sentence is P

<ω-forced by a certain condition,
a multitree σ ∈ P

<ω, i.e., σ forces ∃!xϕ(α, x) ∧ ϕ(α, ẋk). By definition, the set u = |σ| ⊆ N is finite; let
m = max u be its largest element.

Consider a bijection b : N
onto−−→ N mapping the segment [0,m] onto [m+1, 2m+1] in order-preserv-

ing way, and equal to the identity on [m+ 2,+∞). It obviously induces an order automorphism of the
whole set P<ω. However, the multitreeσ′ = b(σ) satisfies |σ′| ⊆ [m+1, 2m+1], so that |σ| ∩ |σ′| = ∅.
Therefore σ and σ′ are compatible, in fact τ = σ ∪σ′ is a multitree and a condition stronger than either
of σ, σ′.

Moreover, the bijection b also induces a transformation of names such that b(ẋk) = ẋk′ , where
k′ �= k. By the invariance of the forcing relation (see, for instance, [5, I.3.5]), it follows that σ′ forces
∃!xϕ(α, x) ∧ ϕ(α, ẋk′), so that τ forces

∃!xϕ(α, x) ∧ ϕ(α, ẋk) ∧ ϕ(α, ẋk′),

which contradicts the inequality k �= k′.

Now it remains to finalize the proof of our main theorem.

Proof of Theorem 4. Arguing in the P<ω-generic model L[G] = L[〈xk〉k<ω], it is clear that the count-
able set X = {xk : k < ω} is equal to the set of all P-generic reals by Lemma 29, therefore, it belongs
to Π1

2 by Corollary 27, and finally it does not contain OD reals by Lemma 30.

Remark 31. It is a special feature of Jensen’s forcing P that its construction assumes that the ground
universe (where the forcing is defined) is the Goedel constructible universe L. It would be interesting to
generalize this method, for instance, to the ground universes in which the coding methods introduced in
[4] and [17] are applicable.
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